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We discuss the creation of massless particles in a Universe, which transits from a radiation-dominated

era to any other expansion law. We calculate in detail the generation of gravitons during the transition to a

matter-dominated era. We show that the resulting gravitons generated in the standard radiation/matter

transition are negligible. We use our result to constrain one or more previous matter-dominated era, or any

other expansion law, which may have taken place in the early Universe. We also derive a general formula

for the modification of a generic initial graviton spectrum by an early matter-dominated era.
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I. INTRODUCTION

One of the most interesting aspect of inflation is that it
leads to the generation of a scale-invariant spectrum of
scalar perturbations [1] and of gravitational waves [2] (see
also [3,4]). The origin of these perturbations is the quantum
generation of field correlations in a time-dependent back-
ground (scalar field modes for the scalar perturbations and
gravitons for the tensor perturbations). Since this genera-
tion takes place mainly on superhorizon scales, it is not
correct to talk of ‘‘particles’’. However, long after inflation,
when the perturbations reenter the horizon, the particle
concept, e.g. for gravitons becomes meaningful and we
can calculate, e.g. the energy density of the gravitons
which have been generated during inflation.

It is natural to ask whether particle production takes
place also in an ordinary expanding but noninflationary
Friedmann Universe. The answer is that particle produc-
tion (or more generically the quantum generation of field
correlations) can indeed take place after inflation, but if
there is no inflationary phase to start with, the initial
vacuum state is in general not known, and the production
rate cannot be computed. Examples where particle creation
taking place after inflation (or after pre-big bang) modifies
the final spectrum are given in Refs. [5–8]. Especially in
Ref. [7] it has been studied how inflationary perturbations
are modified if the subsequent expansion is not standard
radiation but some other expansion law.

In general, the vacuum state, and hence the particle
concept, is well defined only if the spacetime is static or
very slowly varying [9]. Let us consider a mode of fixed
(comoving) frequency k in a Friedmann universe. The
above condition then corresponds to k=H " 1, where
H ¼ aH is the comoving Hubble scale. In this sense,
the scale (wavelength) under consideration must be ‘‘inside
the horizon’’. However, the production of a particle with a
given energy k can only take place if the energy scale of
expansion is larger or of the order of the energy of the
associated mode, i.e. k & H . Therefore, having a well
defined initial vacuum state, and subsequent particle crea-
tion, usually requires a decreasing comoving Hubble rate.

This is verified only during inflation or during a collapsing
Friedmann Universe, like in the pre-big bang or in bounc-
ing models.
However, one important exception to this general rule

exists, and it is the subject of the present paper: in a
radiation-dominated Friedmann background, massless per-
turbations do not couple to the expansion of the Universe,
and evolve like in ordinary Minkowski space. This has
already been realized and studied to some extent in
Ref. [10]. In a radiation-dominated Universe we therefore
can provide vacuum initial conditions for all modes of a
massless field, including superhorizon modes. Thus, when
the expansion law changes, e.g. from radiation- to matter-
dominated, the massless modes couple to the expansion of
the Universe, and those with k=H < 1 are amplified.
In this paper we study this phenomenon in two situations

of interest. In the first, we investigate graviton production
during the ordinary radiation/matter transition at redshift
zeq ’ 3500. We determine the amplitude and the spectrum
of the generated gravity wave background, and we show
that the spectrum is flat and the amplitude is negligibly
small. In the second case, we investigate the production of
gravitons during an arbitrary matter-dominated phase,
which could take place in the early Universe, e.g., if a
(very weakly interacting) particle becomes massive, and
succeeds to dominate the Universe for a period of time
before it decays into radiation. We derive a general formula
for the gravity wave spectrum generated by any number of
such intermediate periods of matter domination. We also
determine the gravity waves produced by a transition into
an arbitrary other expansion law. Finally, we discuss the
modifications of our results which occur when the initial
state is not the vacuum but some arbitrary state which may
already contain particles. In this work we concentrate on
graviton production, but all our results are equally appli-
cable to other massless particles.
The reminder of this paper is organized as follows. In the

next section we present the setup and the basic formulas
used in our work. In Sec. III, we calculate the gravitational
wave production during the standard radiation/matter tran-
sition. We also give the results for the transition from
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radiation to some generic expansion law. In Sec. IV we
consider the effect of one or several additional transitions
in the early Universe and we derive results for general
nonvacuum initial conditions. In Sec. V we derive the
consequences of our results and we draw some
conclusions.

Notation: We work in a spatially flat Friedmann
Universe, and we denote conformal time by t, so that

ds2 ¼ a2ðtÞð!dt2 þ !ijdx
idxjÞ:

An over-dot denotes the derivative with respect to the
conformal time. We use natural units c ¼ @ ¼ 1, except
for Newton’s constant G, which is related to the reduced
Planck mass by 8"G ¼ m!2

p . We normalize the scale
factor, so that a0 ¼ aðt0Þ ¼ 1 at the present time.

II. GRAVITON CREATION IN COSMOLOGY

We now consider tensor perturbations of the Friedmann
metric, namely

ds2 ¼ a2ðtÞ½!dt2 þ ð!ij þ 2hijÞdxidxj(;
where hij is a transverse and traceless tensor. In Fourier
space we have

hijðk; tÞ ¼ hþðk; tÞeðþÞ
ij ðk̂Þ þ h!ðk; tÞeð!Þ

ij ðk̂Þ; (1)

where eð)Þ
ij ðk̂Þ denote the positive and negative helicity

polarization tensors, and kieð)Þ
ij ¼ 0. In a perfect fluid

background, i.e. if there are no anisotropic stresses, both
amplitudes satisfy the same wave equation,

hh ¼ €hþ 2
_a

a
_hþ k2h ¼ 0; (2)

where h * h). This equation of motion is obtained when
expanding the gravitational action in a Friedman universe
to second order in h,

Sþ !S ¼ !m2
p

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!ðgþ !gÞ

q
ðRþ !RÞ: (3)

A brief calculation shows that the lowest (second order)
contribution to !S can be written in Minkowski-space
canonical form,

!Sð2Þ ¼ ! 1

2

Z
d4x

"
@#$@

#$! €a

a
$2

#
¼

Z
d4xL; (4)

if we rescale h as

hðx; tÞ ¼ 1ffiffiffi
2

p
mpaðtÞ

$ðx; tÞ: (5)

Equation (4) is the action of a canonical scalar field with
time-dependent effective squared mass m2ðtÞ ¼ ! €a=a. If
the expansion of the Universe is slow enough (compared to
the frequency of the mode under consideration), then the
effective mass is negligible, and the theory describes a

massless scalar field in Minkowski space, which can be
quantized according to the usual procedure: we first pro-
mote the field to an operator

$̂ðx; tÞ ¼
Z d3k

ð2"Þ3 ½e
ik+x%kðtÞb̂k þ e!ik+x%,

kðtÞb̂yk(; (6)

then we impose the commutation rules

½bk; byk0( ¼ ð2"Þ3!3ðk! k0Þ;
½bk; bk0( ¼ ½byk; byk0( ¼ 0:

The field equations derived from the action (4) lead to the
mode equation

€% k þ
$
k2 ! €a

a

%
%k ¼ 0: (7)

Within linearized gravity we can therefore quantize the
metric fluctuations, provided the Universe expands adia-
batically, by making use of the above rescaling of the
amplitude h.
In particular, we now assume that the Universe is ini-

tially radiation-dominated, so that aðtÞ ¼ t, and €a=a ¼ 0,
and $ represents exactly a massless scalar field in
Minkowski space. We consider the vacuum initial condi-
tions for the modes %kðtÞ as given by

%kðtÞ ¼
1ffiffiffiffiffi
2k

p e!ikt: (8)

More general initial conditions will be considered at the
end of Sec. IV. The field normalization is determined by
the Klein-Gordon norm

i%,@
$
0% * ið%,@0%! %@0%

,Þ ¼ 1: (9)

Then, the field operator $̂ and its canonically conjugate
momentum, "̂ ¼ @L=@ð@0$̂Þ satisfy the canonical com-
mutation relations. The operators b̂k define the in vacuum
by b̂kj0ini ¼ 0 8 k. In the following, this is the initial
vacuum, void of particles by construction.
Suppose now that at a time t ¼ t1, the Universe changes

abruptly from radiation-dominated to another expansion
law. Then, the effective squared mass no longer vanishes,
and the initial modes, with kt1 < 1 are amplified.
Continuity requires that % and _%match at t ¼ t1, and these
conditions determine the Bogoliubov coefficients, which
relate the new modes %out and operators b̂k;out to the old

ones, %in and b̂k;in by [9]

%outðtÞ ¼ &%inðtÞ þ '%,
inðtÞ; (10)

b̂ out ¼ &,b̂in ! ',b̂yin: (11)

With these relations, we can compute the number density
of the particles [11] created at the transition [9]

Nðk; t1Þ ¼ h0injb̂yk;outb̂k;outj0ini ¼ j'j2: (12)
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Thus, the energy density ( * hT0
0i can be written as

(h ¼
1

a4

Z d3k

ð2"Þ3 kNðk; t1Þ ¼
1

2"2a4

Z
dkk3j'j2; (13)

which implies the usual formula [12]

d(h

d logk

&&&&&&&&tot
¼ k4j'j2

"2a4
; (14)

where we have multiplied Eq. (13) by a factor 2 to take into
account both polarizations. Note also that k denotes co-
moving momenta/energy so that we had to divide by a4 to
arrive at the physical energy density. The second quantity
of interest is the power spectrum Phðk; tÞ, defined by

4"
Z dk

k
Phðk; tÞ ¼ h0injhðt;xÞ2j0ini: (15)

Using Eqs. (5) and (6), we obtain

Phðk; tÞ ¼
k2j'j2

ð2"Þ3m2
pa

2 ; (16)

where, again, we have multiplied by 2 to account for both
polarizations.

Note that for all this it is not important that we consider a
spin 2 graviton. The exactly same mode equation is ob-
tained for a scalar field and also for a fermion field. In the
latter case, the commutation relations have to be replaced
by the corresponding anti-commutation relations.

III. FROM RADIATION TO MATTER ERA

Before discussing a transition from the radiation-
dominated era to the matter era, let us consider the tran-
sition from radiation to some generic power law expansion
phase, a / tq with q ! 1 at some time t1. In the new era
€a=a ¼ qðq! 1Þ=t2 ! 0. Note that only if q > 1 (or if q <
0 which corresponds to inflation or contraction), so that
m2ðtÞ ¼ !qðq! 1Þ=t2 is negative, we will have significant
particle production. Since the expansion law is related to
the equation of state parameter w ¼ P=( via [4]

q ¼ 2

1þ 3w
; (17)

this requires w< 1=3.
Let us start in the vacuum during the radiation era, then

% is given entirely by the negative frequency modes,
Eq. (8). This means that we consider the situation where
there are no significant gravity waves present from an
earlier inflationary epoch. Here, we really want to study
the production due solely to the radiation/matter transition.
The general solution of the mode Eq. (7) in the new era are
the spherical Hankel functions [13] of order q! 1,

%kðtÞ ¼
&1ffiffiffiffiffi
2k

p zhð2Þq!1ðzÞ þ
'1ffiffiffiffiffi
2k

p zhð1Þq!1ðzÞ; (18)

where z ¼ kt. Note that inside the horizon, i.e. for z " 1,

zhð2Þq!1ðzÞ / expð!izÞ corresponds to the negative fre-

quency modes while zhð1Þq!1ðzÞ / expðizÞ corresponds to

positive frequency modes. We match % and _% at t ¼ t1 to
the radiation-dominated vacuum solution (8). A brief cal-
culation yields the coefficients (z1 * kt1)

&1 ¼ ! i

2
e!iz1½ðiz1 þ qÞhð1Þq!1ðz1Þ ! z1h

ð1Þ
q ðz1Þ(; (19)

'1 ¼ ! i

2
e!iz1½ðiz1 þ qÞhð2Þq!1ðz1Þ ! z1h

ð2Þ
q ðz1Þ(: (20)

This instantaneous matching condition is good enough for
frequencies for which the transition is rapid, i.e. z1 - 1. In
fact, for frequencies with z1 > 1, the transition is adiabatic
and no particle creation will take place. This can also been
seen when considering the limits of the above result for
large z1. Then &1 ! 1 and '1 ! 0, but strictly speaking
the above approximations are not valid in this regime
where no particle creation takes place. We therefore con-
centrate on z1 - 1.
Let us now study the specific case of the radiation-matter

transition, i.e. q ¼ 2. Then we have to consider spherical
Hankel functions of order 1 and the solution is given by

%kðtÞ ¼
&1ffiffiffiffiffi
2k

p z! i

z
e!iz þ '1ffiffiffiffiffi

2k
p zþ i

z
eiz: (21)

The matching at t1 now yields

&1 ¼ 1þ i

z1
! 1

2z21
; '1 ¼ ! 1

2z21
e!2iz1 : (22)

We want to evaluate the quantum field $̂ at late time,
when z " 1 and the mode k under consideration is sub-
horizon. Then, the solution (21) is again the Minkowski
solution,

%kðtÞ ’
&1ffiffiffiffiffi
2k

p e!iz þ '1ffiffiffiffiffi
2k

p eiz: (23)

The number of gravitons generated during the matter era
(before z " 1) is, see Eq. (12)

Nðk; tÞ ¼ j'1j2: (24)

The graviton power spectrum is given by Eq. (16), and
the energy density by Eq. (13).
Using that (rada

4 * (radðt1Þa41 ¼ 3
2m

2
pH 2

1a
2
1 and

j'1j2 ¼ z!4
1 =4, we obtain

d#hðkÞ
d logk

¼ 2#rad

3"2

k4

m2
pH 2

1a
2
1

j'1j2 ¼
#rad

6"2

"
H1

mp

#
2

¼ #rad
geff

36. 30

"
T1

mp

#
4
: (25)

For the second equal sign we have used thatH 1 ¼ 1=t1 ¼
a1H1, which is strictly true only in the radiation era, in the
matter era we have H ¼ 2=t and at the transition a value
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between 1 and 2 would probably be more accurate. But
within our approximation of an instant transition, we do
not bother about such factors. For the last equal sign we
used H2

1 ¼ (rad=ð6m2
pÞ with (rad ¼ geff

"2

30 T
4 where geff ¼

NB þ 7
8NF is the effective number of degrees of freedom.

For a generic transition we obtain j'1j2 ¼ z!2q
1 =4 so

that

d#hðkÞ
d logk

’ #rad

"
T1

mp

#
4
z4!2q
1 : (26)

This spectrum is blue (i.e. growing with k) if q < 2 and red
otherwise.

As z1 < 1 in the regime of validity of our formula, we
need a red spectrum i.e. q > 2 to enhance the gravitational
wave energy density with respect to the result from the
radiation ! matter transition. According to Eq. (17), this
requires !1=3<w< 0, a slightly negative pressure, but
still noninflationary expansion.

In the standard radiation to matter transition when three
species of left handed neutrinos and the photon are the only
relativistic degrees of freedom, we have geff ¼ 29=4. For
this transition

T1 ¼ Teq ’ 0:85 eV ’ 0:35. 10!27mp;

hence the result (25) is completely negligible.

IV. MORE THAN ONE RADIATION-MATTER
TRANSITION

We now consider an early matter-dominated era. At
some high temperature T1 " Teq, corresponding to a co-
moving time t1, a massive particle may start to dominate
the Universe and render it matter-dominated. At some later
time t2, corresponding to temperature T2, this massive
particle decays and the Universe becomes radiation-
dominated again, until the usual radiation-matter transi-
tion, which takes place at Teq * T3. We want to determine
the gravitational wave spectrum and the spectral density
parameter d#h=d logðkÞ as functions of T1 and T2.

Let us first again start with the vacuum state in the
radiation eta before t1. When, we just obtain the results
(22) for the Bogoliubov coefficients &1 and '1 after the
first transition. To evaluate the matching conditions at the
second transition, matter to radiation, we set

% ¼ &2ffiffiffiffiffi
2k

p e!ikt þ '2ffiffiffiffiffi
2k

p eikt; t / t2:

Matching % and _% at t2 we can relate the new coefficients
&2 and '2 to &1 and '1. A brief calculation gives

&2 ¼ &1

"
1! i

z2
! 1

2z22

#
þ '1

2z22
e2iz2

¼ &1fðz2Þ þ '1gðz2Þ; (27)

'2 ¼ '1

"
1þ i

z2
! 1

2z22

#
þ &1

2z22
e!2iz2 (28)

¼ '1
$fðz2Þ þ &1 $gðz2Þ; (29)

or in matrix notation

&2

'2

" #
¼ Mðz2Þ

&1

'1

" #
; with (30)

MðzÞ ¼ fðzÞ gðzÞ
$gðzÞ $fðzÞ

" #
(31)

M!1ðzÞ ¼
$fðzÞ !gðzÞ

! $gðzÞ fðzÞ

" #
: (32)

The fact that M 2 Slð2;CÞ, i.e., jfðzÞj2 ! jgðzÞj2 ¼ 1 en-
sures that the normalization condition (9) which translates
to the condition j&j2 ! j'j2 ¼ 1 for the Bogolioubov co-
efficients of a free field, is maintained at the transition.
Finally, the matching at the usual radiation-matter transi-
tion yields

&3 ¼ &2

"
1þ i

z3
! 1

2z23

#
! '2

2z23
e2iz3 ;

'3 ¼ '2

"
1! i

z3
! 1

2z23

#
! &2

2z23
e!2iz3 ;

(33)

&3

'3

" #
¼ M!1ðz3Þ

&2

'2

" #
(34)

&3

'3

" #
¼ M!1ðz3ÞMðz2ÞM!1ðz1Þ

1
0

" #
: (35)

To obtain the power spectrum and energy density in this
case, we simply have to replace j'j2 in Eqs. (16) and (14)
by j'3j2. In Fig. 1 we plot j'3j2 as a function of z3 for
different choices of t2. The instantaneous transition ap-
proximation breaks down for z3 > 1, hence only the left
side of the vertical line is physical. For the right side one
would have to solve the mode equation numerically, but
since we know that particle production is suppressed for
these frequencies, we do not consider them. We concen-
trate on z3 0 1. For these wave numbers, also z1 < z2 <
z3 < 1.
This allows the following approximations,

&1 ’ '1 ’ ! 1

2z21
; z1 - 1 (36)

&2 ’ !'2 ’
iz2
3z21

; z2 - 1 (37)

&3 ’ '3 ’ ! 2z2
3z21z3

; z3 - 1: (38)

To obtain the results (37) and (38) we have to expand the
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exact expression (27) to fourth order and (33) to second
order, but we consider only the largest term in the result
given above, using also z1 < z2 < z3. Therefore, in the
approximate expression (37), where we have neglected a
term proportional to z1=z

2
2, one no longer sees that &2 ! 1

and '2 ! 0 when t2 ! t1 and hence z2 ! z1. In this case
there is no intermediate matter-dominated era and there-
fore no particle creation, hence '2 ¼ 0. This can be seen
from the exact expression given in Eq. (27).

Within these approximations, Eqs. (16) and (14) lead to

PhðkÞ ¼
1

ð2"Þ3
"

t2
mpat

2
1t3k

#
2
; kt3 < 1 (39)

d#h

d logk
¼ #rad

"2

k4j'3j2
a41(radðt1Þ

¼ #rad
geffðT1Þ
18. 45

"
T1

mp

#
4
"
Teq

T2

#
2
; kteq < 1: (40)

This result can be generalized to several, say N, intermedi-
ate radiation ! matter transitions at times t2n!1 and back
to radiation at time t2n, 1 0 n 0 N, with the result

j'2Nþ1j2 ’
1

ðkt1Þ4
"
T3 + + +T2N!1Teq

T2 + + +T2N

#
2
: (41)

Hence, each return to the radiation-dominated era at
some intermediate temperature T2n leads to a suppression
factor ðT2nþ1=T2nÞ2, where T2nþ1 denotes the temperature
at the start of the next matter era.

On large scales, kteq < 1, the energy density spectrum is
flat. The best constraints on an intermediate radiation-
dominated era therefore come from the largest scales, i.e.
from observations of the cosmic microwave background
(CMB) as we shall discuss in the next section.
We now briefly consider the case when the initial con-

ditions differ from the vacuum case, Eq. (8). We assume an
arbitrary initial state of the field given by

%kðtÞ ¼
&0ffiffiffiffiffi
2k

p e!ikt þ '0ffiffiffiffiffi
2k

p eikt; (42)

together with the normalization condition which ensures
that the field is canonically normalized, j&0j2 ! j'0j2 ¼ 1.
The same calculations as above now yield

&3

'3

" #
¼ M!1ðz3ÞMðz2ÞM!1ðz1Þ

&0

'0

" #
; (43)

where MðzÞ is the matrix giving the transition from matter
to radiation defined in Eq. (31).
Expanding this in z1, z2 and z3, using z1 < z2 < z3 < 1

one finds that to lowest nonvanishing order, the final result
for '3 depends only j&0 þ '0j. However, if the phase of
&0 and '0 are nearly opposite, i.e., &0 ’ !'0, and if j&0j
and therefore also j'0j are much larger than 1, a correction
proportional to j&0 ! '0j becomes important. More pre-
cisely, the last of Eqs. (36) now is replaced by

'3 ’
2z2
3z1z3

$
! 1

z1
ð&0 þ '0Þ þ 2ið&0 ! '0Þ

%
: (44)

If &0 ¼ 1 and '0 ¼ 0, the second term can be neglected
with respect to the first one and we reproduce the previous
result (38). As we see from this equation, a large phase
difference between &0 and '0 changes not only the ampli-
tude but also the slope of the spectrum. Of course in
concrete examples, like for a previous inflationary period,
see Ref. [7], the coefficients &0 and '0 also depend on the
wave number.
In Fig. 2 we show the dependence of j'3j2 on j&0j for

different values of the relative phase between &0 and '0

(top panel) and as a function of the relative phase for
different values of j&0j. The difference of j'3j2 between
the case where &0 and '0 are perfectly in phase and of
opposite phase is of the order of 1=z1, if ja0j is significantly
larger than 1. This is already evident from Eq. (44). In the
Fig. 2 we have chosen z1 ¼ 0:1, a unrealistically high
value, in order to have a better visibility of the phase
dependence which then changes j'3j2 only by 1 order of
magnitude.
In conclusion, in the case of a nonvacuum initial state,

j&0j significantly larger than 1, graviton production is
enhanced typically by a factor of order j&0j2 1 j'0j2
which is the number of initial particles. Hence in addition
to the spontaneous creation we now also have induced
particle creation which is proportional to the initial particle
number and much larger than the spontaneous creation if

FIG. 1 (color online). The Bogoliubov coefficient j'3ðkÞj2 for
t1 ¼ 1, and t3 ¼ 2000, with various values of t2. Only the
k-values left of the vertical dashed line satisfy kt3 < 1. They
show clearly a k!4 slope and the amplitude is well approximated
by (38).
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the particle number is large. An interesting point is that the
phase shift between &0 and '0 can significantly affect the
final spectrum.

V. DISCUSSION AND CONCLUSIONS

The fact that the observed CMB anisotropies are of the
order of 10!5 yields a strong limit on gravitational waves
with wave numbers of the order of the present Hubble

scale, see e.g. [14].

d#h

d logk

&&&&&&&&k¼H0

<10!15: (45)

With #rad ’ 10!5, and Eq. (40), this implies the limit
"
T1

mp

#
2 Teq

T2
< 10!5: (46)

We know that during nucleosynthesis the Universe was
radiation-dominated, hence T2 / 0:1 MeV. With Teq 1
1 eV, the above inequality reduces to T1 <mp for the
value T2 ’ 0:1 MeV, and it is even less stringent for higher
values of T2. Hence even though the production of grav-
itons during an intermediate matter era is of principal
interest, we cannot derive stringent limits on T1 and T2.
On the other hand, for values of T1 and T2 close to the
maximal, respectively, minimal value, T1 1mp and T2 1
0:1 MeV, these gravitons would leave a detectable signa-
ture in the cosmic microwave background.
We can, however, use this effect to limit any intermedi-

ate era with q > 2, i.e. !1=3<w ¼ P=(< 0. According
to Eq. (26), in the general case, the particle number is of the
order of j'1j2 ’ z!2q

1 , so that

d#h

d logk
’ #radðkt1Þ4!2q

"
T1

mp

#
4
"
Teq

T2

#
2
; z1 - 1: (47)

As above, T2 denotes the temperature at which the
Universe returns to the radiation-dominated state, hence
nucleosynthesis requires T2 > 0:1 MeV. In this case, if
q > 2, the spectrum becomes red and, at k1H0, the limit
can become quite interesting. Hence, graviton production
can significantly limit a (noninflationary) phase with nega-
tive pressure in the early universe. For k ¼ H0, using t1 ¼
H!1

1 ¼ 1=ða1H1Þ, we obtain

ðH0t1Þ!1 ’
"
geffðT1Þ
105

#
1=2

"
T1

T0

#
3
;

where T0 ’ 0:2. 10!4 eV is the present temperature of
the Universe. This can be a significant factor for large
values of T1. Inserting this expression in Eq. (47), the limit
(45) yields

"
geffðT1Þ
105

#
q!2

"
T1

T0

#
6ðq!2Þ"T1

mp

#
4
"
Teq

T2

#
2
& 10!10: (48)

For example, for w ¼ !1=21, (q ¼ 7=3), we already ob-
tain

T1

T2

"
T1

mp

#
2
& 10!9: (49)

E.g. for T2 ¼ 1 MeV this implies T1 < 108 GeV. For
smaller values of w the limit becomes more stringent.
In this paper we have shown that there is cosmological

particle production of massless modes whenever the ex-
pansion law is not radiation-dominated so that €a=a ! 0.

FIG. 2 (color online). In the top panel we show j'3j2 as a
function of &0 for &0 and '0 in phase (top, solid, black line), of
opposite phase (lowest, dashed, red line) and with a phase
difference of 0:8" (middle, dot-dashed, blue line). In the bottom
panel we show j'3j2 as a function of the phase difference c for
j&0j ¼ 80 (top line) j&0j ¼ 40 (middle line) and j&0j ¼ 10
(lowest line). We have chosen z1 ¼ 0:1 in this plot and the
overall vertical normalization is in units of ð2z2=ðz1z3ÞÞ2.
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This term acts like a time-dependent mass and leads to the
production of modes with comoving energy k2 < j €a=aj ’
H 2, hence with physical energy! ¼ k=a & H. One read-
ily sees that particle production is significant only if q < 1,
i.e. the squared mass ! €a=a < 0. When starting from a
radiation-dominated Universe, we do have a well defined
initial vacuum state also for the superhorizon modes which
can be amplified by a transition to another expansion law.
We have also given the expressions for the produced
particle number in the case of a generic, nonvacuum initial
state, Eq. (44). This can be applied to an arbitrary infla-
tionary, pre-big bang or bouncing model, which may al-
ready contain gravitons before the first radiation era.

We have explicitly calculated the production of gravi-
tons for a vacuum initial state and have arrived at the
following main conclusions:

(i) The gravitons produced after the standard radiation-
matter transition are completely negligible.

(ii) If we introduce a matter-dominated era in the early
universe, this leads to a flat energy spectrum of
gravity waves which, in the most optimistic case,
can be sufficient to contribute to the CMB tensor
anisotropies in an observable way.

(iii) A phase of expansion with !1=3<w< 0 leads to
a red spectrum of gravitons. Such a phase in the
early universe is severely constrained mainly by the
amplitude of CMB anisotropies.

(iv) A graviton spectrum present at the beginning of the
radiation era can become significantly amplified
and modified by intermediate not-standard evolu-
tion of the universe.
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