
Epidemic dynamics and host immune response:

a nested approach

Alberto Gandolfi1, Andrea Pugliese2, Carmela Sinisgalli1

1Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti” - CNR
Viale Manzoni 30, 00185 Roma, Italy

alberto.gandolfi@iasi.cnr.it, carmela.sinisgalli@iasi.cnr.it

2Department of Mathematics, University of Trento
Via Sommarive 14, 38050 Povo (Trento), Italy

pugliese@science.unitn.it

Abstract

This paper proposes an approach for building epidemiological mod-
els that incorporate the intra-host pathogen-immunity dynamics. The
infected population is structured in terms of pathogen load and level
of immunity, and the initial infection load may depend on the load of
the individual from which the infection is acquired. In particular, we
focus on the case in which the initial inoculum is taken proportional to
the load of the infectant. Possible reinfections are disregarded. Such
an approach is applied to formulate an epidemic model with isolation
in a closed population by introducing a specific intra-host dynamics.
A numerical scheme for the solution of model equations is developed,
and some numerical results illustrating the role of the initial inoculum,
of the isolation threshold and of the pathogen dynamics on the epi-
demic evolution are presented. From the simulations the distributions
of latency, infectivity, and isolation times can be also derived; however
the predictions of the present models differ qualitatively from those
of traditional SEIHR models with distributed latency, infectivity and
isolation periods.

Keywords: Epidemic modelling, Pathogen dynamics, Immune re-
sponse, Structured population models.
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1 Introduction

In recent years there have been several attempts to connect epidemiological
aspects of infections (transmission rate, incubation and infectious periods)
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to the within-host dynamics of pathogens. There are several reasons why
this connection may be relevant.

On the one hand, classical epidemic models classify individuals in one of
few discrete states (e.g., susceptible or infected or immune), while reality is
more complex and this may be relevant, especially when considering waning
immunity (Breda et al., 2012). Explicit consideration of immune response
seems particularly relevant for infections (such as dengue or varicella/zoster)
where the severity of the disease depends on immune response.

Moreover, Dushoff (1996) suggested that immunological considerations
predict that there may be a connection between the disease level in the
population and the distribution of exposure intensities that individuals face
(see Paunio et al. (1998) for some empirical support to the hypothesis) and
that the intensity of initial exposure may have an effect on immunological
outcome. In this sense, within-host dynamics cannot be decoupled from
infection distribution in the population, and vice versa (see Hellriegel (2001)
for a general review on the topic). However Dushoff himself resorts to a
compartmental model in order to approximate such effects.

Including host immune response is also a natural way to account for host
heterogeneity (Pugliese, 2011), while integrating host immune response in
population models seems relevant in studies of the dynamics of macropara-
sites (Woolhouse, 1992), where immunity grows gradually with exposure.

We conclude this list of reason, that does not intend to be exhaustive, for
integrating within-host response in epidemic models, by recalling several re-
cent theoretical studies on the evolution of virulence (Gilchrist and Sasaki,
2002; Gilchrist and Coombs, 2006; André and Gandon, 2006; Boldin and
Diekman, 2008) where virulence-transmissibility ‘trade-offs’ emerge from a
mechanistic within-host models. In the so-called ‘nested’ approach (Gilchrist
and Sasaki, 2002; Gilchrist and Coombs, 2006; Mideo et al., 2008) an explicit
(simplified) model of hosts’ immune response (such as the one by Perelson
et al. (1993) for HIV, or one proposed in Nowak and May (2000) or Mo-
htashemi and Levins (2001)) is used, over which epidemic dynamics is built.

Here we follow this approach, generalising the structure relatively to
previous authors, but limiting ourselves to analyse the main dynamical fea-
tures of the model for a single epidemic. We allow however for rather general
models for within-host dynamics and infection transmission, and study how
model features (especially how initial exposure is modelled) affect the overall
epidemic dynamics. This approach is quite similar to that used in a recent
paper by Angulo et al. (to appear). Other recent papers considering a
model integrating within-host dynamics and epidemic transmission are due
to Kostova (2007) and Martcheva and Pilyugin (2006).

The content of the present paper can be outlined as follows. In Sec-
tion 2 we present a general epidemic model including within-host dynamics
where the initial infection load may depend on the load of the individual
from which the infection is acquired. In our model the infected population
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is structured in terms of both pathogen load and level of immunity. In the
subsequent two sections we consider the epidemic model in two special cases.
In Section 3 the initial inoculum is independent of the pathogen load of the
infectant: this case may be reduced to an epidemic model structured through
the infection age and thus classical threshold results apply. In Section 4 the
initial infection load is taken proportional to the load of the infectant, giving
rise to a model that poses novel mathematical problems, and whose quali-
tative behaviour is unexplored. In Section 5 the above modelling approach
is applied introducing a specific intra-host dynamics to build an epidemic
model that includes isolation in a closed population. A numerical scheme
for the solution of model equations is developed, and some numerical results
illustrating the role of the initial inoculum, of the isolation threshold and of
the pathogen dynamics on the epidemic evolution are presented. From the
simulations the distributions of latency, infectivity, and isolation times are
also derived; however the predictions of our model differ qualitatively from
those of traditional SEIHR models with distributed latency, infectivity and
isolation periods.

2 Introducing pathogen dynamics in epidemic mod-
elling

2.1 Infected structured by pathogen load and immunity level

The main point of this manuscript is structuring the compartment of infected
individuals by their pathogen load and by their level of specific immunity.
Let us denote these quantities, perhaps after a suitable scaling, by x and
y, respectively. The state of an infected individual will be identified by the
pair (x, y). The number of individuals at time t that have never been in-
fected, and hence are free of pathogens and capable of infection (susceptible
individuals), will be denoted by S(t). The population of individuals that
have been infected will be described by a density i(t, x, y), x > 0, y > 0,
such that i(t, x, y) dx dy gives the number of individuals at time t having
pathogen content between x and x+ dx, and immunity level between y and
y + dy.

In principle, one could allow the individuals that have been infected to
revert to a pathogen-free state (and perhaps also with basal specific immu-
nity) in a finite time. However, this cannot occur in the framework we are
considering; hence, we restrain from further discussing it.

The within-host pathogen-immunity dynamics, assumed to be the same
for each individual in the population, will be expressed by a deterministic
time-invariant system that we generically describe as:

x′ = F (x, y), (1)

y′ = G(x, y). (2)
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A specific example will be given below.
We require that for Eqs. (1), (2) any Cauchy problem in {x > 0, y > 0}

has a unique solution. We assume that before any infection the immunity
attains the basal level y = ȳ > 0. This implies that (0, ȳ) must be an
equilibrium point for the above system. Moreover, G(x, y) is such that
G(x, ȳ) > 0 for x > 0, i.e. the immunity level can only increase upon
infection. The last property actually restricts the meaningful domain of
the density i to the set {x > 0, y ≥ ȳ}.

Beyond the equations describing within-host dynamics, there are two
modelling choices that need to be made explicit. One can allow only for
a single infection event per individual, or allow for multiple infections; the
second choice is whether the initial pathogen load of an infected individual is
independent of the level of infection in the infectant, or does depend on that.
In both the latter cases, assuming a single infection event per individual leads
to a much simpler modelling, and here we hold to this assumption; possible
extensions are discussed in the Concluding Remarks.

We then assume that, once an individual is infected at some time, its
internal dynamics is given by equations (1), (2), disregarding any possible
reinfection. One has only to specify the mortality rate, that we write as
µ0+µi(x, y); µ0 is the (constant) death rate of uninfected individuals, while
µi ≥ 0 specifies the additional death rate caused by the infection, according
to pathogen load and immunity level (indeed mortality could depend directly
on the action of the pathogen, or could be mediated by the stress induced in
mounting the immune response, as assumed in Gilchrist and Sasaki (2002)).

Using the standard technique for going from individual to population
dynamics (Metz and Diekmann, 1986), one obtains the equation

∂i

∂t
+

∂(F (x, y)i)

∂x
+

∂(G(x, y)i)

∂y
= −(µ0 + µi(x, y))i(t, x, y), x > 0, y > ȳ,

(3)
where the left hand side explicitly writes the term

∂i

∂t
+ div

((
F
G

)
i

)
.

One has to add to (3) the boundary condition (at y = ȳ) specifying the
infection rate.

We assume that the infectiousness (which includes the contact rate, and
the probability of infection upon contact) of infected individuals with state
(x, y), is given by a function β(x, y) that reflects both biological and be-
havioural factors. In fact, individuals with high pathogen load are more
likely to transmit the infection at each contact; on the other hand, indi-
viduals with very high pathogen load are likely so sick as to have
few or no contacts. Moreover, when the pathogen load is very small, it
is likely that no actual infection occurs, since the transmission mechanism
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may be impaired and/or the first immune barrier of susceptible may block
a very small inoculum (such defense might not be included in the intra-host
dynamical model). Summarising, we assume that two positive values xm
and xM exist such that:

β(x, y) = 0, if 0 ≤ x ≤ xm or x ≥ xM . (4)

The definition of the support of β, in the strip xm < x < xM , may also
involve the variable y, and an example of such a case is given in Section 5,
where isolation of infected is explicitly introduced.

Furthermore, when an infection occurs, we allow for the inoculum size
to depend, in general, on the pathogen load of the infectant. Precisely,
we assume that there exists a function p(x, x0) such that, if a susceptible is
infected by an individual with pathogen load x, p(x, x0) dx0 is the probability
that he/she will start as an infected with pathogen load in (x0, x0 + dx0).
Generically, we need only to assume∫ ∞

0
p(x, x0) dx0 = 1,

although some other properties, such as p(x, x0) = 0 for x ≤ x0, are natu-
ral. In words, initial pathogen level in a newly infected individual
cannot exceed the pathogen load of the individual from whom the
infection is acquired.

From these assumptions, assuming random contacts among all individ-
uals, the rate of new infections at time t is given by

S(t)λ(t)

with

λ(t) =

∞∫
0

∞∫
ȳ

β(x, y)i(t, x, y) dy dx. (5)

Note that this formulation follows the mass-action law, while it is often
considered more realistic assuming the standard incidence, i.e. dividing (5)
by the total population size. This does not pose any particular difficulty
and, since we are actually interested in understanding the effect of including
within-host dynamics on epidemic models rather than in being realistic for
any specific infection, we stick to the formulation (5).

The quantity S(t)λ(t) gives the total rate of entrance into the infected
class. In order to write the proper boundary condition of (3), we need to
consider also the pathogen level at entry in the class through the function
p. Remember that we assumed that the initial value of y is the constant ȳ,
so that the boundary will be the half-line (0,∞)× ȳ (or, more realistically,
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a segment of it). Letting n⃗ be the inward normal, i.e. (0, 1), we can then
write on the boundary:

⟨
(
F
G

)
i, n⃗⟩ = G(x, ȳ)i(t, x, ȳ) = S(t)

∞∫
0

∞∫
ȳ

β(x′, y)p(x′, x)i(t, x′, y) dy dx′.

(6)
Equations (3) and (6) must be complemented (beyond the initial condi-

tions) also by an equation for the susceptibles S(t). Since the aim of this
research is to assess the relevance of the detailed description of within-host
dynamics, we keep other aspects as simple as possible. Thus, we assume a
constant inflow Λ into the susceptible population, yielding the equation

S′(t) = Λ− (µ0 + λ(t))S(t) (7)

where λ(t) is defined in (5).

2.2 Infected structured by age of infection and initial pathogen
load

When reinfections are not allowed (as in the present paper), it appears con-
venient to change the variables of the internal state of infected individuals
from (x, y) to ϑ, the time since infection, and x0, the pathogen load at infec-
tion. This change facilitates the numerical solution of the model,
also permitting the use of known analytical tools (as we will see
in the next subsection).

Indeed, since we assume that the initial immune level is fixed at ȳ, the
pathogen load and the immune level of an individual infected time ϑ ago
with an initial load x0 can be written as ξ(ϑ, x0) and η(ϑ, x0), where ξ and
η are the solutions of the Cauchy problem

dξ

dϑ
= F (ξ, η)

dη

dϑ
= G(ξ, η)

ξ(0, x0) = x0
η(0, x0) = ȳ.

(8)

This transformation is one-to-one between {(ϑ, x0), ϑ ≥ 0, x0 > 0}
and a subset Ω of the positive quadrant (x, y) formed by the points that can
be reached by trajectories of (1)–(2) starting from (x0, ȳ) for some x0 > 0.
Depending on the specific system (1)–(2), Ω may be smaller than R2

+.
Then, by setting

u(t, ϑ, x0) = i(t, ξ(ϑ, x0), η(ϑ, x0))

∣∣∣∣ ξϑ ξx0

ηϑ ηx0

∣∣∣∣ , (9)
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one can check (the determinant in (9) is needed because of the rule for the
change of variables in integrals) that u satisfies the standard equation for
epidemics with infection age (see, e.g. Iannelli (1994)) with the boundary
condition at ϑ = 0 being an intuitively understandable transformation
of (6). Precisely, one obtains

∂u(t, ϑ, x0)

∂t
+

∂u(t, ϑ, x0)

∂ϑ
= −µ̃(ϑ, x0)u(t, ϑ, x0) (10)

u(t, 0, x0) = S(t)

∫ ∞

0

∫ ∞

0
β̃(ϑ, x′0)p̃(ϑ, x

′
0, x0)u(t, ϑ, x

′
0) dx

′
0 dϑ (11)

S′(t) = Λ− S(t)

∫ ∞

0

∫ ∞

0
β̃(ϑ, x)u(t, ϑ, x) dx dϑ− µ0S(t) (12)

where

µ̃(ϑ, x0) = µ0 + µi(ξ(ϑ, x0), η(ϑ, x0))

β̃(ϑ, x0) = β(ξ(ϑ, x0), η(ϑ, x0))

p̃(ϑ, x′0, x0) = p(ξ(ϑ, x′0), x0).

The initial conditions will be given by

S(0) = S0 ≥ 0, u(0, ϑ, x0) = u0(ϑ, x0) ∈ L1
+((0,∞)× (0,∞)).

2.3 A renewal equation formulation

Following the usual steps in the analysis of age-structured problems, the
equations for u can be transformed into a renewal equation, albeit an infinite-
dimensional one. Precisely, integrating (10) along the characteristics one
obtains

u(t, ϑ, x0) =


u(t− ϑ, 0, x0)π̃(ϑ, x0) t > ϑ

u0(ϑ− t, x0)
π̃(ϑ, x0)

π̃(ϑ− t, x0)
t < ϑ

. (13)

where π̃(ϑ, x0) = exp{−
∫ ϑ

0
µ̃(s, x0) ds}.

Setting B(t, x0) = u(t, 0, x0) and substituting (13) into (11), one arrives at

B(t, x0) = S(t)

∫ t

0

∫ ∞

0
p̃(ϑ, x′0, x0)β̃(ϑ, x

′
0)π̃(ϑ, x

′
0)B(t− ϑ, x′0) dx

′
0 dϑ

+ S(t)

∫ ∞

t

∫ ∞

0
p̃(ϑ, x′0, x0)β̃(ϑ, x

′
0)

π̃(ϑ, x′0)

π̃(ϑ− t, x′0)
u0(ϑ− t, x′0) dx

′
0 dϑ. (14)

Letting

A(ϑ) : L1(R+) → L1(R+)

(A(ϑ)φ)(x0) =

∫ ∞

0
p̃(ϑ, x′0, x0)β̃(ϑ, x

′
0)π̃(ϑ, x

′
0)φ(x

′
0) dx

′
0
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(14) can be seen as the renewal equation in L1(R+):

B(t) = S(t)

(∫ t

0
A(ϑ)B(t− ϑ) dϑ+ P (t)

)
(15)

where B(t) is seen as an element of L1(R+), S(t) is a scalar obtained as the
solution of (12) and P (t) is the element of L1(R+) given by the second term
in (14), the one involving the initial conditions at t = 0.

We can rewrite (12) in terms of B as

S′(t) = Λ− S(t)

[ ∫ t

0

∫ ∞

0
β̃(ϑ, x)π̃(ϑ, x)B(t− ϑ)(x) dx dϑ

+

∫ ∞

t

∫ ∞

0
β̃(ϑ, x)

π̃(ϑ, x)

π̃(ϑ− t, x)
u0(ϑ− t, x) dx dϑ

]
− µ0S(t) .

(16)

We do not delve here into conditions that guarantee existence and unique-
ness of solutions of (15)–(16), since the thrust of this manuscript is on the
modelling part. However, the use of fixed point techniques should yield
existence and uniqueness results.

We end this part by noting that this setting yields a natural definition of
the basic reproduction number R0, following the framework by Diekmann
and Heesterbeek (2000). Precisely, if we consider the operator

K : L1(R+) → L1(R+)

(Kφ)(x0) =
Λ

µ0

∫ ∞

0
(A(ϑ)φ)(x0) dϑ

(17)

R0 can be obtained as the spectral radius of K.
In the following, we will consider in greater detail two cases of this general

framework, in order of increasing complexity. In the first, the pathogen load
at infection is chosen according to a fixed distribution (possibly concentrated
in a single value x̄0). In the second, the initial pathogen load is a fixed
fraction of the pathogen load of the infecting individual.

3 Infections with independent initial pathogen load

A simple case of system (10)-(12) occurs if the initial pathogen load follows a
fixed probability density q(·), with a bounded support [q1, q2], independent
of the pathogen load of the infectant. To guarantee an initial inoculum never
greater than the pathogen load of the infectant, we must assume q2 < xm.
Then

p̃(ϑ, x′0, x0) = p(ξ(ϑ, x′0), x0) = q(x0),

and we can take this term out of the integral in (11) to get

u(t, 0, x0) = q(x0)S(t)λ(t) (18)

with λ(t) =

∫ ∞

0

∫ ∞

0
β̃(ϑ, x′)u(t, ϑ, x′) dx′ dϑ. (19)
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The equation for the susceptibles is still given by (7).
Finally, using (13) with (18) in the definition (19), we obtain

λ(t) =

∫ t

0
S(t− ϑ)λ(t− ϑ)k(ϑ) dϑ+ λ0(t) (20)

where

k(ϑ) =

∫ ∞

0
q(x0)β̃(ϑ, x0)π̃(ϑ, x0) dx0 (21)

and

λ0(t) =

∫ ∞

t

∫ ∞

0
β̃(ϑ, x0)u0(ϑ− t, x0)

π̃(ϑ, x0)

π̃(ϑ− t, x0)
dx0 dϑ. (22)

One has then reduced the problem to the system of an integral equation,
(20), and a differential equation, (7), for the unknown S(t) and λ(t) that
needs only the initial condition S(0) = S0. This system has been studied by
Thieme and Castillo-Chavez (1993) in a slightly different form and letting
the contact rate depend on the total population size.

In Thieme and Castillo-Chavez (1993) the well-posedness of the system
(under very mild properties on the kernel k(·)) has been proved, as well
as several properties concerning its asymptotic behaviour. In our notation,
Thieme and Castillo-Chavez defined R0 as

R0 =
Λ

µ0

∫ ∞

0
k(ϑ) dϑ (23)

which corresponds to the general definition given in the previous Section.
They showed that, if R0 < 1, the infection-free equilibrium (S ≡ Λ/µ0, λ ≡
0) is globally asymptotically stable, while, if R0 > 1, (Λ/µ0, 0) is unstable
and there exists a unique positive equilibrium (S∗, λ∗) of the limiting system

λ(t) =

∫ ∞

0
S(t− ϑ)λ(t− ϑ)k(ϑ) dϑ. (24)

Furthermore, they found several sufficient conditions for the asymptotic sta-
bility of (S∗, λ∗); for instance, the equilibrium is always stable in case of a
contact rate linear in the population size (as implicitly assumed in (20),(7)).
With other choices of contact rate, they also found cases where the endemic
equilibrium is unstable and attracting periodic solutions exist (see also Mil-
ner and Pugliese (1999)).

It would be interesting to know whether this is possible also when the
kernel k is given by (21), and biologically reasonable assumptions are made
on the infectiousness β(x, y) and on the disease-induced mortality µi(x, y).

Note that system (20),(7)) is the one implicitly used by Gilchrist and
Sasaki (2002) with the following choice of the functions F and G

F (x, y) = rx− cxy, G(x, y) = bxy ,
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and assuming the initial pathogen load x0 concentrated at the single value
x0 = x̄0. In this case, however, we cannot really speak of a density function
i(t, x, y) or u(t, ϑ, x0), but of a Dirac mass concentrated on a single trajectory
of (1)–(2) when using variables (x, y), or on the line {x0 = x̄0, ϑ ≥ 0} in
the variables (x0, ϑ).

4 Infections with proportional initial pathogen load

The difference from the previous case lies in the assumption made here that
the initial pathogen load of an infected individual is proportional to the
pathogen load of the infectant. This choice is mainly motivated with ref-
erence to pathogens with aerial transmission, in which it is reasonable to
suppose that the amount of pathogen particles released in the environment
per unit time by an infectious individual is proportional to his pathogen
burden. During the contact, a susceptible individual will “capture” a por-
tion of this release. Although the initial inoculum should actually
depend on the contact duration, for simplicity it may be assumed
that contact durations are constant and equal to an average value.
Different contact durations could be taken into account in the
definition of the probability density p(x, x0). The scheme can be gen-
eralized to other mechanisms of transmission, for instance to all the cases
in which infection occurs through the contact with organic fluids containing
the pathogen particles.

In the mechanisms of transmission above described, we assume that
the amount of pathogens of the infectant is not altered by the infective
encounter. This is strictly true when the infection exploits an intrinsic
pathogen loss independent of the individual-to-individual interaction.

Precisely, we assume that the inoculum received, x0, is equal to ρx,
where x is the pathogen burden of the infectant and ρ ≪ 1 is a fixed constant.
Equations (3), (6) will still hold, except that p(x, x0) will not be a function,
but a Dirac mass concentrated at ρx.

Instead of setting the problem for measure-valued functions, we arrive
at a proper formulation of this problem, in terms of density functions, via a
limiting procedure. First of all, we assume that

p(x, x0) =

{
1
∆x ρx ≤ x0 < ρx+∆x ,

0 otherwise ,
(25)

and eventually we will let ∆x go to 0.
In this case, equation (6) can be explicitly written as

G(x, ȳ)i(t, x, ȳ) =
S(t)

∆x

x
ρ∫

x−∆x
ρ

∞∫
ȳ

β(x′, y)i(t, x′, y) dy dx′. (26)
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Letting now ∆x go to 0, the condition becomes

G(x, ȳ)i(t, x, ȳ) =
S(t)

ρ

∞∫
ȳ

β(
x

ρ
, y)i(t,

x

ρ
, y) dy. (27)

The system to be solved will then consist of (3), (27) and (7) plus the initial
conditions.

We wish now to write the system in the coordinates ϑ and x0 as in (10),
(11); the computations are more involved, but the final result appears more
suitable for the analysis and simulation.

We specialize to the case where the solutions of (1), (2) have properties
that we consider biologically significant: we assume that there exist
two threshold quantities x1 and x2 with 0 < x1 < x2 < +∞ such that:

• if x1 < x0 < x2, then ξ(ϑ, x0) monotonically increases to a maximum
value, and thereafter monotonically decreases towards 0 (normal acute
infection). Let M(x0) > x0 be that maximum, and T (x0) the age of
infection at which x = M(x0) is attained starting from x = x0;

• if x0 > x2, ξ(ϑ, x0) grows monotonically to +∞ (uncontrolled infec-
tion);

• if x0 < x1, ξ(ϑ, x0) decreases monotonically to 0 (infection controlled
by innate immunity).

Then, we can define the time τ1 to reach a certain level x while the
pathogen load is increasing, starting from x0:

• for x1 < x0 < x2

τ1(x, x0) = inf{ϑ ≥ 0 : ξ(ϑ, x0) = x}, x0 ≤ x ≤ M(x0),

• for x0 > x2

τ1(x, x0) = inf{ϑ ≥ 0 : ξ(ϑ, x0) = x}, x ≥ x0,

and the time τ2 to reach x while pathogens are decreasing:

• for 0 < x0 < x1

τ2(x, x0) = inf{ϑ ≥ 0 : ξ(ϑ, x0) = x}, 0 < x ≤ x0,

• for x1 < x0 < x2

τ2(x, x0) = inf{ϑ > T (x0) : ξ(ϑ, x0) = x}, 0 < x < M(x0).
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The functions τ1(x, x0) and τ2(x, x0) are continuous with respect to x
and differentiable in their definition domains. It will be convenient to con-
ventionally set τ2(x, x0) = +∞ for x0 > x2, 0 < x < +∞.

For further use, we observe that for the function τ1 and τ2 we have

∂τi
∂x

(x, x0) =
1

F (x, η(τi(x, x0), x0))
, i = 1, 2, (28)

as it can be seen through the implicit function theorem. Moreover, we have
∂τ1
∂x > 0 and ∂τ2

∂x < 0.
Since the solutions of (1), (2) are unique, and then the trajec-

tories (ξ(ϑ, x0), η(ϑ, x0)) cannot intersect, we can note that M(x0) is
necessarily increasing with x0 ∈ (x1, x2). So, in addition, we can
define h(x) as the inverse function of M(·), i.e.:

h(x) = M−1(x), M(x+1 ) < x < +∞. (29)

M(x+1 ) = limx0→x+
1
M(x0) may be larger than x1; this would be the case

when the presence of an interior saddle point divides the trajectories starting
with x0 ≤ x1 from those with x0 > x1 (see Pugliese and Gandolfi (2008)
and Fig. 2). Being h(x) the initial inoculum such that M(h(x)) = x,
from the very definition of the function M , one may also note that
h(x) < x.

Table 1 summarizes the meaning of some characteristic quantities here
introduced.

Table 1: Summary of some useful quantities

Name Meaning

xm If x ≤ xm, β(x, y) = 0
xM If x ≥ xM , β(x, y) = 0
x1 If x0 < x1, the pathogen load decays monotonically to zero
x2 If x0 > x2, the pathogen load grows monotonically to +∞
τ1(x, x0) Age of infection at which the pathogen load reaches increasing the

value x, when the initial inoculum is x0
τ2(x, x0) Age of infection at which the pathogen load reaches decreasing the

value x, when the initial inoculum is x0
M(x0) Maximum value of the pathogen load, when the initial

inoculum is x0 (for x1 < x0 < x2)
T (x0) Age of infection at which x = M(x0) is attained
h(x) Initial inoculum such that M(h(x)) = x
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In view of assumption (4), it is sufficient to define the boundary condi-
tion (11) for x0 > ρxm. We show here the case where xm < x1, which is
more involved. If xm ≥ x1 (probably, a more realistic case) the boundary
condition can be obtained by simple changes as shown below.

Using (25) in (11), and passing to the limit for ∆x tending to zero, we
get the following (see Appendix A):

i) xm < x0
ρ < x1

u(t, 0, x0) =
S(t)

ρ

[
−

∫ x2

x0
ρ

K2(t, x0, x
′
0) dx

′
0

]
, (30)

ii) x1 <
x0
ρ < x2

u(t, 0, x0) =
S(t)

ρ

[ ∫ x0
ρ

h(
x0
ρ
)
K1(t, x0, x

′
0) dx

′
0−

∫ x2

h(
x0
ρ
)
K2(t, x0, x

′
0) dx

′
0

]
, (31)

iii) x0
ρ > x2

u(t, 0, x0) =
S(t)

ρ

[ ∫ x0
ρ

h(
x0
ρ
)
K1(t, x0, x

′
0) dx

′
0 −

∫ x2

h(
x0
ρ
)
K2(t, x0, x

′
0) dx

′
0

]
. (32)

where

Ki(t, x0, x
′
0) =

β̃(τi(
x0
ρ , x′0), x

′
0)u(t, τi(

x0
ρ , x′0), x

′
0)

F (x0
ρ , η(τi(

x0
ρ , x′0), x

′
0))

, i = 1, 2 . (33)

The condition given by (30)-(32) substitutes the more general boundary
condition specified by (11), yielding the system to be solved.

If xm ≥ x1, then the boundary conditions consist of ii) for ρxm < x0 <
x2, and of iii).

One may restrict (15) to this special case, but there does not seem to
be a particular insight to be gained doing so. Instead, in the next section a
numerical method for this case is developed and applied to a model example
where β is either 0 or a positive constant.

In this special case, R0, defined as the spectral radius of K given by (17),
may be simpler to compute as K becomes, using the definitions of p̃ and β̃,

K : L1(R+) → L1(R+)

(Kφ)(x0) =

∫ x0
ρ

h(
x0
ρ
)
β(

x0
ρ
, η(τ1(

x0
ρ
, x′0), x

′
0))π̃(τ1(

x0
ρ
, x′0), x

′
0)φ(x

′
0) dx

′
0

+

∫ x2

x0
ρ

β(
x0
ρ
, η(τ2(

x0
ρ
, x′0), x

′
0))π̃(τ2(

x0
ρ
, x′0), x

′
0)φ(x

′
0) dx

′
0. (34)
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In (34) we take the second integral to be 0 if x0 > ρx2, and the first
integral to be 0 if x0 ≤ ρx1 so that h(x0/ρ) is not defined. Finally if
x1 < x0/ρ ≤ M(x+1 ) (in which case too h was not defined through (29)), we
take h(x0/ρ) = x1.

Note that (34) can be further simplified if, as it may be reasonable, β
does not depend on its second argument (host’s immune response).

Beyond the simpler expression, one can gather some properties ofK from
(34). First of all, remembering that it was assumed β(x, y) = 0 if x ≥ xM ,
the support of Kφ is contained in [0, ρxM ] for each φ.

Second, assume that the internal dynamics were such that ρM(x0) < x0
for each x0 < ρxM ; then if the maximum of the support of φ were equal
to L, a simple computation shows that the maximum of the support of Kφ
would be ρM(L) < L. It follows that K has no positive eigenvectors, hence
R0 = 0, independently of the transmission rate β. A natural assumption
for a reasonable model is then M(x0) > x0/ρ, at least for a range of initial
values x0.

5 An epidemic model with isolation

5.1 The model and a numerical scheme

In this section, we illustrate an application of the approach outlined in the
previous Section, giving an example of the epidemic model built on the
within-host pathogen dynamics described in Pugliese and Gandolfi (2008).

Precisely, equations (1)–(2) become
ẋ = αx− xy

1 + βsx
− mx

1 + βux

ẏ =
xy

1 + γx
− y + η

(35)

where x and y represent (after appropriate scaling) pathogen load and spe-
cific immune response, respectively, while time is measured in terms of loss
of immune response (i.e., it declines at rate 1 in these units).

In particular, we assume parameter values such that α < η + m, α >
1/γ − 1, βs > 0, and such that two positive equilibria are present, a saddle
point and an unstable focus. In this case, the pathogen-free state (0, ȳ), with
ȳ = η, will be locally asymptotically stable, and unbounded trajectories will
exist (see Pugliese and Gandolfi (2008) and d’Onofrio (2010)).

Thus the behaviour of the within-host model is exactly of the type as-
sumed in the previous Section, although x1 and x2 cannot be computed
explicitly.

Figure 1 shows the time course of the host pathogen load x(t) for two se-
lected sets of parameter values and for different values of the initial condition
x(0) = x0, keeping y(0) = ȳ,
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Figure 1: Time course of the pathogen load x(t) for different values of x0.
α = 80 (solid lines), α = 100 (dotted lines). Other parameters: η = 0.05,
γ = 0.02, m = 200, βs = 10−8, βu = 2.

Figure 2 depicts in the plane (lnx, ln y) a set of trajectories starting
from different initial points (x0, ȳ), namely the evolution of the infection
in individuals with initial immunity at the basal level and infected with
different pathogen amounts. We can note the presence of the critical values
x1, such that for x0 < x1 the infection does not develop and the pathogens
decrease to zero, and x2, such that for x0 ≥ x2 the infection cannot be
controlled by the immune system and the pathogen load goes to infinity.
Note that because of the existence of the unstable focus, as x0 tends to x+1
the trajectories accumulate and we have M(x+1 ) > x1. Since for x0 < x1 the
pathogen decrease to zero without an appreciable increase of the immunity,
we disregard infections with initial load x0 < x1 by setting xm = x1/ρ so
that β(x, y) = 0 in the set

Ω1 = {(x, y) : 0 ≤ x ≤ x1/ρ, y ≥ ȳ}.

In the present model, we explicitly consider that the infected individuals
can be isolated from further contacts during the time-course of the disease,
because of home care or hospitalization (without, however, any specific anti-
pathogen therapy). We assume that an individual enters the isolation state
when its pathogen load reaches the value x∗ (or is infected with an initial
pathogen load greater than x∗), and is released from such a state when its
pathogen load is lowered to the value x∗∗, x∗∗ < x∗. Thus we define Ω2 as
the image of the trajectories between the times τ1(x

∗, x0) and τ2(x
∗∗, x0).

The isolated subjects will be then the individuals with (x, y) in the set Ω2;
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Figure 2: Trajectories in the plane (lnx, ln y) all starting from basal-level
immunity and different initial pathogen load. Parameters as in Fig. 1 with
α = 90. The positive equilibrium points S (saddle point) and U (unstable
equilibrium) are also reported. Critical values: lnx1 ≈ −0.48, lnx2 ≈ 6.32.
Dashed trajectories are diverging, whereas along the solid trajectories the
pathogen load eventually decays to zero (monotonically or not).

consequently we take β = 0 in Ω2., Summarising we assume the expression:

β(x, y) =

{
0 in Ω1 ∪ Ω2

β0 otherwise ,
(36)

with β0 > 0 constant for simplicity. We assume ρx∗ > x1, otherwise β would
be identically zero and the epidemics could not develop.

As mentioned above, the use of the age since infection, ϑ, appears con-
venient. For numerical purposes, since the variables x and y typically span
several orders of magnitudes over the course of an infection, it is also con-
venient to introduce the variables w = lnx, z = ln y, and

w0 = lnx0, (37)

and consider as new state variables the pair (ϑ,w0). Given (w0, ϑ), the
corresponding pair (x, y) will be given by x = ξ(ϑ, ew0), y = η(ϑ, ew0).
Conversely, given (x, y) in Ω, there will be a unique trajectory passing for
such a point and this trajectory will identify (ϑ,w0).

We then define the density û(t, ϑ, w0) = u(t, ϑ, ew0)ew0 : hence the num-
ber of individuals whose initial (logarithmic) pathogen load was between w0
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Figure 3: Regions Ω1 and Ω2 in the plane (lnx, ln y) where the infection rate
β is zero. lnxm = lnx1 + ln 103 = −0.48 + ln 103, lnx∗ = 16 and lnx∗∗ = 9.

and w0+dw0, and that have been infected between ϑ and ϑ+dϑ time before
is given by û(t, ϑ, w0)dw0dϑ.

From (10) one immediately obtains

∂û

∂t
+

∂û

∂ϑ
= −µ̂(ϑ,w0)û(t, ϑ, w0), w0 ∈ R, ϑ > 0, (38)

where:
µ̂(ϑ,w0) = µ̃(ϑ, ew0).

Since from (36) the support of β lies in the strip xm < x < x∗, with xm =
x1/ρ, the boundary condition of û may be different from zero only for wm−
∆ < w0 < w∗−∆, where ∆ = − ln(ρ), wm = lnxm, and w∗ = lnx∗ (without
loss of generality we take x∗ > x2).

From the expressions (31)-(32) we can derive:

• for wm < w0 +∆ < w2

û(t, 0, w0) = S(t)ew0+∆

[ ∫ w0+∆

ĥ(w0+∆)
K̂1(t, w0, w

′
0) dw

′
0

−
∫ w2

ĥ(w0+∆)
K̂2(t, w0, w

′
0) dw

′
0

]
, (39)
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• for w2 < w0 +∆ < w∗

û(t, 0, w0) = S(t)ew0+∆

[ ∫ w0+∆

h(w0+∆)
K̂1(t, w0, w

′
0) dw

′
0

−
∫ w2

h(w0+∆)
K̂2(t, w0, w

′
0) dw

′
0

]
, (40)

where w2 = lnx2, ĥ(w) = ln(h(ew)), and, for i = 1, 2,

K̂i(t, w0, w
′
0) =

β̃(τ̂i(w0 +∆, w′
0), e

w′
0)û(t, τ̂i(w0 +∆, w′

0), w
′
0)

F (ew0+∆, η(τ̂i(w0 +∆, w′
0), e

w′
0))

, (41)

τ̂i(w,w0) = τi(e
w, ew0). (42)

The number of susceptibles S(t) is given by Eq. (7) with:

λ(t) =

∫ +∞

−∞

∫ +∞

0
β̃(ϑ, ew0)û(t, ϑ, w0) dϑ dw0. (43)

In order to proceed with the numerical approximation of system (38)–
(40), we choose a grid of points wm = w0

0 < w1
0 < . . . < wM

0 and 0 = ϑ0 <
ϑ1 < . . . < ϑN , and aim at approximating∫ wi

0

wi−1
0

û(t, 0, w0) dw0.

Through several intermediate steps, shown in Appendix B, one arrives at

Proposition 1∫ wi
0

wi−1
0

û(t, 0, w0) dw0 =

∫ ∞

0

∫
Aϑ

i

β̃(ϑ, ew
′
0)û(t, ϑ, w′

0) dw
′
0 dϑ (44)

with
Aϑ

i =
{
w′
0 : w

i−1
0 ≤ log(ξ(ϑ, ew

′
0))−∆ ≤ wi

0

}
.

Note that equation (44) is very intuitive, much more than the expressions
(30)–(32) from which it has been derived. It seems likely that setting the
equations in terms of measures (instead of densities) could lead to an equally
intuitive equation without special assumptions on the system (1)–(2) at the
price, however, of introducing more advanced mathematical concepts (see
e.g. Gwiazda et al. (2010)).

The numerical method, briefly described in Appendix C, is developed
on the basis of (44). The method can be considered an adaptation of the
so-called escalator boxcar train (De Roos, 1988; Brännström et al., 2013)
introduced for physiologically structured population models.
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5.2 Numerical results

With the aim of highlighting the role of the initial inoculum, of the isolation
threshold, and of the pathogen dynamics on the epidemic evolution, we
have simplified the dynamics of susceptibles by taking Λ = 0 and µ0 = 0.
Moreover, we assumed µ̂(ϑ,w0) = 0. We thus consider a closed population
without vital dynamics, and no deaths due to the infection. This is an
appropriate model for a single epidemic wave.

The density û(t, ϑ, w0) was approximated on the domainD = [win, wfin]×
[0, ϑmax] by means of the numerical scheme described in Appendix C. In the
following, unless otherwise stated, we set: win = −1, wfin = 12, ϑmax = 5,
wm = −0.48 + ∆, w∗ = 16, w∗∗ = 9. Note that, according to the chosen
shape of β, infections with initial pathogen load smaller than −0.48 and
larger than w∗ −∆ are not possible, so that the chosen values of win, wfin

guarantee the correct computation of the evolution for a reasonable range of
∆ (we always take ∆ > 10 assuming that the initial inoculum will be very
small compared to the pathogen load of an acute infection). We assumed
S(0) = 1000, whereas to simulate the initial presence of a concentrated sub-
population of moderately infected subjects, the initial condition for û was
taken constant in the rectangle [0.8, 1.2]× [0.005, 0.045] with integral equal
to 1, and zero otherwise.

To trace the evolution of the infection in the population, we computed
the following integrals:

I(t) =

∫∫
D
û(t, ϑ, w0) dϑ dw0,

Iw̄(t) =

∫∫
Dw̄

û(t, ϑ, w0) dϑ dw0,

H(t) =

∫∫
Ω̂2

û(t, ϑ, w0) dϑ dw0,

R(t) =

∫∫
R
û(t, ϑ, w0) dϑ dw0,

where
Dw̄ = {(w0, ϑ) ∈ D : ln ξ(ϑ, ew0) ≥ w̄},

Ω̂2 = {(w0, ϑ) ∈ D : (ξ(ϑ, ew0), η(ϑ, ew0)) ∈ Ω2},

R = {(w0, ϑ) ∈ D : ξ(ϑ, ew0) ≤ x1}.

The quantity I(t) gives the total number of individuals that have been in-
fected within time t, Iw̄(t) the number of infected with a pathogen burden
above the threshold ew̄, here set to w̄ = 12, H(t) the number of isolated
subjects, and R(t) the number of recovered. The number of recovered and
immune individuals might be computed by integrating û over the (w0, ϑ)
domain such that ξ(ϑ, ew0) ≤ x1 and η(ϑ, ew0) ≥ y∗, with y∗ some suitable
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Figure 4: Time course of the epidemic for ∆ = 11.51, β0 = 0.035, w∗ = 16,
w∗∗ = 9. Other parameters as in Fig. 1, α = 90.

threshold. Note that, according to our modelling, the subpopulations Iw̄,
H, R at time t are all included in the population I(t).

Figure 4 shows the simulated evolution of the epidemic when ∆ = 11.51
(i.e. ρ = 10−5) and β0 = 0.035. In this case, the number of susceptibles
tends to about 5% of the initial value, and both the numbers of subjects
infected with w > 12 and of isolated individuals reach a peak and then
decline with some oscillations. All the infected become eventually recovered.
Since Λ = µ0 = µi = 0, we have S(t) + I(t) = const.

A peculiar feature of this model is to account separately for the quantity
of pathogens transmitted at the act of infection, and for the rate of infec-
tive encounters. Figure 5 depicts the epidemics evolution for ∆ = 13.82,
keeping β0 = 0.035. The comparison to Fig. 4 shows that decreasing the
fraction of transferred pathogens (i.e. increasing ∆), the epidemics devel-
ops more slowly, the peak value of I12 decreases, the isolated population al-
most vanishes, while the susceptibles tend asymptotically to a greater value.
Moreover, we can observe that the typical oscillations in the subpopulation
evolutions tend to be more marked. All these aspects may be explained tak-
ing into account that in the (w, z) plane the window of infective individuals
narrows increasing ∆ (see Fig. 3), and that the initial condition for û is
here assumed to have a small support. Indeed, when the window gets nar-
row, the new infections are “synchronized” and rise in waves, with a period
approximately given by the time necessary to reach the region β > 0 along
the trajectories starting from x0 close to x1 (and y = ȳ).

The asymptotic fraction of susceptibles in the population will increase,
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Figure 5: Time course of the epidemic for ∆ = 13.82. Other parameters as
in Fig. 4.

as expected, even lowering the value of β0 keeping ∆ constant (data not
shown). In the present model, such a fraction is indeed modulated by both
the parameters ∆ and β0 (as well as by the parameter w∗ characterizing
the isolation). Figure 6 shows the effect of changing the isolation thresh-
old, w∗. Including also w∗ = 16 in the comparison, we observe that as
w∗ decreases (earlier isolation of infected individuals) the infection not only
reduces markedly, but its progression slows down. For w∗ = 15 or 16 no
individual was affected by an infection whose pathogen load diverges. How-
ever this case can be achieved if w∗ −∆ > lnx2. The lower panel of Fig. 6
when w∗ is increased to 20 shows an example of such an evolution where
not all the infected eventually recover.

It can be of interest to examine the influence of stronger pathogen vir-
ulence on the epidemic evolution. In Figure 7 all the parameters are as in
Fig. 4 except the pathogen replication rate α = 100. Note that the isolated
subpopulation becomes larger than in Fig. 4, and a substantial portion of
the isolated subjects does not ever recover. Moreover, the fraction that re-
mains susceptible is higher than in Fig. 4, possibly because of the larger
fraction of infected that remain isolated.

The present model allows also the computation of the distributions of
times of epidemiological interest, such as the latency time, the infectivity
time and the time of isolation. For each individual receiving the initial
inoculum w0 > lnx1, the ages at which the individual enters and leaves the
region of infectivity (β > 0), and the ages to enter and leave the region
of isolation, can be examined. Of course, some of these ages may be not
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Figure 6: Effect of changing w∗. Upper panel w∗ = 15, lower panel w∗ = 20.
Other parameters as in Fig. 4.
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Figure 7: Time course of the epidemic for ∆ = 11.51 and α = 100. Other
parameters as in Fig. 4.

defined or be equal to +∞ for particular w0 values. To each w0 we can
associate (when it exists) the time needed to enter the infectivity region, i.e.
the time required to reach x = xm (latency time), the time interval spent in
the infectivity region (infectivity time), and the time interval during which
the individual is isolated (isolation time). The distribution pw0 of the initial
inoculum in [0, T ] can be computed as

pw0(w0) =
Q(w0)∫ wfin

win
Q(w0)dw0

,

where:

Q(w0) =

∫ T

0
û(t, 0, w0)dt.

By means of the density pw0 , the distributions of the latency time, infectivity
time and isolation time can be obtained. Figure 8, upper panel, reports such
distributions for the reference parameters of Fig. 4. It can be noted that the
infectivity time histogram has bimodal shape, whereas the latency time has
a broader distribution skewed to the right. Concerning the isolation time,
the peak at t = 0 means that a substantial fraction (≃ 40%) of the new
infections never attains the isolation threshold. This fraction corresponds
to trajectories the stay in the infectivity region for a relatively long time,
bringing about the second peak of the infectivity time histogram. When the
isolation threshold is lowered to w∗ = 15, all the new infections give rise to
trajectories entering isolation, and the histogram of the infectivity time is
unimodal (see Figure 8, lower panel).

23



Figure 8: Histograms of latency, infectivity and isolation times. Parameter
values as in Fig. 4, left panel. Parameter values as in Fig. 4 except w∗ = 15,
right panel. T = 3.

Note that the dynamical behaviour of our model is quite different from
the behaviour of a standard infection-age model in which the same time
distributions are assumed. As evidence for this fact, we show a simulation
of an SEIHR model with age of infection where distributions of the latency,
infectivity and isolation periods are given by the left panel of Fig. 8, while
infectiousness is constant during the infectious period. The result, shown
in Fig. 9, shows a different pattern with a single epidemic peak, lacking
the repeated waves, corresponding roughly to the generations of infected
individuals, displayed by the present model.
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Figure 9: Numerical solution of an SEIHR model with distributions of the
stage lengths given by the left panel of Fig. 8, and a fixed contact rate
adjusted to yield a value of R0 similar to that in Fig. 4.

6 Concluding remarks

In this paper we have developed a modelling approach to couple within-
host and between-host dynamics. The approach follows the methods used
for physiologically structured populations, starting from a PDE formulation
and arriving at an abstract renewal equation.

While the steps performed in this paper show a possible way to prove
the well-posedness of the resulting problem, a rigorous proof of existence,
uniqueness and regularity of solutions is beyond the scope of the present
paper, and will be the subject of future work.

When the initial size of the infecting inoculum is independent of the
state of the infectant, the resulting system can be written as an epidemic
model structured in terms of age since infection, and thus fits in a well-
known class of models. Still, the within-host model can be used to derive
how infectiousness and survival probability depend on age since infection
on the basis of fundamental mechanisms acting in the interactions between
pathogens and host immune response. For instance, one can see the effect
of pathogen replication rate on the overall epidemic dynamics, and this
has been used extensively when studying virulence evolution (Gilchrist and
Sasaki, 2002; Gilchrist and Coombs, 2006; André and Gandon, 2006).

On the other hand, when the initial inoculum (and thus the future course
of the infection) depends on the current state of the infectant, as in the model
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with proportional inoculum size, it is not possible to decouple within-host
from population dynamics, and it is necessary to proceed with both at the
same time. The resulting model often yields an epidemic curve superimposed
with several smaller waves (see Figs. 4–7) in contrast with classical epidemic
models (Fig. 9) in which incidence curve is generally unimodal. Smaller
waves in incidence curves can emerge in infection-age epidemic models if the
infectiousness period is very narrow and not much variable among infected
individuals; this is the usual explanation for the profiles sometimes observed
in emerging epidemics, where subsequent generations of infected can be
recognized in data. In the present model, subsequent generations of infected
are recognizable, but the generation time (hence, the interval between waves)
changes during the epidemic course, giving rise to an overall distribution of
latent and infectious periods which is not so narrow. Indeed, we have no
evidence that such a mechanism may operate in reality, but may be worth
investigating.

The model of Section 5 includes isolation of infected individu-
als. This feature has been introduced either to show the flexibility
of our modelling approach, and to limit the possible size of the
initial inoculum, allowing an accurate numerical simulation. Note
that under the condition ρM(x0) > x0 and in the absence of isola-
tion (and of the limitation of the support of β expressed by (4)),
the initial inoculum size could unboundedly increase. The effect
of reducing the value of the isolation threshold appears remark-
able: the infection substantially reduces and slows down. On the
contrary, high and increasing threshold values produce marginally
different behaviours, suggesting that the asymptotic fraction of
susceptibles tends to zero in absence of isolation.

The model can include only some of complexities tied to the interactions
between immunological and epidemic processes. A fundamental missing
feature is host heterogeneity; the model assumes identical immune systems
for all individuals, while we know that individuals differ deeply. In principle,
it would not be difficult allowing for the parameter values of system (1)–(2)
to be distributed in the population, though the system would certainly be
more complicated. A relatively simple example, demonstrating the relevance
of host heterogeneity for the evolution of virulence, is provided by Pugliese
(2011).

The within-host dynamics considered are also relatively simple and far
from being realistic, by neglecting most of complexities of immune system,
and not distinguishing between antibodies, T-cells, memory cells, etc. It
would be certainly possible using a more detailed (and higher-dimensional)
model for the within-host system; it is not clear to us whether this increase
in realism would justify the added complexity, but this is certainly an area
worth exploring.

The transmission mechanism of specific pathogens could be in-

26



vestigated in detail to give realistic estimates of the probability
density p(x, x0) or of the transmission coefficient ρ, though we did
not face this task in the present paper. We just mention that in
recent years significant studies and measurements have been pro-
duced about the airborne transmission of influenza A virus (see
e.g. Tellier, 2009 and Yang et al., 2011). Such results could help
to relate the virus emission to the pathogen burden of the infec-
tant, and to assess the amount of virions taken up during different
contact modalities.

Finally, we did not allow, as already discussed, for reinfections of an
already infected individual. From the mathematical point of view, it would
not be difficult considering them in system (3); one just needs to add two
terms, the decrease of i due to reinfections at a value (x, y), and the con-
sequent increase at (x + k, y) where k is the (fixed or variable) increase in
pathogen level due to a reinfection.

However system (3) does not appear easily amenable to analysis or nu-
merical simulation, even without reinfections. We found system (10)–(12),
based on age since infection, much more convenient. Clearly, the concept of
age since infection loses sense if reinfections would be allowed. One may try
to distinguish then between individuals infected once, those infected twice,
and so forth, and structure each of these classes by the ages after each in-
fection. The model would become a nightmare in complexity, and it is not
even clear whether such a fine description is worthwhile.

It is generally believed that reinfections are relevant, either shortly after
the initial infection, when they may help in overcoming the defences of the
innate immune system; or long after the first infection, after a decline in
the specific immune response. On the other hand, during the phase of acute
infection or shortly afterwards, possible reinfections do not seem to play a
role. Multiple exposures in a short period are a mechanism to realise the
idea by Dushoff (1996) that population prevalence may influence epidemic
outcome, here mediated instead by initial dose.

Hence, instead of allowing for a general model with reinfections, it ap-
pears more promising aiming at simplified versions targeted to a specific
aspect (for instance, reinfections shortly after the initial infection, or after
decline of specific immune response). Developing and analysing such types of
simplified models will be an important aim in our future research activities.
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7 Appendix A: derivation of the boundary condi-
tion for u(t, ϑ, x0), single infection with propor-
tional pathogen load

Suppose xm < x1. Then, x0/ρ lies in one of the following intervals: i)
xm < x0/ρ < x1, ii) x1 < x0/ρ < x2, iii) x0/ρ > x2. Since we will make
∆x in (25) tend to zero, we can take ∆x sufficiently small so that x0−∆x

ρ
belongs to the same interval containing x0

ρ . Using (25) in (11) we obtain the
boundary condition for ∆x > 0 in each interval of interest (see Figure 10):
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Figure 10: Sketch illustrating the computation in Eqs. (A.1)-(A.3). Exam-
ples of trajectories converging to (0, η) or diverging are shown as dashed
lines. The interval [x0−∆x

ρ , x0
ρ ] is drawn in three different positions accord-

ingly to cases i), ii) and iii). Integrations in Eqs. (A.1)-(A.3) with respect
to ϑ correspond to integrating along the trajectory segments (solid lines)
singled out by the shaded areas.

i) xm < x0−∆x
ρ < x0

ρ < x1

u(t, 0, x0) =
S(t)

∆x

[ ∫ x0
ρ

x0−∆x
ρ

∫ τ2(
x0−∆x

ρ
,x′

0)

0
β̃(ϑ, x′0)u(t, ϑ, x

′
0) dϑdx

′
0

+

∫ x1

x0
ρ

∫ τ2(
x0−∆x

ρ
,x′

0)

τ2(
x0
ρ
,x′

0)
β̃(ϑ, x′0)u(t, ϑ, x

′
0) dϑdx

′
0

+

∫ x2

x1

∫ τ2(
x0−∆x

ρ
,x′

0)

τ2(
x0
ρ
,x′

0)
β̃(ϑ, x′0)u(t, ϑ, x

′
0) dϑdx

′
0

]
, (A.1)
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ii) x1 <
x0−∆x

ρ < x0
ρ < x2

u(t, 0, x0) =
S(t)

∆x

[ ∫ h(
x0
ρ
)

h(
x0−∆x

ρ
)

∫ τ2(
x0−∆x

ρ
,x′

0)

τ1(
x0−∆x

ρ
,x′

0)
β̃(ϑ, x′0)u(t, ϑ, x

′
0) dϑdx

′
0

+

∫ x0−∆x
ρ

h(
x0
ρ
)

(∫ τ1(
x0
ρ
,x′

0)

τ1(
x0−∆x

ρ
,x′

0)
β̃(ϑ, x′0)u(t, ϑ, x

′
0) dϑ

+

∫ τ2(
x0−∆x

ρ
,x′

0)

τ2(
x0
ρ
,x′

0)
β̃(ϑ, x′0)u(t, ϑ, x

′
0) dϑ

)
dx′0

+

∫ x0
ρ

x0−∆x
ρ

(∫ τ1(
x0
ρ
,x′

0)

0
β̃(ϑ, x′0)u(t, ϑ, x

′
0) dϑ

+

∫ τ2(
x0−∆x

ρ
,x′

0)

τ2(
x0
ρ
,x′

0)
β̃(ϑ, x′0)u(t, ϑ, x

′
0) dϑ

)
dx′0

+

∫ x2

x0
ρ

∫ τ2(
x0−∆x

ρ
,x′

0)

τ2(
x0
ρ
,x′

0)
β̃(ϑ, x′0)u(t, ϑ, x

′
0) dϑdx

′
0

]
, (A.2)

iii) x2 <
x0−∆x

ρ < x0
ρ

u(t, 0, x0) =
S(t)

∆x

[ ∫ h(
x0
ρ
)

h(
x0−∆x

ρ
)

∫ τ2(
x0−∆x

ρ
,x′

0)

τ1(
x0−∆x

ρ
,x′

0)
β̃(ϑ, x′0)u(t, ϑ, x

′
0) dϑdx

′
0

+

∫ x2

h(
x0
ρ
)

(∫ τ1(
x0
ρ
,x′

0)

τ1(
x0−∆x

ρ
,x′

0)
β̃(ϑ, x′0)u(t, ϑ, x

′
0) dϑ

+

∫ τ2(
x0−∆x

ρ
,x′

0)

τ2(
x0
ρ
,x′

0)
β̃(ϑ, x′0)u(t, ϑ, x

′
0) dϑ

)
dx′0

+

∫ x0−∆x
ρ

x2

∫ τ1(
x0
ρ
,x′

0)

τ1(
x0−∆x

ρ
,x′

0)
β̃(ϑ, x′0)u(t, ϑ, x

′
0) dϑdx

′
0

+

∫ x0
ρ

x0−∆x
ρ

∫ τ1(
x0
ρ
,x′

0)

0
β̃(ϑ, x′0)u(t, ϑ, x

′
0) dϑdx

′
0

]
. (A.3)

Let us consider now the above expressions in the limit ∆x → 0. We get:

i) xm < x0
ρ < x1

u(t, 0, x0) =

S(t)

ρ

[
−

∫ x1

x0
ρ

β̃(τ2(
x0
ρ
, x′0), x

′
0)u(t, τ2(

x0
ρ
, x′0), x

′
0)
∂τ2
∂x

(
x0
ρ
, x′0) dx

′
0

−
∫ x2

x1

β̃(τ2(
x0
ρ
, x′0), x

′
0)u(t, τ2(

x0
ρ
, x′0), x

′
0)
∂τ2
∂x

(
x0
ρ
, x′0) dx

′
0

]
, (A.4)
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ii) x1 <
x0
ρ < x2

u(t, 0, x0) =

S(t)

ρ

[ ∫ x0
ρ

h(
x0
ρ
)

(
β̃(τ1(

x0
ρ
, x′0), x

′
0)u(t, τ1(

x0
ρ
, x′0), x

′
0)
∂τ1
∂x

(
x0
ρ
, x′0)

−β̃(τ2(
x0
ρ
, x′0), x

′
0)u(t, τ2(

x0
ρ
, x′0), x

′
0)
∂τ2
∂x

(
x0
ρ
, x′0)

)
dx′0

−
∫ x2

x0
ρ

β̃(τ2(
x0
ρ
, x′0), x

′
0)u(t, τ2(

x0
ρ
, x′0), x

′
0)
∂τ2
∂x

(
x0
ρ
, x′0) dx

′
0

]
, (A.5)

iii) x0
ρ > x2

u(t, 0, x0) =

S(t)

ρ

[ ∫ x2

h(
x0
ρ
)

(
β̃(τ1(

x0
ρ
, x′0), x

′
0)u(t, τ1(

x0
ρ
, x′0), x

′
0)
∂τ1
∂x

(
x0
ρ
, x′0)

−β̃(τ2(
x0
ρ
, x′0), x

′
0)u(t, τ2(

x0
ρ
, x′0), x

′
0)
∂τ2
∂x

(
x0
ρ
, x′0)

)
dx′0

+

∫ x0
ρ

x2

β̃(τ1(
x0
ρ
, x′0), x

′
0)u(t, τ1(

x0
ρ
, x′0), x

′
0)
∂τ1
∂x

(
x0
ρ
, x′0) dx

′
0

]
. (A.6)

Note that the first double integrals in (A.2) and (A.3) yield the contributions
of trajectories such that x0−∆x

ρ < M(x′0) ≤ x0
ρ . Such contributions, in the

limit ∆x → 0, vanish since the domain of integration over ϑ vanishes.
Taking into account (28), the final expressions (30)-(32) are readily ob-

tained. In case of xm ≥ x1, the boundary condition can be derived through
obvious modifications. For instance, if x1 ≤ xm < x2, the boundary condi-
tion will be given for xm < x0

ρ < x2 by (A.5), and for x0
ρ > x2 by (A.6).

8 Appendix B: derivation of (44)

Integrating (39) with respect to w0, with wi
0 < w2, the first addend will be

given by

S(t)

∫ wi
0

wi−1
0

∫ w0+∆

ĥ(w0+∆)
ew0+∆K̂1(t, w0, w

′
0)dw

′
0dw0.

Exchanging the order of integration, this can be rewritten (assuming ĥ(wi
0+

∆) < wi−1
0 +∆which will always hold as long as the step size is small enough)
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as

S(t)

[ ∫ ĥ(wi
0+∆)

ĥ(wi−1
0 +∆)

∫ M̂(w′
0)−∆

wi−1
0

ew0+∆K̂1(t, w0, w
′
0) dw0 dw

′
0

+

∫ wi−1
0 +∆

ĥ(wi
0+∆)

∫ wi
0

wi−1
0

ew0+∆K̂1(t, w0, w
′
0) dw0 dw

′
0

+

∫ wi
0+∆

wi−1
0 +∆

∫ wi
0

w′
0−∆

ew0+∆K̂1(t, w0, w
′
0) dw0 dw

′
0

]
,

where M̂(w) = lnM(ew) is the inverse function of ĥ(w).
By setting

ϑ = τ̂1(w0 +∆, w′
0),

and recognizing that

dϑ =
ew0+∆

F (ew0+∆, η(τ̂1(w0 +∆, w′
0), e

w′
0))

dw0,

we obtain

S(t)

[ ∫ ĥ(wi
0+∆)

ĥ(wi−1
0 +∆)

∫ T (ew
′
0 )

τ̂1(w
i−1
0 +∆,w′

0)
β̃(ϑ, ew

′
0)û(t, ϑ, w′

0) dϑ dw′
0

+

∫ wi−1
0 +∆

ĥ(wi
0+∆)

∫ τ̂1(wi
0+∆,w′

0)

τ̂1(w
i−1
0 +∆,w′

0)
β̃(ϑ, ew

′
0)û(t, ϑ, w′

0) dϑ dw′
0

+

∫ wi
0+∆

wi−1
0 +∆

∫ τ̂1(wi
0+∆,w′

0)

0
β̃(ϑ, ew

′
0)û(t, ϑ, w′

0) dϑ dw′
0

]
We remind the reader that T (x0) is the time needed for a solution starting
with x = x0 to reach the maximum value in x, M(x0), of the solution. The
next step will be slightly different according to whether T is increasing or
decreasing (or non-monotone) in (ĥ(wi−1

0 + ∆), ĥ(wi
0 + ∆)); to be definite,

we assume that it is decreasing. For convenience we also define T̂ (w) =
T (h(ew)), i.e. the time needed for a solution having maximum value ew to
reach it from its initial point.

Now we exchange again the integration order; we need to consider the
inverse of the function τ̂1 (it can be indeed shown that it is monotone in the
second argument for x0 ∈ (x1,+∞)): let then r1(ϑ,w0) defined as the value
such that

τ̂1(w0, r1(ϑ,w0)) = ϑ.

With this definition, exchanging the order of integration yields:

S(t)

[ ∫ T̂ (wi
0+∆)

0

∫ r1(ϑ,wi
0+∆)

r1(ϑ,w
i−1
0 +∆)

β̃(ϑ, ew
′
0)û(t, ϑ, w′

0) dw
′
0 dϑ

+

∫ T̂ (wi−1
0 +∆)

T̂ (wi
0+∆)

∫ log(T−1(ϑ))

r1(ϑ,w
i−1
0 +∆)

β̃(ϑ, ew
′
0)û(t, ϑ, w′

0) dw
′
0 dϑ

]
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Note that if w′
0 belongs to [r1(ϑ,w

i−1
0 +∆), r1(ϑ,w

i
0 +∆)], by definition

ew
i−1
0 +∆ ≤ ξ(ϑ, ew

′
0) ≤ ew

i
0+∆.

They are exactly those values w′
0 such that the solution starting from ew

′
0 is

at time ϑ for the first time between ew
i−1
0 +∆ and ew

i
0+∆. The same is true

when T̂ (wi
0 + ∆) < ϑ ≤ T̂ (wi−1

0 + ∆), except that, at such values of ϑ the

maximum x that can be reached will not be equal to ew
i
0+∆ but something

less.
We perform now the same steps with the second term in (39). Integrating

(39) with respect to w0, with wi
0 < w2, the second addend will be given by

S(t)

∫ wi
0

wi−1
0

∫ w2

ĥ(w0+∆)
ew0+∆(−K̂2(t, w0, w

′
0))dw

′
0dw0.

Exchanging the order of integration, the above expression can be rewritten
as

S(t)

[ ∫ ĥ(wi
0+∆)

ĥ(wi−1
0 +∆)

∫ M̂(w′
0)−∆

wi−1
0

ew0+∆(−K̂2(t, w0, w
′
0)) dw0 dw

′
0

+

∫ w2

ĥ(wi
0+∆)

∫ wi
0

wi−1
0

ew0+∆(−K̂2(t, w0, w
′
0)) dw0 dw

′
0

]
.

By setting
ϑ = τ̂2(w0 +∆, w′

0),

and recognizing that

dϑ =
ew0+∆

F (ew0+∆, η(τ̂2(w0 +∆, w′
0), e

w′
0))

dw0,

we obtain

S(t)

[ ∫ ĥ(wi
0+∆)

ĥ(wi−1
0 +∆)

∫ T (ew
′
0)

τ̂2(w
i−1
0 +∆,w′

0)
(−β̃(ϑ, ew

′
0)û(t, ϑ, w′

0)) dϑ dw′
0

+

∫ w2

ĥ(wi
0+∆)

∫ τ̂2(wi
0+∆,w′

0)

τ̂2(w
i−1
0 +∆,w′

0)
(−β̃(ϑ, ew

′
0)û(t, ϑ, w′

0)) dϑ dw′
0

]
,

and then

S(t)

[ ∫ ĥ(wi
0+∆)

ĥ(wi−1
0 +∆)

∫ τ̂2(w
i−1
0 +∆,w′

0)

T (ew
′
0 )

β̃(ϑ, ew
′
0)û(t, ϑ, w′

0) dϑ dw′
0

+

∫ w2

ĥ(wi
0+∆)

∫ τ̂2(w
i−1
0 +∆,w′

0)

τ̂2(wi
0+∆,w′

0)
β̃(ϑ, ew

′
0)û(t, ϑ, w′

0) dϑ dw′
0

]
.
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To exchange again the integration order, we introduce the inverse of the
function τ̂2 with respect to the second argument, i.e. the function r2(ϑ,w0)
defined as the value such that

τ̂2(w0, r2(ϑ,w0)) = ϑ.

Since limw′
0→w−

2
τ̂2(w,w

′
0) = +∞ for any w, we get:

S(t)

[ ∫ T̂ (wi−1
0 +∆)

T̂ (wi
0+∆)

∫ r2(ϑ,wi
0+∆)

log(T−1(ϑ))
β̃(ϑ, ew

′
0)û(t, ϑ, w′

0) dw
′
0 dϑ

+

∫ ∞

T̂ (wi−1
0 +∆)

∫ r2(ϑ,wi
0+∆)

r2(ϑ,w
i−1
0 +∆)

β̃(ϑ, ew
′
0)û(t, ϑ, w′

0) dw
′
0 dϑ

]
.

Summing the contribution of the first and of the second addend, the
following expression is obtained:

S(t)

[ ∫ T̂ (wi
0+∆)

0

∫ r1(ϑ,wi
0+∆)

r1(ϑ,w
i−1
0 +∆)

β̃(ϑ, ew
′
0)û(t, ϑ, w′

0) dw
′
0 dϑ

+

∫ T̂ (wi−1
0 +∆)

T̂ (wi
0+∆)

∫ r2(ϑ,wi
0+∆)

r1(ϑ,w
i−1
0 +∆)

β̃(ϑ, ew
′
0)û(t, ϑ, w′

0) dw
′
0 dϑ

+

∫ ∞

T̂ (wi
0+∆)

∫ r2(ϑ,wi
0+∆)

r2(ϑ,w
i−1
0 +∆)

β̃(ϑ, ew
′
0)û(t, ϑ, w′

0) dw
′
0 dϑ

]
.

Hence, observing that if w′
0 belongs to [r1(ϑ,w

i−1
0 + ∆), r2(ϑ,w

i
0 + ∆)]

or to [r2(ϑ,w
i−1
0 +∆), r2(ϑ,w

i
0 +∆)] in the appropriate intervals of ϑ, it is

ew
i−1
0 +∆ ≤ ξ(ϑ, ew

′
0) ≤ ew

i
0+∆,

one arrives at the expression (44). The same result can be achieved, after
obvious changes within the procedure steps, when T (x0) is increasing or
non-monotone in (ĥ(wi−1

0 +∆), ĥ(wi
0 +∆)). Similarly, (44) is obtained also

starting from (40).

9 Appendix C: numerical computation of the den-
sity û(t, ϑ, w0)

On the domain [win, wfin] × [0, ϑmax] of the plane (w0, ϑ), we define the
rectangular grid:

ϑi = iδ, i = 0, . . . , N,

wj
0 = win + jh, j = 0, . . . ,M,
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where δ = ϑmax/N and h = (wfin − win)/M . Denoting by T the maximal
integration time so that the integration will be performed over [0, T ], we
choose T = Lδ. We then define the discretized time

tk = kδ, k = 0, . . . , L.

Note that the correct integration of Eq. (38) requires a constraint on T
depending on the support of the initial condition û(0, ϑ, w0). Given ϑmax,
if the initial condition is zero for ϑ > ϑ0, T cannot exceed ϑmax − ϑ0.

Preliminarily, the values

Wij = ln ξ(ϑi, e
wj

0),

Zij = ln η(ϑi, e
wj

0),

are computed for all the nodes of the grid, solving the system (35) by means
of the Cash-Karp 6th-order Runge-Kutta method.

Let us define the array Û(i, j, k) = û(tk, ϑi, w
j
0). The density û(t, ϑ, w0)

on the grid is then computed along the characteristic lines by the Euler
method, according to the following steps:

• Load the initial condition Û(i, j, 1), i = 0, . . . , N , j = 0, . . . ,M .

• For k = 0, . . . , L− 1,

i) set Û(0, j, k + 1) = 0, j = 0, . . . ,M ;

ii) for i = 0, . . . , N − 1, j = 0, . . . ,M , compute

Û(i+ 1, j, k + 1) = Û(i, j, k) + Ψ(i, j, k)δ,

where Ψ(i, j, k) denotes the r.h.s. of Eq. (38) at ϑ = ϑi, w0 = wj
0

and t = tk;

iii) update the boundary condition, computing the new values

Û(0, j, k + 1), j = 0, . . . ,M .

Concerning the step iii), we compute for 0 = 1, . . . , N − 1 and j =
0, . . . ,M − 1:

Bijk = β̃(ϑi, e
wj

0)S(tk+1)Û(i, j, k + 1)hδ .

The quantity Bijkdt approximates the number of new infections caused

by infected individuals belonging to the elementary domain [wj
0, w

j
0 + h] ×

[ϑi, ϑi + δ] that occur in the time interval (tk+1, tk+1 + dt). As a further
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approximation, we assume that all the individuals in the above elementary
domain have the same pathogen load Wij . Thus, in view of (44) we have∫ wj+1

0

wj
0

û(t, 0, w0)dw0 ≃
∑

{(i,j):Wi,j−∆∈[wj
0,w

j+1
0 )}

Bijk,

from which Û(0, j, k + 1) is derived as:

Û(0, j, k + 1) =
1

h

[ ∑
{(i,j):Wi,j−∆∈[wj

0,w
j+1
0 )}

Bijk

]
.

To compute S(tk), the integration of (7) is performed by the Euler
method. In the calculation of λ(tk) according to (43), the double integral is
computed over the domain [win, wfin]× [0, ϑmax].
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