
Scenario

TECNOSCIENZA
Italian Journal of Science & Technology Studies
Volume 3(1) pp. 63-72- ISSN 2038-3460
http://www.tecnoscienza.net

© 2012 TECNOSCIENZA

Innovation Happens Elsewhere, but Where
Does Design Happen?
Considerations on Design and Participatory Processes
in Emerging Information Technologies

Giacomo Poderi

Abstract By taking as departing point the convergence of emerging technologies
and their related production practices, this work reflects on design and participa-
tory processes. This contribution tries to highlight how these processes changed
from the traditional Information and Software Systems (ISS) context to the
emerging one, where technologies are mainly characterized by decentralized and
open-ended processes. The paper presents the traditional conception of design as
a linear process and problem-solving endeavour and the role that users’ participa-
tion has within this frame. It then moves to focus on how design for emergent
technologies extends beyond the 'production' phase and on how the distribution
of (users-)participants to these technologies intertwine with the endeavour of de-
signing them.

Keywords designing; information and software system; users participation; dis-
tribution; continuity.

Introduction

In 2005, two software engineers working at Sun Microsystems wrote the influ-
ential book Innovation happens elsewhere: open source as business strategy
(Goldman and Gabriel 2005). The book primarily targeted practitioners and re-
flected on the Free and Open Source Software (FOSS) paradigm to argue that a
new way of innovating emerged in contemporary society. Innovation processes
can happen, and indeed do so in FOSS, without the need of keeping secret the
organization’s knowledge related to innovative products and confining it within
the boundaries of internal Research and Development (R&D) departments. Ac-
cording to the authors, in the case of the production of FOSS programmes ‘inno-
vation happens elsewhere’ and, more importantly, this new way of innovating can
be found in other areas of technology production. Thus, according to them, a

PODERI

64

phenomenon worth being observed. Translating by analogy the key argument by
Goldman and Gabriel into the focus of this contribution, I suggest that some-
thing similar is happening for the concept of design in the domain of Information
and Software Systems (ISS), and yet again in connection with aspects that charac-
terise the FOSS paradigm and similar ‘participatory technologies’.

Starting from the studies of the electrification of London (Bijker and Law
1994) and the development of modern bicycles, bakelites and light bulbs (Bijker
1995), to the ones of domestic technologies (MacKenzie and Wajcman 1985) and
users’ led innovations (Oudshoorn and Pinch 2003), Science and Technology
Studies (STS) have a sound tradition in opening the ‘black-box’ of technological
production and in studying their ‘becoming’, broadly understood. However, the
emergence of new, participatory technologies of knowledge exchange, infor-
mation access, and content production which are primarily associated with Inter-
net and new media blurred the traditional relationship between production and
consumption, producers and users, design and use. Social networking platforms
(e.g. Facebook, LinkedIn), media sharing sites (e.g. Flickr, YouTube), blogging
software (e.g. Wordpress), crowdsourcing platforms (e.g. Wikipedia) and the
whole FOSS paradigm all bring about new forms of design, development, ap-
propriation and use that crucially differentiate1 their come into being from the
one that traditionally interested the STS community.

This contribution provides a look at emerging practices in the area of ISS and
specifically connect emergent technologies paradigms to the processes of design,
in general, and of participation, in particular. This work outlines the main differ-
ences characterising these concepts in their traditional understanding and in their
emergent ones.

1. Solving the requirement problem in traditional Information
and Software System

The hardest single part of building a software system is deciding what to build […] No
other part of the work so cripples the resulting system if done wrong. No other part is more
difficult to rectify later. (Brooks 1987, 12)

In ISS, the process of design is one that has often escaped formal, clear and

shared definitions, mainly for two reasons: (i) formal definitions, typical of ra-
tionalist approaches, are rarely satisfactory when the actual design, the design in
practice, is carried out; (ii) the application domain of this human activity has rap-
idly and constantly changed over the past few decades (Greenbaum and Kyng
1991). However, as generally understood, the design of information or software

1 For an overview of these differences see the works of Napoli (2010) and Bruns (2008).

TECNOSCIENZA – 3 (1)

65

systems implies the endeavour of deciding, at a relatively detailed level, ‘what to
produce’. In other words, design can be seen as an interaction between under-
standing what is needed in the context of future technology deployment and cre-
ating an artefact which satisfies those needs (Winograd and Flores 1986, 4). It is
an activity usually performed by professional figures, namely the software (or sys-
tem) designers, who operate within the phases of formal development projects.
Here, design is just one phase which has the goal of ‘solving the requirements
problem’. That is to: (i) identify as objectively as possible the features that the fi-
nal artefact will have, (ii) improve upon the departing status quo, (iii) take into
consideration the needs of all the actors involved, and (iv) defining a suitable
mediation amongst these needs (Sommerville 1995).

Depending on the specific development methodology used for the system
production, the design phase has its specific position and role. For instance, the
Waterfall Model is a linear and sequential design process for system development
firstly formalised in Royce (1970) and, until recently, widely adopted in one of its
many versions. The typical incarnation of the model has seven phases: require-
ments specification, design, implementation, integration, testing and debugging,
installation, maintenance. During the first phase, designers evaluate whether or
not the system is feasible, investigate the work-site and the activities taking place
there to understand what ‘is needed’ and they formally define the features of the
new system through the requirements specification. In the proper design phase,
the requirements are modelled into a detailed blueprint that can be developed
into an artefact during the implementation phase.

This model has the merit of clearly identifying the logical elements of the de-
sign process. However, although it enjoyed wide adoption since the 70s, the se-
verity of the consecutive phases and the reliance on the requirements that are
specified during the early stage, pose limitations to it and make it difficult to
adopt it for contemporary software development. Indeed, it heavily relies on the
assumptions that requirements are easily identifiable, remain constant through-
out the whole development cycle and that they are decomposable in problems
and solutions (Avison and Fitzgerald 2003).

Several development methodologies exist which attempt to mitigate the limits
of the Waterfall Model: agile development (Larman and Basili 2003), rapid ap-
plication development (Beynon-Davies et al. 1999), extreme programming (Beck,
2000), spiral model (Sommerville 1995). However, from a critical standpoint,
these methods do nothing more than recursively repeating, or combining in dif-
ferent ways, the steps of the Waterfall Model in the attempt of introducing some
mechanisms that are able to fine tuning the initial design and the process of in-
scribing it into the final artefact. As rationalist approaches, they all share the
same fundamental bias: the idea that problems are identifiable, definable and
solvable through analytical steps and engineered procedures.

Starting from the late 60s, the idea that the involvement of the (future) users
of a new technological artefact would be beneficial both for the technology and
for the users, increasingly gained acceptance also in ISS development, becaming
a fundamental prerequisite for any development effort. In IS, the term “user par-

PODERI

66

ticipation” refers to the involvement of the future end-users into the design and
implementation processes of the system they will use. Commonly recognised
benefits of users participation are: (i) an increased adoption and diffusion of the
system; (ii) an higher system quality in terms of a more accurate understanding of
user requirements; (iii) a better and more efficient use of the system deriving
from the possibility for participants to understand it ‘from within’. The key pro-
cess at the basis of these benefits it is the fostering of mutual learning between
the people who will use the system and the ones who are producing it (Green-
baum 1993; Kensing and Blomberg 1998). Often, designers and developers are
highly trained and skilled in creating technically valid artefacts but they lack
proper understanding of the working domain the artefact will be used for. Vice-
versa users well understand what kind of working practices the new system
should adapt to and have sound knowledge of the working domain, however they
cannot grasp the potential and limits of system development, therefore they are
not always clear about what they need and what they can expect (Bødker et al.
2004).

Mutual learning is supposed to mitigate the distance between these two
groups and, thus, to help solving the fundamental design problem that any de-
velopment effort faces: deciding what to build. Several different techniques such
as future workshops, organizational games, contextual inquiries and ethnograph-
ic approaches, emerged over the years in the attempt of involving users in the de-
sign process and helping them to articulate their needs and ideas in a way that
designers could understand and act upon (Schuler and Namioka 1993).

2. Emerging practices for emerging technologies: distributed par-
ticipation and continuously designed projects

Design as a continuing process that goes on after the formal end of the software
development project is, of course, ‘old news’. [...] The ‘new news’ is, that this is where much
of the action is today, and it is a much more complex and diverse scene than it was ten years
ago. (Dittrich 2002, 225)

The previous outline of designing poorly fits the ‘come into being’ of the par-

ticipatory technologies mentioned in the introduction. They differ from tradi-
tional technology production at least for two related aspects: (i) they blur the
boundaries between production and use of the artefact, and (ii) they imply the
distribution at the spatial, organizational and temporal level of the socio-
technical assemblages2 that are associated with them. These assemblages portray
decentralized and open-ended organization of work together with bottom-up and
unpredictable innovation processes. Traditional boundaries that were clearly
identifiable amongst the parties and processes of producing, adopting and using

2 “Assemblage” is used to indicate “associations of humans and non-humans” as proposed

by Latour (1987).

TECNOSCIENZA – 3 (1)

67

a technological artefact are difficult to distinguish. This is particularly true for the
relationships production/use and producer/consumer, indeed “the production
value chain is transformed to the point of being entirely unrecognisable - in the
absence of producers, distributors, or consumers, and the presence of a seeming-
ly endless string of users acting incrementally as content producers by gradually
extending and improving the information present in the information common”
(Bruns 2008, 21). It is difficult to decide whether writing an encyclopedic article
through a crowdsourcing platform, such as Wikipedia, should qualify as using it
or contributing to its production. Similarly, it is difficult to decide whether to es-
tablish connections with other users on a social networking site can be consid-
ered as using the technology or contributing to the creation of that 'social net-
work' which the technology was meant to be.

In these participatory technologies, designing processes take place in a con-
text where mediation with actual, rather than projected, use is unavoidable: the
‘solution to the requirements problem’ is only sketched (or attempted) before ac-
tual use starts. The largest part of the ‘problem’ – e.g. understanding what should
be built and deciding how to build it – is tackled during the actual use of the
technological artefact. The idea of completing the development of the artefact,
before it is officially deployed for wide use, is abandoned and substituted by the
acknowledgement that the artefact will undergo improvements, changes and fur-
ther development for as long as there is enough interest around it. Approaches
such as continuing design-in-use (Henderson and Kyng 1991), continuous design
and redesign (Jones 1983), unfinished design (Tonkinwise 2003) try to tackle this
challenge in different ways while sharing similar roots and goals: they all
acknowledge the impossibility of satisfactorily anticipating future users’ practices
or to provide a durable vision to inscribe in the artefacts, and they strive to pro-
vide highly flexible development processes for these artefacts. As such, all these
approaches came to recognize the relevance that the project’s infrastructure ac-
quires in the logic of continuing design in use.

According to Star (1999, 380) it is possible to think of an infrastructure as a
system of substrates that is, by definition, invisible and part of the background
for other kind of works3. However, as Bowker and Star (2000) highlighted, the
fact that this infrastructure operates in the background, it does not imply neutral-
ity in respect to the activities performed with it. For instance, classification sys-
tems embed important decisions relating to what attributes of an object are rele-
vant, thus worth being included in the classification, and what not. The classified
attributes can be remembered and acted upon, the non classified ones are lost
and forgotten. Even in the case of design in use, an infrastructure cannot be con-
sidered neutral in relation to the activity of continuing design in use. Therefore,
deciding how to build it becomes of pertinence of a designing interest. It should
be ‘designed to allow (re-)design after the initial design took place’, to paraphrase
what Ehn (2008) refers to in terms of meta-design.

3 E.g. the set of tools, rules, norms that allow the fulfillment of other activities.

PODERI

68

The infrastructure is also the 'locus' where distributed participation happens
and manifests: it makes possible for people to participate from different loca-
tions, to engage in heterogeneous working areas while supporting heterogeneity
of skills, tasks, roles and activities (Gumm, 2006). In Suchman's words (2002,
96), it promotes “a dense and differentiated layering of people, activities and
things, each operating within a limited sphere of knowing and acting”. Moreover,
it allows them to collaborate without the need to share the same-time interaction.
As developers, designers and users now share the same infrastructure, the result-
ing general distribution of actors affects both the ones who actively engage into
the development of the artefact (Farshchian and Divitini 1999) and the ones who
constitute the contextual environment in relation to which design decisions are
taken (Martin et al. 2007; Iivari 2009).

FOSS development provides a paradigmatic case both for the continuity of
design and distributedness of participation. On the one hand, the key tenet “re-
lease early, release often” (Raymond 1999) that characterises its development and
release cycles, implies that from the very inception of the software project, as
soon as the artefact reaches a minimal yet usable status, this is released for public
use and testing. From then on, development and use of the software can proceed
together for the whole life span of the project thanks to a complex system of par-
allel development branches, feedback practices and ‘release management’
(Michlmayr et al. 2007). Therefore, all the logical elements of the designing pro-
cess, as outlined in the previous section, are no longer sequentially aligned and
iterated, but they overlap each other and are continuously enacted: FOSS assem-
blages never cease to generate bug reports and fixes, to receive and evaluate fea-
tures requests, to extend old functionalities and add new ones, in other words, to
design and re-design the software, while keeping it usable and used by its users
(Gasser et al. 2003). On the other hand, participants collaborate through a sys-
tem of heterogeneous tools and communication channels, where each tool is as-
sociated with a specific activity and each channel is used for specific kind of dis-
cussions. For instance, while system evaluation happens through bug reporting
on the bug-tracker, the implementation of new features is done on the Version
Control System. Similarly, while issues that are traditionally open to wide debate
are discussed on dedicated mailing lists or on Internet forums, other matters that
require quicker and more direct interactions are discussed on media such as In-
ternet Relay Chat (IRC). It follows that the history of the individual contribu-
tions, along with their associated development decisions, implications and discus-
sions rest stored in the distributed archives of this infrastructure, which captures
and tracks the emerging preferences of the emerging FOSS assemblage, while
highlighting its limitations.

TECNOSCIENZA – 3 (1)

69

3. Concluding remarks

In light of the aspects sketched above it is possible to draw some considera-
tions related to both the concept of participation into designing processes, and to
the broader idea of designing per se.

For what concerns participation as a phenomenon related to a ‘better design’,
there are two aspects to consider. On the one hand, it is no longer confined with-
in the designing phase, as traditionally understood. It extends into the use phase
and it becomes an indicator of the validity, success and efficiency of the techno-
logical artefact. A well-designed system is one that, not only has few bugs and
works efficiently at the level of the technological artefact, but it is one capable to
attract and motivate users into active participation, allowing them to contribute
in a satisfactory way and keeping them affiliated to the project. Here, participa-
tion is both the means of designing usable and meaningful systems and the goal
(or outcome) of well-designed technologies. On the other hand, participation
brings to the fore an issue of exclusion from and representativeness in design de-
cisions. This issue was the one that ISS designers tried to minimize through tradi-
tional participatory approaches. It is true that users' participation in the continu-
ous design of emerging technologies allows system designers and developers to
better tune the artefact to real usage practices and users’ requests. However, this
fine-tuning happens in relation to actual participants only and exclude marginal
users4 and not-yet-users5.

For what concerns the design process, emergent technologies portray a fun-
damentally different process from the traditional one. The idea that system re-
quirements can be inscribed into the artefact thanks to analytical and problem-
solving logic and that development can be broke down into ‘self-containing’, lin-
ear, and goal-oriented phases is replaced by an emergent process. Designing is no
longer confined in a specific time frame, neither in the same spatial space. It im-
plies the continuous, parallel and yet interrelated processes of identifying re-
quirements, implementing changes and evaluating them. Designing is no longer
an easily identifiable activity confined within clear boundaries and stated goals.
On the contrary, it is a process that needs to be reconstructed by observing how
people make sense of what is needed and what is the best way to implement an
answer to these needs, by building on the knowledge that is dispersed through-
out the projects’ infrastructure and amongst the people they collaborate with.

As such, while in traditional ISS development, Winograd and Flores’ defini-
tion of design could be understood more directly in its substantive terms, in the
case of emergent technologies this definition acquires a new meaning. In the
former case, designing is the phase between requirements analysis (i.e. under-
standing) and implementation (i.e. creation), it is the bridge allowing the two

4 Those who ‘only’ use the artefact but are not involved in the participatory activities of the
project. For instance, they never submit any kind of feedback.

5 For some reflections on the relevance of non-users in technology production see Wyatt
(2003).

PODERI

70

phases to interact. In the latter, there is no clear-cut separation amongst phases:
requirements analysis and implementation are continuous processes that happen
without the formal mediation of a design phase. Therefore, design no longer por-
trays an interaction. Designing becomes the continuous sensemaking of that en-
acted and ongoing interaction.

References

Avison, D.E. and Fitzgerald, G. (2003) Information Systems Development: Meth-
odologies, Techniques, and Tools, McGraw-Hill Higher Education, 2nd ed.

Beck, K. (2000) Extreme programming explained. XP Series, Reading, Mass., Ad-
dison-Wesley.

Beynon-Davies, P., Carne, C., Mackay, H. and Tudhope, D. (1999) Rapid appli-
cation development (RAD): an empirical review, in “European Journal of In-
formation Systems”, 8 (3), pp. 211-223.

Bijker, W. E. (1995) Of bicycles, bakelites, and bulbs: Toward a theory of soci-
otechnical change, Cambridge, Mass., MIT Press.

Bijker, W.E. and Law, J. (eds) (1994) Shaping Technology/Building Society. Stud-
ies in Sociotechnical change, Cambridge, Mass., MIT Press.

Bowker, G.C. and Star, S.L. (2000) Sorting Things Out: Classification and its
Consequences, Cambridge, Mass., The MIT Press.

Bødker, K., Kensing, F. and Simonsen, J. (2004) Participatory IT Design: Design-
ing for Business and Workplace Realities, Cambridge, Mass., MIT Press.

Brooks, F.P. (1997) No silver bullet: Essence and accidents of software engineer-
ing, in “IEEE computer”, 20, pp. 10–19.

Bruns, A. (2008) Blogs, Wikipedia, Second Life, and Beyond: From Production to
Produsage, New York, Peter Lang Publishing.

Dittrich, Y., Eriksén, S. and Hansson, C. (2002) PD in the Wild: Evolving practic-
es of Design in Use, Participatory Design Conference, Malmö, Sweden, CPSR,
pp. 124–134.

Ehn, P. (2008) Participation in design things, In “Proceedings of the Tenth Anni-
versary Conference on Participatory Design 2008”, pp. 92–101.

Farshchian, B.A., and Divitini, M. (1999) Using email and WWW in a distributed
participatory design project, in “ACM SIGGROUP Bulletin”, 20, pp. 10–15.

Gasser, G. R. L., Scacchi, W. and Penne, B. (2003) Understanding continuous de-
sign in F/OSS projects, in “16th International Conference Software & Systems
Engineering and their Applications.”

Goldman, R. and Gabriel, R.P. (2005) Innovation happens elsewhere – Open
source as business strategy, San Francisco, CA, Morgan Kaufman Publishers.

Greenbaum, J. (1993) PD a personal statement, in “Communications of the
ACM”, 36 (6), pp. 47.

Greenbaum, J.M. and Kyng, M. (1991) Design at Work: Cooperative Design of
Computer Systems, Hillsdale, NJ, USA: L. Erlbaum Associates Inc.

TECNOSCIENZA – 3 (1)

71

Gumm, D.C. (2006) Distributed participatory design: An inherent paradoxon?,
Denmark, Helsingoer.

Henderson, A. and Kyng, M. (1991) There’s no place like home: Continuing de-
sign in use, in Design at work: cooperative design of computer systems, Hills-
dale, NJ, L. Erlbaum Associates Inc., pp. 219-240.

Iivari, N. (2009) “Constructing the users” in open source software development –
an interpretive case study of user participation, in “Information Technology &
People”, 22 (2), pp. 132–156.

Jones, J. (1983) Continuous design and redesign, in “Design Studies”, 4 (1), pp.
53-60.

Kensing, F. and Blomberg, J. (1998) Participatory design: Issues and concerns, IN
in “Computer Supported Cooperative Work: The Journal of Collaborative
Computing”, 7 (3/4), pp. 167-185.

Larman, C. and Basili, V.R. (2003) Iterative and incremental development: A brief
history, in “Computer”, 36 (6), pp. 47-56.

Latour, B. (1987) Science in Action: How to Follow Engineers and Scientists
Through Society, Cambridge, Mass., Harvard University Press.

MacKenzie, D.A. and Wajcman, J. (eds) (1985) The Social Shaping of Technology:
How the Refrigerator Got its Hum, Milton Keynes, PA, Open University
Press.

Martin, D., Rooksby, J. and Rouncefield, M. (2007) Users as contextual features of
software product development and testing, In “Proceedings of the 2007 inter-
national ACM conference on Supporting group work”, Sanibel Island, Flori-
da, ACM, pp. 301-310.

Michlmayr, M., Hunt, F. and Probert, D. (2007) Release management in free
software projects: Practices and problems, In “Open Source Development,
Adoption and Innovation”, Limerick, Ireland, pp. 295-300.

Napoli, P.M. (2010) Audience Evolution: New technologies and the Transfor-
mation of Media Audiences, New York, Columbia University Press.

Oudshoorn, N. and Pinch, T.J. (Eds.) (2003) How Users Matter – The Co-
Construction of Users and Technology, Cambridge, Mass., MIT Press.

Raymond, E.S. (1999) The Cathedral & the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary, Cambridge, Mass., O‘Reilly Media.

Royce, W.W. (1970) Managing the development of large software systems, in
“Proceedings of IEEE Wescon”, 26, p. 9.

Schuler, D. and Namioka, A. (eds) (1993) Participatory design: Principles and
practices, Hillsdale, NJ, CRC Press.

Sommerville, I. (1995) Software Engineering, International computer science se-
ries, Wokingham, England, Addison-Wesley, 5th ed.

Star, S.L. (1999) The ethnography of infrastructure, in “American Behavioral Sci-
entist”, 43 (3), pp. 377–391.

Suchman, L. (2002) Located accountabilities in technology production, in “Scandi-
navian Journal of Information Systems”, 14 (2), pp. 91-106.

PODERI

72

Tonkinwise, C. (2003) Interminable design: techné and time in the design of sus-
tainable service systems, in Techné’s strategic nature, Barcelona, European
Academy of Design, pp. 1-16.

Winograd, T. and Flores, F. (1986) Understanding computers and cognition: a
new foundation for design, Noorwood, NJ, Ablex Publishing Corp.

Wyatt, S. (2003) Non-Users also Matter: The Construction of Users and Non-users
of the Internet, In N. Oudshoorn and T.J. Pinch (eds), How Users Matter –
The Co-Construction of Users and Technology, Cambridge, Mass., MIT Press,
pp. 67-79.

Giacomo Poderi Università degli Studi di Trento
Dipartimento di Sociologia e Ricerca Sociale
Via Verdi, 26, 38122 - Trento
Email: giacomo.poderi@soc.unitn.it

