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[1] This paper explores different analytical solutions of the tidal hydraulic equations in
convergent estuaries. Linear and quasi-nonlinear models are compared for given geometry,
friction, and tidal amplitude at the seaward boundary, proposing a common theoretical
framework and showing that the main difference between the examined models lies in the
treatment of the friction term. A general solution procedure is proposed for the set of
governing analytical equations expressed in dimensionless form, and a new analytical
expression for the tidal damping is derived as a weighted average of two solutions,
characterized by the usual linearized formulation and the quasi-nonlinear Lagrangean
treatment of the friction term. The different analytical solutions are tested against fully
nonlinear numerical results for a wide range of parameters, and compared with
observations in the Scheldt estuary. Overall, the new method compares best with the
numerical solution and field data. The new accurate relationship for the tidal damping is
then exploited for a classification of estuaries based on the distance of the tidally averaged
depth from the ideal depth (relative to vanishing amplification) and the critical depth
(condition for maximum amplification). Finally, the new model is used to investigate the
effect of depth variations on the tidal dynamics in 23 real estuaries, highlighting the
usefulness of the analytical method to assess the influence of human interventions (e.g. by
dredging) and global sea-level rise on the estuarine environment.

Citation: Cai, H., H. H. G. Savenije, and M. Toffolon (2012), A new analytical framework for assessing the effect of sea-level
rise and dredging on tidal damping in estuaries, J. Geophys. Res., 117, C09023, doi:10.1029/2012JC008000.

1. Introduction

[2] Tidal dynamics in estuaries have long been the subject
of intensive scientific interest and have received increasing
attention to analyze the environmental impact of human
interventions. In many estuaries, there are increasing con-
cerns about the impacts on the estuarine environment of,
e.g., sea-level rise, water diversion and dredging. However,
before predictions about hydraulic responses to future chan-
ges can be made with any confidence, there is a need to
achieve an adequate understanding of tidal wave propagation
in estuaries.
[3] Due to the advances in computational hydraulics, tidal

wave propagation in estuaries can be accurately simulated
by numerical models. However, unlike analytical models,
numerical models do not provide direct insight into the effect
that controlling parameters (e.g., geometry and forcing) have

on tidal variables, such as flow velocity, water level, wave
celerity, phase lag or tidal damping. Ever since Lorentz
[1926] linearized the bottom friction term, simple solutions
have been found to describe tidal dynamics with the line-
arized one-dimensional St. Venant equations. Several analyt-
ical solutions for convergent channels were developed, using
different forms of linearization [e.g., Jay, 1991; Friedrichs
and Aubrey, 1994; Lanzoni and Seminara, 1998; Savenije,
1998; Prandle, 2003, 2009; Savenije et al., 2008; Friedrichs,
2010; Toffolon and Savenije, 2011; Van Rijn, 2011]. Most
researchers linearized the hydrodynamic equations by means
of a perturbation analysis or by linearizing the friction term.
Conversely, Savenije [1998] derived expressions for the
envelope curves of high water (HW) and low water (LW) to
arrive at a damping equation that retained the quadratic
dependence of friction on velocity as well as the effect of the
periodic variation of the hydraulic radius, still assuming that
the tidal amplitude to depth ratio is small and that the tidal
velocity can be described by a simple harmonic with vari-
able amplitude (hence we will term this as quasi-nonlinear
model). On the basis of this quasi-nonlinear model, Savenije
et al. [2008] provided a fully explicit solution of the tidal
hydraulic equations.
[4] Recently, Toffolon and Savenije [2011] proposed a

modified linear model and compared it with the quasi-
nonlinear model of Savenije et al. [2008], suggesting that the
discontinuous behavior (i.e., with two families of solutions)
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and the transition toward a standing wave (i.e., the wave
celerity tending toward infinity) predicted by the latter
model do not happen in reality. Interestingly, numerical
simulations (see section 3.2) indicate that the two models
approach the numerical results from a different side, i.e., the
modified linear model overestimates the tidal damping while
the quasi-nonlinear model underestimates it, and it appears
that a weighted average of the two comes close to the
numerical results. In the present contribution, a comparison
is made between different linear and quasi-nonlinear models
building a common theoretical framework based on which a
new analytical model is derived. We pay particular attention
to the effect of different formulations of the friction term,
leading to different expressions for tidal damping.
[5] Of course, analytical approaches to describe a real

complex estuarine system comprise several limitations, like
for instance the highly simplified geometry of the cross-
section, the idealized planimetric shape, the assumption of
small tidal amplitude, the neglect of Coriolis force and den-
sity gradients. Nevertheless, the advantages are many. First
of all, the analytical equations provide direct insight into the
effect of model forcing and geometry on system performance
(e.g., to assess the effects of dredging on tidal dynamics).
Second, they form a simple and rapid assessment tool in the
preparation of a more complex numerical modeling exercise
(e.g., to assess the possible outcome of a numerical model or
to design the model setup). Finally, they can be very useful in
setting up a monitoring program and to identify the most
effective density and location of the monitoring network.
[6] The paper is arranged as follows. In the next section,

we present the basic equations of tidal wave propagation in
convergent estuaries. The comparison between the quasi-
nonlinear model and the linear model is presented in
section 3. In section 4, the performance of the new analytical
model is shown and compared with analytical solutions by
Savenije et al. [2008], Toffolon and Savenije [2011] and

Dronkers’ approach [Dronkers, 1964]. The new model is
subsequently applied in the Scheldt estuary and compared
with the solution of a numerical model. In section 5, a new
classification of estuaries and the effect of depth variations
on tidal dynamics in 23 real estuaries are presented. Finally,
conclusions are drawn in section 6.

2. Basic Equations of Estuarine Tidal Dynamics

[7] We consider a tidal channel with varying width and
depth and investigate the propagation of the tidal wave along
an estuary with a fixed bed. The conceptual sketch of the
geometry of the idealized tidal channel is presented in
Figure 1, together with a simplified picture of the periodic
oscillations of water level and velocity defining the phase lag.
In order to derive a simple analytical solution, we assume that
the flow is concentrated in a main rectangular cross-section,
with possible presence of lateral storage areas, described by
the storage width ratio rs ¼ Bs=B, i.e., the ratio between the
storage width Bs and the stream width B (see Figure 1).
[8] In alluvial estuaries, the tidally averaged cross-

sectional area A can be described by an exponential function
[Savenije, 1992a]:

A ¼ A0exp � x

a

� �
; ð1Þ

where a is the convergence length, A0 is the cross-sectional
area at the estuary mouth and x is the longitudinal coordinate
measured in landward direction from the estuary mouth. In
several practical cases, it is reasonable to assume that the
depth convergence is small compared with the width con-
vergence, and hence the convergence length a is approxi-
mately equal to the width convergence length.

Figure 1. Sketch of the geometry of the idealized tidal channel and notation: tidal oscillations of water
level z and velocity U and definition of the phase lag �; definition of the equivalent rectangular cross-
section of width B, and of the total width Bs including storage areas; planimetric view of the estuary with
storage areas; lateral view showing instantaneous and tidally averaged depth. Modified from Savenije et al.
[2008].

CAI ET AL.: NEW EXPRESSION FOR TIDAL DAMPING C09023C09023

2 of 20



[9] The basic one-dimensional equations describing the
tidal dynamics in an estuary are the continuity and momen-
tum equations [e.g., Savenije, 2005], which read:

∂U
∂t

þ U
∂U
∂x

þ g
∂h
∂x

þ gIb þ gF þ gh

2r
∂r
∂x

¼ 0; ð2Þ

rs
∂z
∂t

þ U
∂z
∂x

þ h
∂U
∂x

� hU

a
¼ 0; ð3Þ

where t is the time, U is the cross-sectional average flow
velocity, h is the flow depth, g is the acceleration due to
gravity, Ib is the bottom slope, r is the water density, z is the
free surface elevation, and F is the friction term. The friction
term is widely represented by:

F ¼ U Uj j
K2h4=3

; ð4Þ

where K is the Manning-Strickler friction coefficient. The
density gradient described by the last term in the left-hand
side of equation (2) is often disregarded, but in the method
of Savenije et al. [2008] it is retained (see also Appendix A).
[10] The system is forced by a sinusoidal tidal wave with a

tidal period T and a frequency w = 2p / T. As the wave pro-
pagates into the estuary, it has a wave celerity c, an amplitude
of the tidal water level variation h, a tidal velocity amplitude
u, and a phase lag �, defined as the phase difference between
high water (HW) and high water slack (HWS), or between
low water (LW) and low water slack (LWS) due to the
assumption of a simple harmonic solution(see Figure 1).
After scaling the continuity and momentum equations (2) and
(3), five dimensionless variables can be found: the estuary
shape number g (representing the effect of depth and width
convergence), the friction number c (describing the role of
the frictional dissipation), the velocity number m (the actual
velocity scaled with the frictionless value in a prismatic
channel), the celerity number l (the ratio between the theo-
retical frictionless celerity in a prismatic channel and the
actual wave celerity), and the damping number for tidal
amplitude d (a dimensionless description of the increase,
d > 0, or decrease, d < 0, of the tidal wave amplitude along
the estuary) [Toffolon et al., 2006; Savenije et al., 2008],
where g and c are the independent variables, while �, m, l, d
are the dependent variables. For further details on the scaling
factors and the resulting dimensionless equations, readers
can refer to Savenije et al. [2008]. These dimensionless
variables are defined as:

g ¼ c0
wa

; ð5Þ

c ¼ rs f
c0
wh

z; ð6Þ

m ¼ 1

rs

uh
hc0

; ð7Þ

l ¼ c0
c
; ð8Þ

d ¼ 1

h
dh
dx

c0
w
; ð9Þ

where c0 is the classical wave celerity of a frictionless pro-
gressive wave, h is the tidal average depth of flow, f is the
dimensionless friction factor and z is the dimensionless tidal
amplitude defined as:

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
gh=rs

q
; ð10Þ

f ¼ g

K2h
1=3

1� 4

3
z

� �2
" #�1

; ð11Þ

z ¼ h
h
: ð12Þ

[11] In equation (11), the periodic effect of depth variation
during the tidal cycle has been taken into account through
the factor indicated between square brackets, which results
from the subtraction of the envelopes at HW and LW. This
additional friction factor is a property of the envelope
method [e.g., Savenije, 2005], which traditional linearization
methods do not have. For small value of tidal amplitude to
depth ratio (z ≪ 1), this property is less important. Making
use of these dimensionless parameters, Savenije et al. [2008]
derived four dimensionless equations based on the equations
for the phase lag [Savenije, 1992a, 1993], for tidal damping
[Savenije, 1998, 2001], and for wave propagation [Savenije
and Veling, 2005]:

d ¼ g
2
� 1

2
cm2; ð13Þ

m ¼ sinð�Þ
l

¼ cosð�Þ
g � d

; ð14Þ

tanð�Þ ¼ l
g � d

; ð15Þ

l2 ¼ 1� dðg � dÞ: ð16Þ

[12] The damping equation (13) reflects the relative bal-
ance between the convergence of banks and friction and can
be rewritten as:

g � d ¼ g þ cm2

2
; ð17Þ

which is greater than 0 for any convergent estuary (g > 0),
showing that the tidal wave amplification (d) cannot be larger
than the estuary shape number g. The scaling equation (14)
shows that the velocity amplitude is determined by the
ratio between the phase lag � and the combined effect of
friction and convergence as expressed in (17). The phase lag
equation (15) highlights that a standing wave (� = 0) is
characterized by an infinite wave celerity (l → 0) and that
friction tends to move the system far from this asymptotic
condition. On the other hand, a progressive wave (� = p / 2)
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is obtained only when the difference between g and d (17) is
vanishingly small, i.e., when both friction and convergence
are negligible. The celerity equation (16) shows that tidal
wave propagation is closely related with the longitudinal
amplitude variation (amplification or damping): recalling the
positive value of (17), it is easy to see that the actual celerity
c is larger than the reference value c0 for amplified condi-
tions, while it decreases with damping. It is worth noting that
this set of equations corresponds to the case of an infinitely
long channel, where the effect of the landward boundary
condition can be neglected [Toffolon and Savenije, 2011].
Also it is worth noting that in the derivation of both the
damping and the celerity equation, the density term in the
momentum balance equation was taken into account, but
that this term dropped out in both the envelope method
[Savenije, 1998, 2001] and the method of characteristics
[Savenije and Veling, 2005] used for their derivation. Hence
the density term has no impact on the tidal damping nor the
wave celerity. The scaling equation and the phase lag
equation result from the mass balance equation and hence
are also not affected by the density term.

3. Comparison Between Linear and Quasi-
nonlinear Solutions

3.1. Difference in Damping Equation

[13] Recently, Toffolon and Savenije [2011] and Van Rijn
[2011] revisited the linear solution for estuarine hydrody-
namics by taking into account the effects of the width and
depth convergence. In this section we compare these modi-
fied linear solutions with the quasi-nonlinear analytical
solution proposed by Savenije et al. [2008], with specific
focus on the damping equation (Table 1). Basically, Toffolon
and Savenije [2011] and Van Rijn [2011] exploited the same
method, linearizing the friction term (both the velocity var-
iation U|U| and the variation of the depth h) and neglecting
the inertial term U∂U / ∂x and the density term gh / (2r)∂r /
∂x in the momentum balance equation. The set of obtained
equations was then solved using complex functions. These
functions were considered as a local approximation of the
solution in a multi-reach system by Toffolon and Savenije
[2011], who also showed a more reliable solution can be
obtained by iteratively refining the Lorentz constant in the
friction term. On the other hand, Van Rijn [2011] concen-
trated on the solution of the whole estuary, but derived a
damping equation based on energy considerations as well.
Another distinct difference is that the solution proposed by
Savenije et al. [2008] is intrinsically local, i.e., it is expres-
sed in terms of point-to-point values of the parameters pro-
vided that the information about the tidal amplitude is
transferred only in the landward direction by means of the
damping equation, while the other two linearized solutions
(which potentially account also for the landward boundary
condition) can be used in this way by neglecting the effect of
the reflected wave.
[14] It is worth noting that, after some algebra, it is pos-

sible to demonstrate that the two damping equations (T1, T2)
in Table 1 are identical, which means that the analytical
solution proposed by Van Rijn [2011], both with the linear
and the energy-based approach, can be cast into the same set
of four nonlinear equations using the dimensionless param-
eters defined in section 2. The dimensionless equationsT
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obtained are similar to equations (13)–(16), but with a dif-
ferent damping equation:

d ¼ g
2
� 4

3p
cm
l

: ð18Þ

Since Van Rijn’s [2011] model is characterized by Lorentz’s
linearization [Lorentz, 1926] of the friction term F:

FL ¼ 8

3p
u

K2h
4=3

U ; ð19Þ

it is interesting to analyze the effect of using Lorentz’s
assumption in the derivation of the damping equation (13)
with the envelope method. This is done in Appendix A,
following the procedure proposed by Savenije [2005] and
considering the linearized friction term, instead of the quasi-
nonlinear friction term, in the momentum equation. The
result is that we obtain the same linear tidal damping equation
as in (18), demonstrating that Van Rijn’s [2011] model
coincides with the linearized version of Savenije et al.
[2008].
[15] Replacing the quasi-nonlinear damping equation (13)

with equation (18), a new system of four analytical equa-
tions is obtained, namely (18), (14), (15) and (16). In con-
trast to the quasi-nonlinear system, which has an explicit
solution, this set of equations can only be solved by an

iterative numerical method (e.g., a simple Newton-Raphson
method). Figure 2 shows the variation of the dependent
dimensionless parameters obtained with the different
approaches as a function of the estuary shape number g and
the friction number c. We can see that the results obtained
using (18) coincide fully with the solutions provided by Van
Rijn [2011] and Toffolon and Savenije [2011]. Hence, the
only difference between the quasi-nonlinear [Savenije et al.,
2008] and modified linear models [Toffolon and Savenije,
2011; Van Rijn, 2011] is the friction term in the damping
equation.
[16] More precisely, the damping equation of Savenije

et al. [2008] differs from the linearized damping equation
by a factor that depends on the phase lag �, as becomes clear
by substituting (14) into (13):

d ¼ g
2
� 1

2

cm
l

sinð�Þ ð20Þ

Equations (18) and (20) are formally identical if sin(�) =
8/(3p) ≈ 0.85, implying a value of the phase lag of approx-
imately 58� (2 hours for an M2 tide).
[17] Dronkers [1964, p. 302] suggested an interesting

higher order formulation for the friction term [see also
Cartwright, 1968], leading to results that are comparable to
those obtained using the fully nonlinear formulation for the
friction term. Dronkers [1964] took account of over-tide

Figure 2. Relationship between the main dimensionless parameters and the estuary shape number g (5)
obtained by solving equation (18) in combination with equations (15), (14), and (16) for different values of
the friction number c (6). The drawn black and dashed green lines represent the solutions obtained by
Toffolon and Savenije [2011] and Van Rijn [2011], respectively.
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generation by including a third order term (cubic velocity) in
the friction term, while also assuming that U is a periodic
function with zero mean:

FD ¼ 16

15p
u2

K2h
4=3

U

u
þ 2

U

u

� �3
" #

: ð21Þ

Note that this equation did not account for the time variable
depth in the friction term. In our symbols the expression for
the tidal damping using Dronkers’ friction term would read
(see Appendix B):

d ¼ g
2
� 8

15p
cm
l

� 16

15p
cm3l: ð22Þ

Equation (22), when combined with equations (14), (15) and
(16), forms a new set of nonlinear equations, which can be
solved iteratively.
[18] It is worth noting that the different methods use dif-

ferent definitions of the dimensionless friction factor f (i.e.,
equation (11)). The Lorentz’s linearization and Dronkers’
method consider a time-invariant depth in the friction term,
which is the same as taking z = 0 in (11), i.e., f ¼
g=ðK2h

1=3Þ.
3.2. Performance of Different Analytical Models

[19] In order to investigate the performance of the ana-
lytical solutions, they have been compared with a fully
nonlinear numerical solution of the governing equations (2)
and (3). The numerical model [Toffolon et al., 2006] is

based on the explicit MacCormack method, which is second
order accurate both in space and in time. A total variation
diminishing (TVD) filter is applied to avoid spurious oscil-
lations, especially when the wave steepens because of fric-
tional or geometrical effects.
[20] Since we focus on the tidal damping in this paper, in

this section we present a comparison between the values of
the dimensionless damping number d estimated using ana-
lytical methods against the fully nonlinear numerical results.
We consider a wide range of parameters (with 1 ≤ g ≤ 3,
0.1 ≤ z ≤ 0.3, 10 m1/3 s�1 ≤ K ≤ 50 m1/3 s�1 and h = 10 m)
covering a wide spectrum of tidal channels. In order to
present dimensionless results, distance x is scaled by the
frictionless wavelength in prismatic channels:

x∗ ¼ w
c0

x ð23Þ

[21] Figure 3 shows the performance of the different ana-
lytical models at a single position x* = 0.426 (corresponding
to 30 km for a 10 m deep estuary). Both the linear [Toffolon
and Savenije, 2011] and the quasi-nonlinear [Savenije et al.,
2008] solution behave reasonably well, but none of them is
fully correct for a finite amplitude wave. It appears that
Dronkers’ approach lies closest to the numerical solution,
and that Savenije et al. [2008] and Toffolon and Savenije
[2011] have a consistent bias from the numerical solution.
The former method underestimates the tidal damping, while
the latter overestimates it.

Figure 3. Tidal damping d at x* = 0.426 obtained with four different analytical models (new damping
equation (27), Dronkers’ equation (22), Savenije et al. [2008], Toffolon and Savenije [2011]), compared
to numerical results. R2 is the coefficient of determination, which provides an estimate of the average devi-
ation of the estimates of the different analytical models from the assumed correct value (numerical model):
the closer R2 is to unit, the better is the model.
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[22] The reason for this behavior lies in the different
simplifications used in the friction term F. Toffolon and
Savenije [2011] used Lorentz’s linearization (19), which is
based on the equal energy dissipated by linear and quadratic
friction during a tidal cycle (assuming a sinusoidal tide). On
the other hand, working within an original Lagrangean-
based approach, Savenije et al. [2008] obtained the effective
friction F̂ S acting over a tidal cycle by subtracting the high
water (HW) and low water (LW) envelopes, leading to:

F̂ S ¼ 1

2

U2
HW

K2 hþ hHW
� �4=3 þ U2

LW

K2 h� hLW
� �4=3

" #
; ð24Þ

where the two velocities at HW and LW follow from:

UHW ≈ u sinð�Þ; ULW ≈ � u sinð�Þ: ð25Þ

[23] These approaches (linearized and quasi-nonlinear),
which are correct for the strictly linear case where the tidal
wave is a simple harmonic, yield opposite biases in the
damping equation for finite-amplitude waves.
[24] This behavior can be clearly seen from Figure 4,

which compares the friction effectively acting during a tidal
cycle considering the different options. The damping in the
three standard Eulerian approaches [see also Vignoli et al.,
2003] is based on the definition of a tidally average

friction term Fj jh i ¼ T�1

Z
T
Fj jd t , where F is estimated as

follows: the fully nonlinear definition from (4) (blue line),
Lorentz’s linearization FL from (19) (red dashed line), and
Dronkers’ relationship FD from (21) (black dash-dot line).
On the contrary, Savenije’s Lagrangean approach (24)
directly provides the effective friction F̂ S (green dashed
line), which can be consistently compared with the previous
ones. All quantities used in Figure 4 are obtained by the
numerical model, so the only difference is the approximation
used for the friction term. The comparison suggests that the
tidally averaged friction term obtained with Lorentz’s line-
arization overestimates the friction along the estuary, while
Savenije et al. [2008] model tends to underestimate it. In the
middle, the third-order approximation by Dronkers [1964] is
very close to the complete nonlinear friction.
[25] As a whole, the two approaches to calculate the fric-

tional dissipation (i.e., using the linearized friction term or
the average of HW and LW values) consistently have an
opposite bias. Because of this, it is attractive to explore if the
‘true’ damping can be obtained by taking the weighted
average of equations (18) and (20):

d ¼ g
2
� a

4

3p
cm
l

� ð1� aÞ 1
2
cm2: ð26Þ

[26] For different weights of the linearized friction term a
(from 0 to 1), it is possible to compare the values of d
obtained by equation (26) with the damping observed in the

Figure 4. Comparison of the tidally averaged friction term 〈|F|〉 computed with different formulations of
the friction term: fully nonlinear (4) (blue line), Lorentz’s linearization (19) (red dashed line), Dronkers’
expansion (21) (black dash-dot line); and for Savenije’s effective friction F̂ S (24) (green dashed line).
All estimates are based on variables obtained from numerical results (g = 1, z = 0.1, K = 30 m1/3 s�1

and h = 10 m).
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numerical results for the same wide range of parameters as
for Figure 3. Figure 5 presents the optimum weight a with
its standard error at different locations along the estuary and
the corresponding coefficient of determination R2. We can
see that the optimum weight a becomes stable from
x∗ ≃ 0.35 onward and that the equilibrium weight for a is
about 1/3. The fact that the weight is approximately 1
(corresponding to the linearized friction) near the estuary
mouth is the result of the imposed harmonic boundary con-
dition without overtides, which is consistent with the linear
assumption. The stable values of a that develops in the
landward direction indicates that the wave adjusts its shape
toward an equilibrium shape.
[27] Assuming a = 1/3, the optimized damping equation

hence reads:

d ¼ g
2
� 4

9p
cm
l

� cm2

3
: ð27Þ

This equation is very similar to Dronkers’ equation (22),
which can be rearranged using (14) in the following form:

d ¼ g
2
� 2

5

4

3p
cm
l

� 32

15p
sinð�Þ 1

2
cm2: ð28Þ

Similarly to (26), the last two terms of equation (28) can be
seen as a combination of (18) and (20), whereby the weights
of the linearized and nonlinear models imply a = 0.4 and
1 � a = 0.68 sin(�), which is satisfied if sin(�) ≃ 0.88,
a value similar to the one derived from (20).
[28] By iteratively solving the set of four analytical

equations (14), (15), (16) and (27), we have obtained a new

analytical solution for the dimensionless parameters m, d, l,
and �. The damping number d has been compared with the
other solutions in Figure 3, and we can see that the agree-
ment of equations (22) and (27) with the numerical model is
very good, but the latter obtains the best result with the
highest coefficient of determination R2 = 0.99. Moreover, as
we can see from Figure 6, where different versions of ana-
lytical solutions are compared with numerical results, the
proposed new damping equation obtains the best result with
the highest coefficient of determination R2 along the estuary
axis, except near the mouth of the estuary where the modi-
fied linear model [Toffolon and Savenije, 2011] achieves the
best result due to the purely harmonic wave imposed at the
seaward boundary.
[29] Apparently, by combining the two approaches of

Toffolon and Savenije [2011] and Savenije et al. [2008], we
have obtained a more accurate analytical model, which is
closer to the fully nonlinear numerical solution.

4. Behavior of the New Set of Equations

4.1. General Performance

[30] Figures 7–10 present the solution of the velocity
number, the damping number, the celerity number, and the
phase lag obtained with the different analytical models as a
function of g and c. In these graphs, the blue symbols rep-
resent the new method using equation (27), whereas the
dashed red lines represent the solution of Savenije et al.
[2008], the drawn black lines the solution of Toffolon and
Savenije [2011], and the dashed-dotted green lines the
solution with Dronkers’ friction term. Unlike the equation of
Savenije et al. [2008], which had two families of solutions

Figure 5. Optimum weight of the linearized friction term a with its standard error along the estuary axis
and the corresponding coefficient of determination R2.
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Figure 7. Relationship between the velocity number m (7) and the estuary shape number g (5) for differ-
ent values of the friction number c (6). The blue symbols indicate the new model exploiting equation (27).
The red drawn line represents the frictionless estuary (c = 0). The dashed red lines, drawn black lines, and
dashed-dotted green lines represent the solutions obtained by Savenije et al. [2008], Toffolon and Savenije
[2011], and Dronkers’ approach, respectively. The green round symbols indicate the ideal estuary

m ¼
ffiffiffiffiffiffiffiffi
1

1þg2

q� �
.

Figure 6. Longitudinal variation of the coefficient of determination R2 between numerical model and
different analytical models for a wide range of parameters with 1 ≤ g ≤ 3, 0.1 ≤ z ≤ 0.3, 10 m1/3 s�1 ≤
K ≤ 50 m1/3 s�1 and h = 10 m.
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Figure 8. Relationship between the damping number d (9) and the estuary shape number g (5) for
different values of the friction number c (6). The symbols are as in Figure 7. The ideal estuary is defined
by d = 0.

Figure 9. Relationship between the celerity number l (8) and the estuary shape number g (5) for
different values of the friction number c (6). The symbols are as in Figure 7. The ideal estuary is defined
by l = 1.
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for mixed and standing waves, both the new solution and the
solutions of Toffolon and Savenije [2011] and Dronkers’
approach provide continuous solutions in the transition zone
of critical convergence [Jay, 1991] where g is close to 2. In
the new model, a clear separation between the subcritical
and the supercritical cases exists only for vanishing friction
(c = 0).
[31] Comparing the new model with the other three mod-

els, we can see in Figures 7–10 that three zones can be dis-
tinguished. For small values of g (weakly convergent
estuaries), the main dimensionless parameters (m, d, l and �)
obtained with the new model are closer to the linear solution
of Toffolon and Savenije [2011]. In the transition zone where
critical convergence occurs in the model of Savenije et al.
[2008], the result is about the average of Savenije et al.
[2008] and Toffolon and Savenije [2011]. For larger values
of g (the strongly convergent estuaries), we can see that the
new solution is closer to the frictionless case. Moreover, it
appears that Dronkers’ solution is very close to our new
solution for an amplified wave with bigger g, while it is
similar to Savenije et al. [2008] for waves with g < 2. For an
ideal estuary (where friction balances convergence), the four
methods are identical.

4.2. Application to the Scheldt Estuary

[32] For given geometry, friction, and tidal amplitude at
the downstream boundary, the dimensional values of the
tidal amplitude h, the velocity amplitude u, the wave celerity
c, and the phase lag � can be computed by using the ana-
lytical model presented in section 3. We have applied the
new equation to the geometry of the Scheldt estuary,
assuming a convergence length for the cross-sectional area

a = 27 km [see also Horrevoets et al., 2004]. Until 110 km
from the mouth of the estuary the flow depth is approxi-
mately constant (h = 11 m), while more landward the depth
reduces gradually to 2.6 m (assumed estuary length L =
200 km). At the estuary mouth (x = 0 m), we assume a
harmonic tide characterized by a tidal amplitude h0 = 2.3 m
(spring tide) and a tidal period T = 44400 s.
[33] The four analytical models have been compared with

observations made in the Scheldt estuary during spring tide
on 14–15 June 1995. The different models can be made to fit
the observations if a suitable friction coefficient is used.
However, this calibration provided significantly different
values of the Manning-Strickler coefficient: K = 32 m1/3 s�1

for Savenije et al.’s [2008] model, K = 33 m1/3 s�1 for
Dronkers’ approach, K = 39 m1/3 s�1 for the present model,
and K = 46 m1/3 s�1 for Toffolon and Savenije’s [2011]
model. Apparently the differences introduced by using dif-
ferent friction formulations can be compensated by decreas-
ing or increasing the friction coefficient. Therefore, the
different analytical models have also been compared with a
1D numerical model in the Scheldt estuary. The calibrated
Manning-Strickler friction coefficient K used in the numeri-
cal model (38 m1/3 s�1) appears to be almost the same as
the friction coefficient of the new model (39 m1/3 s�1),
which is to be expected since the new damping equation (27)
was obtained by calibration of K against numerical solutions.
In Figure 11, all models use the same friction coefficient K =
38 m1/3 s�1. It can be clearly seen that the quasi-nonlinear
model [Savenije et al., 2008] and Dronkers’ method under-
estimate the tidal damping while the linear model [Toffolon
and Savenije, 2011] overestimates it. The reason for the

Figure 10. Relationship between the phase lag � and the estuary shape number g (5) for different
values of the friction number c (6). The symbols are as in Figure 7. The ideal estuary is defined by
� = arctan(1/g).
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overestimation of the travel time at LW in the landward part
in both the analytical and numerical models is due to the
neglect of river discharge and the high tidal amplitude to
depth ratio.
[34] Finally, the tidal characteristics of the Scheldt estuary,

as computed with the new model, are presented in diagrams
for the velocity number, damping number, celerity number
and phase lag. In Figure 12, the Scheldt estuary is repre-
sented by red line segments. Next to the segments, the dis-
tance from the estuary mouth in kilometers is written,
indicating the length over which a segment is representative.
We can see that in the Scheldt the seaward part (0–110 km)
has a vertical line segment with a constant estuary shape
number (this is due to the constant convergence length and
depth assumed over that reach). At the inflection point, at
110 km, the tidal wave comes near to a standing wave, but
unlike in the method of Savenije et al. [2008], this does not
happen in the new method. Further upstream the pattern
becomes irregular due to shallowing.

5. Results

5.1. Classification of Estuary

[35] Estuaries can be classified on the basis of their water
balance, geomorphology, vertical structure of salinity, or
hydrodynamics [Valle-Levinson, 2010]. The interaction
between tidal wave propagation and the geomorphology of
the estuary is an important factor for characterizing the type
of estuary [Dyer, 1997]. Savenije et al. [2008] suggest that
the classification of estuaries can be based on the result of
the imbalance between topographic convergence (i.e., the
shape number g) and friction (i.e., the friction number c). If

convergence is stronger than friction, the wave is amplified;
if friction is stronger than convergence, the wave is damped;
if their impact is equal, the tidal range is constant and the
estuary is indicated as “ideal”. In the following, we show
that the classification of estuaries can be based on the com-
parison between tidally averaged depth h and ideal depth
hideal which is defined as the depth corresponding to an ideal
estuary obtained keeping all the other characteristic quanti-
ties (say, tidal amplitude at the mouth, convergence length,
friction coefficient) fixed. In particular, an estuary can be
characterized as amplified when h > hideal; while it is a
damped estuary for h < hideal , and an ideal estuary for h ¼
hideal.
[36] The marginal condition for tidal wave amplification is

easily set by posing d = 0 (hence l = 1 and tan(ɛ) = 1/l). The
resulting relationship between the friction number c and the
shape number g in the current model is:

c ¼ g

8

9p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

g2 þ 1

s
þ 2

3 g2 þ 1ð Þ

; ð29Þ

where, substituting (6) into (11), the friction number reads:

c ¼ rs
gc0

K2wh
4=3½1� 4z=3ð Þ2�

z: ð30Þ

In the case of a small tidal amplitude to depth ratio z,
equation (30) corresponds to the definition by Toffolon et al.
[2006] and Toffolon and Savenije [2011].
[37] Substitution of equation (29) into equation (30) yields

the expressions of the ideal depth hideal as a function of tidal

Figure 11. Comparison between different analytical models, numerical solution and field data: (a) tidal
amplitude, and (b) travel time at HW and LW in the Scheldt estuary observed on 14–15 June 1995.
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amplitude h, frequency w, convergence length a, and
friction K:

hideal ¼ f ðh;w; a;KÞ: ð31Þ

It is easy to solve equation (31) by a simple numerical algo-
rithm, e.g., Newton’s iteration method, since the conver-
gence is usually fast. Figure 13 shows the tidally averaged
reference depth h, the ideal depth hideal calculated by equation
(31), and the critical depth hcritical introduced in the next
section. The classification of some estuaries in the world,
based on the relative quantity ðh� hidealÞ=h to assess the
magnitude of amplification or damping, is presented in
Table 2. It can be seen from Figure 13 that most of the
estuaries, such as Bristol Channel, Outer Bay of Fundy,
Scheldt and St. Lawrence, are significantly amplified estu-
aries because of the bigger positive relative difference
between tidally averaged depth and ideal depth, while Fraser,
Ord, Gambia, Pungue, Lalang, Tha Chin, and Chao Phya can
be classified as damped estuaries due to negative relative
difference. Finally, it is easy to see that Gironde, Hudson,
Potomac, Maputo are very close to an ideal estuary. The
correspondence of this classification with field observations
is consistent, as confirmed by the references indicated in
Table 2. The earlier studies of Toffolon et al. [2006] and
Savenije et al. [2008] showed that the estuarine classification

can be based on two dimensionless parameters g and c.
Although results are obviously consistent, the present study
yields a dimensional classification system.

5.2. Effect of Depth Variations on Tidal Dynamics
in Real Estuaries

[38] The relatively simple analytical solution proposed in
this paper is powerful to obtain first-order estimates of the
consequences of estuary geometry variations: it is a useful
practical tool for management purposes, since it provides a
rapid assessment of the tidal behavior of an estuary in
response to external or internal modifications.
[39] In particular, intensive dredging along the estuary,

which changes the estuary topography, has a measurable
impact on the tidal propagation and the damping through the
variation of the depth. In addition, it has a direct relation to
salt intrusion and storm surge propagation into the estuary.
Also sea-level rise can modify the tidally averaged depth h,
thus producing effects that are qualitatively similar to those
of dredging. Church and White [2006] estimated an increase
of global sea-level ranging from 0.28 to 0.34 m from 1990 to
2100 based on the multi-century sea-level records, while
projections for UK estuaries exceed 0.5 m at the end of the
century for high emissions scenarios considering also verti-
cal land movement [Lowe et al., 2009].

Figure 12. Positioning of the Scheldt estuary (red circles) in: (a) velocity number diagram, (b) damping
number diagram, (c) celerity number, and (d) phase lag diagram. The numbers at the inflection points indi-
cate the distance from the estuary mouth (in kilometers). The background shows the lines of the new
model with different values of the friction number c (6). The drawn line with dots represents the ideal
estuary.
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Figure 13. Values of the characteristic depths for the estuaries presented in Table 2: tidally averaged
depth h, ideal depth hideal from (31), critical depth hcritical obtained by the condition (32). Bar for hcritical
are truncated and higher values are indicated by numbers. The physical meaning is as follows: if h > hideal
the estuary is amplified (h < hideal implying damping); if h > hcritical the estuary is over-amplified.

Table 2. Characteristic Values of Alluvial Estuaries and Classification

Estuary
Number Estuarya

T
(hour)

h0
(m)

h
(m)

a
(km)

K
(m1/3 s �1) z g c

hideal
(m) ðh� hidealÞ=h

hcritical
(m) Type Ref.b

1 Bristol Channel 12.4 2.6 45 65 33 0.06 2.30 0.48 14.9 0.67 37 Over-amplified 1
2 Columbia 12.4 1 10 25 38 0.10 2.81 2.21 4.7 0.53 9 Over-amplified 2
3 Delaware 12.5 0.64 5.8 40 51 0.11 1.35 2.21 4.8 0.18 13 Amplified 3
4 Elbe 12.4 2 10 42 43 0.20 1.68 3.79 8.4 0.16 18 Amplified 4
5 Fraser 12.4 1.5 9 215 31 0.17 0.31 6.28 28.0 �2.11 370 Damped 1
6 Gironde 12.4 2.3 10 44 38 0.23 1.60 5.52 9.8 0.02 20 Close to ideal 5
7 Hudson 12.4 0.69 9.2 140 67 0.08 0.48 0.58 8.9 0.03 157 Close to ideal 1
8 Ord 12 2.5 4 15.2 50 0.63 2.83 54.5 4.5 �0.11 7 Damped 6
9 Outer Bay of Fundy 12.4 2.1 60 230 33 0.04 0.75 0.23 31.7 0.47 424 Amplified 1
10 Potomac 12.4 0.65 6 54 56 0.11 1.01 1.75 5.6 0.07 23 Close to ideal 1
11 Scheldt 12.4 1.9 10.5 27 39 0.18 2.67 3.35 6.2 0.41 11 Amplified 7
12 Severn 12.4 3 15 41 40 0.20 2.10 3.09 10.0 0.33 19 Amplified 8
13 St. Lawrence 12.4 2.5 70 183 44 0.04 1.02 0.11 23.8 0.66 267 Amplified 1
14 Tees 12 1.5 7.5 5.5 36 0.20 10.7 6.62 2.3 0.69 1 Over-amplified 9
15 Thames 12.3 2 8.5 25 31 0.24 2.57 9.94 6.9 0.19 12 Amplified 7
16 Gambia 12.4 0.6 8.7 121 42 0.07 0.54 1.43 11.2 �0.29 117 Damped 7
17 Pungue 12.4 3 4.3 20 31 0.70 2.31 341 6.9 �0.60 11 Damped 7
18 Lalang 12.4 1.5 10.6 217 40 0.14 0.33 2.73 23.0 �1.17 378 Damped 7
19 Tha Chin 12.4 1.35 5.3 87 34 0.25 0.59 13.47 14.3 �1.69 59 Damped 7
20 Incomati 12.4 0.5 3 42 50 0.17 0.92 6.14 4.6 �0.53 14 Damped 7
21 Limpopo 12.4 0.55 7 50 43 0.08 1.18 1.82 5.9 0.15 20 Amplified 7
22 Maputo 12.4 1.4 3.6 16 48 0.39 2.64 17.0 3.4 0.06 6 Close to ideal 7
23 Chao Phya 12.4 0.9 8 109 35 0.11 0.58 3.55 13.9 �0.74 94 Damped 7

aData are modified from Toffolon et al. [2006], where data in columns Lb and Ch were listed in a wrong way due to editing mistakes.
bReference where the classification is confirmed: 1, Prandle [1985]; 2, Giese and Jay [1989]; 3, Friedrichs and Aubrey [1994]; 4, Savenije et al. [2008];

5, Allen et al. [1980]; 6, Wright et al. [1973]; 7, Savenije [1992b]; 8, Uncles [1981]; 9, Lewis and Lewis [1987].
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[40] To demonstrate the potential of the analytical method
to evaluate the effect of deepening, we applied a depth
increase of 3 m to the estuaries listed in Table 2. For sim-
plicity, we assume that the tidal amplitude at the estuary
mouth is unchanged by deepening. It is worth noting that
Garrett and Greenberg [1977] showed how a change of tidal
amplitude at the open boundary may be estimated and used
to correct predictions of changes in tidal dynamics that
might be brought about by the structures, such as tidal power
development. Table 3 shows the effect of this deepening on
tidal amplitude h, velocity amplitude u, wave celerity c, and
phase lag � at two fixed positions in the estuaries (x = 0 and
x = 50 km ). We can see that the response of these quantities
to an increase of the depth is quite variable from case to case,
while the wave celerity is always increased with larger
depth. It is attractive to assess the influence of increasing
depth on tidal variables through the diagrams of the velocity
number m, the damping number d, the celerity number l, and
the phase lag � (see Figures 7–10) as a function of g and c.
Since the shape number g is increased with depth, what we
need to do is to determine the influence of depth on the
friction number c according to equation (30). At the mouth
of estuary (x = 0), it is easy to estimate the influence of
dredging on tidal variables keeping the tidal amplitude
constant: the friction number c is decreased and the shape
number g increases due to larger depths.
[41] The effect of deepening on tidal dynamics is not lin-

ear: in same cases deepening leads to amplification while in
others it leads to a reduction of the tidal amplitudes.
Figure 14 shows the variation of the velocity amplitude as a
result of deepening by 3 m (a) and a more modest increase of
0.3 m (b) for the same locations x = 0 and x = 50 km. In
Figure 14a, corresponding to a depth increase of 3 m, it can
be seen that the velocity at the estuary mouth is generally
decreased as a result of dredging except in the Fraser,

Pungue, and Tha Chin, while the velocity at x = 50 km
increases with depth for most of the estuaries. Whether the
velocity is increased or not depends on the position of the
new values of g andc in the graph for the velocity number
(Figure 7). The extremely high celerity in the Tees (see
Table 3, No. 14) is attributed to the strong convergence of
the estuary (g = 10.72), where a standing wave develops and
the celerity tends to infinite. A similar behavior can be
noticed in Figure 14b for the smaller depth increase (0.3 m),
although some exceptions indicate that the behavior is not
monotonic and that the trend of velocity amplification or
reduction can change during the deepening process (for
instance, in the Ord, Severn, Thames and Maputo, indicated
by No. 8, 12, 15 and 22, respectively).
[42] Another interesting result we see in Table 3 (deep-

ening of 3 m) is that the tidal amplitude (at x = 50 km)
increases in most of the estuaries, but that the strongly
amplified estuaries experience a reduction of the amplitude:
e.g., Bristol Channel, Columbia, Scheldt and Tees. This is
unusual since it is generally accepted that the tidal wave is
further amplified as a result of the reduced friction induced
by larger depth [e.g., Luo et al., 2007; Cai et al., 2012]. To
illustrate this phenomenon, we present the trajectory of the
damping number d with increasing depth in Figure 15. It can
be seen that the damping numbers of Bristol Channel,
Columbia, Scheldt and Tees (No. 1, 2, 11 and 14; note that
the position of Scheldt is different from that in Figure 12,
where spring tide conditions were considered instead of
mean tide) are actually decreasing with larger depth. We see
that a depth increase only leads to increased amplification
(larger d) until a maximum value is reached at a critical
depth hcritical defined by the condition:

∂d
∂h

¼ 0: ð32Þ

Table 3. Variation of Tidal Amplitude Dh, Velocity Amplitude Du, Wave Celerity Dc, and Phase Lag D� at Two Locations After an
Increase of the Average Depth of 3 m

Estuary
Number Estuary

Dh (m) Du (m/s) Dc (m/s) D� (�)

x = 0 x = 50 km x = 0 x = 50 km x = 0 x = 50 km x = 0 x = 50 km

1 Bristol Channel 0 �0.05 �0.06 �0.09 105.49 91.87 �0.83 �1.06
2 Columbia 0 �0.09 �0.11 �0.17 110.36 92.33 �2.40 �3.46
3 Deltaware 0 0.18 �0.05 0.06 3.27 2.69 �7.90 �7.70
4 Elbe 0 0.33 �0.05 0.07 4.36 3.29 �7.21 �6.39
5 Fraser 0 0.19 0 0.09 0.84 0.48 2.23 1.45
6 Gironde 0 0.40 �0.04 0.11 3.06 2.30 �5.80 �5.22
7 Hudson 0 0.05 �0.06 �0.02 0.25 0.24 1.72 1.26
8 Ord 0 1.29 �0.12 0.13 24.10 11.62 �24.27 �15.11
9 Outer Bay of Fundy 0 0.01 �0.02 �0.02 0.13 0.13 �0.17 �0.16
10 Potomac 0 0.15 �0.05 0.06 1.38 1.21 �2.42 �3.24
11 Scheldt 0 �0.07 �0.19 �0.24 52.22 40.48 �5.77 �7.55
12 Severn 0 0.19 �0.12 �0.05 14.23 9.54 �8.28 �7.40
13 St. Lawrence 0 0 �0.02 �0.02 0.24 0.24 �0.53 �0.51
14 Tees 0 �0.04 �0.05 �0.05 878.26 841.05 �0.06 �0.07
15 Thames 0 0.31 �0.14 �0.04 17.64 11.65 �11.85 �10.78
16 Gambia 0 0.07 �0.03 0.02 0.55 0.44 2.22 1.25
17 Pungue 0 1.55 0.37 0.38 3.94 1.40 �17.2 �8.35
18 Lalang 0 0.15 �0.02 0.06 0.65 0.42 2.78 1.90
19 Tha Chin 0 0.34 0.02 0.17 1.20 0.59 0.40 �0.68
20 Incomati 0 0.27 �0.03 0.16 1.88 1.23 �4.08 �5.68
21 Limpopo 0 0.11 �0.03 0.04 1.84 1.61 �4.00 �4.39
22 Maputo 0 0.50 �0.27 �0.09 36.4 23.7 �19.6 �17.8
23 Chao Phya 0 0.14 �0.02 0.06 0.88 0.59 1.55 0.56
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Figure 14. Change of the velocity amplitude at the estuary mouth (x = 0) and at x = 50 km for: (a) a large
increase of the average depth of 3 m, due to dredging; (b) a modest increase of 0.3 m, in agreement with
projected sea-level rise for 2100.

Figure 15. Positioning of the estuaries in Table 2 in the damping number diagram. The black square
symbols indicate the initial position before dredging, while the black circle symbols represent the final
position after increasing the depth by 3 m. The red segments indicate the trajectories in the (g, d) plane.
The gray lines indicate the analytical solutions of the new model for different values of the friction number
c (6).
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A further increase of the depth leads to a reduction of the
amplification until the ideal condition (d = 0) is reached
asymptotically. A similar equation was derived by Savenije
et al. [2008] for critical convergence (i.e., equation 43
therein), which approximately corresponds to condition (32).
The critical convergence was the threshold beyond which
the tidal wave acted as a standing wave. We see something
similar here. However, unlike the discontinuous behavior
predicted by Savenije et al. [2008], switching from one wave
type to another, the current model provides a continuous
solution.
[43] We term estuaries having a depth h > hcritical as ‘over-

amplified’, a condition typical of strongly convergent (large
g) and relatively weekly dissipative (small c) estuaries,
where increasing the depth reduces the amplification. It is
possible to identify this critical depth hcritical by changing the
depth over a wide range of values in our analytical model
until it satisfies condition (32): the calculated values are
shown in Table 2. Figure 13 shows the comparison between
the tidally averaged depth h and the critical depth hcritical: by
comparing the difference between the green and yellow bar,
we are able to determine whether an estuary is over-amplified
(e.g., Bristol Channel, Columbia, and Tees, indicated by
No. 1, 2 and 14, respectively) or not. Generally, with this
figure, we are capable of predicting the influence of depth
variations on tidal dynamics. This is particularly useful when
assessing the influence of human interventions in estuary
topography (e.g., dredging) or global sea-level rise on tidal
propagation in estuaries, as it influences the aquatic envi-
ronmental of an estuary and the potential use of water
resources.
[44] In Figure 15, we also see that the variation of the

damping number in the Bristol Channel, Outer Bay of Fundy,
and St. Lawrence (No. 1, 9 and 13, respectively) is very
small. This is due to the fact that the tidally averaged depth h
in these estuaries is very large while the shape number g,
which is increased by dredging, does not change much.

6. Conclusions

[45] In this paper we revisited the analytical approach for
tidal hydrodynamics proposed by Savenije et al. [2008] by
introducing a new tidal damping equation, which is similar
to the equation that uses the friction formulation proposed by
Dronkers [1964]. Reworking this quasi-nonlinear solution,
we are able to accurately reproduce the main dynamics of
tidal wave propagation along estuary channels. We have also
demonstrated that the linear models of Toffolon and Savenije
[2011] and Van Rijn [2011] and the quasi-nonlinear model
of Savenije et al. [2008] can be readily combined within one
consistent theoretical framework, i.e., by solving the same
set of equations with different formulations for the friction
term. Exploring the difference between the quasi-nonlinear
model [Savenije et al., 2008] and the modified linear models
proposed by Toffolon and Savenije [2011] and Van Rijn
[2011], we found that the main difference lies in the fric-
tion term: the linear model exploits a linear damping equa-
tion resulting from a linearized friction term [Lorentz, 1926],
while the quasi-nonlinear model retains the fully nonlinear
friction term, with quadratic velocity and varying depth, but
assuming a simple harmonic to determine the tidal velocity
at HW and LW. An important difference between the quasi-

nonlinear friction term and Dronkers’ friction term lies in the
fact that Dronkers’ friction term does not account for tidally
varying depth, while the quasi-nonlinear term does. Another
difference is that the approach by Savenije et al. [2008]
implicitly accounts for the density term, while the other
methods neglect the density effect. This has no implications
because, as was shown by Savenije [2005], the density term
cancels out in the derivation of the damping and celerity
equations. We further note that the effect of river discharge
can, in principle, be incorporated in the present model
through a modified formulation, as proposed in Cai et al.
[2012].
[46] We have compared the performance of the different

analytical models with a fully nonlinear numerical model.
The comparison indicates that Savenije et al. [2008] and
Toffolon and Savenije [2011] models approach the numeri-
cal results from opposite sides (under/overestimating fric-
tion). A weighted average of the two comes very close to the
numerical results, the optimum weight of the linearized
friction term being 1/3, and 2/3 of the quasi-nonlinear fric-
tion term. We tested the equations in a real case, the Scheldt
estuary, which has strong convergence (overall with g
values above 2, which is the region where the methods show
the largest difference). Overall, the new method preforms
best against field data and numerical results.
[47] The new model proposed in this paper not only over-

comes the unrealistically discontinuous behavior predicted
by Savenije et al. [2008], but also improves on accuracy
compared with linear models as by Toffolon and Savenije
[2011]. This is important when assessing the influence of
depth increase on tidal dynamics in real estuaries (e.g.,
because of human interventions, by dredging, or sea-level
rise). For this purpose, we provided two threshold criteria:
the ideal depth hideal (condition for vanishing damping) and
the critical depth hcritical (condition for maximum amplifi-
cation). As a result, we could classify estuaries into three
types on the basis of the tidally averaged depth h compared
with hideal: damped (h < hideal ), amplified (h > hideal ), and
approximately ideal (h ≃ hideal ). Moreover, an estuary can
be characterized as over-amplified when it has a depth larger
than the hcritical: in this case, a further increase of the depth
reduces the tidal wave amplification.

Appendix A: Derivation of the Linear Tidal
Damping Equation by the Envelope Method

[48] Using a Lagrangean approach for the analysis of tidal
flow instead of the more common Eulerian one, as proposed
by Savenije [2005], the continuity equation can be written as

dU

dt
¼ rs

c

h

dh

d t
� cU

a
þ cU

1

h
dh
d x

: ðA1Þ

The momentum equation can be written in a Lagrangean
reference frame as well, providing the differential equation

dU

d t
þ g

∂h
∂x

þ gðIb � IrÞ þ g
U Uj j
K2h4=3

¼ 0: ðA2Þ

where Ir is the water level residual slope resulting from the
density gradient.
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[49] Combination of equations (A1) and (A2), and using
U = dx / dt yields:

rs
cU

gh

dh

dx
� cU

g

1

a
� 1

h
dh
dx

� �
þ ∂h

∂x
þ Ib � Ir þ U Uj j

K2h4=3
¼ 0: ðA3Þ

[50] If we consider the situation at HW and LW, then the
following relations apply. The tidal range H (H = 2h) is the
difference between hHW and hLW:

2
dh
dx

¼ dhHW
dx

� dhLW
dx

; ðA4Þ

where h is the tidal average water level. Moreover, at HW
and LW

∂h
∂t

				
HW ;LW

¼ 0 ðA5Þ

by definition, and hence

dhHW ;LW

d x
¼ ∂h

∂x

				
HW ;LW

: ðA6Þ

[51] If the dimensionless tidal wave (scaled by the tidal
range) is considered undeformed (which is the case when
h=h ≪ 1), the damping is symmetrical with respect to the
tidal average water level h, which may still have a residual
slope I ¼ dh=d x such that

dhHW
d x

þ dhLW
dx

≈ 2
dh

dx
¼ 2I ; ðA7Þ

with

hHW ≈ hþ h; hLW ≈ h� h ðA8Þ

These three approximations are not critical to the derivation,
and acceptable if h=h ≪ 1.
[52] For the tidal velocity at HW and LW the expressions

(25) can be derived. Furthermore, we have to realize that the
celerities of propagation at HW (cHW) and LW (cLW) are not
equal (as a result of the different depths), but we may also
assume that they are symmetrical compared to the tidal
average wave celerity c, and hence that for small tidal
amplitudes

cHW
hHW

≈
cLW
hLW

≈
c

h
; ðA9Þ

cHW þ cLW ≈ 2c: ðA10Þ

[53] In order to compare the solution obtained using
Savenije [2005] approach with the linear models, we adopt
the usual Lorentz’s linearization of the bed shear stress
[Lorentz, 1926],

U Uj j
K2h4=3

¼ 8

3p
u

K2h
4=3

U : ðA11Þ

Combination of equations (A3), (A6), and (25) yields the
following expression for the envelope curve at HW:

rscHWusinð�Þ
g hþ h
� � dhHW

dx
� cHWusinð�Þ

g

1

a
� 1

h
dh
d x

� �
þ

þ dhHW
dx

þ 8

3p
u2sinð�Þ
K2h

4=3
¼ �Ib þ Ir:

ðA12Þ

Similarly, combination of equations (A3), (A6), and (25)
provides the envelope curve at LW:

�rscLWusinð�Þ
g h� h
� � dhLW

dx
þ cLWusinð�Þ

g

1

a
� 1

h
dh
dx

� �
þ

þ dhLW
dx

� 8

3p
u2sinð�Þ
K2h

4=3
¼ �Ib þ Ir:

ðA13Þ

[54] Subtraction of these envelopes, taking into account
the assumption of the wave celerity being symmetrical
(equations (A9) and (A10)), yields the following expression:

rscusinð�Þ
h

dhHW
dx

þ dhLW
d x

� �
� 2cusinð�Þ 1

a
� 1

h
dh
dx

� �
þ

þ g
dh
dx

þ 2fL
u2sinð�Þ

h
¼ 0; ðA14Þ

where

fL ¼ 8

3p
g

K2h
1=3

: ðA15Þ

The parameters between parentheses in the first term of
equation (A14) can be replaced by 2I of equation (A7),
provided h=h < 1. Further elaboration yields

1

h
dh
dx

1þ b
b

� �
¼ 1

a
� fL

u
hc

; ðA16Þ

where b = cusin(�)/(gh) is a tidal Froude number.
[55] By scaling, the linear damping equation (A16) reads:

d ¼ m2

1þ m2
g � 8

3p
cml

� �
: ðA17Þ

Making use of the trigonometric equation [cos(�)]�2 =
1 + [tan(�)]2, the phase lag and scaling equations ((15) and
(14) in section 2) can be combined to eliminate the variable �
to give

g � dð Þ2 ¼ 1

m2
� l2: ðA18Þ

Introducing the celerity equation (16) and equation (A17)
into equation (A18), we end up with:

l dl 1� 1

m2

� �
þ 8

3p
cm 1� l2

� �
 �
¼ 0; ðA19Þ
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which can be simplified for l ≠ 0. Subsequently,
equation (A19) along with equation (A17) yields a simple
relationship between d and m, l:

d ¼ g
2
� 4

3p
cm
l

; ðA20Þ

which is reported as (18) in section 3.1.

Appendix B: Derivation of the Tidal Damping
Equation Using Dronkers’ Friction Formulation
by the Envelope Method

[56] Higher order formulation, like that proposed by
Dronkers [1964], can be represented using Chebyshev
polynomials as follows:

U Uj j
K2h4=3

¼ 16

15p
u2

K2h
4=3

U

u
þ 2

U

u

� �3
" #

: ðB1Þ

Here it has been assumed that the effect of the periodic var-
iation of the depth may be disregarded and that the average
depth may be used instead, as long as the tidal amplitude to
depth ratio is small. Applying equation (B1) in the derivation
of damping equation as described in the Appendix A, one can
easily obtain the following expression:

d ¼ m2

1þ m2
g � 16

15p
cml� 32

15p
cm3l3

� �
: ðB2Þ

After some algebra, it is possible to obtain a simpler relation
between d. m and l:

d ¼ g
2
� 8

15p
cm
l

� 16

15p
cm3l: ðB3Þ

Notation

The following symbols are used in this paper:
a convergence length of cross-sectional area
A tidally averaged cross-sectional area of flow;

A0 tidally averaged cross-sectional area at the estuary
mouth;

B width;
Bs storage width;
c wave celerity;
c0 celerity of a frictionless wave in a prismatic channel;

cHW wave celerity at HW;
cLW wave celerity at LW;

f friction factor accounting for the difference in fric-
tion at HW and LW;

fL friction factor used for the derivation of linear
damping equation;

F quadratic friction term;
FL Lorentz’s friction term;
FD Dronker’s friction term;
F̂ S effective friction term obtained with a Lagrangean-

based approach;
g acceleration due to gravity;
h cross-sectional average depth;
h tidal average depth;

hideal ideal depth;
hcritical critical depth;
hHW depth at HW;
hLW depth at LW;
H tidal range;
I tidally averaged water level slope;
Ib bottom slope;
Ir water level residual slope due to the density

gradient;
K Manning-Strickler friction factor;
L estuary length;
Q tidal discharge;
rs storage width ratio;
t time;
T tidal period;
U cross-sectional average flow velocity;

UHW tidal velocity at HW;
ULW tidal velocity at LW;

x distance;
x* dimensionless distance;
z tidal water level variation;
a weight of the linearized friction term;
b tidal Froude number;
g estuary shape number;
d damping number;
� phase lag between HW and HWS (or LW and
LWS);

z tidal amplitude at the estuary mouth;
h tidal amplitude;
h0 tidal amplitude at the estuary mouth;
l celerity number;
m velocity number;
u tidal velocity amplitude;
c friction number;
w tidal frequency.
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