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SUMMARY

We construct finite volume schemes of very high order of accuracy in space and time for solving the non-
linear Richards equation (RE). The general scheme is based on a three-stage predictor–corrector procedure.
First, a high-order weighted essentially non-oscillatory (WENO) reconstruction procedure is applied to the
cell averages at the current time level to guarantee monotonicity in the presence of steep gradients. Second,
the temporal evolution of the WENO reconstruction polynomials is computed in a predictor stage by using a
global weak form of the governing equations. A global space–time DG FEM is used to obtain a scheme with-
out the parabolic time-step restriction caused by the presence of the diffusion term in the RE. The resulting
nonlinear algebraic system is solved by a Newton–Krylov method, where the generalized minimal residual
method algorithm of Saad and Schulz is used to solve the linear subsystems. Finally, as a third step, the cell
averages of the finite volume method are updated using a one-step scheme, on the basis of the solution calcu-
lated previously in the space–time predictor stage. Our scheme is validated against analytical, experimental,
and other numerical reference solutions in four test cases. A numerical convergence study performed allows
us to show that the proposed novel scheme is high order accurate in space and time. Copyright © 2011 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Flow in unsaturated porous media

Prediction of water movement in unsaturated porous media is commonly based on the classical
Richards equation (RE) [1],
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where � is the water content, h is the hydraulic pressure or pressure head, K is the hydraulic con-
ductivity, t is time, x is the spatial variable in the porous medium, and S is a sink term. Equation (1)
is solved for the field h.x, t /. This second-order nonlinear PDE for water flow provides mixed
parabolic–elliptic behavior under conditions of variable water saturation of the soil. Parabolic behav-
ior occurs in unsaturated media, and elliptic behavior occurs during saturation [2]. The RE is a highly
nonlinear PDE because both the hydraulic conductivity K.h/ and the water content �.h/ are highly
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nonlinear functions of the pressure head h. The form (1) of RE is generally considered superior to
other forms of this equation because of its robustness with respect to mass balance [2–4]. Actually,
as it is written in a flux–divergence form, Equation (1) has conservation-law form with a source
term, for the water content � .

Numerical solution of RE by current schemes generally decouples the issues of temporal and spa-
tial discretization. The time discretization is typically based on the backward Euler scheme [5, 6].
Other time-stepping schemes used for RE include the Crank–Nicholson scheme, the three-level
Lees scheme, the Douglas–Jones predictor–corrector method, implicit Runge–Kutta schemes, and
backward difference formulae. An adaptive step-size, variable-order, backward difference formulae
for the time derivative together with an LDG method for the discretization of the diffusion term has
been developed by Li et al. [7,8]. The spatial discretization of RE is commonly performed by using
finite element or finite difference methods. Mass lumping is employed to improve the numerical
stability and efficiency of the finite element models as previous findings indicate that a consistent
mass formulation can cause spurious oscillations [3, 4, 9]. An efficient finite volume discretization
on unstructured meshes has been implemented by McBride et al. [10]. The finite volume method
for diffusion problems on unstructured meshes is extended to the nonlinear RE through Kirchoff
transformation, and convergence is theoretically proved in the Reference [11]. In Reference [12],
the mass conservative approach developed by Celia et al. [4] is extended to a cell-centered version
of the finite volume method based on vertex reconstruction. The nonlinear algebraic systems that
arise from the implicit discretizations of RE may be solved with iterative schemes, such as, the
Picard method, Newton iteration methods, or fast secant methods. In most of these approaches, the
nonlinear problem is accounted for by solving a sequence of linear sub-problems, in particular in
the Newton method. The linear sub-problems are usually also solved with iterative methods, such
as over-relaxed Jacobi, over-relaxed Gauss–Seidel, pre-conditioned CG, biconjugate gradient sta-
bilized method, and generalized minimal residual (GMRES) method [13]. Non-iterative methods,
such as the implicit factored scheme, have also been proposed to solve the nonlinearities in RE
[14–16].

1.2. The hydraulic properties of unsaturated soil

Relationships between pressure head and water content or pressure head and hydraulic conductivity
have been reported by several authors by proposing predictive models [17–22]. The most common
models employed by the community and also used in this work are described in the succeeding
paragraphs, namely, the van Genuchten model [18] and the predictive model of Mualem [23].

The model for the relative hydraulic conductivity function, Kr.h/, can be written in the form
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in which K is the unsaturated hydraulic conductivity, Ks is the saturated hydraulic conductivity,
l is the pore connectivity parameter, usually assumed to be 0.5, and Se is the effective saturation
obtained from the equation

Se.h/D
�.h/� �r

�s � �r
. (3)

Here � is the volumetric water content, and �r and �s are the residual and saturated water con-
tents, respectively. For the water content of the pressure head function (water retention curve), van
Genuchten [18] proposed the following equation:
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Equation (2) leads to the following equation for the unsaturated hydraulic conductivity

K.h/D

²
KsKr.h/ if h < 0,
Ks if h> 0,

(5)

with
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. (6)

Here n and m are empirical shape parameters and mD 1� 1=n. A second model used in this work
is called the Brooks–Corey model [17], in which the hydraulic conductivity and water content are
obtained as follows:

K DKs.Se/
� (7)

� D
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�n if h < hd,
�s if h> hd.

(8)

In this model, � is a soil parameter and hd D�1=˛; here ˛ is an empirical parameter.
In Section 2, our high-order one-step weighted essentially non-oscillatory (WENO) finite vol-

ume scheme for RE is described. In particular, a new WENO procedure is outlined in Section 2.2,
and the global space–time Galerkin predictor used is presented in Section 2.3. In Section 3, the
convergence studies for the schemes developed in the previous section are presented. In Section 4,
numerical results obtained with the proposed three-stage predictor–corrector procedure are com-
pared with either exact or finite method solutions in four test cases. Finally, the main conclusions
are summarized in Section 5.

2. A HIGH-ORDER FULLY DISCRETE FINITE VOLUME SCHEME FOR
RICHARDS EQUATION

In this article, we propose to solve RE by a new fully discrete WENO finite volume scheme with
high order of accuracy in space and time. As the finite volume framework only evolves cell aver-
ages of the conserved quantity, high order in space is obtained by applying a spatial reconstruction
operator to the cell averages. Second, these reconstruction polynomials are evolved in time, as in
the original essentially non-oscillatory (ENO) method of Harten et al. [24] or in the latest variant
of the accuracy derivate (ADER) schemes proposed by Dumbser et al. [25, 26]. Whereas the time
discretization of the original ADER method, introduced by Toro and Titarev [27] and Titarev and
Toro [28], was based on the solution of the generalized Riemann problem (GRP) and the strong
differential form of the governing PDE, the new approach of Dumbser et al. uses a weak integral
formulation of the governing PDE in space–time. However, to avoid the parabolic time-step restric-
tion inherent to explicit schemes, in this article, we propose to use a globally implicit predictor,
given by the space–time DG scheme of van der Vegt and van der Ven [29, 30]. The result of the
predictor is then used in a fully discrete one-step finite volume scheme in order to compute the
inter-cell fluxes.

2.1. Finite volume schemes for nonlinear Richards equation

Richards equations (1) can be expressed under the general form of a balance law with source term as´
PDE:

@

@t
�.h/Cr � f .h,rh/D S.h/,

IC: h.x, 0/D h0.x/,
(9)

with flux

f .h/D�K.h/ .hx � 1/ . (10)
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The computational domain is divided into a set of non-overlapping spatial control volumes Qi Dh
xi� 12
I xiC 12

i
of mesh size �x D xiC 12

� xi� 12
, and the time step is denoted by �t D tnC1 � tn.

Integrating (9) over a finite space–time control volume
h
xi� 12
I xiC 12

i
� ŒtnI tnC1�, we obtained the

following finite volume formulation of RE:
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where the cell average of the water content at time tn is defined as
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The integration of PDE (9) in space and time gives rise to temporal integrals of the fluxes across
the element boundaries fiC 12

and the space–time integral of the source term NSi , which are defined
as follows:
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We note that relation (11) is exact if the related integrals are all exact. However, numerical use of
the finite volume formula relies on approximations to fluxes and sources, resulting in an approximate
formula to cell averages.

The numerical scheme is fully defined when a choice of a particular scheme is made to com-
pute the integral required in order to evaluate the fluxes fi˙ 12

at the cell interfaces. In the last three
decades, powerful numerical procedures to calculate fluxes have been proposed to solve hyperbolic
equations, for example the fluxes of Godunov [31], Osher [32], and Roe [33] as well as various fluxes
based on the approximated Riemann solver of Harten et al. [34] (see, e.g., [35–38]). In this paper,
we use the viscous Rusanov-type flux proposed in [39] and given explicitly later by Equation (21)
as the scheme used in the computations for the test cases analyzed.

The proposed method is an extension to RE of the fully discrete ADER approach. In the ADER
approach [27, 28, 38, 40, 41], numerical fluxes are computed from the solution of the GRP (also
called high-order Riemann problem) at each interface. This is the Cauchy problem in which the
initial conditions on either side of the interface are piecewise smooth functions, piecewise poly-
nomials of arbitrary degree, for example. The original ENO scheme of Harten et al. [34] and the
ADER scheme of Toro and Titarev [27] have two properties in common: time evolution via Taylor
series expansion and use of the Cauchy–Kowalewski procedure to convert time derivatives to spatial
derivatives. However, these two methods differ in various aspects. For example, the ADER method
develops the full series solution right at the interface, and the solution procedure involves solutions
of classical Riemann problems for spatial derivatives at the interface. In addition, the ADER method
[27] includes (non-stiff) source terms in the high-order Riemann problem. However, this version of
the ADER approach is not able to handle stiff source terms. Therefore, a new class of finite volume
schemes of arbitrary accuracy in space and time has been proposed by Dumbser et al. [25] for stiff
hyperbolic balance laws. In the time-evolution part of algorithm, the Cauchy–Kowalewski proce-
dure is replaced by a local space–time discontinuous Galerkin finite elements scheme to handle the
stiff source terms. DG methods have recently received significant attention and are applied to a wide
range of hyperbolic and parabolic problems [42–45]. Global space–time DG (GSTDG) schemes are
discussed in [29, 30, 46, 47].
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We emphasize that formula (11) together with (13) allows the construction of arbitrary high-
order accurate finite volume schemes, provided that the approximate solution h.x, t / is high order
accurate in space and time. The question is only how to obtain a high-order predictor solution for
h D h.x, t / in space and time. As (11) only computes the time update of the cell averages for the
water content N�ni from time tn to time tnC1, we need to reconstruct higher-order polynomial data
from these cell averages N�ni in order to obtain better estimates for the arguments of the flux function
and the source terms in the integrals appearing in (13).

Therefore, as described in detail in the subsequent sections, the necessary steps to construct an
arbitrary high-order ENO explicit one-step finite volume scheme are the following:

1. Nonlinear (non-oscillatory) WENO reconstruction of spatial polynomials wn
h
.x/ from the

given cell averages N�ni of the water content at time tn. In short notation: compute wn
h
.x/ D

R
�
N�n
	
, where R denotes the reconstruction operator.

2. Global weak formulation in space–time of the IVP (9), where the initial data are given by the
spatial reconstruction polynomial wn

h
.x/ for the water content � at time tn. This yields a weak

solution of (9) for h.x, t / in space–time. In short-hand notation, compute h.x, t /D E
�
wn
h
.x/
	
,

where E denotes the evolution operator.
3. Numerical integration of the integrals in (13) and update of the cell averages according to (11),

that is, compute N�nC1 D N�nCFV.h.x, t //, where FV is an abbreviation for the finite volume
scheme given in (11).

2.2. Nonlinear reconstruction technique

In this section, we briefly discuss the proposed nonlinear WENO reconstruction procedure to recon-
struct higher-order polynomial data within each spatial cell Qi at time tn from the given cell
averages N�ni . This corresponds to step (1), as outlined at the end of the previous section. We empha-
size already at this point that the reconstruction procedure is nonlinear and depends strongly on
the input data N�ni . Thus, the resulting numerical scheme, even when applied to a completely linear
PDE, will be nonlinear, and thus, it will not be possible to give a closed expression for the proposed
scheme. The reconstruction procedure described here for the one-dimensional (1D) case follows
directly from the guidelines given in [48] for general unstructured two-dimensional (2D) and three-
dimensional (3D) meshes and summarized in one space dimension in [25]. It reconstructs entire
polynomials, as the original ENO approach proposed by Harten et al. in [24]. However, we formally
write our method like a WENO scheme [49, 50]. The most important difference of our approach
compared with classical WENO schemes is that standard WENO methods reconstruct point values
at the Gaussian integration points instead of an entire polynomial valid inside each element Qi .

2.3. The global space–time DG predictor

In order to avoid a parabolic time-step restriction (�t / �x2) we do not use the local space–time
predictor introduced for stiff hyperbolic balance laws in [25] and applied to viscous PDE in [39].
Instead, we use the classical GSTDG method of van der Vegt and van der Ven [29, 30], which is
globally implicit and unconditionally stable, as shown in the previously mentioned references. The
space of basis and test functions Vh of the GSTDG scheme is chosen to be the space spanned by
piecewise space–time polynomials �k D �k.x, t / of degree M .

In the following, we will use the three scalar products of two functions f .� , �/ and g.� , �/:

hf ,giQi D
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(14)
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where the first one denotes the space–time scalar product over the space–time element Qi �
ŒtnI tnC1�, the second one is the spatial scalar product over the spatial element Qi , and the third
one is the space–time scalar product over the element boundary, @Qi � ŒtnI tnC1�. The numerical
solution h.x, t / for the hydraulic pressure inside each space–time element is approximated by

hi D hi .x, t /D
NdX
lD1

�l.x, t / Ohil WDˆl
Ohil , (15)

and the same approach is also used for the water content

�i D �i .x, t /Dˆl.x, t / O� il , with O� il D �
�
Ohil

�
, (16)

for the flux

fi D fi .x, t /Dˆl.x, t / Of il , with Of il D f
�
Ohil ,
crhil� , (17)

and for the source term

Si D Si .x, t /Dˆl .x, t / OS il , with OS il D S
�
Ohil

�
. (18)

We use the Einstein summation convention that implies summation over all indices appearing twice.
Multiplication of the PDE (9) with test functionsˆk 2 Vh and integration over a space–time element
Qi � Œt

nI tnC1� yields 
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Integrating the first term by parts in time and the second term by parts in space yields the following
globally coupled algebraic system for the unknown space–time polynomials hi .x, t /: 
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In (20), the term Gi˙ 12 is a numerical flux function depending on the left and right states h� and hC

and their gradients rh� and rhC, respectively, and is chosen according to [39] as
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with j	max
c j D max

�
jfh.h

�/j, jfh.hC/j
	
, j	max

v j D max
�
jfrh.q

�/j, jfrh.qC/j
	
, fh D @f=@h,

frh D @f=@.rh/, and � D 1
�x

. It is trivial to prove that the GSTDG predictor (20) conserves
mass exactly. This follows directly from using �k D 1 as the test function, which leads to a flux-
difference form. Furthermore, also the final finite volume scheme (11) is exactly mass conservative,
as it is directly written in flux-difference form. The GSTDG scheme (20) for RE is a high-order
equivalent to the finite volume scheme presented for free surface flows in [51]. In the present case,
the water content function �.h/ assumes a similar role as the volume function V.�/ in [51].

The space–time DG scheme (20) leads to a globally coupled nonlinear algebraic system solved
with a Newton–Krylov method on the basis of the GMRES algorithm of Saad and Schultz [13].
Convergence of the Newton–Krylov method is improved using a classical globalization technique
based on line search [52].
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3. NUMERICAL CONVERGENCE STUDIES

To assess the convergence behavior of the proposed method, we use the following relative error
norm:

k�h � �ekp D

�Z 1

0

�
j�h.x, t /� �e.x, t /j

j�e.x, t /j

�p
dx

� 1
p

(22)

where �h denotes the numerical solution and �e the exact solution.
The error norm (22) is calculated using Gaussian quadrature rules of appropriate order of accu-

racy. Furthermore, we use the following error norms when comparing experimental results with
numerical simulations [53]:

Absolute error

AED
dX
cD1

j�h � �ejc (23)

Root-mean-square error (RMS)

RMSD

vuut 1

d

dX
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Logarithmic form of RMS (LRMS)

LRMSD
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d

dX
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.log.�h/� log.�e//2c (25)

where c is a counter and d is the number of the experimental data, �e is the water content obtained
from experimental data, and �h is the water content calculated with ADER-FV, at the same positions.

3.1. Nonlinear Richards equation

We solved the RE without source term (S D 0)

@�.h/
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. (26)

The computational domain chosen in this test was 
 D Œ0I 200�, and the following initial and
boundary conditions have been specified:

�.x, 0/D 0.01,

f .0, t /D 1 cm/h, �.200, t /D 0.01. (27)

The exact solution for Equation (26) was obtained in References [54, 55] on the basis of the van
Genuchten model for the water content Equation (4) and the Brooks–Corey model for the hydraulic
conductivity Equation (7). The following soil hydraulic parameters were used for this test case,
assuming a homogeneous soil: ˛ D 1 cm, �D 1 and nD 1, Ks D 1 cm/h, �s D 0.4, and �r D 0.004.
The numerical convergence results obtained for the RE with the proposed ADER-FV schemes of
second and third order of accuracy in space and time are shown in Table I. As before, NG denotes
the number of grid cells used to discretize the domain 
. The simulation has been carried out in
the time interval t 2 Œ10 sI 16.0837 s�. The errors and the associated convergence rates between two
successive grid refinements are shown in L2, L3, and L1 norms. The error norms are computed
numerically according to Equation (22). The results presented in Table I show that the method
converges with the designed order of accuracy.
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Table I. Numerical convergence rates for Richards equation (t D 16.0837 s)
obtained with ADER-FV for second and third order of accuracy in space

and time.

NG L2 L3 L1 OL2 OL3 OL1

ADER-FV O2 .M D 2/
16 2.0184 1.0167 2.3494� 10�1

24 9.1628� 10�1 4.6784� 10�1 1.0374� 10�1 1.9 1.9 2.0
32 4.7938� 10�1 2.4704� 10�1 4.9947� 10�2 2.3 2.2 2.5
48 1.7174� 10�1 8.8369� 10�2 2.2490� 10�2 2.5 2.5 2.0
56 1.2127� 10�1 6.2137� 10�2 2.3 2.3
60 1.0839� 10�1 5.5748� 10�2 2.2490� 10�2 1.6 1.6

ADER-FV O3 .M D 3/
24 9.8812� 10�1 5.1222� 10�1 1.9501� 10�1

32 4.5876� 10�1 2.3658� 10�1 8.8671� 10�2 2.7 2.7 2.7
40 2.3054� 10�1 1.1714� 10�1 4.6010� 10�2 3.1 3.2 2.9
48 1.2856� 10�1 6.4683� 10�2 2.3088� 10�2 3.2 3.3 3.8
52 1.0371� 10�1 5.3401� 10�2 2.7 2.4

4. NUMERICAL RESULTS

In this article, we apply the ADER-FV method of [25] to RE with stiff source term. In this article, the
development of the ADER-FV method for RE with stiff source term is not considered. In order to
demonstrate that the ADER-FV scheme implemented in this paper is accurate and robust, we show
four different examples: column infiltration test (comparison with conventional finite element and
experimental data), free drainage (comparison with conventional finite element and experimental
data), comparison among finite difference, ADER-FV schemes and exact solution, and simulation
with layered soil (comparison with a benchmark reference).

4.1. Column infiltration test

This example simulates a 1D laboratory infiltration experiment initially discussed by Skaggs et al.
[56] and used for a comparison with results obtained with the HYDRUS 1D code [57]. HYDRUS 1D
is a free software tool for soil simulation that uses the conventional FEM for solving RE in one space
dimension [58]. The soil was assumed to be homogeneous and isotropic with a saturated hydraulic
conductivity Ks D 7.22E�04 cm/s, saturated water content �s D 0.35, and a residual water content
�r D 0.02. The parameters used for the van Genuchten model of the hydraulic conductivity were
nD 1.964 and ˛ D 4.1 cm. The column was subjected to ponded infiltration (a Dirichlet boundary
condition) at the soil surface, resulting in a 1D vertical water flow. The depth of the soil profile was
LD 61 cm. The boundary and initial conditions were chosen as follows:

h.x, 0/D�150 cm, h.0, t /D�1 cm, h.L, t /D�150 cm. (28)

The simulation was carried out for t D 9000s, which corresponds to the total temporal duration of
the experiment. Meshes of 205 were used in HYDRUS 1D and 50 elements for the ADER-FV3 (third
order) scheme. The time step in HYDRUS 1D varied between 0.01 and 600 s. In the ADER-FV3
scheme, we use a fixed time step of 600 s.

Figure 1 depicts the results obtained with the two different numerical schemes (HYDRUS 1D and
ADER-FV) and the experimentally observed data. This curve is the so-called suction curve and indi-
cates the nonlinear relation between hydraulic pressure and water content. The comparison between
the numerical results and the experimental data shows that the ADER-FV3 method leads to a better
approximation of the experimental results for the hydraulic pressure than the HYDRUS 1D model in
all the observation points. The computational time used in ADER-FV3 scheme is three times higher
than that the required with HYDRUS 1D.
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Figure 1. Comparison between numerical results (HYDRUS 1D and ADER-FV3) and experimental obser-
vations for the column infiltration test.

Table II. Errors of HYDRUS 1D and ADER-FV3 for the
column infiltration test.

Errors

Method AE RMS LRMS

HYDRUS 1D 58.221 1.4641 0.118
ADER-FV3 19.933 9.6020E�01 0.087

The quantitative errors of both numerical methods compared with the experimental values are
shown in Table II. The ADER-FV3 scheme is clearly closer to the experimental results. The higher
order incorporated in the algorithm allowed to increase the accuracy in the calculation of the
nonlinearities produced by the flow in the unsaturated porous media.

4.2. Free drainage

The second case corresponds to a situation when the soil is drying because of natural drainage
caused by gravity. Again, the numerical results are compared with those of HYDRUS 1D and
experimental data. This example is provided with the HYDRUS 1D code and also may be found
in References [5, 59]. In this example, the saturated hydraulic conductivity is Ks D 25 cm/s, the
saturated water content is � D 0.3308, and the residual water content is �r D 0. The parameters used
in the hydraulic van Genuchten model are nD 1.506 and ˛ D 0.01433 cm. The experimental setup
considered a caisson with a 600-cm depth and a 300-cm diameter. In HYDRUS 1D, we used 120
elements in the x direction and time steps between 4.16E�09 and 2E�02 s. To calculate the water
content with ADER-FV3, we used only 50 elements and a constant time step of �t D 0.1 s. The
following initial and boundary conditions, corresponding to the free drainage case, were applied:

h.x, 0/D 0 cm, f .0, t /D 0 cm/s, h.L, t /D 0 cm. (29)

In Figure 2, numerical and experimental results are shown. Clearly, both the results obtained with
HYDRUS 1D package and those calculated with the ADER-FV3 scheme are in very good agree-
ment with the experimental results. Table III shows the quantitative errors between numerical and
experimental results. In days 1, 4, 20, and 100, the ADER-FV3 scheme is slightly more accurate
than HYDRUS 1D. Figure 2 shows that the numerical results are more accurate when the system
tends to balance the steady state. In this test, the computational time for the calculations with the
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Figure 2. Comparison between numerical results (HYDRUS 1D and ADER-FV3) and experimental values
for the free drainage test case.

Table III. Errors of HYDRUS 1D and ADER-FV3 compared with observed data for the free drainage
test case.

Program
HYDRUS 1D ADER-FV3

AE RMS LRMS AE RMS LRMS

Day 1 1.1482E�02 2.2941E�02 2.6942E�02 2.1234E�02 4.1318E�02 3.4119E�02
Day 4 4.5226E�02 4.3271E�02 5.4532E�02 3.9657E�02 4.0960E�02 5.1666E�02
Day 20 3.4870E�02 3.8522E�02 5.3569E�02 3.3428E�02 3.7751E�02 5.2525E�02
Day 100 2.0367E�02 2.8260E�02 4.4405E�02 1.9432E�02 2.7763E�02 4.3489E�02

ADER-FV3 scheme is similar to the one needed by the HYDRUS 1D code; the higher-order scheme
can produce accurate results with a lower number of cells and a larger time step.

4.3. Comparison between finite difference and ADER-FV schemes

In this case, we compare an exact solution of RE with the numerical results obtained with an FD
scheme [55] and the ADER-FV3 method developed in this article. The FD program uses an adap-
tive, second-order diagonally implicit Runge–Kutta time-stepping method and the Newton method
with simple Jacobian of lagged intergrid conductivities and a mixed water-content/head formulation
of RE. The FD program uses a simple version of Darcian intergrid conductivity means [54]. To
calculate the hydraulic properties, we used the van Genuchten model for the water content Equa-
tion (4) and the Brooks–Corey model for the hydraulic conductivity, as stated by Equation (7). The
soil hydraulic parameters used in these models are ˛ D 1 cm, �D 2, nD 1, Ks D 1 cm/h, �s D 0.4,
and �r D 0.004. Two meshes of 100 and 800 nodes were used for the finite difference scheme to
ensure convergence of the solution. A variable time step between 1E�06 and 1 h has been used for
the finite difference scheme, and a constant time step of�t D 2E-01 h was used for the ADER-FV3
method. The initial and boundary conditions are

�.x, 0/D 0.01, f .0, t /D 1 cm/h, �.L, t /D 0.01. (30)

In Figure 3, the variation of water content with depth calculated using the exact solution is compared
with the results obtained with the finite difference scheme and the ADER-FV3 method. The 800
nodes FD solution obviously does not converge to the exact solution. Finite difference programs
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Figure 3. Comparison between exact and numerical solutions (FD and ADER-FV3) for test case 4.3.

Table IV. Hydraulic parameters for soil 1
and 2 (case 4.4).

Soil 1 Soil 2

�s 0.3658 0.4686
�r 0.0286 0.1060
˛ (1/m) 2.80 1.04
n 2.2390 1.3954
Ks (m/s) 6.26E�05 1.5161E�06

only work well if the changes in variables and their derivatives between grid points are not too
extreme. The extremely sharp nature of the wetting front has prevented the scheme from converg-
ing to a solution. However, we observe that using the ADER-FV3 method with only 35 elements
already shows a rather good approximation. The accuracy of ADER-FV3 method shows a minor
improvement when the mesh is refined to 80 elements.

This test shows that the ADER-FV schemes tends to the RE exact solution.

4.4. Simulation with layered soil

The exact solutions for RE in 1D are restricted to simple boundary conditions with one soil type;
hence, a test with layered soil is included for testing the ADER-FV scheme. This last test case cor-
responds to a layered soil profile and has been used as a benchmark by several authors [10, 60–62]
to verify semi-analytical and numerical solutions. The hydraulic parameters of the two soils used
for the model are summarized in Table IV. Soil 1 and 2 are Berino loamy fine sand and Glendale
clay loam, respectively [62]. The soil profile contains soil 1 in the intervals [0;0.5 m] and [0.9;1 m],
respectively, and soil 2 from 0.5 to 0.9 m. The van Genuchten model is used to describe the hydraulic
properties. The simulation time and initial and boundary conditions are given in Table V. Calcula-
tions with the ADER-FV2 and ADER-FV3 schemes were accomplished by using a mesh with 50
elements and time step that changed from 50 to 100 s.

Figure 4 shows the results obtained with ADER-FV schemes for both water content and pres-
sure head changes for unsaturated flow in layered soil. The results are in good agreement with the
ones published in the literature [10, 60]. The good results obtained in this test show that ADER-FV
schemes developed in this work may be easily used to describe water motion, from the nonlinear
RE, in unsaturated porous media in layered soils. The numerical approach presented in this paper
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Table V. Initial and boundary conditions, simulation times (case 4.4).

Initial Upper Lower Simulation
Case pressure (m) flux (m/s) boundary (m/s) time (s)

1 �2 8.333E�07 0.0 14,400
2 �10 8.333E�07 0.0 28,800
3 �500 8.333E�07 0.0 43,200
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Figure 4. ADER-FV results for (a) volumetric water content versus depth, cases 1–3, and (b) pressure head
versus depth, cases 1 and 2.

can be extended to 2D and 3D problems. One of the main expected advantages would be high incre-
ments in the accuracy of the solutions that should require much higher computation time than the
available procedures as a drawback.

5. SUMMARY AND CONCLUSION

We have developed a new explicit unsplit ENO finite volume scheme of high order of accuracy in
space and time for the nonlinear RE. We emphasize that the discontinuous Galerkin scheme used
is globally implicit but is only a part of the complete algorithm, a predictor, in fact. The global
scheme is an explicit finite volume scheme (11). The spatial reconstruction polynomials obtained
from the WENO reconstruction operator are used as initial conditions for the GSTDG predictor
scheme. The predictor solution for the hydraulic pressure is then used in the final finite volume
method to update the cell averages of the water content. The resulting scheme is exactly mass con-
servative, as it is directly written in flux-difference form for the water content. In this article, we use
a Newton–Krylov method based on the GMRES algorithm of Saad and Schultz [13] to solve the
resulting non-symmetric linear subsystems arising in the Newton algorithm. Numerical test cases
show that the proposed ADER-FV schemes do not only reach their designed order of accuracy, but
that they are also superior to classical finite difference schemes, which may fail to converge to the
exact solution of RE.
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