
Experimenting with Linguistic Tools 
for Conceptual Modelling: 

Quality of the models and critical features 

Nadzeya Kiyavitskaya1, Nicola Zeni1, Luisa Mich1, John Mylopoulos2 

1 Department of Information and Communication Technologies, University of Trento 
Via Sommarive 14, 38050, Povo, Trento, Italy 

{nadzeya.kiyavitskaya, nicola.zeni, luisa.mich}@unitn.it 
2 Department of Computer Science, University of Toronto 

jm@cs.toronto.edu 

Abstract. This paper presents the results of three experiments designed to 
assess the extent to which a Natural-Language Processing (NLP) tool improves 
the quality of conceptual models, specifically object-oriented ones. Our main 
experimental hypothesis is that the quality of a domain class model is higher if 
its development is supported by a NLP system. The tool used for the 
experiment – named NL-OOPS – extracts classes and associations from a 
knowledge base realized by a deep semantic analysis of a sample text. In our 
experiments, we had groups working with and without the tool, and then 
compared and evaluated the final class models they produced. The results of the 
experiments give insights on the state of the art of linguistics-based Computer 
Aided Software Engineering (CASE) tools and allow identifying important 
guidelines to improve their performance, highlighting which of the linguistic 
tasks are more critical to effectively support conceptual modelling. 

1. Introduction 

According to the results of a market research whose aim was to analyse the potential 
demand for a CASE tool integrating linguistic instruments as support for requirements 
analysis, 79% of requirements documents are couched in unrestricted NL. Also the 
majority of developers (64%) pointed out that the most useful thing to improve 
general efficiency in modelling user requirements would be a higher level of 
automation [20]. However, there is still no commercial NLP-enabled CASE tool. 
There have been many attempts to develop tools that support requirements 
engineering since the '80s. The objective of this work was to evaluate how the 
linguistic CASE tools can support the modelling process, thereby speeding up 
requirements formalisation. This research makes use of linguistic techniques which 
were considered state-of-the-art at that time, although newer technologies have now 
been developed. 

In this work we present the results of a set of experiments designed to investigate 
the extent to which a NLP tool that supports the semi-automatic construction of a 
conceptual model improves their quality. The tool used for the experiments – named 
NL-OOPS – extracts classes and associations from a knowledge base realized by a 



deep semantic analysis of a sample text [14]. In particular, NL-OOPS produces class 
models at different levels of detail by exploiting class hierarchies in the knowledge 
base of the NLP system and marks ambiguities in the text [16], [17], [18]. In our 
experiments, we had groups and individuals working with and without the tool, and 
then compared and evaluated the final class models they produced. The results of the 
experiments give some insight on the state of the art of linguistic CASE tools and 
identify some important parameters for improving their performances. 

Section 2 of the paper presents the main research projects related to the use of 
linguistic tools of different complexity to support conceptual modelling. Section 3 
describes the main features of the NL-OOPS tool and the knowledge base upon which 
the system of NLP is based. Section 4 outlines the stages of the experiments and 
contains an evaluation of the models produced, focusing on the effect that NL-OOPS 
had on their quality. The concluding section summarises the findings of the 
experiment and describes directions for future research. 

2. Theoretical background 

Recently an increasingly number of studies have proposed the use of linguistic tools 
to support conceptual modelling. A description of the early related works can be 
found in [16] and an updated list of the different approaches is given on the web site 
of the NL-OOPS project.1 We will report here only some of the most important to 
illustrate the efforts toward the development of linguistic based CASE tools. 

In the early 1980's, Abbott [1] proposed an approach to Ada program design based 
on linguistic analysis of informal strategies written in English. He suggested a 
methodology that produces static analysis and design products obtained by an 
informal technique requiring high participation of users for making decisions. This 
approach was further developed by Booch [4], who proposed a syntactic analysis of 
the problem description (nouns suggest objects and classes of objects, and verbs 
suggest operations). However, both Abbott and Booch recognised the importance of 
semantic and real-world knowledge in the analysis process. Saeki, Horai, and 
Enomoto [27] were the first to use linguistic tools for a comprehensive analysis of the 
software process. They described a process of incrementally constructing software 
modules from object-oriented specifications obtained from informal NL requirements. 
Dunn and Orlowska [10] described a natural language interpreter for the construction 
of NIAM (Nijssen’s Information Analysis Method) conceptual schemas. The 
construction of conceptual schemas involves allocating surface objects to entity types, 
i.e. semantic classes, and the identification of elementary fact types. The system 
accepts declarative sentences only and uses grammar rules and a dictionary for type 
allocation and the identification of elementary fact types. Another relevant work was 
the expert system ALECSI-OICSI [6] that allowed the user to express requirements 
both in NL and in graphic form. ALECSI uses a semantic network to represent 
domain knowledge [25]. Along similar lines, Cockburn [7] investigated the 
application of linguistic metaphors to object-oriented design by associating relational 

                                                 
1 http://nl-oops.cs.unitn.it 



nouns with objects and adverbs with polymorphisms. Cordes and Carver [9] proposed 
one of the first attempts to apply automated tools to requirements analysis and the 
automatic generation of object models from requirements documents. While the 
translation of the initial requirements into a suitable knowledge base requires human 
interaction to resolve ambiguities, the subsequent translation of the domain 
knowledge into object models is automated. The authors acknowledged that the 
translation of formalized knowledge into object models is sensitive to the quality of 
the initial requirements specification (as one would expect). Goldin and Berry [15] in 
their work introduce a new approach for finding abstractions in NL text using 
traditional signal processing methods. Burg and Van de Riet [5] launched an 
interesting and ambitious project that attempts to minimize the participation of the 
user in the job of extracting classes and relationships from the text. Their system, 
COLOR-X, aims at including a large lexicon to aid in semantic model validation. 
Osborne and MacNish [22] present a method whose objective is to eliminate 
ambiguity in NL requirements. The problems associated with processing unrestricted 
NL are established and the impact of multiple word senses for terms used in a 
requirements document is reduced by using a Controlled Language (CL). Ambriola 
and Gervasi [3] developed a prototype to produce interactively conceptual models of 
NL requirements using a domain dictionary and a set of fuzzy-logic rules to match a 
NL construction. Among the most recent projects, Overmyer, Lavoie and Rambow 
[24] present an interactive method and a prototype, LIDA, to provide linguistic 
assistance in producing a subset of UML results. However, the text analysis remains 
in good part a manual process. It provides reliable tools for the user to analyse texts 
but it does not analyse text itself. Another research area highly connected both with 
the conceptual modelling and NLP is investigation of the quality of requirements’ 
language. In particular, some authors focused on the support of writing requirements 
[2], [30], [23], [17]. 

In this context, NL-OOPS presents a higher degree of automation, because it is 
based on a large NLP System [14], that made it possible to produce completely 
automatically a draft of a conceptual model starting from narrative text in unrestricted 
NL (English) [16]. NL-OOPS is the tool used in the experiments and is described in 
the next section. 

3. The NL-OOPS Tool 

To develop a tool that is able to extract from textual descriptions the elements 
necessary to design and build conceptual models, it is possible to adopt two 
complementary approaches. The first limits the use of NL to a subset that can be 
analysed syntactically. Various dialects of "Structured English" do just that. The 
drawback of this approach is that it won't work for existing text. The second approach 
adopts NLP systems capable of understanding the content of documents by means of 
a semantic, or deep, analysis. The obvious advantage of such systems is that they 
work for arbitrary NL text. Moreover, such systems can cope with ambiguities in 
syntax, semantics, pragmatics, or discourse. Systems of this type are much more 



complex, require further research, and have a limited scope compared to those in the 
first category. 

NL-OOPS is an NLP-based CASE prototype. It is a general-purpose system that 
was not designed with any specific purpose or domain in mind. It was founded on 
LOLITA (Large-scale Object-based Language Interactor, Translator and Analyser) 
NLP system, which includes all the functions for analysis of NL: morphology, parsing 
with respect to a 1500-rule grammar, semantic and pragmatic analysis, inference, and 
generation [13]. The knowledge base of the system – SemNet – consists of a kind of 
conceptual graph, which contains about 150,000 nodes. Thus LOLITA is among the 
largest implemented NLP systems. LOLITA is capable of analysing automatically 
about 90% of encountered phrases. The degree of accuracy depends on the quality of 
the text for input and on the length of the sentences. Consequently, the output of the 
tool contains most of the information from the original text. NL-OOPS implements an 
algorithm for the extraction of classes and associations from the semantic network of 
LOLITA. Documents in English are analysed by LOLITA and their content is stored 
in its knowledge base, adding new nodes to its semantic network. All these nodes can 
then be used to produce a conceptual model. In particular, the algorithm for 
identifying classes and associations is based on two phases [15]. Figure 1 shows the 
NL-OOPS’s interface, which consists of three frames. The top right frame contains 
the text being analysed for the SoftCom case used for the experiments. The left frame 
gives a partial representation of the SemNet structures used by LOLITA for the 
analysis of the document. Old nodes already stored in SemNet are in yellow to be 
distinguished from new nodes that are two-tone. After running the modelling module, 
the third frame, bottom right, contains a version of the class model. The tool can also 
show intermediate outputs, some corresponding to nodes marked by individual steps 
of the algorithm, while others are useful in identifying elements of the conceptual 
model (associations, attributes, methods, use cases, etc.). In addition, the tool can 
export intermediate results to a Word file or a Java source file; traceability function 
allows the user to check what nodes were created for a given sentence. The same 
information can be obtained using the nodes browser of NL-OOPS, which makes 
available further information related to a specific node, such as for instance, the 
hierarchies in which it is involved. 

4. The Experiments 

Our main experimental hypothesis was that if model development is supported by a 
NLP-based tool, then the quality of the domain class model is higher and the design 
productivity increases. So, the goal of the experiments was firstly to confirm or refute 
this assumption and then to identify the features and the linguistic tasks of an NLP-
based CASE system that are more relevant to the design of an effective CASE tool. 

4.1 Realization of the experiments 

In each experiment, we assigned a problem, a software requirements document, to the 
participants and we asked them to develop in a given time a class domain model, 



identifying classes, associations, multiplicity, attributes and methods. Half of the 
participants were supported by the NL-OOPS tool. They were also given some 
training in the use of NL-OOPS. The training focused on the functionalities that 
support the identification of classes and in particular: how to change the threshold for 
the algorithm to produce models at different levels of detail; how to see the list of 
candidate classes, and how to use the nodes browser to navigate the knowledge base. 
The chosen class model could then be deployed in a java file, which was reverse 
engineered into PoseidonCE2 or Rational Rose3 class diagrams. Both these tools 
create the list of classes and the analyst has only to drag the classes in the diagram 
from the source list and then to check and complete the diagram. Before the 
experiment, we administered a short questionnaire to assess the experience of the 
participants. 

 
Fig. 1. The NL-OOPS interface 

To compare the results of the experiments, we used the same requirements text in 
all the experiments. In particular, the text was adapted from a case named Softcom 
[25]. It deals with a problem that requires some familiarity with judged sports, e.g., 
gymnastics or diving. The language is quite simple, but also realistic in that it 
contains all the typical features for requirements: use of the passive voice, etc. The 
first two experiments involved couples of analysts; the first preliminary experiment 
focused on the quality of the models obtained with and without NL-OOPS; in the 
second, we asked the participants to save the diagrams at fixed time intervals, to 
obtain data also about productivity. In the third experiment, to simplify the context of 
the experiment, each analyst worked alone; to this end, each was asked to develop 
two models for two different problem statements, one with the tool and one without it. 
The second case study named Library [11] had a level of difficulty similar to that of 
the Softcom case. Both the texts are given in the Appendix. For the first two 
experiments participants were undergraduate students and their competence in object-
oriented conceptual modelling was comparable to that of junior analysts. For the last 
experiment, participants were PhD students, with higher competence. Before 
analysing the results of the experiments, we present the classes suggested by the tool 

                                                 
2 Gentleware: http://www.gentleware.com 
3 IBM – Rational Software: www.rational.com 



with different thresholds for both Softcom in Table 1 and Library in Table 2. These 
classes constitute the main input for the analysts working with NL-OOPS. To 
interpret the results we refer to the class models proposed with the problem sources 
[25], [11]. The names of the classes in the reference models are in bold. This choice 
was made to minimize the subjectivity in the evaluation of the models produced by 
the participants. We calculated recall, precision, and the F-measure to evaluate the 
performance for the class identification task.4 

Table 1. Classes identified by NL-OOPS: SoftCom case (Words in parenthesis correspond to 
the actual concepts in SemNet) 

NLOOPS-1 (12) NL-OOPS-2 (10) NL-OOPS-3 (5) Reference classes (11) 
Competition   Competition 
Competition    
Competitor Competitor Competitor Competitor 

Entity (worker) Entity (worker)   
Entity (announcer) Entity (announcer)   

   Figure (styles, routines) 
Group Group Group  
High High   

Judge Judge Judge Judge 
   League 

Meeting Meeting  Meeting 
Number Number Number  
Score Score Score Score 

   Season 
   Station 
   Team 
   Trial 

Softcom Softcom   
R=45.5%; P=41.7%, 
F-measure =43.5% 

R=36.4%; P=40.0%, 
F-measure = 38.1% 

R=27.3%; P=60.0%, 
F-measure =37.5% 

Ravg=36.4%;Pavg=47.2% 
F-measureavg=39.7% 

The models proposed by NL-OOPS do not contain classes such as season, station, 
team, and trial; they are instead present in the list of candidate classes. In the first two 
cases two classes are indicated: entity (worker), entity (announcer), corresponding to 
ambiguity in the text. In the first case, entity was introduced by the NLP system for 
the sentence “Working from stations, the judges can score many competitions”: it 
cannot be automatically assumed that the subject of working is “judges”. The second 
class results from an analysis of the sentence “In a particular competition, competitors 
receive a number which is announced and used to split them into groups”, where the 
subject of announces is unknown. For all of these nodes, the use of the node browser 
of NL-OOPS makes it possible to go back to the original sentence to determine 
whether it gives the information necessary for the model. 

                                                 
4 R (recall) counts the number of correct identified classes divided by total number of correct 
classes, P (precision) counts the number of correct identified classes divided by total number of 
classes, the F-measure combines R and P [29] 
 



Table 2. Classes identified by NL-OOPS: Library case (Words in parenthesis correspond to the 
actual concepts in SemNet) 

NLOOPS-1 (17) NL-OOPS-2 (10) NL-OOPS-3 (7) Reference classes (7) 
Book Book Book Book 

Borrower Borrower Borrower Borrower 
Person    
Copy   Item (Copy-> Book Copy; 

Magazine Copy)* 
Employee Employee   

Entity (delete, update, 
create) 

Entity (delete, update, 
create) 

Entity (delete, 
update, create)  

Entity (cancel)    
Entity (register)    

Software_System Software_System Software_System  
It (Library) It (Library) It (Library)  

Entity (Library)    
Library Library Library  
Loan   Loan 

Magazine Magazine Magazine Magazine 
Murderer (remove)    

Purchase    
Reservation Reservation  Reservation 

Thing (Superclass of 
Book and Magazine) 

Thing (Superclass of 
Book and Magazine) 

 
 

Pair (Superclass of Book 
and Magazine) 

  
 

Title   Title (->Book Title; 
Magazine Title)* 

R = 100%, P= 41.2% 
F-measure = 58.4% 

R=57.1-71.4%, P=40.0-
50.0%** 
F-measure =47.0-58.8% 

R=42.9%,P=42.9%, 
F-measure =42.9% 

Ravg=66.7%-71.4%; 
Pavg=41.4%-44.7%; 
F-measureavg=49.4%-53.4% 

* The hierarchies for “Copy” and “Title” represent two alternatives used to evaluate the models developed 
by the students. 
** The maximum values were calculated including the class “Thing”. 

For the Library case, the measures of the class identification task are higher than 
for the SoftCom case. However, the quality of the models produced by NL-OOPS is 
reduced by the presence of classes due to unresolved anaphoric references (“It”, 
“Entity”, “Pair”), or to ambiguity in the sentences. For example, the subject in 
sentence “The reservation is cancelled when the borrower check out the book or 
magazine or through an explicit cancelling procedure” is omitted. Another spurious 
class is “Murder”, which was introduced by LOLITA as subject of an event related to 
the “remove”-action (due to the absence of domain knowledge). 

4.2 Analysis of the results 

Evaluating the quality of the models is a subjective process. The experience gained 
from the experiments and the analysis of the literature about quality of conceptual 
model,5 helped us to define a schema to support their evaluation. The schema take 
into account the criteria related to both external and internal quality, evaluating: 
                                                 
5 There are only few papers about this topic; see for example, [21], [28]. 



 The content of the model i.e. semantic quality: how much and how deep the model 
represents the problem. 
 The form of the model i.e. syntactic quality: the proper and extensive use of UML 
notation. 
 The quantity of identified items: class model, number of classes, attributes, 
operations, associations, and hierarchies. 

Each of these criteria reflects a particular aspect of model quality. To evaluate them 
we assign a scale with a range from 0 (lowest mark) to 5 (highest mark). 
The overall quality of the models is measured basing on mixed approach: 
 the application of the quality schema 
 the evaluation by two experts, that assessed the models as they usually do for their 
students’ projects. 
For the class identification task we calculated recall, precision, and the F-measure. 

First Experiment. In the first preliminary experiment the group of twelve students 
was split into six subgroups [19]. Three groups worked with NL-OOPS. The length of 
the experiment was 90 minutes. For the six diagrams produced, two groups used 
PowerPoint, one used Excel, and all groups working without a tool chose Word. The 
results of the identification task are given in Table 3. 

Table 3. Class identification 

  1 tool 2 tool 3 tool 1 2 3 
Recall 72.7% 54.5% 81.8% 100.0% 100.0% 81.8%
Precision 88.9% 66.7% 69.2% 78.6% 68.8% 90.0%
F-measure 80.0% 60.0% 75.0% 88.0% 81.5% 85.7%

To evaluate the overall quality of class diagrams, we asked two experts to mark 
and comment on the solutions proposed by the different groups (table 4). 

Table 4. Experts’ evaluation of overall model quality 

Groups Quality 
1 tool pretty good
2 tool low 
3 tool good 

4 pretty good
5 good 
6 low 

The experts judged the best model to be the one produced by group 5, in which 
two of the students had used UML for real projects. So, if on this basis, it was 
excluded, in order to have comparable level of groups, the best model would be one 
developed with the support of NL-OOPS. Considering these results with those in table 
3, the tool seemed to have an inertial effect that on one hand led to the tacit 
acceptance of classes (e.g., group); on the other hand it resulted in the failure to 
introduce some indispensable classes (e.g., season, team). From the analysis of the 
feedbacks given by the participants some considerations emerged: 
 those who used NL-OOPS would have preferred more training; 
 each group that used NL-OOPS would prefer to have a tool to design the diagrams, 
while groups working without the tool did not voice this preference. 



All these considerations were used for the realisation of the subsequent 
experiments. 

Second Experiment. We repeated the experiment a year later involving ten students. 
In this experiment we divided the participants into five groups: two of them used NL-
OOPS. The participants had access to Poseidon CE. We asked them to produce the 
model of the domain classes for the problem assigned. The length of the experiment 
was set for 1 hour. As we wanted to obtain also information regarding the 
productivity of conceptual modelling supported by linguistic tools, we asked the 
students to save every fifteen minutes screen shot of their model. 

The performances related to the class identification task are summarised in the 
following table in which we report recall, precision and F-measure (table 5): 

Table 5. Class identification 

  15' 30' 45' 60' 
Recall 45.5% 69.7% 75.7% 75.7%

 tool 50.0% 59.1% 63.6% 81.8%
Precision 33.4% 71.3% 74.2% 76.4%

 tool 52.6% 60.3% 72.9% 73.3%
F-measure 38.5% 66.2% 73.5% 74.7%

 tool 50.9% 59.2% 67.3% 75.8%

Marks and comments on the overall quality made by two experts are given in 
table 6. 

Table 6. Expert evaluation of overall model quality 

Groups Quality 
1 low 
2 pretty good 
3 good 

4 tool pretty good 
5 tool low 

The experts judged the best model to be the one produced by group 3 which 
participants (according to the questionnaire) used UML for real projects. 

The application of the quality schema described in section 4.2 gives the following 
results (table 7): 

Table 7. Overall Quality 

 Content Form Items Total 
Time 15’ 30’ 45’ 60’ 15’ 30’ 45’ 60’ 15’ 30’ 45’ 60’ 15’ 30’ 45’ 60’ 

no tool 0.0 1.7 2.0 3.3 0.0 1.7 2.1 3.7 1.1 2.6 2.9 3.9 0.4 2.0 2.3 3.6 
With tool 3.0 3.3 2.5 3.5 3.0 3.2 2.5 2.8 2.2 2.2 3.4 4.1 2.8 2.9 2.8 3.5 

From this table we can see that in total the advantage of tool during modelling 
process remains substantial till the last time interval. 

Third Experiment. In the third experiment we made some more changes. First of all, 
the participants worked individually. They had to deal with two different problem 
statements of comparable difficulty, with and without the NL-OOPS prototype. We 
set the length of the experiment to 20 minutes for each case. As in the second 
experiment we decide to collect progressive results, so we asked them to save the 



model in an intermediate file after the first 10 minutes. The results for the class 
identification task are presented in the table 8. We should comment that even though 
the experts chose the requirement texts of comparable level, for the linguistic analysis 
there was the difference. For instance, Library case turned to be more difficult for the 
NLP system to understand because it contains many anaphors (table 1-2). 

Table 8. Class identification 
Parameter Case* 10’ 20’ 

softcom 51.5% 70.9%
library 47.6% 49.6% 53.6% 62.2% 

softcom 47.6% 53.6%

Recall 
 

 tool
  library 71.4% 59.5% 71.4% 62.5% 

softcom 85.2% 72.5%
library 66.7% 75.9% 51.5% 62.0% 

softcom 66.7% 51.5%

Precision 
 

tool 
  library 50.0% 58.3% 50.2% 50.8% 

softcom 64.2% 71.7%
library 55.6% 59.9% 52.5% 62.1% 

softcom 55.6% 52.5%

F-measure 
 

tool
  library 58.8% 57.2% 59.0% 55.7% 

We can assume here existence of some inertial effect because the users tend to 
keep all the candidate classes provided by NL-OOPS without getting rid of the fake 
classes (“it”, “thing”, “entity”, etc.). 

Table 9. Overall Quality 

Parameter Case 10' 20' 
softcom 1.4 3.9
library 1.1

1.3 
3

3.5 

softcom 2.1 3.5

Content 
  

tool
  library 2 2.1 4.2 3.9 

softcom 1.5 3.8
library 1.3 1.4 3 3.4 

softcom 2.4 4.2

Form 
 

tool
  library 2.6 2.5 4.9 4.5 

softcom 0.7 3
library 1.2 1 3.2 3.1 

softcom 1.7 4.1

Items 
 

tool
  library 2.2 2 4.7 4.4 

softcom 1.2 3.6
library 1.2 1.2 3.1 3.3 

softcom 2.1 3.9

Total 
  

tool
  library 2.3 2.2 4.6 4.3 

Marks and comments on the overall quality made by two experts are given in table 
10. 



Table 10. Expert evaluation of overall model quality 

Person Evaluation 
Time 10’ 10’ tool 20’ 20’ tool

1 low pretty good low good 
2 * - pretty good good 
3 low good low good 
4 low pretty good low good 
5 low pretty good pretty good good 
6 - - pretty good good 

7** - - - - 
8 - low pretty good low 
9 low good low good 

10 low - low low 
*Grey cells correspond to Softcom 
**Person 7 violated the rules of experiment, so the data cannot be considered as correct 

In this experiment both quality and productivity had been improved thanks to the 
support of the NL-OOPS tool, even though the participants were pessimistic about 
using such kind of linguistic instrument. 

5. Conclusions 

The empirical results from the three experiments neither confirm nor refute the initial 
hypothesis of this paper that the quality of a domain class model is higher if its 
development is supported by a NLP system. There is some evidence, however, that 
model quality is better for NLP tool users early on during the modelling process. See 
the results of the third experiment at 10 minutes in Table 9. As to the impact of a NLP 
tool on productivity, the results of the experiments are uniformly inconclusive, but 
there is some evidence in Tables 7 and 9 that users work faster when supported by the 
tool. We interpret these results to mean that at initial steps the tool is helpful in 
speeding up the work, but by the end of the process, the advantage is lost because the 
users have to go into details of the text anyway to verify the correctness of list of 
classes and to derive other elements of the class diagrams. 

The prototype was in some ways misused, as users were not able to take advantage 
of all the functionality provided by the system. Apparently, the groups working with 
the tool used only the initial draft of the class model and only part of the list of the 
candidate classes produced by the tool. A user did not go deep into the details of the 
semantic network constructed by the system and focused his/her attention only on the 
final list of the most probable classes candidates. To avoid this effect, NL-OOPS 
should have better integration of the different types of information it generates with 
the diagram visualization tools. 

On the methodological level, the quality evaluation schema and the approach we 
adopted for the experiments described in this paper for the evaluation of NL-OOPS 
can be used to evaluate the output produced by any case tool designed to support the 
modelling process. 

Other lessons learned from the experiments regarding features for an effective 
NLP-based CASE tool, include: 



 The knowledge base produced by the linguistic analysis must be presentable in a 
user-understandable form; 
 The most and least probable class and relationship candidates should be 
highlighted, to help the user modify the final model, either by extending it with 
other classes or by deleting irrelevant ones; 
 The tool should be interactive to allow the analyst to resolve ambiguities and 
reflect these changes in the semantic representation immediately. 
In general terms, the experiments confirm that, given the state of the art for NLP 

systems, heavyweight tools are not effective in supporting conceptual model 
construction. Instead, it makes sense to adopt lightweight linguistic tools that can be 
tailored to particular linguistic analysis tasks and scale up. Moreover, linguistic 
analysis may be more useful for large textual documents that need to be analysed 
quickly (but not necessarily very accurately), rather than short documents that need to 
be analysed carefully. We will be focusing our future research towards this direction. 

References 

1. Abbott R., “Program Design by Informal English Descriptions”. Communications of the 
ACM, 26 (11): 882-894, 1983 

2. Aguilera C., Berry D. M. “The Use of a Repeated Phrase Finder in Requirements 
Extraction”. Journal of Systems and Software, Vol. 13 p.209-230, 1990 

3. Ambriola V., Gervasi V. “An Environment for Cooperative Constraction of Natural-
Language Requirements Bases”, In Proc. 8th Conference on SWE Environments, IEEE, 
1997 

4. Booch G., “Object Oriented Development”. IEEE Transactions on Software Engineering, 
Vol. SE-12, N. 2, p.211-221, 1986 

5. Burg, J.F.M., Linguistic Instruments in Requirements Engineering, IOS Press, 1996 
6. Cauvet C., Proix C., Rolland C., “ALECSI: An Expert System for Requirements 

Engineering”, Conf. on Advanced Information Systems Engineering (CAiSE), Interlaken, 
CH, p.31-49, 1991 

7. Cockburn A., “Using Natural Language as a Metaphoric Basis for Object-Oriented 
Modelling and Programming”. IBM Technical Report, TR-36.0002, 1992 

8. Cockburn A., “Using natural language as a metaphoric base for OO”. In Proc. Conf. on 
OO Programming Systems Languages and Applications Archive, Vancouver, p.187-189, 
1993 

9. Cordes D., CarverD., “An Object-Based Requirements Modelling Method”, Journal of the 
American Society for Information Science, 43 (1): 62-71, 1992 

10. Dunn L., Orlowska M. A natural language interpreter for construction of conceptual 
schemas. In CAiSE’90, 2nd Conf. on Advanced Information Systems Engineering, LNCS 
436, p. 371–386, Springer-Verlag, 1990 

12. Eriksson H-E., Penker M., UML Toolkit, John Wiley, New York, 1998 
13. Ingalls Daniel H. H., “The Smalltalk-76 programming system design and 

implementation”. In Proc. 5th ACM SIGACT-SIGPLAN Symp. on Principles of 
programming languages, Tucson, Arizona, Jan. 23-25, p.9-16, 1978 

14. Garigliano R., Urbanowicz A., Nettleton D.J., “Description of the LOLITA system as 
Used in MUC 7”. In Proc. Conf. MUC 7, 1997 

15. Goldin L., Berry D. M.: “AbstFinder, A Prototype Natural Language Text Abstraction 
Finder for Use in Requirements Elicitation” In Proc. First International Conference on 
Requirements Engineering Colorado Springs, CO: IEEE Computer Society, 1994. 



16. Mich L., “NL-OOPS: From Natural Language to Object Oriented Requirements using the 
Natural Language Processing System LOLITA”, Journal of Natural Language 
Engineering, Cambridge University Press, 2 (2): 161-187, 1996 

17. Mich L., Garigliano R., “Ambiguity measures in Requirements Engineering”, in Proc. 
International Conference on Software - Theory and Practice - ICS2000, 16th IFIP World 
Computer Congress, Beijing, pp. 39-48, 21-25 Aug. 2000 

18. Mich, L. and Garigliano, R. “NL-OOPS: A Requirements Analysis tool based on Natural 
Language Processing”. In Proc. 3rd Int. Conf. On Data Mining 2002, Bologna, Sep. 25-
27, 2002, p.321-330 

19. Mich L., Mylopoulos J., Zeni N., “Improving the Quality of Conceptual Models with NLP 
Tools: An Experiment”. Tech. Report DIT, University of Trento, 2002 

20. Mich L., Franch M., Novi Inverardi P.L., “Requirements Analysis using linguistic tools: 
Results of an On-line Survey”, Journal of Requirements Engineering, Springer-Verlag, 
online Oct. 2003 

21. Moody D.L., Shanks G.G. “What Makes a Good Data Model? A Framework for 
Evaluating and Improving the Quality of ER Models”. Australian Computer Journal 
30(3): 97-110, 1998 

22. Osborne M., MacNish C.K., “Processing natural language software requirement 
specifications”. In Proc2nd IEEE Int. Conf. on Requir. Engineering (ICRE'96), IEEE 
Press, p. 229-236, 1996 

23. Fabbrini F., Fusani M., Gnesi S., Lami G. “Quality Evaluation of Software Requirements 
Specifications”, In Proc.of the 13th International SW Quality Week Conference, 2000 

24. Overmyer S.P., Lavoie B., Rambow O., “Conceptual Modelling through Linguistic 
Analysis Using LIDA”. In Proc. 23rd Int. Conf. on SW engineering (ICSE 2001), Jul. 
2001, p.401-410 

25. Rolland C., Proix C., “A natural language approach for requirements engineering”. In P. 
Loucopoulos (ed), Advanced Information Systems Engineering, LNCS. Springer-Verlag, 
593: 257-277, 1992 

26. Rumbaugh J., Blaha M., Premerlani W., Eddy F., Lorensen W., Object-Oriented 
Modelling and Design, Prentice-Hall, 1991 

27. Saeki M., Horai H., Enomoto H., “Software Development Process from Natural Language 
Specification”. In Proc. 11th Int. Conf. on SW Engineering, Pittsburgh, PE, Mar. 1989, 
p.64-73. 

28. Teeuw W.B., Van den Berg H., “On the Quality of Conceptual Models”. In Proc. Work. 
Behavioral models and design transformations - ER'97, Los Angeles, CA, USA, Nov. 6-7, 
1997, http://osm7.cs.byu.edu/ER97/workshop4/tvdb.html 

29. van Rijsbergen C.J., Information Retrieval, Butterworths, 1979 
30. Wilson, W., Rosenberg, L., Hyatt, L., "Automated Quality Analysis of Natural Language 

Requirement Specifications", In Proc. of the 14th Pacific Northwest SW Quality Conf., 
1996 

Appendix 

Softcom Problem statement 
Softcom needs a computer system to support athletic meetings for judged sports, such as 
gymnastics, diving or figure skating. Meetings for these sports take place during the season. A 
season goes on several months. Competitors register to take part to a meeting. They belong to 
teams and teams belong to leagues. Each meeting consists of various competitions, such as 
routines, figures or styles. Figures correspond to different difficulties and therefore they have 
different point values. Competitor can enter many competitions. In a particular competition, 
competitors receive a number which is announced and used to split them into groups. There is a 



panel of judges who give a subjective score for the competitors' performance. Working from 
stations, the judges can score many competitions. 
A competition consists of some trials. Competitors receive a score for each trial of a 
competition. The scores for the trials are read at each station. The system eliminates both the 
highest and the lowest score. The other scores are then processed and the net score is 
determined. Final prizes are based on the net scores. 

Library Problem statement 
A software system to support a library is to be developed. A library lends books and magazines 
to borrowers. These borrowers, books and magazines are registered in the system. A library 
handles the purchase of new titles for the library. Popular titles are bought in multiple copies. 
Old books and magazines are removed when they are too old or in poor conditions. The 
librarian in an employee of the library who interacts with the borrowers and whose work is 
supported by the system. A borrower can reserve a book or a magazine that is not currently 
available in the library. So that, when it is returned or purchased by the library, that person is 
notified. The reservation is cancelled when the borrower check out the book or magazine or 
through an explicit cancelling procedure. The library can easily manage the information about 
the books. It can create, update or delete the information. The information concerns the titles, 
the borrowers, the loans and the reservations. The system can run on all popular technical 
environments such as Windows, UNIX. It has a modern graphical user interface. The system is 
also easy to extend with new functionality. 


