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highly accurate discontinuous Galerkin method
or complex interfaces between solids and moving fluids
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ABSTRACT

We have extended a new highly accurate numerical scheme for
unstructured 2D and 3D meshes based on the discontinuous
Galerkin approach to simulate seismic wave propagation in het-
erogeneous media containing fluid-solid interfaces. Because of
the formulation of the wave equations as a unified first-order hy-
perbolic system in velocity stress, the fluid can be in movement
along the interface. The governing equations within the moving
fluid are derived from well-known first principles in fluid me-
chanics. The discontinuous Galerkin approach allows for jumps
of the material parameters and the solution across element inter-
faces, which are handled by Riemann solvers or numerical flux-
es. The use of Riemann solvers at the element interfaces makes-
the treatment of the fluid particularly simple bysetting the shear
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odulus in the fluid region to zero. No additional compatibility
elations, such as vanishing shear stress or continuity of normal
tresses, are necessary to couple the solid and fluid along an inter-
ace. The Riemann solver automatically recognizes the jump of
he material coefficients at the interface and provides the correct
umerical fluxes for fluid-solid contacts. Therefore, wave propa-
ation in the entire computational domain containing heteroge-
eous media, namely moving fluids and elastic solids, can be de-
cribed by a uniform set of acoustic and elastic wave equations.
he accuracy of the proposed scheme is confirmed by comparing
umerical results against analytic solutions. The potential of the
ew method was demonstrated in a 3D model problem typical for
arine seismic exploration with a fluid-solid interface deter-
ined by a complicated bathymetry.
INTRODUCTION

Numerical modeling has become an increasingly important tool
ot only in global seismology but also in seismic exploration. Nowa-
ays, the comparisons of real measurements from seismic data ac-
uisition in the field with synthetic data are invaluable in the investi-
ation of the complete 3D seismic wavefield generated by, e.g., a
omplex reservoir structure, free surface, or bathymetry. For classi-
al numerical methods, e.g., the finite-difference �FD� method, it is
till a challenging task to model correctly the interface waves arising
t contacts between different materials or waves created by surface
opography �e.g., Robertsson, 1996; Moczo et al., 2007b�.

In particular, interfaces between fluids and solid materials can
ause numerical artifacts �e.g., Kiefling and Feng, 1976�. At a fluid-
olid interface, the physical boundary condition is represented by
erfect slip; i.e., the shear stress has to vanish, whereas the continu-
ty of the normal stress and velocities has to be guaranteed. Further-

ore, standard FD schemes present accuracy problems at sharp ma-
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erial discontinuities, as shown, e.g., by Cunha �1993� and Zahrad-
ík et al. �1993�, particularly if there is no alignment with the grid
van Vossen et al., 2002�. However, Moczo et al. �2002, 2007a� re-
ort recent improvements of the FD method.

In the context of the finite-element method, different approaches
o avoid purely numerical problems at fluid-solid interfaces were in-
roduced �e.g., Zienkiewicz and Bettess, 1978; Bermudez et al.,
999�. These approaches use displacement in the solid material and
ressure in the fluid. Thompson �1994� has shown that a velocity po-
ential can be used in the fluid leading to a symmetric discrete system
f equations, which exhibits a block-diagonal mass matrix. Howev-
r, the density of the fluid must be homogeneous.

In the framework of the spectral-element �SE� method, Koma-
itsch et al. �2000� extended this approach so that the discretization
esults in a global mass matrix that is exactly diagonal by construc-
ion. The advantage over classical FE methods �e.g., Seriani et al.,
992; Priolo et al., 1994� lies in the enhanced efficiency on parallel

ctober 2007; published online 19 March 2008.
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T24 Käser and Dumbser
omputers because no inversion of large linear systems is necessary.
haljub et al. �2003� successfully applied the SE method on a fluid-

olid heterogeneous sphere.
Recently, Zhang �2004� introduced a grid-method �GM� approach

or heterogeneous media with high velocity contrasts. He extended
is approach to the problem of fluid-solid interfaces with complex
eometry. However, he also must use two approaches for treating the
isplacements in the elastic regions and the pressure in the acoustic
egions. Furthermore, an explicit interface condition has to be speci-
ed for the integral approach. In addition, a quite fine mesh spacing

s required to achieve accurate results.
In particular, the interface between a fluid and an elastic solid is of
ajor importance in marine exploration seismology. Fluid-solid

ontacts typically generate an interface wave, the Scholte wave
Scholte, 1942�, that is trapped near this fluid-solid interface. Today,
enerated Scholte waves often are used in marine geophysics to esti-
ate shallow shear-wave-velocity structures of marine sediments

own to 100 m or more beneath the seafloor �Kawashima and
imura, 1998�. The perfect slip condition between the fluid and the

olid requires the shear stress to vanish at the interface to avoid the
ntrance of shear stress waves in the fluid. This is handled in a way
imilar to what is known from the free-surface boundary condition.

ost numerical methods typically must handle fluid-solid interfaces
ith care. Special treatment is required, e.g., arithmetic averaging of

ffective medium parameters, for FD methods �van Vossen et al.,
002�, predictor-multicorrector staggered-time schemes for SE
ethods �Komatitsch et al., 2000�, or particular integral equations to

ulfill the interface boundary conditions in the GM method �Zhang,
004�.

We present an extension of a new numerical approach to the prob-
em of fluid-solid interfaces, based on the highly accurate discontin-
ous Galerkin �DG� method combined with a time-integration meth-
d using arbitrary high-order derivatives �ADER� recently intro-
uced in numerical seismology �de la Puente et al., 2007; Dumbser
nd Käser, 2006; Dumbser et al., 2007; Käser and Dumbser, 2006;
äser et al., 2007�. The seismic wave equation is solved in the veloc-

ty-stress formulation expressed as a first-order hyperbolic system of
artial differential equations. The unknowns are approximated with
iecewise polynomials inside each element, where discontinuities
re allowed at element interfaces.

Because of the use of an exact Riemann solver to compute numer-
cal fluxes across element interfaces, no special treatment of fluid-
olid interfaces is necessary even if the fluid is moving. The Rie-
ann solver automatically recognizes discontinuities in the material

arameters. The computational mesh �triangular or tetrahedral� is
ligned with the fluid-solid interface by using commercial software
or computer-aided design and mesh generation. The acoustic fluid
an be characterized simply by setting its shear modulus � to zero.

Furthermore, the fluid does not have to be at rest but can move
ith time. The fluid velocity can vary throughout the fluid. There-

ore, effects of ocean currents for deep-ocean simulations can be de-
ermined with high accuracy. We remark that the wave-propagation
rocess in a moving fluid can be treated only by expressing the wave
quation as a first-order hyperbolic system, e.g., in the velocity-
tress formulation, because the physical effect of convection leads to
first-order differential operator.
The paper is arranged as follows. First we derive the governing

quations based on fundamental principles of fluid mechanics lead-
ng to a hyperbolic system that describes acoustic wave propagation
n fluids as well as elastic wave propagation in solids. Next we
resent the main ingredients of the new extended numerical scheme
o handle a moving fluid and show the stability condition restricting
he time step. Finally, we validate our results by comparisons with
nalytic solutions before applying the new ADER-DG scheme to a
D test case with complex bathymetry including vertical segments
f the seafloor.

GOVERNING EQUATIONS

Here, we derive the partial differential equations describing the
ave propagation in an elastic solid and an acoustic fluid. To arrive

t such a comprehensive formulation of a unified system of govern-
ng equations, we formally combine the classical velocity-stress for-

ulation for wave propagation in elastic solids with the acoustic
ave equations derived from fluid dynamics, including the case of a
oving fluid.
First we present the classical velocity-stress formulation for wave

ropagation in a resting, purely elastic medium that is well known in
he field of seismology. Without showing the details of the standard
erivation from Hooke’s law, the definition of strains, and the dy-
amic relationship between the acceleration and net force resulting
rom the stresses �see LeVeque, 2002�, the equations for stresses and
elocities without source terms are

�

� t
� xx � �� � 2��

�

�x
u� � �

�

� y
v� � �

�

� z
w� � 0,

�

� t
� yy � �

�

�x
u� � �� � 2��

�

� y
v� � �

�

� z
w� � 0,

�

� t
� zz � �

�

�x
u� � �

�

� y
v� � �� � 2��

�

� z
w� � 0,

�

� t
� xy � �� �

�x
v� �

�

� y
u�� � 0,

�

� t
� yz � �� �

� z
v� �

�

� y
w�� � 0,

�

� t
� xz � �� �

� z
u� �

�

�x
w�� � 0,

�
�

� t
u� �

�

�x
� xx �

�

� y
� xy �

�

� z
� xz � 0,

�
�

� t
v� �

�

�x
� xy �

�

� y
� yy �

�

� z
� yz � 0,

�
�

� t
w� �

�

�x
� xz �

�

� y
� yz �

�

� z
� zz � 0. �1�

ere, as usual, the normal stresses are indicated by � xx, � yy, � zz; the
hear stresses by � xy, � yz, � xz; and the components of the particle ve-
ocities by u�, v�, w�.

The following is a brief review of the standard derivation of the
coustic wave equations from the fundamental equations of fluid dy-
amics �e.g., Hirsch, 1990; Landau and Lifshitz, 1959� given by the
onservation of mass and momentum of the form

��

� t
� � · ��v� �

��

� t
� v · � � � � � · v � 0, �2�
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�v

� t
� �v · � �v �

�p

�
� 0, �3�

here � denotes mass density, v � �u,v,w� fluid velocity, and p
ressure.

Linear acoustic wave propagation then is derived by assuming
mall density, velocity, and pressure perturbation of a background
tate; i.e., we can introduce the decompositions

� � �0 � ��, v � v0 � v� and p � p0 � p�, �4�

here the density, velocity, and pressure fields associated with the
ackground flow are denoted as �0, v0 � �u0,v0,w0� and p0, respec-
ively, and the density, velocity, and pressure fluctuations in the fluid
re represented by ��, v� � �u�,v�,w�� and p�. For linear acoustic
ave propagation, the density and pressure fluctuations are small
ith respect to the background state, i.e., �� � �0 and p� � p0.
Furthermore, for the case of most liquids, we can assume that the

ackground fluid is inviscid �� � 0� and incompressible, i.e., �0

const in space and time. Note that the background flow itself is
ot calculated but is specified as an input function of time and space.
his assumption, along with the fact that the background flow v0 it-
elf obeys the conservation of mass �equation 2�, provides the classi-
al divergence-free condition for the background velocity field

� · v0 � 0. �5�

The previous assumptions are justified for linear acoustic waves
n inviscid and incompressible fluids and in particular for most liq-
ids. Based on these assumptions, we first derive the governing par-
ial differential equation for the pressure perturbation p�. Toward
his end, we insert the perturbation ansatz �equation 4�, the incom-
ressibility assumption, and the divergence-free property �equation
� of the background flow into the equation of mass conservation
equation 2�. Note that in the linear case, the quantities of the fluctua-
ions are so small that their products can be ignored �LeVeque,
002�, which yields the following expression for the density pertur-
ation:

���

� t
� v0 · � �� � �0 � · v� � 0. �6�

According to Landau and Lifshitz �1959�, isentropic pressure per-
urbations p� can be linked to the density fluctuations �� by the equa-
ion of state,

p� � cp
2��, �7�

here cp denotes the acoustic wave speed, and is defined, as usual, in
erms of density � and bulk modulus K as

cp
2 �

K

�
�

�

�
, �8�

ecause for an inviscid fluid, the shear modulus is � � 0, and hence
� �. Using equation 4 in the definition �equation 8�, neglecting ��

gainst �0, and inserting it along with equation 7 into equation 6,
eads to the final equation for the pressure perturbation p� of the form

� p�

� t
� v0 · � p� � � � · v� � 0. �9�
Furthermore, the well-known relation between the pressure and
he stress tensor in fluid mechanics �e.g., Hirsch, 1990; Landau and
ifshitz, 1959� is given by

� � �p�I � � , �10�

here for the inviscid fluids, the shear stress � vanishes, i.e., � � 0.
ote that here, I denotes the unit matrix. Therefore, in fluids, the nor-
al stresses are identical to the negative pressure fluctuations, i.e.,
xx � � yy � � zz � �p�.
In addition, we need the governing partial differential equation for

he velocity fluctuations v�. Again, we use the perturbation ansatz
equation 4� but insert it into the conservation of momentum �equa-
ion 3� and obtain

�v0

� t
�

�v�

� t
� ��v0 � v�� · � ��v0 � v��

�
�p0 � � p�

�0 � ��
� 0. �11�

sing the property in equation 5 and the fact that the background
ow v0 itself obeys equation 3 and again linearizing the equation by
eglecting �� against �0 and the products of small fluctuations, we
et the final equation for the velocity perturbation v� of the form

�v�

� t
� �v0 · � �v� �

�p�

�0
� � �v� · � �v0. �12�

Equations 9 and 12 are the governing equations for linear acoustic
ave propagation in incompressible moving fluids and usually are

alled the linearized Euler equations �see Bogey et al., 2002�. Note
hat the movement of the fluid is included in both equations via the
ackground flow v0 and that for very small fluctuations v� or spatial-
y nearly constant background flow v0, the source term �v� · � �v0 in
quation 12 can be omitted. For a generalization of these equations
o more general weakly compressible fluids with variable density
nd temperature, see Munz et al. �2007�.

The use of equation 10 to express the acoustic equations 9 and 12
imilarly to the velocity-stress formulation �equation 1� leads to the
quation system

�

� t
� xx � u0

�

�x
� xx � v0

�

� y
� xx � w0

�

� z
� xx

� �� �

�x
u� �

�

� y
v� �

�

� z
w�� � 0,

�

� t
� yy � u0

�

�x
� yy � v0

�

� y
� yy � w0

�

� z
� yy

� �� �

�x
u� �

�

� y
v� �

�

� z
w�� � 0,

�

� t
� zz � u0

�

�x
� zz � v0

�

� y
� zz � w0

�

� z
� zz

� �� �

�x
u� �

�

� y
v� �

�

� z
w�� � 0,

�

� t
u� � u0

�

�x
u� � v0

�

� y
u� � w0

�

� z
u� �

1

�

�

�x
� xx
0
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� �u�
�

�x
u0 � v�

�

� y
u0 � w�

�

� z
u0,

�

� t
v� � u0

�

�x
v� � v0

�

� y
v� � w0

�

� z
v� �

1

�0

�

� y
� yy

� �u�
�

�x
v0 � v�

�

� y
v0 � w�

�

� z
v0,

�

� t
w� � u0

�

�x
w� � v0

�

� y
w� � w0

�

� z
w� �

1

�0

�

� z
� zz

� �u�
�

�x
w0 � v�

�

� y
w0 � w�

�

� z
w0, �13�

hich describes the wave propagation in an acoustic medium with
ackground flow v0. Note that here, the first three equations are iden-
ical because, in the acoustic case, all normal stresses are equal and
epresent the pressure variations p�. However, we separate them to
how clearly the analogy to the elastic equations.

Finally, we can combine the equation systems 1 and 13 and for-
ally express them as a unified linear hyperbolic system leading to

he combined 3D wave equations for the elastic solids and acoustic
iquids with background flow v0 in the form

�

� t
� xx � u0

�

�x
� xx � v0

�

� y
� xx � w0

�

� z
� xx

� �� � 2��
�

�x
u� � �

�

� y
v� � �

�

� z
w� � 0,

�

� t
� yy � u0

�

�x
� yy � v0

�

� y
� yy � w0

�

� z
� yy

� �
�

�x
u� � �� � 2��

�

� y
v� � �

�

� z
w� � 0,

�

� t
� zz � u0

�

�x
� zz � v0

�

� y
� zz � w0

�

� z
� zz

� �
�

�x
u� � �

�

� y
v� � �� � 2��

�

� z
w� � 0,

�

� t
� xy � u0

�

�x
� xy � v0

�

� y
� xy � w0

�

� z
� xy

� �� �

�x
v� �

�

� y
u�� � 0,

�

� t
� yz � u0

�

�x
� yz � v0

�

� y
� yz � w0

�

� z
� yz

� �� �

� z
v� �

�

� y
w�� � 0,

�

� t
� xz � u0

�

�x
� xz � v0

�

� y
� xz � w0

�

� z
� xz

� �� �

� z
u� �

�

�x
w�� � 0,
�

� t
u� � u0

�

�x
u� � v0

�

� y
u� � w0

�

� z
u�

�
1

�0
� �

�x
� xx �

�

� y
� xy �

�

� z
� xz�

� �u�
�

�x
u0 � v�

�

� y
u0 � w�

�

� z
u0,

�

� t
v� � u0

�

�x
v� � v0

�

� y
v� � w0

�

� z
v�

�
1

�0
� �

�x
� xy �

�

� y
� yy �

�

� z
� yz�

� �u�
�

�x
v0 � v�

�

� y
v0 � w�

�

� z
v0,

�

� t
w� � u0

�

�x
w� � v0

�

� y
w� � w0

�

� z
w�

�
1

�0
� �

�x
� xz �

�

� y
� yz �

�

� z
� zz�

� �u�
�

�x
w0 � v�

�

� y
w0 � w�

�

� z
w0. �14�

We emphasize that the acoustic part of the combined system
equation 14� is valid only for a divergence-free, incompressible, in-
iscid �� � 0� fluid moving with v0 � v0�x,y,z,t�. Note that the
urely acoustic case is retrieved from equation 14 when setting the
hear modulus � and the initial condition of the shear stresses to zero
equation 14�. In this case, the governing equations 9 and 12 derived
rom fluid mechanics are retrieved.

Within the solid, there is, of course, no background flow, and
ence v0 � 0. In this case, the unified equation 14 system reduces to
he classical system of the elastic wave equations �equation 1�. We
mphasize that the formulation of the combined equations �equation
4� represents the key enabler that allows our new numerical scheme
o treat jointly the acoustic and elastic cases. In this way, the algo-
ithm can deal with both media merely by choosing the correspond-
ng physically relevant material parameters. No additional interface
onditions are needed to couple the acoustic medium and the elastic
edium.
The main purpose for the formally combined wave equations

equation 14� is to allow us to apply a single numerical scheme using
ew Jacobian matrices that depend on the material properties as-
igned to each element. This also explains why we formally keep the
econd, third, and fourth terms in equations 3–5 in equation 14
hich, in fact, are always zero. Note that in the elastic case, v0 � 0,
hereas in the acoustic case, � xy � � yz � � xz � 0. The correct

oupling then is achieved automatically by the exact Riemann solver
escribed below in equation 19. Note, however, that the mesh must
onform to any fluid-solid discontinuity; i.e., the element interfaces
ust be aligned with such a material interface.

THE NUMERICAL SCHEME

The 3D wave equation in the velocity-stress formulation �equa-
ion 14� can be written in a compact form as a first-order hyperbolic
ystem of partial differential equations of the form
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�Qp

� t
� Apq

�Qq

�x
� Bpq

�Qq

� y
� Cpq

�Qq

� z
� EpqQq � sp,

�15�

here Q is the vector of the nine unknown variables indexed by p,
.e., the stresses and velocities such that Q � �� xx,� yy,� zz,� xy,

yz,� xz,u�,v�,w��T. Note that classical tensor notation is used, which
mplies summation over each index that appears twice. The matrices

pq, Bpq, and Cpq are the space-dependent Jacobian matrices, and Epq

s the matrix describing a reactive source term. All matrices are of
ize 9�9, where p identifies the row and q the column. The vector sp

s an external source term.
In the ADER-DG approach, a 2D or 3D computational domain �

s divided into conforming triangular or tetrahedral elements T�m� be-
ng addressed by a unique index �m�. In the following, we briefly
ive the 3D formulation, which can be reduced simply to the 2D case
y ignoring the last term of the left-hand side of equation 15 and re-
ucing the size of the Jacobians to 5�5, because we have only Q

�� xx,� yy,� xy,u�,v��T �Käser and Dumbser, 2006�.
The numerical solution Qh of equation 15 is approximated inside

ach element T�m� by a linear combination of space-dependent poly-
omial basis functions � l�	 ,
 ,� � of degree N and time-dependent
egrees of freedom Q̂pl

�m��t�,

�Qh
�m��p�	 ,
 ,� ,t� � Q̂pl

�m��t�� l�	 ,
 ,� � , �16�

here 	 , 
 , and � are the coordinates in a canonical reference ele-
ent TE �Dumbser and Käser, 2006�. The index h denotes the numer-

cal solution, the index p stands for the number of unknowns in the
ector Q, and l indicates the lth basis function. The explicit form of
he basis functions � l�	 ,
 ,� � is shown inAppendix A.

Note that the index l ranges from 0 to its maximum value L � 1,
here L �

1
2 �N � 1��N � 2� or L �

1
6 �N � 1��N � 2��N � 3�

re the numbers of required basis functions in 2D and 3D, respec-
ively, depending on the polynomial degree N. Furthermore, we re-
ark that a polynomial degree N leads to a numerical approximation

rder of N � 1.
Multiplying equation 15 by a test function �k and integrating over

n element T�m� gives

T�m�
�k

�Qp

� t
dV � �

T�m�
�k�Apq

�Qq

�x
� Bpq

�Qq

� y

� Cpq
�Qq

� z
�dV � �

T�m�
�k�EpqQq � sp�dV . �17�

ntegration of equation 17 by parts then yields

�
T�m�

�k
�Qp

� t
dV � �

�T�m�
�kFp

hdS � �
T�m�

� ��k

�x
Apq

�
��k

� y
Bpq �

��k

� z
Cpq�QqdV

� �
T�m�

�k�EpqQq � sp�dV , �18�

here a numerical flux Fp
h has been introduced in the surface integral

ecause Qh might be discontinuous at an element boundary in the
G approach.
For a detailed derivation of the fully discrete formulation of the
DER-DG scheme, the reader is referred to the introductory papers
y Käser and Dumbser �2006� and by Dumbser and Käser �2006�.
here, the flux Fp

h is derived for a coordinate system, which is
ligned with the outward-pointing unit normal vector n of an ele-
ent boundary, i.e., an edge of a triangle in the 2D case or a triangu-

ar face of a tetrahedron in the 3D case. The required transformation
f the unknowns in vector Qp from the global Cartesian system to the
ocally normal, edge- or face-aligned coordinate system is given by
he rotation matrix �Tpq��1 �Käser and Dumbser, 2006; Dumbser and
äser, 2006�.

umerical flux

For the linear system given by equation 15, we use an exact Rie-
ann solver to compute the flux across element interfaces by up-
inding. For a detailed description of Riemann solvers, see the text-
ooks of Toro �1999� and LeVeque �2002�. The flux is computed us-
ng only the Jacobian matrix Apq in the x-direction with the material
roperties of the local element. Therefore, in the global Cartesian
yz-system, the numerical flux Fp

h in equation 18 for element T�m�

cross the interface with one of the neighbor elements T�mj� is given
s

Fp
h �

1

2
Tpq��Aqr

n ��m� � �Aqr
n ��m���Trs��1Q̂sl

�m�� l
�m�

�
1

2
Tpq��Aqr

n ��m� � �Aqr
n ��m���Trs��1Q̂sl

�mj�� l
�mj�,

�19�

here Q̂sl
�m�� l

�m� and Q̂sl
�mj�� l

�mj� are the boundary extrapolated values
f the numerical solution from element T�m� and the jth side neighbor
�mj�, respectively.
For the 2D case, we have j � 1, . . . ,3; for the 3D case, we have j
1, . . . ,4. The Jacobian matrix �Aqr

n ��m� contains the material pa-
ameters of element T�m� aligned with the normal direction n

�nx,ny,nz�T to the jth side of the element. The matrix Tpq repre-
ents the back-transformation into the global xyz-system. We point
ut that the boundary-extrapolated values of both elements adjacent
o an interface contribute to the numerical flux. Note that the numeri-
al flux respects the nonconservative form of the governing equation
5.

In the following, we give the explicit form of �Aqr
n ��m� and the abso-

ute value �Aqr
n ��m� of the Jacobian matrix necessary to compute the

umerical flux. We do not distinguish the cases of a moving fluid or a
uid at rest, because the fluid at rest represents only the special case
f a moving fluid with flow velocity v0 � 0. The notation �Aqr

n ��m� of
he absolute value of the Jacobian matrix has the meaning of apply-
ng the absolute value operator to its eigenvalues a1,a2, . . ., i.e.,

�Aqr
n ��m� � Rqp

An
��ps��Rsr

An
��1, with

��ps� � diag��a1�, �a2�, . . . � , �20�

here Rqp
An

is the matrix of the right eigenvectors of Aqr
n .

As shown by the formally unified equations �equation 14�, for the
ase of a background convection with local convection speed v0

�u0,v0,w0�T, the combined system matrices must be modified with
espect to the standard elastic wave equations �Käser and Dumbser,
006; Dumbser and Käser, 2006� by simply adding the normal con-



v
e
a
m

n

w
l
a
t
a

f

H
t
m
c
m

n
e
C
J
T
t
D

t
t
p
s
A
s

o
r

w
t
n
i
m
p
t

s
a
f
f
b
F
a
d
1
f

T28 Käser and Dumbser
ection speed un � n ·v0 to the diagonal of the matrices Apq
n . The

igenvectors Rqp
An

remain unchanged by this modification, whereas
ll eigenvalues a1,a2, . . . are modified by adding the value of the nor-
al velocity un.
The resulting matrices Apq

n and �Apq
n � for computing the flux in the

ormal direction n are

Apq
n ��

un 0 0 0 0 0 ��0cp
2 0 0

0 un 0 0 0 0 �� 0 0

0 0 un 0 0 0 �� 0 0

0 0 0 un 0 0 0 �� 0

0 0 0 0 un 0 0 0 0

0 0 0 0 0 un 0 0 ��

�
1

�0

0 0 0 0 0 un 0 0

0 0 0 �
1

�0

0 0 0 un 0

0 0 0 0 0 �
1

�0

0 0 un

� ,

�21�

�Apq
n � ��

p 0 0 0 0 0 0 0 0

�

�0cp

�un� 0 0 0 0 0 0 0

�

�0cp

0 �un� 0 0 0 0 0 0

0 0 0 s 0 0 0 0 0

0 0 0 0 s 0 0 0 0

0 0 0 0 0 s 0 0 0

0 0 0 0 0 0 p 0 0

0 0 0 0 0 0 0 s 0

0 0 0 0 0 0 0 0 s

� ,

ith cp � 	� � 2�/�0 and cs � 	�/�0 being the P- and S-wave ve-
ocities of the material and p � cp � �un� and s � cs � �un� the
bsolute values of the modified eigenvalues. We remark that the ma-
rices for the case of a solid are obtained simply by setting un � 0
nd those for a fluid by setting � � 0.

The final form of the fully discrete ADER-DG scheme reads as
ollows:


�Q̂pl
�m��n�1 � �Q̂pl

�m��n��J�Mkl �
1

2 �
j�1

4

Tpq
j ��Aqr

n ��m�

� �Aqr
n ��m���Trs

j ��1�Sj�Fkl
�,j · Islmn��t��Q̂mn

�m��n

�
1

2 �
j�1

4

Tpq
j ��Aqr

n ��m� � �Aqr
n ��m��

��Trs
j ��1�Sj�Fkl

�,j,i,h · Islmn��t��Q̂mn
�mj��n
� A
pq
* �J�Kkl

	 · Iqlmn��t��Q̂mn
�m��n � B

pq
* �J�Kkl


 · Iqlmn��t�

��Q̂mn
�m��n � C

pq
* �J�Kkl

� · Iqlmn��t��Q̂mn
�m��n

� Epq · Iqlmn��t��Q̂mn
�m��n�J�Mkl � �

n

n�1

�
TE

�kspdV . �22�

ere, Mkl denotes the elementary mass matrix; Kkl
	 , Kkl


 , and Kkl
� are

he elementary stiffness matrices; and Fkl
�,j and Fkl

�,j,i,h are the ele-
entary flux matrices. The DG formulation causes all of these matri-

es to be elementary matrices because the coupling between the ele-
ents is achieved via the numerical flux.
Because of the introduction of a reference element, all mass, stiff-

ess, and flux matrices must be computed only once on the reference
lement. The tensor Iqlmn��t� denotes the time integration via the
auchy-Kovalewski procedure, and �J� is the determinant of the

acobian matrix of the transformation from the physical tetrahedron
�m� into the reference tetrahedron TE. The size of the jth face of the

etrahedron T�m� is denoted by �Sj�. More details can be found in
umbser and Käser �2006�.

STABILITY CONDITION

The stability of our explicit time-stepping scheme is controlled by
he stability number introduced by Courant et al. �1928�, often called
he CFL number. For a thorough investigation of the linear stability
roperties of the ADER-DG schemes via a von Neumann analysis,
ee Dumbser �2005�. Dumbser shows that the stability limit for the
DER-DG scheme is slightly lower than that for Runge-Kutta DG

chemes.
Therefore, the CFL number is set in all our computations to 50%

f the stability limit 1/�2N � 1� of the Runge-Kutta DG schemes,
esulting in the stability limit for our time step given by

�t �
1

2N � 1
· min

�m�

r�m�

a�m� , �23�

here r�m� is the radius of the incircle or insphere of a triangular or
etrahedral element T�m�, respectively, and a�m� is the maximum sig-
al speed, i.e., the maximum eigenvalue of the Jacobians Apq

n , arising
n this element. As shown in the previous section, in the case of the

oving fluid, this signal speed is given by the sum of the P-wave
ropagation velocity and the normal fluid’s convection speed un

�m�, so
hat a�m� � cp

�m� � un
�m�.

VALIDATION

A classical 2D test case to validate the implementation of fluid-
olid interfaces consists of two homogeneous half-spaces, i.e., an
coustic material and an elastic material in contact at a plane inter-
ace. The solution for a compressional point source and a plane inter-
ace can be computed analytically �e.g., Pilant, 1979� and hence can
e used to evaluate numerical results. For this paper, we use the
ORTRAN code EX2DELEL of Berg et al. �1994� to compute the
nalytic solutions. The code EX2DELEL is based on the Cagniard
e Hoop technique �de Hoop, 1960; de Hoop and van der Hijden,
983�, which allows for the use of an arbitrary-source time function
or displacements or velocities.
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ADER-DG at fluid-solid interfaces T29
The setup of the physical problem is similar to that of Komatitsch
t al. �2000�, who used the SE method �Komatitsch and Vilotte,
998; Komatitsch and Tromp, 1999�. The computational domain is

� 
�4000 m,4000 m�� 
�3000 m,3000 m�, with an acoustic
edium �z � 0� over an elastic medium �z � 0� separated by a

lane fluid-solid interface at z � 0. The material parameters of the
wo media are given in Table 1. The domain � is discretized by
3,184 triangular elements of an average edge length of 50 m. The
inimum occurring edge length is 29 m in the solid material, and the
inimum radius of incircles r�m� is 8 m, which affects the stability

riterion and therefore determines the maximum possible time step,
s given in equation 23.

The domain boundaries are absorbing boundaries; see Käser and
umbser �2006� and Dumbser and Käser �2006� for details. The

ource is a compressional point source with a Ricker wavelet as
ource time function

S�t� � a1�0.5 � a2�t � tD�2�ea2�t � tD�2
, �24�

here tD � 115 ms is the source delay time and a1 � 1�1014 and
2 � ��� fc�2 are constants determining the amplitude and frequen-
y of the Ricker wavelet of central frequency fc � 10 Hz. There-
ore, the exact expression of the resulting source vector sp acting on
he governing partial differential equation 15 is

sp�x,t� � �1,1,0,0,0�T ·
S�t�

�0�x�
· � �x � xs� , �25�

here xs � �xs,zs� is the point-source location.
For the following numerical experiments, we use an ADER-DG

3 and anADER-DG O6 scheme; the first scheme provides an accu-
acy in space and time of order three and the second scheme an accu-
acy in space and time of order six. For the order three case, the time
tep is 5.8�10�4 s, and for the order six case, it is 2.1�10�4 s. The
nal simulation time is 3.0 s. For comparison, we run the lower-or-
er ADER-DG O3 scheme on a refined mesh of 172,992 triangles
ith an average edge length of 25 m, which leads to a time step of
.9�10�4 s.

ource and receiver in the acoustic medium

In the first numerical experiment, the source is located at xs

�xs,zs� � �0,�500� m, and a receiver is positioned at xr

�xr,zr� � �2177.3,�533.33� m, i.e., both above the fluid-solid
nterface. We remark that neither the source nor the receiver loca-
ions must coincide with a mesh vertex. Through the definition of the
pproximation function in equation 16, each element contains the
ontinuous information of high-order polynomials that can be evalu-
ted exactly at any point location inside the element �Käser and
umbser, 2006�.

able 1. Material parameters for the test cases of a fluid-
olid interface between an acoustic medium and an elastic
edium.

cp

�m/s�
cs

�m/s�
�0

�kg/m3�
�

�GPa�
�

�GPa�

Acoustic 1500 0.000 1020 2.295 0.000

Elastic 3400 1963 2500 9.633 9.633
A snapshot of the normal stress component � xx is plotted at time t
1.25 s in Figure 1 �top� for the case of the fluid at rest obtained

ith the ADER-DG O6 scheme. The locations of the source and re-
eiver are indicated with an empty and a full circle, respectively. The
a� direct and �b� reflected acoustic pressure waves are clearly visible
n the fluid. In the solid, we see the �c� transmitted P-wave with long-
r wavelength caused by the higher velocity and �d� the converted P-
o-S-wave �d�.

In addition, a symmetric pattern of refracted head waves �e� and
f� generated along the fluid-solid interface can be observed, as in the
xperiment of Komatitsch et al. �2000�. The Scholte wave �g� is
ardly visible at the triple point where the direct P-wave and the re-
ected P-wave in the fluid meet the converted P-to-S-wave in the
olid. This is because of the small velocity contrast of the acoustic P-
ave �a� and the elastic S-wave �d� that have not yet separated suffi-

iently after t � 1.25 s.
In Figure 2a and b, we compare the analytic solution and the dif-

erent numerical solutions of the horizontal and vertical velocity
omponents of the wavefield at receiver location xr. The agreement
f all phases is excellent, confirming the high accuracy of theADER-
G O6 scheme, even on the coarse unstructured triangulations with
mesh spacing of h � 50 m. The results of the ADER-DG O3

cheme on the same mesh show insufficient accuracy. On the refined

igure 1. Snapshot of the stress component � xx at t � 1.25 s with
top� the fluid at rest and �bottom� the fluid moving with 750 m/s to
he right. Different wave phases show a deformation caused by the

oving fluid as well as asymmetrically distorted wave patterns. The
ource position is indicated by the white circle. Receiver positions
re indicated by the black circle and squares. Indications for differ-
nt wave types are: �a� the direct wave, �b� the reflected acoustic
ressure waves, �c� the transmitted P-wave, �d� the converted P-to-
-wave, �e� and �f� the refracted head waves, and �g� the Scholte
ave.
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T30 Käser and Dumbser
mesh with h � 25 m, the results of the ADER-
DG O3 clearly improve. However, the results re-
main worse than those for the ADER-DG O6
scheme on the coarse mesh.

The computational time on a SGI Altix 4700
platform using eight Intel Itanium2 Madison pro-
cessors, each with 1.6 GHz and 4 GByte of
RAM, was 1036 s for the ADER-DG O3 scheme
on the coarse mesh. In comparison, the simula-
tion with the ADER-DG O6 scheme took 9450 s,
whereas theADER-DG O3 simulation on the fine
mesh took 7740 s. Therefore, we can confirm the
results of previous work �Dumbser and Käser,
2006� claiming that higher-order schemes on
coarse meshes pay off compared with lower-or-
der schemes on fine meshes. Furthermore, in Fig-
ure 3, we show the numerical results of ADER-
DG O6 simulation for the normal and shear stress
components � xx and � xz, respectively, obtained at
the same receiver.

We remark that the amplitude of the normal
stress component � xx corresponds to the ampli-
tude of the pressure fluctuations p� as given in
equation 10. Therefore, by using equation 7, we
can validate our linearization for the derivation of
the wave equations �equation 13� because the
maximum of the absolute pressure fluctuation of
�p��max38.4�103 N/m2 leads to a maximum
density perturbation of ����max0.017 kg/m3,
which is very small compared with the assumed
density of seawater � � 1020 kg/m3. For com-

leteness, we show the numerical results obtained for the shear
tress � xz in Figure 3. Because water is inviscid �� � 0�, no shear
aves appear in the fluid part of the model, which is modeled cor-

ectly by theADER-DG scheme.
In summary, the results confirm the correct implementation of the

DER-DG scheme for the case of fluid-solid interfaces because re-
racted waves are typically very sensitive to the accurate treatment
f material interfaces. We remark that the results shown by Koma-
itsch et al. �2000� seem to include one more time derivative, most
ikely caused by the use of the time derivative of a Ricker pulse as
ource time function.

ource and receiver in the elastic medium

In the second experiment, the source is located at xs � �xs,zs�
�0,500� m and the receiver is located at xr � �xr,zr� � �2177.3,

533.33� m, i.e., both below the fluid-solid interface. As pointed out
y Komatitsch et al. �2000�, with this setup particularly, the correct
reatment of the converted P-to-S-wave in the elastic medium can be
ested. In Figure 2c and d, we compare three numerical solutions of
he horizontal and vertical velocity components of the wavefield
ith the analytic solution at the new receiver location xr. The agree-
ent of all phases is again excellent, confirming the performance of

he high-order ADER-DG O6 scheme and validating the accurate
umerical treatment of the fluid-solid interface. As in the previous
xperiment, the ADER-DG O3 simulations on coarse and fine mesh
re less accurate.

g fluid. Parts
stic medium
e 50-m mesh
w the results
e ADER-DG
DER-DG O3
) b)

) d)

igure 2. Comparison of numerical and analytic seismograms for the restin
a� and �b� show the results for the case of the source and receiver in the acou
btained by the ADER-DG O6 scheme and the ADER-DG O3 scheme on th
nd the ADER-DG O3 scheme on a refined 25-m mesh. Parts �c� and �d� sho
or the case of the source and receiver in the elastic medium obtained by th
6 scheme and the ADER-DG O3 scheme on the 50-m mesh and the A
a)

b)

igure 3. Seismograms for the case of the source and receiver in the
coustic medium: The numerical solution of �a� the normal stress
omponent � xx and �b� the shear stress component � xz obtained with
heADER-DG O6 scheme for the case with the fluid at rest.
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ADER-DG at fluid-solid interfaces T31
ource and receiver in the moving acoustic medium

In a third experiment, we demonstrate the capability of the
DER-DG method to include a moving fluid. Figure 1 �bottom�

hows a similar test to the previous one but with a fluid moving at a
peed of 750 m/s to the right. Note that in this case of constant back-
round flow, the reactive source term in equation 15 can be omitted.
e observe that the wavelengths of the direct �a� and reflected �b� P-
ave in the fluid are strongly distorted because the fluid is moving.

n addition, the generated waves �c� and �d� in the elastic medium are
oved slightly to the right because, as a result of the moving fluid,

he first arrival of the direct P-wave �a� at the fluid-solid interface oc-
urs slightly to the right of the source location x � 0.

The symmetries of the converted P-to-S-wave �d� and the head
aves �e� and �f� are distorted because of the different effective
ave-propagation speeds to the right and left in the fluid. In particu-

ar, the Scholte wave �g� radiating energy back
nto the acoustic medium is clearly visible now.
he signals are recorded at two receivers at xl

��1088.65,�533.33� m and xr � �1088.65,
533.33� m, upstream and downstream with re-

pect to source location xs. The locations of the
ource and receivers are indicated in Figure 1
ith empty circles and full squares, respectively.
he results are shown in Figure 4.
To visualize the differences, the two rows on

he top show the u and w components of the sig-
als at the left and right receiver obtained for a
uid at rest overlaid with the analytic reference
olution. The two bottom rows show the signals
btained for the moving fluid. We clearly observe
he late arrival of the wave phases on the left �up-
tream� receiver and the early arrival on the right
downstream� receiver. The waveforms are
hanged because of a different interference of the
irect, reflected, and refracted wave phases.

Furthermore, the amplitudes increase on the
eft and decrease on the right as the energy distri-
ution of the waves in the moving fluid is differ-
nt; see Figure 1 �bottom�. The waves traveling
ownstream have less amplitude as they are
tretched, whereas the waves propagating up-
tream have increased amplitudes. Note in addi-
ion the small velocity amplitudes in Figure 1
ompared with the background fluid velocity.

We remark that a fluid velocity of 750 m/s def-
nitely is unrealistically high for marine geophys-
cal applications because the maximum observed
elocities of ocean currents are about 2 m/s.
owever, in exploration seismology, the speed of the seismic vessel
as predictable effects on the seismic records �Hampson and
akubowicz, 1995�. A so-called receiver-motion compensation
hould be used to correct for such effects. Considering techniques
uch as measurement while drilling �MWD� in borehole applica-
ions, the speed of the moving drilling fluid can very well influence
he wave-propagation speed of acoustic waves.

Furthermore, many problems in computational aeroacoustics re-
uire the accurate simulation of noise propagation in high-speed air
ows in which fluid velocity might be of the same order of magni-

ude as the speed of sound or even higher; see, e.g., Wang et al.

Figure 4. Seis
Plots of the lef
the left receive
ceiver xr � �1
by the ADER
�thick dashed
ADER-DG O
plitudes at the
receiver, resul
2006� and Bogey et al. �2002�. We remark that the numerical stabili-
y condition always takes into account the sum of the fluid velocity
nd the wave-propagation speed. In the test case presented here, the
atio of the fluid velocity to the acoustic wave speed is 1:2. We fur-
her point out that the numerical incorporation of a moving fluid is
ossible only via formulation of the wave equation as a first-order
yperbolic system, as given in equation 15.

3D APPLICATION

To demonstrate the flexibility and potential of the proposed meth-
d, we extend the previous 2D numerical experiment to a more real-
stic and fully 3D test problem of marine seismic exploration. The
eneral procedure to solve problems with complex geometry and
heology is shown schematically in Figure 5. The 3D geometry of
he problem is defined by a CAD system and passed to a mesh gener-

ms for the case of the source and receiver in the acoustic medium.
n show the horizontal and vertical velocity components u and w for
��1088.65,�533.33� and plots of the right column for the right re-
,�533.33�. On the top, we show results for the fluid at rest obtained
6 scheme �thin solid line� superimposed by the analytic solution
n the bottom, we show results for the moving fluid obtained by the
e. Note the delayed arrivals of the wave phases and increased am-

ceiver and the earlier arrivals and decreased amplitudes on the right
m the background fluid velocity.

igure 5. Workflow of the production of synthetic seismograms, in-
luding the treatment of arbitrarily complex model geometries and
sage of high-performance computer systems.
mogra
t colum
r xl �
088.65
-DG O
line�. O
6 schem
left re
ting fro
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T32 Käser and Dumbser
tor via the IGES standard file format. Afterward, the mesh can be
artitioned with the free software package METIS �Karypis and Ku-
ar, 1998� into an arbitrary number of subdomains and imported

nto theADER-DG solver using MPI for parallel computations. This
rocedure is highly optimized and requires few manual interactions.

For the following example, we use tetrahedral elements with
lane interfaces, i.e., linear segments defined by vertices. However,
e point out that this is not an intrinsic limitation of the ADER-DG

igure 6. Tetrahedral discretization of the elastic medium with dis-
ontinuous sinusoidal ocean-bottom topography. The conforming
iscretization of the above water layer is not shown so as to make
isible the fluid-solid interface with the smooth sinusoidal geometry
nd the discontinuous step.

igure 7. Snapshots of stress component � zz for the 3D test case at �a
� 1.5 s in different cutting planes in the x, y, and diagonal direc
y s.
cheme because superparametric element boundaries also can be
sed in which the boundaries are represented by high-order polyno-
ials �Dumbser, 2005�. We remark that superparametric elements

re useful mainly for very coarse meshes when the spatial variation
f a boundary is known as an analytic function or as a high-resolu-
ion discrete data set. Otherwise, an artificial accuracy of a boundary
s introduced, which is not contained in the data set.

The computational domain � � 
0 m, 6400 m�� 
0 m, 6400
�� 
�2000 m,0 m� includes a water layer at rest on top of an elas-

ic solid with the fluid-solid interface modeling a complicated
athymetry that has smooth and discontinuous features. The explicit
quation for the xy-dependent elevation z of the fluid-solid interface
s given by

z�x,y� � A · sin�kxx�sin�kyy�

� �550 m for x � 3600 m, y � 3200 m

800 m otherwise,
�
�26�

ith amplitude A � 300 m and wavenumbers kx � 8/6400� m�1

nd ky � 6/6400� m�1.
Note that equation 26 represents a sinusoidal interface with a

ump, as shown in Figure 6. The model is discretized by 1,993,697
etrahedral elements of an average edge length of 50 m in the water
ayer and 100 m in the solid. The minimum edge length of a tetrahe-
ron is 20 m, occurring in the solid material just below the fluid-sol-

id interface, and the minimum insphere radius r�m�

is 4 m. The water surface at z � 0 is treated as a
free-surface boundary, whereas all other domain
boundaries are absorbing boundaries. The mate-
rial parameters are the same as in the 2D exam-
ples �see Table 1�. The same compressional point
source of a 10-Hz Ricker wavelet is used at posi-
tion xs � �xs,ys,zs� � �3200, 3200, 300� m.

Three parallel receiver lines of 101 receivers
each are put 2 m below the water surface. Each
line starts with the first receiver at x � 200 m and
finishes with the last at x � 6200 m with a re-
ceiver spacing of 60 m. The y-coordinates of re-
ceivers 1 through 101, 102 through 202, and 203
through 303 are y � 1600 m, y � 3200 m, and
y � 4800 m, respectively. The computation is
carried out with an ADER-DG O6 scheme to as
high as 2.75 s, leading to 112 �106 degrees of
freedom and 27,500 time steps �t � 0.1 ms.

The calculation was performed in 95 hours on
an SGI Altix 4700 platform using 255 Intel Ita-
nium2 Madison processors, each with 1.6 GHz
and 4 GByte of RAM. At the moment, the com-
putational cost of the ADER-DG method is con-
siderably more expensive than those of many oth-
er established methods, as shown in previous
work �de la Puente et al., 2007�. However, run-
time optimization of our implementation is sub-
ject to current work.

Snapshots of the stress component � zz are
shown in Figure 7. Snapshots on the top illustrate
the wavefield in a horizontal plane at 300-m
depth and display the vertical-cut planes of the

.75 s and �b�
arameterized
� t � 0
tions p
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ubsequent three plots. The first cut is along the x-direction at y
3500 m, the next along the y-direction at x � 3800 m, and the

ast along the model’s diagonal.
In the left column at t � 0.75 s, we observe clearly the reflected

ave at the water surface, a strong first reflection from the fluid-solid
nterface, and the P-to-S converted wave in the solid. Furthermore,
he sharp corner of the discontinuity in the ocean bottom acts as a
oint diffractor, whereas headwaves follow the smoothly varying el-
vation of the fluid-solid interface.After t � 1.5 s, the wavefield be-
omes increasingly complex because of the interference of multiple
eflections between the water surface and the geometrically complex
cean bottom.

Figure 8 shows the corresponding amplitude-balanced seismo-
rams of � zz computed at receivers 102 through 202 and 203 through
03. Except for the direct wave and the first reflections, both plots
how earlier arrivals of strong reflection signals on the right side of
he sections, resulting from the shallower water depth. In addition,

102 120 140 160 180 202

0.0

0.5
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1.5

2.0

2.5

T
e

mi
(s
)

Receiver number

203 220 240 260 280 303

0.0

0.5

1.0

1.5

2.0

2.5

T
e

mi
(s
)

Receiver number

igure 8. Seismograms of stress component � zz at �a� the central re-
eiver line �y � 3200 m� with receivers from 102 through 202 and
t �b� the laterally shifted receiver line �y � 4800 m� with receivers
rom 203 through 303. Note the strong multiple reflections and early
rrivals of weak signals resulting from head-wave energy radiated
nto the water layer.
e observe weak signals even before the arrival of the direct wave.
hese signals are caused by headwaves generated along the fluid-
olid interface and radiating energy into the water layer.

We remark that the potential of the new forward-modeling tool
DER-DG lies in the highly accurate synthetic data sets that can be
roduced for geometrically complex models. These data sets can be
sed in modern inversion techniques and 3D seismic data-process-
ng algorithms to reveal, with high precision, geometrically complex
ubsurface structures.

CONCLUSIONS

We presented the extension of the flexible, highly accurate
DER-DG approach for unstructured 2D and 3D meshes to simu-

ate seismic wave propagation in heterogeneous media containing
uid-solid interfaces. Furthermore, we found that a moving fluid can
e considered, when formulating the wave equations as a unified set
f first-order hyperbolic equations of motion similar to the classical
elocity-stress formulation. This finding allows for a single scheme
o be used for the entire domain without a special treatment of inter-
al boundary conditions at strong discontinuities of the material
roperties.

In particular, the presented extension of the ADER-DG method
an be used to accurately model seismic wave propagation in hetero-
eneous media containing fluid-solid interfaces, including cases in
hich the fluid has a mean background flow, by simply setting the
ackground flow to zero in the solid and the shear modulus to zero in
he fluid. In the case of the moving fluid, the background velocity can
e incorporated into the system by simply adding new entries on the
iagonal of the Jacobian matrices. Then the exact Riemann solver at
he element interfaces automatically treats the fluid-solid interface
orrectly. In this way, we avoid additional continuity conditions or
anishing shear stress conditions along arbitrarily shaped fluid-solid
nterfaces.

The ability to represent, simply and accurately, such general situa-
ions exceeds the capabilities of the methods now used, e.g., FD or
E methods. Because of the unified formulation and application of

he Riemann solver, there is no additional computational cost. How-
ver, for nonconstant background flows of strong velocity perturba-
ions, an additional reactive source term must be included. This term
ncreases the computational cost to an extent that depends on the
sed approximation order of the numerical scheme. We validated the
DER-DG scheme against analytic solutions and conclude that
igh-order schemes provide a better trade-off of cost versus accura-
y than do lower-order schemes on finer meshes.

The main impact of our work on computational seismology is that
t allows a new class of problems to be treated in which fluid-solid in-
erfaces are present. In regional or exploration seismology, a water
ayer with geometrically complex bathymetry now can be included
n an analogous manner as real free-surface topography. In this way,
he effect of the water layer on the seismic signature, e.g., ghosts or

ultiples, can be studied accurately.
Therefore, we believe that the extendedADER-DG scheme might

ecome increasingly important as a forward-modeling tool for mod-
rn inversion techniques in which highly accurate synthetics are es-
ential to determine the residuals with respect to observations. Fur-
hermore, simulations including a moving fluid might be of interest
n cases in which the fluid velocity cannot be neglected, such as time-
apse applications in deep water with strong ocean currents.
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APPENDIX A

ORTHOGONAL BASIS FUNCTIONS

We use orthogonal hierarchical basis functions, as given in Cock-
urn et al. �2000�. The basis functions are given in terms of the Jaco-
ian polynomials Pn

,��x�, which are solutions of the Jacobian differ-
ntial equation

�1 � x2�y� � 
� �  � � � � � 2�x�y�

� n�n �  � � � 1�y � 0. �A-1�

hey are given on the interval ��1; 1� by

Pn
,��x� �

��1�n

2nn!
�1 � x���1 � x��� dn

dxn

�
�1 � x��n�1 � x���n� . �A-2�

or  � � � 0, the Jacobian polynomials Pn
0,0�x� reduce to the Leg-

ndre polynomials.
The discontinuous Galerkin basis functions are constructed then

sing the three primal functions

� i
a�x� � Pi

0,0�x�, � ij
b �x� � �1 � x

2
�i

Pj
2i�1,0�x� ,

� ijk
c �x� � �1 � x

2
�i�j

Pk
2i�2j�2,0�x� . �A-3�

he sets of basis functions �k constitute orthogonal basis systems
ith respect to the inner product on the respective reference ele-
ents TE.

For tetrahedrons, the reference element TE is defined as

TE � ��	 ,
 ,� � � R3�0 � 	 � 1 ∧ 0 � 
 � 1 � 	 ∧ 0 � �

� 1 � 	 � 
� . �A-4�

he basis functions �k�	 ,
 ,� � are defined on this reference element
s the following product of the primal functions:

�k�p,q,r��	 ,
 ,� � � �p
a�� · �pq

b �� � · �pqr
c �� � ,

�A-5�

ith
 �

 � 1 � � � 2	

1 � 
 � �
, � �

2
 � 1 � �

1 � �
,

� � �1 � 2� . �A-6�

The monoindex k � k�p,q,r� is again a function of the index tri-
le �p,q,r�. The 3D basis functions to as high as degree two for a
hird-order scheme are

0 � 1,

1 � �1 � 2	 � 
 � � ,

2 � �1 � 3
 � � ,

3 � �1 � 4� ,

4 � 1 � 6	 � 6	 2 � 2
 � 6	 
 � 
2 � 2� � 6	 �

� 2
� � � 2,

5 � 1 � 2	 � 6
 � 10	 
 � 5
2 � 2� � 2	 �

� 6
� � � 2,

6 � 1 � 8
 � 10
2 � 2� � 8
� � � 2,

7 � 1 � 2	 � 
 � 7� � 12	 � � 6
� � 6� 2,

8 � 1 � 3
 � 7� � 18
� � 6� 2,

9 � 1 � 10� � 15� 2, �A-7�
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