
ISPRS Int. J. Geo-Inf. 2013, 2, 201-219; doi:10.3390/ijgi2010201
OPEN ACCESS

ISPRS International
Journal of

Geo-Information
ISSN 2220-9964

www.mdpi.com/journal/ijgi

Article

Pygrass: An Object Oriented Python Application Programming
Interface (API) for Geographic Resources Analysis Support
System (GRASS) Geographic Information System (GIS)
Pietro Zambelli 1,*, Sören Gebbert 2 and Marco Ciolli 1

1 Department of Civil, Environmental and Mechanical Engineering, University of Trento,
via Mesiano 77, Trento 38123, Italy; E-Mail: marco.ciolli@ing.unitn.it

2 Thünen Institute of Climate-Smart Agriculture, Bundesallee 50, Braunschweig 38116, Germany;
E-Mail: soerengebbert@googlemail.com

* Author to whom correspondence should be addressed; E-Mail: pietro.zambelli@ing.unitn.it;
Tel.: +39-46-128-2696.

Received: 1 January 2013; in revised form: 21 January 2013 / Accepted: 21 February 2013 /
Published: 11 March 2013

Abstract: PyGRASS is an object-oriented Python Application Programming Interface
(API) for Geographic Resources Analysis Support System (GRASS) Geographic
Information System (GIS), a powerful open source GIS widely used in academia,
commercial settings and governmental agencies. We present the architecture of the
PyGRASS library, covering interfaces to GRASS modules, vector and raster data, with
a focus on the new capabilities that it provides to GRASS users and developers. Our
design concept of the module interface allows the direct linking of inputs and outputs of
GRASS modules to create process chains, including compatibility checks, process control
and error handling. The module interface was designed to be easily extended to work
with remote processing services (Web Processing Service (WPS), Web Service Definition
Language (WSDL)/Simple Object Access Protocol (SOAP)). The new object-oriented
Python programming API introduces an abstract layer that opens the possibility to use and
access transparently the efficient raster and vector functions of GRASS that are implemented
in C. The design goal was to provide an easy to use, but powerful, Python interface for
users and developers who are not familiar with the programming language C and with the
GRASS C-API. We demonstrate the capabilities, scalability and performance of PyGRASS

ISPRS Int. J. Geo-Inf. 2013, 2 202

with several dedicated tests and benchmarks. We compare and discuss the results of the
benchmarks with dedicated C implementations.

Keywords: GRASS; python; GIS processing

1. Introduction

Geographic Information Systems (GIS) have the capabilityto integrate heterogeneous digital data,
giving the opportunity to public administration, industry and research to provide basic and advanced
data analysis and modeling for a wide range of disciplines [1]. The Geographic Resources Analysis
Support System (GRASS) supports the creation, modification and processing of 2D and 3D raster and
vector layers. It provides a topological vector model and true three dimensional coordinates for vector
features. GRASS is characterized by stability, an efficient application programming interface (API)
written in C, and a large number of GIS functions and modules [2]. GRASS provides a large number
of models and algorithms that, after substantial testing and trouble shooting, have proven to be very
reliable. Its capabilities to process geographical information have been testified by many research and
technical papers [3–14].

GRASS GIS has a modular design. The core functionalities are implemented in shared libraries using
the programming language C and can be accessed via the GRASS C-API. This API provides read and
write access to raster, 3D raster and vector data, as well as the handling of projection information, spatial
and attribute database management, spline interpolation, mathematical and numerical functionalities
and visualization functionalities; see Table 1. Spatial algorithms and models are implemented as small
stand-alone programs, called modules, that make use of the C-API. The implementation of GRASS
modules follows the UNIX concept. Hence, each module in GRASS has a dedicated purpose and is
efficiently implemented. Modules can be combined, similar to the UNIX tool concept. Since the early
days of GRASS in the 80s, the UNIX shell was used to combine GRASS modules and UNIX tools to
script repetitive tasks and to implement complex spatial analysis and processing algorithms. This concept
results in a large amount of over 400 modules. Most of them are implemented in C. A sufficient amount
is implemented as scripts using either POSIX (Portable Operating System Interface; defines a standard
operating system interface and environment, including a command interpreter (or shell), and common
utility programs to support applications portability at the source code level. Scripts are POSIX-based
until version 6 of GRASS GIS.) or Python, as in the latest development version 7 of GRASS.

Many GIS software have chosen Python as a main language for users (see Table 2), because it is
available on many platforms, and it seems to be a good compromise between simplicity (syntax, low
learning curve), flexibility (multi-paradigm programming) and power (due to rich scientific libraries).
GRASS developers have chosen Python to replace POSIX for scripting modules [2]. For this purpose,
a Python scripting library was implemented, providing a Python API to the GRASS modules. However,
the current Python scripting API does not provide any further improvement to the POSIX approach than
managing process chains using the standard Python library.

ISPRS Int. J. Geo-Inf. 2013, 2 203

Table 1. GRASS C API consists of 2,698 C functions that are available through the ctypes
library, divided into 10 different fields. This data is derived from the official GRASS
source code.

ctypes n. funcs n. structs n. vars

gis 501 20 175
raster 372 26 37
vector 344 66 147
dbmi 333 19 100
ogsf 331 33 151
raster3d 245 20 52
gmath 130 1 21
display 120 15 21
imagery 100 15 16
nviz 82 8 30
date 63 1 17
vedit 22 49 43
cluster 19 3 10
stats 19 0 10
proj 17 9 16
arraystats 0 1 10

2,698 286 856

Table 2. Table with a comparison of the most used GIS software.

Software write script license use OS Web site

ArcGIS C++ python proprietary desktop Windows http://www.esri.com/software/arcgis
AutoCAD Map C/C++ AutoLisp proprietary desktop Windows http://usa.autodesk.com/autocad-map-3d
Geoserver java python(dev) GPL server Windows, Mac, Linux http://geoserver.org
GRASS7 C python GPL desktop Windows, Mac, Linux http://grass.osgeo.org
gvSIG Java jython GPL desktop Windows, Mac, Linux http://www.gvsig.org
IDRISI COM python proprietary desktop Windows http://clarklabs.org
ILWIS C++ python GPL desktop Windows http://www.ilwis.org
Geomedia C/C++ python proprietary desktop Windows http://www.intergraph.com
MapInfo C/Basic MapBasic, python proprietary desktop Windows http://www.mapinfo.com
Mapserver C/C++ python X/MIT server Windows, Mac, Linux http://www.mapserver.org
QGIS C++ python GPL desktop Windows, Mac, Linux http://qgis.org
Saga-GIS C++ python GPL desktop Windows, Mac, Linux http://www.saga-gis.org
Udig Java groovy LGPL desktop Windows, Mac, Linux http://udig.refractions.net

Most of the GIS software and tools provide a large number of high-level algorithms to cover different
GIS processing needs. Few GIS open the capabilities to the users to access the lower functionalities,
such as iteration between the geometry features of a vector map, or iterate row by row to a raster map
using a higher level language.

GRASS modules must be implemented in C to access the low level functionality. To overcome this
limitation and to reach a broader development community, a ctypes interface was introduced to GRASS
version 7. This interface allows access to the low level GRASS C-API in Python. However, the creation
of new modules writing in C or using the C API with Python through the ctypes interface is not a
trivial task and is generally a very time-consuming activity. This happens because the writer must be a
competent C programmer (manage the computer memory, work with pointers, etc.) and because of how
the GRASS library works internally. Hence, an intensive study of the large GRASS C-API is required.

http://www.esri.com/software/arcgis
http://usa.autodesk.com/autocad-map-3d
http://geoserver.org
http://grass.osgeo.org
http://www.gvsig.org
http://clarklabs.org
http://www.ilwis.org
http://www.intergraph.com
http://www.mapinfo.com
http://www.mapserver.org
http://qgis.org
http://www.saga-gis.org
http://udig.refractions.net

ISPRS Int. J. Geo-Inf. 2013, 2 204

The goal of this work is to implement an intuitive and easy to use object-oriented layer around the
GRASS C-API, hiding its complexity, but providing a more powerful development environment to solve
complex GIS data analysis and model problems. An additional task is the replacement of parts from the
existing Python script API with more efficient and powerful object-oriented approaches. In this way, we
can provide access to the capability of the C-API of GRASS for power users and geo-scientists that are
not familiar with C and the C-API of GRASS.

The idea of PyGRASS was born from the experience of the authors who wished to expand GRASS
capabilities implementing a tool that gives the freedom to approach the GIS problem from a different
perspective, opening the software developer’s approach to the GIS users and trying to maintain
relative simplicity. The PyGRASS library provides a simple, object-oriented higher level interface that
transforms each GRASS module into an object by interpreting its XML interface description, trying
to simplify the syntax and enforcing the script activity. The object-oriented layer around the GRASS
C-API, PyGRASS, implements several classes to access vector and raster data, covering several complex
features that are only available in the GRASS C-API, like support for the vector topology or the use of the
raster cache for fast random read and write access. In addition, PyGRASS simplifies the interoperability
with all related geospatial software and tools provided by a Python interface.

The development of PyGRASS has been sponsored by Google’s Summer of Code program (2012),
and the code produced has been integrated in the latest development version, GRASS7.

2. Methodology

The PyGRASS library is written in Python and makes use of modules from the Python standard
library [15], like: sys, fnmatch, collections, sqlite3, as well as from the third party Python library,
NumPy [16]. NumPy is a package for scientific computing. It is already a dependence of GRASS.
An optional library is psycopg2 [17], which is used to interface the PyGRASS vector attribute handling
with the PostgreSQL database.

The PyGRASS library was developed taking into account four main aspects:

• consistency—the library shall adhere to norms and architecture commonly found in both Python
and GRASS, in order to avoid confusion for users who are only familiar with one of the above;

• simplicity—the library must be simple and intuitive, without hiding access to the lower level
functionality, indeed, providing a seamless user experience between the low level C-API of
GRASS with a higher level object-oriented Python approach;

• flexibility—the library must be flexible, both allowing the use of existing GRASS modules and
giving to each user the freedom to implement his own logic, using more detailed and fine-grained
programming tools;

• performance—the library must be fast, considering both the development and the CPU time.
GRASS C API functions are heavily used by PyGRASS every time that it is possible.

The library is split in two parts: the first is more related to the script activity and the GRASS modules;
the second is focused on the programming aspects and the C API of GRASS.

To improve the existing script API of GRASS, PyGRASS considers each GRASS module as an
object with input parameters, output parameters and flags. When the object is “instantiate”, the

ISPRS Int. J. Geo-Inf. 2013, 2 205

Module class parses the XML interface description generated from the GRASS modules through
the --interface-description flag to know which parameters and flags are defined. For each
parameter, the metadata is analyzed. The metadata specifies if a parameter is required or optional, if it is
an input or an output, what type it is (raster, vector, string, float, etc.) and many more. This information
allows the class to check the correctness of the parameters and provides the capability to suggest the
correct ones. The identification of inputs and outputs allows the implementation of process chains. The
interface design of this class was chosen to support the implementation of local and remote process
execution services, which may be added in the future. To implement an interface to a Web Processing
Service (WPS), the definition of complex inputs, complex outputs and literals must be known to generate
the XML execute request. The same is true for remote process execution services based on WSDL/SOAP.
The Module class provides all required module specific information by design.

The current Python script API defines several functions to manage the GRASS module: the
make_command returns a list of strings with the command options from a dictionary of keys and
values. The start_command is a GRASS-oriented interface to subprocess.Popen (a module
process creation and management provided by the Python standard library), that internally uses
the make_command function. All the other run/pipe/feed/read/write/parse command
functions are specialized wrappers of the start_command.

The Module class of PyGRASS gathers all these features in a single object, connecting directly the
inputs and the outputs of GRASS modules; see Listing 1 in the Appendix.

The PyGRASS Module class simplifies the Python syntax as much as possible to be competitive
with the POSIX module interface. It supports backward compatibility syntax and enhances the API to
provide a tool that manages the users errors and returns the list of the valid options. Moreover, the
PyGRASS library gives the capability to pass text to a command as input (stdin), to catch the text output
(stdout) and the error message (stderr) of a command. Finally, PYGRASS allows users to manage (i.e.,
terminate, kill, wait) the process.

The PyGRASS library introduces an Object-Oriented (OO) Python API to GRASS, which implements
for each GIS/GRASS entity one or more classes. The classes use the C structures and functions through
the existing ctypes interface. Ctypes is a Python library; it provides C compatible data types and allows
calling functions in DLLs or shared libraries. It can be used to wrap these libraries in pure Python.
Our higher level Python interface uses ctypes to integrate the underlying GRASS C-API structures and
functions in an object-oriented framework, but at the same time, trying to respect the GRASS work-flow
and nomenclature to conform with the C-API. The object-specific ctypes pointer to the underlying C
structures are available under the attribute name that starts with c_* . This allows the user to access
the lower level GRASS C-API structures directly using the ctypes interface. These classes allow one to
face the problem to be confronted in a more abstract way. A high-level object-oriented approach can
help users to face the problem, even if they are not familiar with the implementation details of the C-API
level, speeding up the design, writing, prototyping and debugging phase.

ISPRS Int. J. Geo-Inf. 2013, 2 206

Architecture of the Library

The PyGRASS library follows the main GRASS structure and is divided in four parts. Each part
implements a set of dedicated classes. See Figures 1 and 2 for a general overview of the library.

Figure 1. Module, Raster and GIS classes.

Figure 2. Vector class.

• modules contains the classes Module, MetaModule and Parameter. These classes are
designed to substitute the previous POSIX-based scripting approach (see Listing 2) and replace
parts of the existing Python script API (see Listing 3).
The object-oriented architecture of the PyGRASS library allows users to interact with GRASS
modules as Python objects. These objects allow direct access of module attributes like: name,
description and keywords. The input and output options are implemented using a

ISPRS Int. J. Geo-Inf. 2013, 2 207

dedicated parameter class. Instances of this class are stored either in an input dictionary or an
output dictionary within the module object Listing 4. Inputs and outputs can be referenced by their
name in the dictionaries or as attributes of the dictionary objects. They can be connected to each
other to create process chains; see Listing 1. The type check system of the parameter class assures
that output options can only be connected with input options of different modules when they have
the same type. Hence, the PyGRASS module library will raise an error in case the output of a
vector module was connected with a raster input of a second module.
The PyGRASS module library introduces special parameters to allow fine-grain control over the
GRASS processes. These special parameters end with the ‘ ’ character to avoid a mix-up with
option names. The first two special parameters—run_ and finish_—are used to manage
the process. The parameter definition run_=True will execute the process immediately, and
finish_=True will wait until the process terminates; see Listing 5. Other special parameters
that were added are: stdin_, stdout_ and stderr_. The parameters stdin_ and stdout_
are used to connect the textual inputs and outputs from different modules to create a process
pipeline; stdin_ is used to pass the textual output (stdout_) from one process to another;
see Listing 6;

• vector contains the classes Vector without the GRASS topology and VectorTopo with the
GRASS topology.
The Vector class allows the user to access the non-topological geometry features of a vector map
in sequential order; see Listing 7. The class VectorTopo was designed to access topological
and non-topological geometry features of a vector map in random order. This class allows one to
iterate among specific feature types; see Listings 8 and 9. Writing is supported in booth classes in
sequential order. However, already written features can be updated in the topological access class.
The following classes are designed to represent vector features: Point, Line, Centroid,
Boundary, Isle and Area. Instances of these classes are usually created when features are read
from vector maps by the Vector and VectorTopo classes. To manage multiple connections
with vector attribute SQL databases, the classes DBLinks and Link were designed. Attribute
tables can be created, accessed and modified with the Table class. The Filter class provides
several methods to work with the data without the need to know SQL. To access the content of the
attributes table from a geometry feature, the Attrs class was designed.

• raster contains the classes (RasterRow, RasterRowIO, RasterSegment and
RasterNumpy).
Each class uses a different GRASS C-library to grant a specific kind of access to raster maps. All
the raster classes share common methods to open a map, read raster values or raster rows, get raster
information and write metadata, like categories and history. Similarly to vector, a similar syntax
has been used to instantiate, open and close a raster object.
The RasterRow class reads the content of the raster map row by row and writes it in a sequential
mode, row after row; see Listings 10 and 11.
The RasterRowIO class implements a row cache that allows users to read raster rows randomly
by keeping a number of rows in the main memory. This caching mechanism avoids heavy
I/O (input/output) hard-disk usage in specific tasks, like moving window operations, or cell

ISPRS Int. J. Geo-Inf. 2013, 2 208

neighborhood analysis. Similarly to the RasterRowIO, the RasterSegment class provides
access to a tile cache. The tile cache is an uncompressed representation of a raster map that will
be created at the point of initialization. The access to the uncompressed file is based on tiles that
are cached in the main memory for fast random read and write access through the Segment class.
With the RasterSegment class, it is possible to read and write the pixel value randomly at the
same time in the same map.
The RasterNumpy class inherits from a numpy.memmap class and allows users to interact with
the map as a NumPy matrix.

• gis contains GRASS management classes, like Gisdbase, Location and Mapset, that help
users to interact with the GRASS environment; see Listing 12. The Region class manages the
computational region of GRASS that directly affects 2D and 3D raster processing, as well as
several vector processing algorithms; see Listing 13.

The PyGRASS library assures that the memory management is fully handled by python. All structures
from the GRASS C-API that are used by PyGRASS are ctypes objects or get deleted in the class
destructor’s and, therefore, are handled by the Python garbage collector. The user must not take care
of memory allocation and deletion directly.

3. Results

In this section, we compare different solutions of simple GIS tasks using standard GRASS tools and
PyGRASS. The machine used for the benchmark was a laptop with an Intel Core i7 3610QM processor
with 2.30 GHz and 6 Mb L3 Cache. The system has 24 Gb DDR3@1333Mhz of RAM and a solid
state disk (SSD) of 250 Gb as the system driver. The installed operating system (OS) is GNU/Linux
3.7.5 (×86 64) on the SSD. The GRASS 7 development version used for the benchmark has the revision
number r54812. The GRASS data are stored on a secondary hard disk of 750 Gb at 7,200 rpm.

Concerning the script activity, PyGRASS improves mainly the syntax and changes how users can
interact with GRASS modules. We measured small performance loss when executing GRASS modules
using the PyGRASS module interface compared to the POSIX approach, which go from 1% up to 12%,
due to the average load of the system. We did not expect a large performance difference, since Python
and POSIX are basically using the same OS (operating system) functions to spawn processes.

On the contrary, the new API added by PyGRASS must be tested (all the benchmark tests used in this
paper are available at https://github.com/zarch/pygrass-benchmark) to identify its strengths, weaknesses
and scalability. Each test, excluding the biggest region (with 1010 cells), has been repeated five times.
There are only small differences between each measured run time, resulting in a small standard deviation.
Hence, we think that the final results of our benchmark are representative.

The first test compares two simple procedures, one written using PyGRASS (RasterRow and
VectorTopo) (see Listing 14) and the other using the programming language C (see Listing 15 and
for the results, see Table 3). The test takes as inputs a vector point map and a raster map. It creates a
new vector point map that includes all vector points from the input map. A new attribute table is created
and linked with the vector map, which contains a column with the sampled values of the raster map.
The procedure is applied to five different random vector point maps, to be independent from the spatial

https://github.com/zarch/pygrass-benchmark

ISPRS Int. J. Geo-Inf. 2013, 2 209

distribution of the vector points. Moreover, the tests have been executed using different region extents
and number of points, to test the scalability of the different solutions. Both procedures are conceptually
identical and share most of the GRASS C-API functions. The only difference is the database access,
where PyGRASS uses the Python driver instead of the C-API of GRASS.

Table 3. Table with the benchmark results, reported in seconds, using different
computational extents and a different number of vector points.

number of cells 102 104 106 108 1010

number of points 10 102 103 104 105

Vector and Raster
sample (PyGRASS) 2.21 4.23 23.87 218.63 12670.27
v.sample2 (C-API) 3.03 5.48 31.67 266.54 13304.67
Raster
RasterRow 0.046 0.431 4.53 74.46 4303.24
r.mapcalc 0.078 0.525 5.83 170.43 5347.95

One indication that our approach is easier to handle than the C implementation is that the PyGRASS
version is considerably shorter (48 lines) than the C version (102 lines). A PyGRASS library, it is
noted that there is a marginal advantage in speed compared to it’s C counterpart. The speed gain
over the C version it is probably due to the slower driver adopted by the GRASS C API of the vector
attribute database.

In a further test we compared the performance of the PyGRASS RasterRow implementation (see
Listing 16), with r.mapcalc using a simple raster map algorithm (see Listing 17). The algorithm
stores only those pixels in a new raster map that have a value that it is greater than 50. Again, the
PyGRASS version is slightly faster than the GRASS module. The good performance of PyGRASS is
caused by our design approach that uses NumPy for row computation tasks. The performance will drop
dramatically in case we implement the same algorithm in Python comparing cell by cell without using
the optimized NumPy approach.

4. Discussion and Benchmarks

The PyGRASS Module class adds some useful features that were not available with the previous
Python script API; these features have a time cost, because they require exporting the GRASS module
in XML, parsing the XML and instantiating the object, checking that all the parameters are correct and
then executing. The time cost for these operations is around 0.2 s, but generally, the execution time of a
GRASS module requires much more time; therefore, in most of the cases, we can neglect this time loss.

Concerning the new approach introduced by PyGRASS, the performance depends mainly on the
features that are used. For example, updating the column attribute with the value of area with PyGRASS
requires almost the same time, around 0.24 s for PyGRASS and 0.26 s using the v.to.db module.

Using the RasterRow class to compute areas that satisfy a condition, with a region of 16,000 rows
and 14,000 columns, it is slightly faster (27.42 s) than using r.mapcalc (35.49 s) if the row is used as
a NumPY array:

Using the r.mapcalc module:

ISPRS Int. J. Geo-Inf. 2013, 2 210

Using the PyGRASS RasterRow class without using the NumPy array makes the execution
seven-times slower than using the GRASS r.mapcalc module; below the Python code (992.5 s)
is reported.

Using r.mapcalc (144.2 s):
The example above highlights that it is not convenient to replace an existing GRASS module with a

new one written in PyGRASS, because the user has to write more code and because the GRASS native
modules are generally faster. The big advantage of using the PyGRASS library is the object-oriented
access to the GRASS C-API functionality.

Without the need to extract information from the output string of the module, in this kind of operation,
the PyGRASS library is faster compared with modules and with the existing Python functions: for
example, to get the list of the raster map contained in a Mapset with PyGRASS takes (608 ns).

Using the Python function list_grouped in the GRASS core takes (0.1273 s).
The same good results are obtained with the Region object; with PyGRASS, it takes (211 ns).
Using the Python function region in the GRASS core takes (0.1056 s).
The PyGRASS library can help to substitute all the commands in the GRASS Python script library

that need to wrap and interpret the output of a GRASS module.

5. Conclusions

An increasing number of GIS software uses the Python language to provide a powerful scripting
interface. An easy to use, but powerful, python interface can help to efficiently exploit the capabilities of
a GIS software. Such an interface can be effectively used to integrate different GIS, statistical, geospatial
tools and programming languages in a GIS to expand its overall capabilities.

The PyGRASS library tries to open a new perspective to power users and scientists that use GRASS
GIS. It provides a Python interface that is able to compete with the simplicity of POSIX to write
procedures with existing GRASS modules, as well as a powerful object-oriented interface to deal and
experiment with GIS problems at a lower level.

The new Module class, introduced by PyGRASS, provides a single interface to all GRASS modules
and can be extended to work with Web Processing Services (WPS), Web Services Description Language
(WSDL) and Simple Object Access Protocol (SOAP) services or other remote execution services. The
design concept of the Module class allows the direct linking of inputs and outputs of GRASS modules
to create process chains, including compatibility checks, process control and error handling.

The new Object-Oriented Python programming API introduces an abstract layer that opens the
possibility for the users who are not familiar with C and with GRASS C-API, to use and access
transparently the efficient C functions of GRASS. Our tests show that algorithms implemented with
PyGRASS are comparable in terms of performance with an equivalent C implementation. Hence,
our approach wraps the underlying GRASS C libraries efficiently. It needs much less line of code to
implement an algorithm in PyGRASS than in C. Moreover, it shows that specific Python strengths,
for example, the database Python interface, can be used to gain a speed improvement over specific
C-implementations in GRASS. The PyGRASS library has been designed to integrate new methods or to

ISPRS Int. J. Geo-Inf. 2013, 2 211

inherit from an existing class to extend the GRASS functionalities, providing new tools for prototyping
complex scientific algorithms.

Some of the functionalities provided by PyGRASS are also available in other software, like
Postgresql/Postgis, R, shapely, etc. However, switching to them requires changing the GIS working
environment. That means installing, configuring, learning the new tools and converting from one
format to another. The PyGRASS library does not force the users to learn and switch between different
languages (C, SQL, R, Python, BASH, etc.) and tools to carry out their work.

The PyGRASS library allows GIS modelers and scientists to use the C-API of GRASS, with a high
level interface, providing a tool that gives the freedom to approach the GIS problem from a different
perspective. In this way, users and scientists can combine the GRASS modules with the GRASS C-API
functions and algorithms. Therefore, PyGRASS is able to simplify the approach to develop a new GIS
model, using one program (GRASS) and one language (Python) to cover the different GIS aspects,
increasing the productivity and allowing geo-scientist to focus on the study of the problem they have
selected and not on the study of the tools and languages used.

Moreover, the PyGRASS library can be used as a tool to facilitate use and integration
with other GIS/statistical software and libraries (not only open source). The common language
among different software and the object-oriented structure should make communication and
procedure/data exchange easier.

The PyGRASS library, together with the GRASS GIS temporal framework, can provide a
comprehensive high performance spatio-temporal GIS framework for GI-Scientists.

The PyGRASS seems to be ideal to be applied in complex case studies, like air quality monitoring
from wireless sensor networks, and to build decision support systems to evaluate the assessment of
sustainable forest energy.

Acknowledgments

We are grateful to the Google Summer of Code project that supported the idea and the implementation
of the PyGRASS module. I would like to thank my GSoC co-mentors, Luca Delucchi, Martin Landa
and Markus Metz, for the very valuable help and support. We would like to thank the GRASS software
community, who have begun to actively support the PyGRASS module with good ideas, bug fixes and
tests. Lastly, we would like to thank the core GRASS Development Team that strongly supported the
project, providing suggestions and clarifying how GRASS works.

References

1. Foody, G. GIS: Biodiversity applications. Prog. Phys. Geogr. 2008, 32, 223–235.
2. Neteler, M.; Bowman, M.H.; Landa, M.; Metz, M. GRASS GIS: A multi-purpose open source

GIS. Environ. Modell. Softw. 2012, 31, 124–130.
3. Sacchelli, S.; Zambelli, P.; Zatelli, P.; Ciolli, M. Biomasfor—An open source holistic model for

the assessment of sustainable forest bioenergy. iForest 2013, in press.
4. Hofierka, J.; Zlocha, M. A new 3-D solar radiation model for 3-D city models. Trans. GIS 2012,

16, 681–690.

ISPRS Int. J. Geo-Inf. 2013, 2 212

5. Preatoni, D.; Tattoni, C.; Bisi, F.; Masseroni, E.; D’Acunto, D.; Lunardi, S.; Grimod, I.; Tosi, G.
Open source evaluation of kilometric indexes of abundance. Ecol. Inform. 2012, 7, 35–40.

6. Tattoni, C.; Rizzoli, F.; Pedrini, P. Can LiDAR data improve bird habitat suitability models? Ecol.
Modell. 2012, 245, 103–110.

7. Zambelli, P.; Lora, C.; Spinelli, R.; Tattoni, C.; Vitti, A.; Zatelli, P.; Ciolli, M. A GIS decision
support system for regional forest management to assess biomass availability for renewable energy
production. Environ. Modell. Softw. 2012, 38, 203–213.

8. Vettorato, D.; Geneletti, D.; Zambelli, P. Spatial comparison of renewable energy supply and
energy demand for low-carbon settlements. Cities 2011, 28, 557–566.

9. Li, X.; Di, L.; Han, W.; Zhao, P.; Dadi, U. Sharing geoscience algorithms in a Web
service-oriented environment (GRASS GIS example). Comput. Geosci. 2010, 36, 1060–1068.

10. Tattoni, C.; Ciolli, M.; Ferretti, F.; Cantiani, M.G. Monitoring spatial and temporal pattern of
Paneveggio forest (Northern Italy) from 1859 to 2006. iForest 2010, 1, 72–80.

11. Zambelli, P.; Lora, C.; Ciolli, M.; Spinelli, R.; Tattoni, C.; Vitti, A.; Zatelli, P. A FOSS4G Model to
Estimate Forest Extraction Methods and Biomass Availability for Renewable Energy Production.
In Proceedings of FOSS4G, Barcelona, Spain, 6–9 September 2010.

12. Okabe, A.; Satoh, T.; Sugihara, K. A kernel density estimation method for networks, its
computational method and a GIS-based tool. Int. J. Geogr. Inf. Sci. 2009, 23, 7–32.

13. Vettorato, D.; Zambelli, P. Estimation of Energy Sustainability at Local Scale : An Approach Based
on Innovative Analytical and Mapping Tools and Multicriteria Analysis. In Proceedings of 45th
ISOCARP Congress, Porto, Portugal, 18–22 October 2009; pp. 1–12.

14. Ciolli, M.; de Franceschi, M.; Rea, R.; Vitti, A.; Zardi, D.; Zatelli, P. Development and application
of 2D and 3D GRASS modules for simulation of thermally driven slope winds. Trans. GIS 2004,
8, 191–209.

15. Van Rossum, G. Python Library Reference; Report CS-R9524; Pub-CWI: Amsterdam,
The Netherlands, 1995.

16. Jones, E.; Oliphant, T.; Peterson, P.; Community, S. SciPy: Open Source Scientific Tools for Python.
Avaiable online: http://www.scipy.org (accessed on 7 March 2013).

17. Varrazzo, D. Psycopg Community. Psycopg–PostgreSQL Database Adapter for Python. Avaiable
online: http://initd.org/psycopg (accessed on 7 March 2013).

Appendix

Some small samples of code are provided below to show how modelers, scientists and developers
could interact with the PyGRASS library. If the code starts with >>> , this indicates a python
interactive section with the terminal. To use and test the PyGRASS extension, the reader needs
to install the latest development version of GRASS7. Furthermore, all the following examples
are using the maps contained in the free available GRASS demonstration dataset North Carolina
(http://grass.osgeo.org/sampledata/north carolina/nc basic spm grass7.tar.gz).

http://grass.osgeo.org/sampledata/north_carolina/nc_basic_spm_grass7.tar.gz

ISPRS Int. J. Geo-Inf. 2013, 2 213

Modules

Listing 1. Direct inputs/outputs.
1 # -*- coding: utf-8 -*-

2 import subprocess as sub

3 from pygrass.modules import Module

4

5

6 colout = Module("r.colors.out", map="elevation", stdout_=sub.PIPE)

7

8 col = Module("r.colors")

9 col.inputs.map = "field"

10 col.inputs.stdin = colout.outputs.stdout

11 col.inputs.rules = ’-’

12 col.run()

Listing 2. The syntax is similar to POSIX.
1 # -*- coding: utf-8 -*-

2 from grass.pygrass.modules import raster as r

3

4 # cmd: r.info map=elevation

5 r.info(map=’elevation’)

6

7 # cmd: r.slope.aspect elevation=elevation slope=slope aspect=aspect --overwrite

8 r.slope_aspect(elevation=’elevation’, slope=’slope’, aspect=’aspect’, overwrite=True)

9

10 # cmd: r.mapcalc ’slope_gt100 = if(slope > 100, slope)’ --overwrite

11 r.mapcalc(’slope_gt100 = if(slope > 100, slope)’, overwrite=True)

Listing 3. Backward compatibility.
1 # -*- coding: utf-8 -*-

2 from grass.pygrass.modules import Module as run_command

3

4 run_command(’r.info’, map=’elevation’)

Listing 4. Module as an object.
1 >>> from grass.pygrass.modules import Module

2 >>> slp = Module(’r.slope.aspect’) # instantiate

3 >>> slp.name

4 ’r.slope.aspect’

5 >>> slp.description

6 ’Aspect is calculated counterclockwise from east.’

7 >>> slp.inputs[’elevation’]

8 Parameter <elevation> (required:yes, type:raster, multiple:no)

9 >>> slp.inputs.elevation = ’elevation’ # set parameter value

10 >>> slp.inputs.slope = ’slope’

11 >>> slp.run() # finally execute the ’slp’ module

Listing 5. Run and finish.
1 >>> from grass.pygrass.modules import Module

2 >>> slp = Module(’r.slope.aspect’)

3 >>> slp(elevation=’elevation’, slope=’slp’, aspect=’asp’,

4 ... format=’percent’, overwrite=True, run_=False) # only set the parameters

5 >>> slp(elevation=’elevation’, slope=’slp’, aspect=’asp’,

6 ... format=’percent’, overwrite=True, finish_=False) # start the process

7 >>> slp.popen.wait() # .kill() manage the process

ISPRS Int. J. Geo-Inf. 2013, 2 214

Listing 6. Stdin.
1 # -*- coding: utf-8 -*-

2 from pygrass.modules import raster as r

3

4 rules = """0 red

5 1 green

6 2 blue

7 end"""

8

9 r.colors(map=’rtest’, rules=’-’, stdin_=rules)

Vectors

Listing 7. Vector class.
1 >>> from grass.pygrass.vector import Vector

2 >>> schools = Vector(’schools’)

3 >>> schools.open(’r’)

4 >>> schools.title # Vector attributes: name, organization, person, map_date

5 ’Wake County schools (points map)’

6 >>> school = schools.next() # access to the geometry features

7 >>> school

8 Point(633649.285674, 221412.944348)

9 >>> for school in schools: # or simply iterate through the vector map

10 ... print school

11 ...

12 POINT(628787.129283, 223961.620521)

13 POINT(629900.710134, 222915.798505)

14 POINT(630686.456623, 224447.772161)

15 ...

16 >>> schools.close()

Listing 8. VectorTopo class.
1 >>> from grass.pygrass.vector import VectorTopo

2 >>> geology = VectorTopo(’geology’)

3 >>> geology.open(’r’)

4 >>> geology.title # Vector attributes: name, organization, person, map_date

5 ’North Carolina geology map (polygon map)’

6 >>> for g in geology: # or iterate through the vector map

7 ... print g

8 ...

9 LINESTRING(...)

10 LINESTRING(...)

11 ...

12 POINT(...)

13 POINT(...)

14 ...

15 >>> big = [a for a in geology.viter(’areas’) # iterate only a geometry type

16 ... if a.alive() and a.area() >= 10**8]

17 >>> geology.close()

Listing 9. Write a new vector map.
1 # -*- coding: utf-8 -*-

2 from pygrass.vector import VectorTopo

3

4 # instantiate and open the tunnels map

5 tunnels = VectorTopo(’tunnels’)

6 tunnels.open(’r’)

7

ISPRS Int. J. Geo-Inf. 2013, 2 215

8 # instantiate a new map

9 new = VectorTopo(’newvect’)

10

11 # open a new vector map defining the column names and types, with:

12 new.open(’w’, tabcols=[(u’cat’, int),

13 (u’tunnel’, int),

14 (u’length’, float)])

15

16 for tunnel in tunnels:

17 # extract the first and the last point of the tunnel

18 first, last = tunnel[0], tunnel[-1]

19 # compute the tunnel length and divide the length for each point

20 length = tunnel.length() / 2.

21 #.write(geom_feature, attributes)

22 new.write(first, (tunnel.cat, length))

23 new.write(last, (tunnel.cat, length))

24 # then close all

25 new.close()

26 tunnels.close()

Rasters

Listing 10. RasterRow class.
1 >>> from grass.pygrass.raster import RasterRow

2 >>> elev = RasterRow(’elevation’)

3 >>> elev.exist() # check if the map exist

4 True

5 >>> elev.name # return the raster name

6 ’elevation’

7 >>> elev.mapset # return the raster mapset

8 ’PERMANENT’

9 >>> elev.open(’r’) # open in read mode

10 >>> elev.is_open() # check if the map is open

11 True

12 >>> elev.range # return the map range

13 (55.578792572021484, 156.32986450195312)

14 >>> for row in elev[:5]: # get the first 5 rows

15 ... print(row[:3]) # show the first 3 columns of each row

16 ...

17 [141.99613953 141.27848816 141.37904358]

18 [142.90461731 142.39450073 142.68611145]

19 [143.81854248 143.54707336 143.83972168]

20 [144.56524658 144.58493042 144.86477661]

21 [144.99488831 145.22894287 145.57142639]

22 >>> elev.close()

Listing 11. Write a new raster map.
1 # -*- coding: utf-8 -*-

2 from grass.pygrass.raster import RasterRow

3

4 # instantiate raster objects

5 old = RasterRow(’elevation’)

6 new = RasterRow(’mapname1’)

7

8 # open the maps

9 old.open(’r’)

10 new.open(’w’, mtype=old.mtype, overwrite=True)

11

12 # start a cycle

13 for row in old:

ISPRS Int. J. Geo-Inf. 2013, 2 216

14 new.put_row(row > 100) # write row

15

16 # close the maps

17 new.close()

18 old.close()

GIS/GRASS

Listing 12. Write a new raster map.
1 >>> from grass.pygrass.gis import Location, Mapset

2 >>> location = Location()

3 >>> location.mapsets()

4 [’PERMANENT’, ’user1’]

5 >>> permanent = Mapset(’PERMANENT’)

6 >>> permanent.glist(’rast’, pattern=’elev*’) # return a list with rasters

7 [’elevation_shade’, ’elevation’]

Listing 13. Write a new raster map.
1 >>> from grass.pygrass.gis.region import Region

2 >>> region = Region()

3 >>> region.north

4 258500.0

5 >>> region.south

6 185000.0

7 >>> region.rows

8 7350

9 >>> region.nsres

10 10.0

11 >>> print region

12 projection: 99 (Lambert Conformal Conic)

13 zone: 0

14 datum: nad83

15 ellipsoid: a=6378137 es=0.006694380022900787

16 north: 258500

17 south: 185000

18 west: 596670

19 east: 678330

20 nsres: 10

21 ewres: 10

22 rows: 7350

23 cols: 8166

24 cells: 60020100

Benchmark

Listing 14. Write a new vector points map adding the raster value in the attribute table using PyGRASS.
1 # -*- coding: utf-8 -*-

2 import numpy as np

3 from grass.pygrass.gis.region import Region

4 from grass.pygrass.vector import VectorTopo

5 from grass.pygrass.raster import RasterRow

6 from grass.pygrass.functions import coor2pixel

7

8

9 def sample(vect_in_name, rast_in_name):

10 """sample(’point00’, ’field’)"""

11 # instantiate the object maps

12 vect_in = VectorTopo(vect_in_name)

ISPRS Int. J. Geo-Inf. 2013, 2 217

13 rast_in = RasterRow(rast_in_name)

14 vect_out = VectorTopo(’test_’ + vect_in_name)

15

16 # define the columns of the attribute table of the new vector map

17 columns = [(u’cat’, ’INTEGER PRIMARY KEY’),

18 (rast_in_name, ’DOUBLE’)]

19

20 # open the maps

21 vect_in.open(’r’)

22 rast_in.open(’r’)

23 vect_out.open(’w’, tab_cols=columns, link_driver=’sqlite’)

24

25 # get the current region

26 region = Region()

27

28 # initialize the counter

29 counter = 0

30 data = []

31 for pnt in vect_in.viter(’points’):

32 counter += 1

33 # transform the spatial coordinates in row and col value

34 x, y = coor2pixel(pnt.coords(), region)

35 value = rast_in[int(x)][int(y)]

36 data.append((counter, None if np.isnan(value) else float(value)))

37 # write the geometry features

38 vect_out.write(pnt)

39

40 # write the attributes

41 vect_out.table.insert(data, many=True)

42 vect_out.table.conn.commit()

43

44 # close the maps

45 vect_in.close()

46 rast_in.close()

47 vect_out.close()

Listing 15. Write a new vector points map adding the raster value in the attribute table using C.
1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4 #include <math.h>

5

6 #include <grass/gis.h>

7 #include <grass/raster.h>

8 #include <grass/glocale.h>

9 #include <grass/dbmi.h>

10 #include <grass/vector.h>

11

12

13 static void sample(char *input, char *rast, char *column, char *output) {

14

15 struct Cell_head window;

16 struct Map_info In, Out;

17 int fdrast;

18 DCELL value;

19 G_get_window(&window);

20 int line;

21 int type;

22 struct field_info *Fi;

23 dbDriver *Driver;

24 char buf[2000];

25 dbString sql;

ISPRS Int. J. Geo-Inf. 2013, 2 218

26 DCELL *dcell_buf;

27

28 /* Open input */

29 Vect_set_open_level(2);

30 Vect_open_old2(&In, input, "", "1");

31 fdrast = Rast_open_old(rast, "");

32

33 /* Open output */

34 Vect_open_new(&Out, output, 0);

35 Vect_hist_copy(&In, &Out);

36 Vect_hist_command(&Out);

37

38 /* Create table */

39 Fi = Vect_default_field_info(&Out, 1, NULL, GV_1TABLE);

40 Vect_map_add_dblink(&Out, Fi->number, Fi->name, Fi->table, Fi->key,

41 Fi->database, Fi->driver);

42 Driver = db_start_driver_open_database(Fi->driver,

43 Vect_subst_var(Fi->database, &Out));

44 sprintf(buf, "create table %s (cat integer, rast_val double precision)",

45 Fi->table);

46 db_init_string(&sql);

47 db_set_string(&sql, buf);

48 db_execute_immediate(Driver, &sql);

49 db_create_index2(Driver, Fi->table, Fi->key);

50 db_grant_on_table(Driver, Fi->table, DB_PRIV_SELECT, DB_GROUP | DB_PUBLIC);

51

52 /* Sample the raster map with vector points */

53 struct line_pnts *Points = Vect_new_line_struct();

54 struct line_cats *Cats = Vect_new_cats_struct();

55 int nlines = Vect_get_num_lines(&In);

56 int count = 0;

57

58 dcell_buf = Rast_allocate_buf(DCELL_TYPE);

59

60 db_begin_transaction(Driver);

61

62 for (line = 1; line <= nlines; line++) {

63 type = Vect_read_line(&In, Points, Cats, line);

64

65 if (!(type & GV_POINT))

66 continue;

67

68 if(G_point_in_region(Points->x[0], Points->y[0]) == 0)

69 continue;

70

71 if (Rast_is_d_null_value(&value))

72 continue;

73

74 int row = Rast_northing_to_row(Points->y[0], &window);

75 int col = Rast_easting_to_col(Points->x[0], &window);

76

77 Rast_get_d_row(fdrast, dcell_buf, row);

78 value = dcell_buf[col];

79

80 /* Write value into the vector table */

81 count++;

82 Vect_reset_cats(Cats);

83 Vect_cat_set(Cats, 1, count);

84 Vect_write_line(&Out, GV_POINT, Points, Cats);

85

86 sprintf(buf, "INSERT INTO %s VALUES (%d, %e); ", Fi->table, count,

87 (double)value);

ISPRS Int. J. Geo-Inf. 2013, 2 219

88 db_set_string(&sql, buf);

89 db_execute_immediate(Driver, &sql);

90 }

91

92 db_commit_transaction(Driver);

93 db_close_database_shutdown_driver(Driver);

94

95 Rast_close(fdrast);

96 Vect_close(&In);

97 Vect_build(&Out);

98 Vect_close(&Out);

99

100 exit(EXIT_SUCCESS);

101 }

Listing 16. Compute using the RasterRow class.
1 # -*- coding: utf-8 -*-

2 from grass.pygrass.raster import RasterRow

3

4 def ifcondition(mapname0, mapname1):

5 # instantiate raster objects

6 old = RasterRow(mapname0)

7 new = RasterRow(mapname1)

8 # open the maps

9 old.open(’r’)

10 new.open(’w’, mtype=old.mtype, overwrite=True)

11 # start a cycle

12 for row in old:

13 true = row > 50

14 new.put_row(row * true)

15 # close the maps

16 new.close()

17 old.close()

Listing 17. Call the r.mapcalc module from Python
1 sub.Popen("r.mapcalc expression=’test_mapcalc=if(field>50,field,0)’ --o", shell=True).wait()

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

	Introduction
	Methodology
	Results
	Discussion and Benchmarks
	Conclusions
	Acknowledgments
	Appendix
	Modules
	Vectors
	Rasters
	GIS/GRASS
	Benchmark

