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The focus of the article is on fracture criteria for dynamic crack propagation in elastic mate-
rials with microstructures. Steady-state propagation of a Mode III semi-infinite crack sub-
ject to loading applied on the crack surfaces is considered. The micropolar behavior of the
material is described by the theory of couple-stress elasticity developed by Koiter. This
constitutive model includes the characteristic lengths in bending and torsion, and thus it
is able to account for the underlying microstructures of the material. Both translational
and micro-rotational inertial terms are included in the balance equations, and the behavior
of the solution near to the crack tip is investigated by means of an asymptotic analysis. The
asymptotic fields are used to evaluate the dynamic J-integral for a couple-stress material,
and the energy release rate is derived by the corresponding conservation law. The propa-
gation stability is studied according to the energy-based Griffith criterion and the obtained
results are compared to those derived by the application of the maximum total shear stress
criterion.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In many experimental analyses it has been shown that the mechanical behavior of brittle materials such as ceramics,
composites, cellular materials, foams, masonry, bones tissues, glassy and semicrystalline polymers, is strongly affected by
the microstructure.

The influence of materials inhomogeneities and defects on the mechanical properties of the materials and their interac-
tions with cracks have been extensively studied in the framework of classical theory of elasticity by means of homogeniza-
tion theories (Hashin, 1959; Eshelby, 1976; Budiansky, 1965; Budiansky & O’Connell, 1976), and the effective elastic moduli
of bodies containing several ensembles of microstructures have been determined using for instance self-consistent methods
(Kachanov, 1987,Kachanov, 1992; Huang, Hu, & Chandra, 1994). Furthermore, modern multi-scale simulation approaches
have been developed for modeling microstructural properties of the materials (Askes, Bennet, Gitman, & Aifantis, 2008;
Askes, Gitman, Simone, & Sluys, 2009; Silberschmidt, 2009; Andrade, Avila, Hall, Lenoir, & Viggiani, 2011).

In Bigoni and Drugan, 2007 it has been shown that classical homogenization results describe accurately elastic properties
of heterogeneous materials in situations where the bodies are subjected to slowly-varying loading and the displacement and
stress gradients are small. If high gradients are present, standard homogenized materials cannot represent the physical
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response of composite elastic media. Moreover, approaches based on classical elasticity theory cannot always predict enough
accurately the size effect experimentally observed when the representative scale of the deformation field becomes compa-
rable to the length scale of the microstructure (Lakes, 1986). For example, it has been detected that in presence of stress con-
centration, such as near inclusions and holes, the strength of the material is higher if the grain size is smaller, and that the
bending and torsional strength of beams and wires are greater if their cross-section is thinner (Fleck, Muller, Ashby, & Hutch-
inson, 1994). Since stress concentration factors derived applying standard homogenization procedures to Cauchy elastic
materials depend only on the shape of the inhomogeneities and not on its size, they cannot describe accurately these effects.
On the other hand, the utilization of multi-scale techniques for studying microstructural properties of the materials implies
challenging numerical computations, and the validation of the results requires a critical comparison with analytical solutions
and experimental data.

Generalized theories of continuum mechanics, such as micropolar elasticity (Cosserat & Cosserat, 1909), indeterminate
couple stress elasticity (Koiter, 1964) and strain gradient theories (Fleck & Hutchinson, 2001; Aifantis, 2011; Dal Corso & Wil-
lis, 2011), may be considerate as an effort to include rigorously defined characteristic length scales and to study influence of
microstructures on the material behavior avoiding strong numerical calculations required by multi-scale approaches. Indeed,
exact analytical formulas for characteristic lengths in couple stress elastic materials have been derived via higher order
homogenization of heterogeneous Cauchy elastic materials by Bigoni and Drugan, 2007 and via numerical computations
by Askes and Aifantis, 2011. Analytical solutions derived for couple stress and strain gradient solids can also be used for val-
idating results of numerical simulations and analyzing experimental data obtained for materials with microstructures
(Lakes, 1995).

Indeterminate couple stress elasticity theory developed by Koiter, 1964 provides two distinct characteristic length scales
for bending and torsion. Moreover, it includes the effects of the microrotational inertia, which can be considered as an addi-
tional dynamic length scale. Therefore, in order to study crack propagation stability in couple-stress elastic materials, new
fracture criteria accounting for both effects of scale lengths and microrotational inertia must be formulated (Morozov, 1984).
For antiplane crack problems, in Georgiadis, 2003 and Radi, 2008 a critical level sC for the maximum total shear stress ahead
of the crack tip at which the crack starts propagating has been proposed as fracture criterion. This is known as the maximum
total shear stress criterion, and later in the article we will refer to it as the tmax criterion.

The J-integral for static crack problems in couple stress elasticity has been derived by Lubarda and Markenscoff, 2000 in
the case of an homogeneous material, and by Piccolroaz, Mishuris, and Radi, 2012 for an interfacial crack. The energy release
rate can be evaluated by means of the conservation of this integral, and further in the paper we will refer to it as ERR. Nev-
ertheless, energy-based dynamic fracture criteria for this kind of materials are still unknown in literature. For that reason,
the principal aim of this paper is to generalize the static energy release rate expression to the case of dynamic steady state
crack propagation, and to study the effects of the microstructure on the propagation stability by applying the energy Griffith
criterion (Freund, 1998). The results are compared with those obtained in Mishuris, Piccolroaz, and Radi, 2013, where the
tmax criterion has been adopted.

The structure of the paper is organized as follows: in Section 2 the problem of a semi-infinite Mode III steady state prop-
agating crack in couple stress elastic materials is formulated. Both translational and micro-rotational inertial terms are in-
cluded in the balance equations, and a distributed loading applied on the crack surfaces is assumed. In Section 3, the dynamic
conservation laws derived by Freund and Hutchinson, 1985 and Freund, 1998 for classical elasticity are generalized to couple
stress materials. General expressions for the dynamic J-integral and energy release rate associated to steadily propagating
cracks in couple stress elastic solids are derived. Explicit forms are obtained for the case of a Mode III crack, and the
path-independence of the J-integral is demonstrated in Appendix A.

An asymptotic analysis of the stress and displacement fields near to the crack tip is performed in Section 4. The contri-
bution of the asymptotic terms to the dynamic energy release rate is analyzed in details, the leading term corresponding to
finite non-zero energy is individuated and an explicit formula for the J-integral evaluated along a circular path surrounding
the crack tip is derived. The obtained formula involves a constant term depending on the boundary conditions of the problem
and indicating the amplitude of the leading order term of the asymptotic shear stress. This term is evaluated in closed form
in Section 5 by performing an asymptotic expansion of the full-field solution derived in Mishuris et al., 2013 for the same
loading configuration applied at crack faces. In this section, the asymptotics expansion of the full-field solution is also used
for deriving an alternative equivalent formula for the dynamic J-integral, calculated considering the square-shaped path
around the crack tip introduced by Freund, 1998 and used in Georgiadis, 2003, Gourgiotis, Georgiadis, and Sifnaiou, 2011,
a,, 2009. The energy release rate associated to a steady propagating Mode III crack in couple stress elastic solids is compared
to the corresponding expression in classical elastic materials.

In Section 6, the obtained expression for the energy release rate is used for studying subsonic crack propagation stability.
Assuming the energy-based Griffith criterion (Willis, 1971,Willis, 1967; Obrezanova, Movchan, & Willis, 2002), under the
considered loading conditions the steady state propagation turns out to be unstable regardless of the values the microstruc-
tural parameters. This result appears to be in contrast with those detected in Mishuris et al., 2013 adopting the tmax criterion,
which instead shows a stabilizing effect in presence of relevant microstructures contribution. In the authors’ opinion, this
discrepancy may be due to the fact that the energy release rate depends only on the leading order term of the asymptotic
expansion of the stresses, which dominates very close to the crack tip but provides unphysical features such as negative total
shear stress ahead of the crack tip. Therefore, at a distance to the crack tip equal or larger than the characteristic length the
sole leading order term may not describe the correct behavior of stresses and displacements. Differently, the total shear
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stress involved in the tmax criterion is calculated by means of the full-field solution, that takes fully into account the
microstructural contributions. As a consequence, in order to study the crack propagation stability in elastic materials
with microstructure, fracture criteria including also higher order terms of the asymptotic stresses and involving two
or more characteristic parameters should be used. Note that in classical elasticity fracture criteria including higher order
terms contributions such as T-stress criterion (Hancock & Du, 1991; Smith, Ayatollahi, & Pavier, 2006) have also been
proposed.

2. Steady-state cracks in couple stress elastic materials

In this section the problem of the steady-state dynamic propagation of a Mode III crack in elastic materials with
microstructures is formulated by means of the fully dynamical version of the couple-stress elastic model, accounting
both translational and micro-rotational inertial terms into the balance equations. Reference is made to a fixed Cartesian
coordinate system ð0; x1; x2; x3Þ centered at the crack tip at the initial time t ¼ 0. Under antiplane shear deformation, the
indeterminate theory of couple stress elasticity (Koiter, 1964) adopted in the present study provides the following kine-
matical compatibility conditions between the out-of-plane displacement u3, rotation vector u, strain tensor e and rota-
tion gradient tensor v:
e13 ¼
1
2

u3;1; e23 ¼
1
2

u3;2; u1 ¼
1
2

u3;2; u2 ¼ �
1
2

u3;1; ð1Þ

v11 ¼ �v22 ¼
1
2

u3;12; v21 ¼ �
1
2

u3;11; v12 ¼
1
2

u3;22: ð2Þ
Therefore, the rotations are derived from displacement. The rotation gradient tensor v, also known as deformations cur-
vature tensor or torsion-flexure tensor (Koiter, 1964), is defined in the general three-dimensional case as v ¼ ru ¼ r� e.
The vanishing of the Saint Venant tensor (or incompatibility tensor) requires v to be irrotational:
r� v ¼ r�r� e ¼ 0: ð3Þ
Using expressions (2), it can be immediately verified that relation (3) is satisfied. According to the indeterminate couple
stress theory the non-symmetric Cauchy stress tensor t can be decomposed into a symmetric part r and a skew-symmetric
part s, namely t ¼ rþ s. In addition, the couple stress tensor l is introduced as the work-conjugated quantity of vT . The re-
duced tractions vector p and the couple stress tractions vector q are defined as
p ¼ tT nþ 1
2
rlnn � n; q ¼ lT n� lnnn; ð4Þ
respectively, where n denotes the outward unit normal and lnn ¼ n � ln. The conditions of dynamic equilibrium of forces
and moments, taking into consideration rotational inertia, and neglecting body forces and body couples, write
r13;1 þ r23;2 þ s13;1 þ s23;2 ¼ q€u3; l11;1 þ r21;2 þ 2s23 ¼ J €u1; l12;1 þ r22;2 � 2s13 ¼ J €u2; ð5Þ
where q is the mass density and J is the rotational inertia.
Within the context of small deformations theory, the total strain e and the deformation curvature v are connected to

stress and couple stress through the following isotropic constitutive relations
r ¼ 2Geþ kðtreÞI; l ¼ 2G‘2ðv2 þ gvÞ; ð6Þ
where G is the elastic shear modulus, ‘ and g the couple stress parameters, with �1 < g < 1. Note that for antiplane defor-
mations tre ¼ 0. Both material parameters ‘ and g depend on the microstructure and can be connected to the material char-
acteristic length in bending and in torsion, namely
‘b ¼ ‘=
ffiffiffi
2
p

; ‘t ¼ ‘
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ g

p
: ð7Þ
Typical experimental values of ‘b and ‘t for some classes of materials with microstructure can be found in Lakes,
1986,Lakes, 1995, and analytical expressions for these moduli have been derived via homogenization of heterogeneous Cau-
chy elastic materials by Bigoni and Drugan, 2007.The limit value of g ¼ 1 corresponds to vanishing characteristic length in
torsion, which is typical of polycristalline metals. Moreover, from the definitions (7) it follows that ‘t ¼ ‘b for g ¼ 0:5 and
‘t ¼ ‘b ¼

ffiffiffi
2
p

for g ¼ �1. The constitutive equations of the indeterminate couple stress theory do not define the skew-sym-
metric part s of the total stress tensor t, which instead is determined by the equilibrium equations (5)2,3. Constitutive equa-
tions (6) together with the compatibility relations (1) and (2) give stresses and couple stresses in terms of the out of plane
displacement u3:
r13 ¼ Gu3;1; r23 ¼ Gu3;2; ð8Þ

l11 ¼ �l22 ¼ G‘2ð1þ gÞu3;12; l21 ¼ G‘2ðu3;22 � gu3;11Þ; l12 ¼ �G‘2ðu3;11 � gu3;22Þ: ð9Þ
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The introduction of (9) into (5)2,3 yields:
s13 ¼ �
G‘2

2
Du3;1 þ

J
4

€u3;1; s23 ¼ �
G‘2

2
Du3;2 þ

J
4

€u3;2; ð10Þ
where D denotes the Laplace operator. By means of (8) and (10), the equation of motion (5)1 becomes
Du3 �
‘2

2
DDu3 ¼

q
G

€u3 �
J

4G
D€u3: ð11Þ
We assume that the crack propagates with a constant velocity v along the x1-axis. In this case it is convenient to introduce
a moving framework x ¼ x1 � vt, y ¼ x2, z ¼ x3, and the out of the plane displacement can be assumed in the form:
u3ðx1; x2; tÞ ¼ wðx; yÞ: ð12Þ
It follows that the time derivative of the displacement w can be written in terms of the derivative with respect to x,
namely _w ¼ �vw;x and thus €w ¼ v2w;xx. Therefore the equation of motion (11) under steady-state conditions becomes:
Dw� ‘
2

2
DDw ¼ m2ðw;xx � h2

0‘
2Dw;xxÞ; ð13Þ
where m ¼ v=cs is the normalized crack velocity, cs ¼
ffiffiffiffiffiffiffiffiffi
G=q

p
is the shear wave speed for classical elastic materials, the char-

acteristic length h is defined as h ¼ v=/ with / ¼
ffiffiffiffiffiffiffiffiffiffi
4G=J

p
, and h0 ¼ h=‘ (see Mishuris et al., 2013).

According to (4), the non-vanishing components of the reduced traction and couple stress traction vectors along the crack
line y ¼ 0 can be written as
p3 ¼ t23 þ
1
2
l22;x; q1 ¼ l21; ð14Þ
respectively. By using (8)2, (9)1,2, (10)2 and (14), the skew-symmetry of the Mode III crack problem requires ahead of the
crack tip:
w ¼ 0; w;yy � gw;xx ¼ 0; for x > 0; y ¼ 0: ð15Þ
On the crack surface, vanishing of the reduced traction and couple stress traction yield to the following boundary condi-
tions for the function w:
w;y �
‘2

2
½ð2þ g� 2m2h2

0Þw;xx þw;yy�;y ¼ �
1
G
sðxÞ; w;yy � gw;xx ¼ 0; for x < 0; y ¼ 0; ð16Þ
where sðxÞ is the loading applied on the crack faces, which is assumed to have the following form:
sðxÞ ¼ T0

L
ex=L; x < 0: ð17Þ
Note that although we discuss here only a specific loading condition, the main conclusions reported in this paper have been
confirmed for other types of loading.

3. Dynamic energy release rate

In this section, the dynamic conservation laws obtained for linear elastic media by Freund, 1998 and Freund and Hutch-
inson, 1985 are generalized to couple stress elastic materials. An explicit integral expression for the dynamic energy release
rate associated to steady state cracks propagation in elastic solids with presence of couple stress is derived.

The energy release rate for a dynamic crack has been defined by Freund, 1998 as the following limit:� �

E ¼ lim

C!0

FðCÞ
v ; ð18Þ
where F is the total energy flux through the contour C surrounding the crack tip. For couple stress elastic materials, the en-
ergy flux for a dynamic crack propagating along x1-axis is given by:
FðCÞ ¼
Z

C
ðW þ TÞvn1 þ tT n � @u

@t
þ lT n � @u

@t

� �
ds; ð19Þ
where n is an outward unit normal on C;W denotes the strain-energy density
W ¼ 1
2
ðr � ruþ lT � ruÞ ¼ G� � �þ G‘2ðv � vþ gv � vTÞ; ð20Þ
and T is the kinetic energy density
T ¼ 1
2
ðqj _uj2 þ Jj _uj2Þ: ð21Þ
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Since a Mode III steady-state crack propagating at constant velocity v along the x1-axis is considered, the expression (12)
for the out-of-plane displacement is used and then in the moving framework ðx; y; zÞ the energy flux (19) assumes the special
form
FðCÞ ¼ v
Z

C
½ðW þ TÞnx � tT n � ezw;x � lT n �u;x�ds; ð22Þ
then the generalized J-integral for an antiplane dynamic steady-state crack in couple-stress elastic materials can be defined:
J ¼ FðCÞ
v ¼

Z
C
½ðW þ TÞnx � tT n � ezw;x � lT n �u;x�ds ð23Þ

¼
Z

C
½ðW þ TÞn� p � ezrw� ðruÞT q� � exds: ð24Þ
The expressions (23) and (24) have been proved to be path independent, the details of the demonstration are reported in
Appendix A. Moreover, the equivalence of the two alternative forms of the J-integral (23) and (24), the first written in func-
tion of the tractions and the second of the reduced tractions, is demonstrated in Appendix B. The (23) is the generalization of
the static expressions derived by Atkinson and Leppington, 1974,Atkinson and Leppington, 1977 and Lubarda and Marken-
scoff, 2000 to the antiplane dynamic steady state case. The dynamic energy release rate is then defined by the limit:Z
E ¼ lim
C!0 C

½ðW þ TÞnx � tT n � ezw;x � lT n �u;x�ds: ð25Þ
Using definitions (1) and (2), the strain energy density (20) becomes
W ¼ G
2
ðw2

;x þw2
;yÞ þ

G‘2

4
½ðw;xx þw;yyÞ2 þ 2ð1þ gÞðw2

;xy �w;xxw;yyÞ�; ð26Þ
whereas for steady state propagation the kinetic energy density is given by
T ¼ v2

2
qw2

;x þ
J
4
ðw2

;xy þw2
;xxÞ

� �
: ð27Þ
A polar coordinates system ðr; hÞ centered at the crack tip is assumed, and a circular contour of radius r around the crack tip
with n ¼ ðcos h; sin h;0Þ is considered. Then, substituting expressions (26) and (27) the J-integral (23) becomesZ � ��
J ¼
p

�p

v2

2
qw2

;x cos hþ J
4
ðw2

;xy þw2
;xxÞ cos h� J

2
w;xðw;xxx cos hþw;yxx sin hÞ þ G

2
½ðw2

;y �w2
;xÞ cos h� 2w;xw;y sin h�

þG‘2

2
ðDwÞ2

2
cos h� Dwðw;xx cos hþw;xy sin hÞ þw;xðDw;x cos hþ Dw;y sin hÞ

" #)
rdh: ð28Þ
According to the definition (25), the energy release rate can be evaluated as the limit for r ! 0 of the integral (28). In or-
der to evaluate explicitly the J-integral (28) and to investigate the variation of the energy release rate (25) in function of the
crack propagation velocity and its implications on propagation stability, the behavior of the out-of-plane displacement w
near to the crack tip is studied by means of an asymptotic analysis in the next section.

4. Asymptotic crack tip fields

The following standard asymptotic expression for out-of-plane displacement w in separate variables form is considered:
wðr; hÞ ¼ rsFsðhÞ; r ! 0; ð29Þ
We are interested in finding the terms of the asymptotic solution (29) corresponding to finite and non-zero contributions
to the J-integral (28) in the limit r ! 0. Since the displacement w should be bounded and symmetrical, it follows immedi-
ately that s > 0, and then no zero-order terms are present in the asymptotic expansion. Substituting the expression (29) in
the generalized J-integral formula (28) and using the following derivative rules which hold for an arbitrary function
f ðx; yÞ ¼ f ðr; hÞ:
f;x ¼ f;r cos h� f;h
sin h

r
; f ;y ¼ f;r sin hþ f;h

cos h
r

; ð30Þ
we get: Z

J ¼ r2s�1

2

p

�p
fqv2ðsFs cos h� F 0s sin hÞ2 cos hþ G½ð1þ sÞFsF

0
s sin h� ðsF2

s þ F 02s Þ cos h�gdh

þ r2s�3

4

Z p

�p
G‘2ðs2Fs þ F 00s Þ½ðFs � sð2� sÞF 00s Þ cos hþ 2F 0s sin h�
�

þ Jv2

2
ð2� sÞðsFs cos h� F 0s sin hÞ½sðs� ð2� sÞ cos 2hÞFs þ 2ð1� sÞF 0s sin 2hþ 2F 00s sin2 h�

)
dh; ð31Þ
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where the superscript 0 denotes the total derivative respect to the variable h.
Observing expression (31), in agreement with the results reported in Radi, 2008 for the static case, we deduce that the

finiteness of the energy release rate towards the crack tip requires that s P 3=2 for any non integer number.
Including higher order terms in the asymptotic expansion in the form

P
ir

si Fsi
ðhÞ and using this expression in (28), terms

of order rsiþsj�1 and rsiþsj�3 where i – j are detected. These terms involve both Fsi
and Fsj

and can have a non vanishing impact
to the value of the energy release rate. Therefore we need to consider several asymptotic terms in the form of (29) and ana-
lyze the possible correlation between them in the nonlinear functional (28). According with this discussion and in order to
find the terms corresponding to finite and non-zero contributions to the energy release rate, we assume 1 6 s < 3.

It can be easily demonstrated that if jsi � sjj < 2, 8i – j, only the leading order term of the governing equation (13) can be
considered, while if more terms are required with exponents differing by 2 or more than 2, the full equation (13) must be
considered in the analysis (Piccolroaz et al., 2012). As a consequence, assuming 1 6 s < 3, we can then keep only the leading
term of the evolution equation (13)
DðDw� k2w;xxÞ ¼ 0 where k2 ¼ 2m2h2
0 ¼

Jv2

2G‘2 : ð32Þ
Introducing the expression (29) in (32), the general asymptotic solution of the equation of motion has been obtained, the
derivation is illustrated in details in the section containing the supplementary material. Referring to this general solution,
since we are assuming values in the range 1 6 s < 3, the terms corresponding to s ¼ 1;3=2;2;5=2 needs to be considered
and the asymptotic expression for the out of plane displacement w turns out to be:
wðr; hÞ ¼ B1r sin hþ B2r3=2 sin
3
2

h� ð1� k2 sin2 hÞ
3=4 1þ g

1þ g� k2 sin
3
2

UðhÞ
" #

þ B3r2 sin 2h

þ B4r5=2 sin
3
2

h� ð1� k2 sin2 hÞ
5=4 1þ g

1þ g� k2 sin
5
2

UðhÞ
" #

þ Oðr5=2Þ; ð33Þ
where
UðhÞ ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
sin hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2 sin2 h
p

 !
; ð34Þ
and the constants B1;B2;B3 and B4 define the amplitude of each asymptotic term the sum and thus must to be evaluated
according to the boundary conditions (15) and (16).

It has been verified by symbolic calculations that the terms in Eq. (33) corresponding to s ¼ 1 and s ¼ 2, similarly to what
has been detected by Radi, 2008 and Piccolroaz et al., 2012 for a stationary crack case, do not contribute to the J-integral and
to energy release rate. Although these terms are relevant for evaluating displacement and total shear stress at the crack tip,
the only finite and non-vanishing contribution to the generalized J-integral (28) is associated to the order s ¼ 3=2 of the
asymptotic expansion (33). Then the energy release rate is given by:
E ¼ lim
r!0
J ¼ B2

2G‘2

64

Z p

�p
fð9H3=2 þ 4H003=2Þ½ð4H3=2 � 3H003=2Þ cos hþ 8H03=2 sin h�

þ k2ð3H3=2 cos h� 2H03=2 sin hÞ½3ð1� 3 cos 2hÞH3=2 � 4H03=2 sin 2hþ 8H003=2 sin2 h�gdh; ð35Þ
where
H3=2ðhÞ ¼ sin
3
2

h� ð1� k2 sin2 hÞ
3=4 1þ g

1þ g� k2 sin
3
2

UðhÞ

¼ sin
3
2

h� 1þ gffiffiffi
2
p
ð1þ g� k2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h

p
þ 2 cos h

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h

p
� cos h

q
: ð36Þ
The proposed procedure, is based on the analysis of the leading order term of the governing equation (32) performed by
assuming 1 6 s < 3. The analysis could in principle be performed by considering a different range of values of s, such as
1 < s 6 3, thus yielding the values s ¼ 3=2;2;5=2;3. However, by observing the expression (31) and noting that the higher
order contributions to the J-integral are of orders rsiþsj�1 and rsiþsj�3 and that s ¼ 1=2 is excluded because finite energy is re-
quired, it is easy to deduce that all terms associated to s > 5=2 do not contribute to the energy release rate. Therefore we can
conclude that s ¼ 3=2 provides effectively the only term contributing to the J-integral and that the choice of considering the
leading order term of the governing equation (13) in the asymptotic analysis is correct for our purpose.

In order to evaluate the energy release rate (35), the constant B2 must be explicitly determined. In the next section B2 is
calculated starting from the asymptotic expansion of the full-field solution derived in Mishuris et al., 2013 for the same load-
ing conditions (15)–(17) by means of Wiener–Hopf technique.
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5. Explicit evaluation of the energy release rate

In order to derive an explicit expression for the constant B2, we perform the asymptotic analysis of the Fourier transform
of the full-field solution derived in Mishuris et al., 2013 for the same loading conditions (15)–(17) by means of Wiener–Hopf
technique. In the limit jsj ! 1, the Fourier transforms of stress, couple stress field and displacements assume the following
behavior:
tþ23ðs;0
þÞ ¼ FT0Nð1þ g� 2h2

0m2Þ
!ðh0;m;gÞ

ðs‘Þ1=2
þ þ Oððs‘Þ�1=2

þ Þ; Ims > 0; ð37Þ

lþ22ðs;0
þÞ ¼

2iFT0‘N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2h2

0m2
q

� g
	 


ð1þ gÞ

!ðh0;m;gÞ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2h2

0m2
q	 
 ðs‘Þ�1=2

þ þ Oððs‘Þ�1
þ Þ; Ims > 0; ð38Þ

w�ðs;0þÞ ¼ � 2FT0‘N
G!ðh0;m;gÞ ðs‘Þ

�5=2
� þ Oððs‘Þ�7=2

� Þ; Ims < 0; ð39Þ
where F is a constant determined starting from the boundary condition (15)1 and applying the Liouville theorem and:
N ¼ kþði‘=LÞ
ði‘=LÞ1=2

þ

; !ðh0;m;gÞ ¼
1� g2 � 2h2

0m2 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2h2

0m2
q

ð1þ g2 � 2h2
0m2Þ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2h2

0m2
q ; ð40Þ
the explicit expression for the factorization function kþði‘=LÞ is given by Mishuris et al., 2013. Substituting the (40)(1) into
(37) and (39) we obtain:
tþ23ðs;0
þÞ ¼ FT0kþði‘=LÞ

ði‘=LÞ1=2
þ

ð1þ g� 2h2
0m2Þ

!ðh0;m;gÞ
ðs‘Þ1=2

þ þ Oððs‘Þ�1=2
þ Þ; Ims > 0; ð41Þ

lþ22ðs;0
þÞ ¼

2iFT0kþði‘=LÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2h2

0m2
q

� g
	 


ð1þ gÞ

ði‘=LÞ1=2
þ !ðh0;m;gÞ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2h2

0m2
q	 
 ðs‘Þ�1=2

þ þ Oððs‘Þ�1
þ Þ; Ims > 0; ð42Þ

w�ðs;0þÞ ¼ � 2FT0‘kþði‘=LÞ
Gði‘=LÞ1=2

þ !ðh0;m;gÞ
ðs‘Þ�5=2

� þ Oððs‘Þ�7=2
� Þ; Ims < 0: ð43Þ
Further, we consider the following transformation formula (Roos, 1969):
xj$ft ijþ1Cðjþ 1Þs�j�1; with j – � 1;�2;�3 . . . ; ð44Þ
where C is the gamma function and the symbol$ft indicates that the quantities on the two sides of the (44) are connected by
means of unilateral Fourier transform. Applying the (44) to expressions (41) and (43), we get:
t23ðx;0þÞ ¼ �
FT0

ffiffiffi
L
p

kþði‘=LÞ
2
ffiffiffiffi
p
p ð1þ g� 2h2

0m2Þ
!ðh0;m;gÞ

x�3=2; x > 0; ð45Þ

l22ðx;0
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2FT0

ffiffiffi
L
p
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2h2

0m2
q
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ffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2h2

0m2
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 x�1=2; x > 0; ð46Þ

wðx;0þÞ ¼ 8FT0

ffiffiffi
L
p

kþði‘=LÞ
3
ffiffiffiffi
p
p

G‘2!ðh0;m;gÞ
ð�xÞ3=2

; x < 0: ð47Þ
On the crack surface, for h ¼ p and y ¼ 0þ, the term of order 3/2 of the asymptotic expression in polar coordinates (33)
becomes
wðx;0þÞ ¼ B2
2m2h2

0

1þ g� 2m2h2
0

ð�xÞ3=2
; x < 0; ð48Þ
where the definition rðy ¼ 0þÞ ¼
ffiffiffiffiffi
x2
p

¼ jxj has been used. Equating expressions (47) and (48), we get:
B2 ¼
4FT0

ffiffiffi
L
p

kþði‘=LÞ
3
ffiffiffiffi
p
p

G!ðh0;m;gÞ‘2

1þ g� 2m2h2
0

m2h2
0

 !
: ð49Þ
The explicit expression (49) can be used into Eq. (35) for studying the variation of the energy release rate in function of
the crack tip speed and of the microstructural parameters h0 and g.



Fig. 1. Rectangular-shaped contour around the crack-tip.
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In order to check the validity of the obtained results, an alternative expression for the energy release rate is derived con-
sidering the rectangular-shaped contour C in Fig. 1 for vanishing height along the y-direction and for e! þ0 (Freund, 1998).
The Cartesian components of the outward unit vector normal to C are n ¼ ðnx;ny;0Þ. Considering the moving framework in
Fig. 1 with the origin at the crack tip, for the steady-state antiplane crack problem the generalized J-integral (23) becomes:
J ¼
Z

C
½ðW þ TÞnx � ðt13nx þ t23nyÞw;x � ðl11nx þ l21nyÞu1;x � ðl12nx þ l22nyÞu2;x�ds

¼
Z

C
½ðW þ TÞ � t13w;x � ðl11u1;x þ l12u2;xÞ�dy�

Z
C
½t23w;x þ ðl21u1;x þ l22u2;xÞ�dx; ð50Þ
where t13 and t23 are components of the total non-symmetric Cauchy stress tensor, including both symmetric and skew-sym-
metric part.

In order to evaluate the energy release rate, we allow the height of the rectangular path in Fig. 1 to vanish. In this limit, the
first integral in Eq. (50) is null and thus the following expression for the dynamic energy release rate is derived:
E ¼ �2 lim
e!þ0

Z þe

�e
½t23w;x þ ðl21u1;x þ l22u2;xÞ�dx

� �
: ð51Þ
It is important to note that skew-symmetric conditions (15) together with boundary conditions (16) provide that the re-
duced traction q1 ¼ l21 is null along the whole crack line y ¼ 0, where n ¼ ð0;�1; 0Þ. Consequently, the energy release rate
(51) becomes:
E ¼ �2 lim
e!þ0

Z þe

�e
½t23ðx;0þÞw;xðx; 0þÞ þ l21ðx; 0
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þÞ�dx

� �

¼ �2 lim
e!þ0

Z þe

�e
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þÞ�dx

� �
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e!þ0

Z þe

�e
t23ðx; 0þÞw;xðx;0þÞ �

1
2
l22ðx;0

þÞw;xxðx;0þÞ
� �

dx
� �

: ð52Þ
In order to evaluate the integral (52), only the asymptotic expressions for the traction ahead of the crack tip t23, the couple
stress field l22, and the displacement w are required. Then, by substituting Eqs. (45)–(47) in the general formula (52), we
finally derive:
E ¼ �2 lim
e!þ0
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ð53Þ
where x1=2
� ; x�1=2

� and x�3=2
þ ; x�1=2

þ are distributions of the bisection type (Arfken & Weber, 2005). For any real a with the excep-
tion of a ¼ 1;2;3; . . ., this particular type of distributions is defined as follows:
xa
þ ¼

jxja; for x > 0;
0; for x < 0:

(
; xa

� ¼
0; for x > 0;
jxja; for x < 0:

�

Moreover, the product of distributions inside the integral in (53) is evaluated through the application of Fisher’s theorem
(Fischer, 1971), that leads to the operational relation:
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ðx�ÞaðxþÞ�1�a ¼ � pdðxÞ
2 sinðpaÞ ; with a – � 1;�2;�3 . . . ; ð54Þ
where dðxÞ is the Dirac delta distribution. Then, by using the relation (54) into (53) and considering the fundamental prop-
erty of the Dirac delta distribution

Rþe
�e dðxÞdx ¼ 1 (Arfken & Weber, 2005), we finally get:
E ¼
2F2T2

0Lk2
þði‘=LÞ

G‘2!2ðh0;m;gÞ
2ð1þ g� h2

0m2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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0m2
q
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0m2

q
þ 1

¼
2F2T2

0Lk2
þði‘=LÞ

G‘2!ðh0;m;gÞ
: ð55Þ
Using this alternative procedure, we have derived the explicit expression (55) for the energy release rate corresponding to
a Mode III steady state propagating crack in a couple stress elastic material. Eq. (55) can be compared with the energy release
rate associate to an antiplane steady state crack in a classical elastic material, derived assuming the same loading configu-
ration (17):
Ecl ¼ T2
0

GL
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�m2
p : ð56Þ
The ratio between the two expressions (55) and (56) is given by:
E
Ecl
¼ 2F2L2k2

þði‘=LÞ
‘2!ðh0;m;gÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2
p

: ð57Þ
The analytical expression (55) has been proved to be equivalent to (35) by means of several numerical examples. Indeed,
both expressions (35) and (55) provide the same results, which are reported in the next section.

6. Results and discussion

In this section, the variation of the energy release rate is analyzed by applying the classical Griffith criterion (Willis, 1967)
in order to study the propagation stability. The results are compared with those detected using the tmax criterion, adopted by
Mishuris et al., 2013.

The normalized variation of the energy release rate versus the crack tip speed m is reported in Fig. 2 for the same value of
the ratio L=‘ ¼ 10, three different values of g ¼ f0;0:9;�0:9g and four different values of the rotational inertia
h0 ¼ f0:01;0:6;0:707;0:8g. The range of the normalized crack tip velocity has been chosen in such a way that the propaga-
tion is subsonic and the conditions of validity of the full-field solution obtained in Mishuris et al., 2013 and used for eval-
uating the J-integral constant are satisfied. A similar behavior is observed for all different set of parameters: the energy
release rate is initially constant for small values of the crack tip speed m 6 0:3, then it increases monotonically up to its limit
value. For small values of h0 and g, the limit value of the energy release rate corresponds to m ¼ 1, while as the microstruc-
tural parameters increases the limit value of the crack tip speed becomes smaller than the shear waves speed cs, and thus
m < 1.

On the basis of the Griffith criterion (Freund, 1998), crack initiation requires that the energy release rate achieves a critical
value Ec ¼ 2c, where c is the energy needed to form a unit of new material surface, and is a constant depending only by the
properties of the medium. In our case, once this critical value for the crack initiation is achieved, the energy release rate al-
ways increases in function of the velocity, this means that if the applied loading provides the energy necessary for starting
the fracture process, the crack has enough energy to accelerate rapidly up to the limit values of the speed (Willis, 1971;
Obrezanova et al., 2002). This implies that, if we analyze the results shown in Fig. 2 by means of Griffith criterion, the steady
Fig. 2. Variation of the energy release rate as a function of the normalized crack tip speed m.



Fig. 3. Variation of the ratio E=Ecl as a function of the normalized crack tip speed m.
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state propagation of a Mode III crack in couple-stress elastic material can be considered unstable for any value of the rota-
tional inertia h0 and of g.

The ratio between the energy release rate in couple stress materials and the energy release rate in classical elastic mate-
rials (57) is plotted in Fig. 3 as a function of the normalized crack tip speed m. For small values of the rotational inertia, this
ratio decreases as m tends to 1. This is due to the fact that for m ¼ 1, the energy release rate corresponding to a classical
elastic material (56) diverges, while in presence of couple stress it has a finite limiting value. Differently, for large values
of h0, the ratio increases monotonically until a limiting value corresponding to m < 1 and thus to a crack tip speed smaller
than cs. Therefore, in order to propagate the crack at constant velocity, more energy than in a classical elastic material must
be provided by the loading if the contribution of the rotational inertia is relevant. Observing Fig. 3, we can also note that in
the static limit, namely as m tends to zero, the ratio E=Ecl is close to one for g ¼ �1, this behavior is in agreement with the
results reported by Radi, 2008, which illustrate that for g ¼ �1 the solution approaches the classical elastic case.

In Mishuris et al., 2013 the tmax criterion (Georgiadis, 2003) is applied to the same crack problem. This alternative crite-
rion states that the maximum total shear stress tmax

23 possesses a critical level sC at which the crack starts propagating. The
behavior of tmax

23 as a function of the crack tip speed has been studied extensively for several sets of microstructural param-
eters. For each values of the ratio g, it has been individuated a critical value of the rotational inertia h0c , such that for h0 > h0c

the maximum shear stress increases very rapidly in function of m and becomes unbounded at a crack-tip speed lower than
the shear wave speed cs. In these cases, the crack propagation turns out to be unstable and a limit speed of propagation
vc < cs is individuated. For h0 < h0c , tmax

23 decreases instead as the crack speed increases and tends to zero as m approaches
its limiting value, suggesting the occurrence of stable crack propagation at velocities sufficiently lower than the shear wave
speed. The critical value of the rotational inertia is reported as a function of g in Fig. 4 (solid line). The limit value g ¼ �1
corresponds to h0c ¼ 0, then in this case the propagation turns out to be unstable for any value of the rotational inertia, while
as g increases h0c grows, and the range of the rotational inertia associated to stable cracks propagation becomes larger.
Therefore, the present analysis shows that if the maximum total shear stress criterion is adopted, a stabilizing effect of
the crack propagation is provided as the characteristic ratio g increases and then the contribution of the microstructures ef-
fect becomes relevant. Differently, for negative values of g near to the limit case g ¼ �1, crack propagation is detected to be
unstable as the rotational inertia becomes not negligible.

The stabilizing effect is not detected applying the Griffith criterion, according to which the propagation is unstable
regardless of the values of g and h0. As a consequence, assuming this criterion, the critical value of the rotational inertia
is zero for all values of g (dashed line in Fig. 4), and the fracture is unstable for each set of microstructural parameters. This
is due to the fact that the energy release rate is evaluated using the term of order r3=2 of the asymptotic displacement field,
corresponding to the singular shear stress term of order r�3=2. As it has been illustrated by many studies both in classical
elastic materials (Du & Hancock, 1991; Du, Betegon, & Hancock, 1991) and in couple stress (Radi & Gei, 2004; Radi, 2007;
Radi, 2008), this singular contribution dominates very near to the crack tip, but it displays an unphysical negative shear
stress ahead of the crack tip. Moreover, it is not sufficient to describe accurately the physical behavior of the stresses at dis-
tance to the crack tip larger than the characteristic length, where the higher order terms of the expansions become impor-
tant. In particular, the constant stress term associated to the linear term of the displacement, usually known as T-stress, can
influence significantly the processes of crack initiation and propagation in many physical situations (Tvergaard & Hutchin-
son, 1994). In this cases, the critical stress intensity factor criterion and thus the connected Griffith criterion (Freund, 1998)
are not sufficient for describing accurately the crack extension and stability. Alternative two-parameters fracture criteria
requiring the achievement of a critical value for both the stress intensity factor and the T-stress has been proposed for clas-
sical elastic materials (Hancock & Du, 1991; Smith et al., 2006) and can be extended to couple stress.

In couple stress materials, as the distance from the crack tip increases the discrepancy between the stresses physical
behavior and the singular leading term of the asymptotic is even more relevant respect to the classical elastic case (Radi,



Fig. 5. Variation of the dynamic energy release rate and of the ratio E=Ecl as a function of g plotted for m ¼ 0:8.

Fig. 4. Critical value of the rotational inertia h0c as a function of the ratio g.
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2008). Therefore, the contribution of the higher order term in the asymptotic expansion of the shear stress field is relevant,
even if it does not affect the energy release rate. In Mishuris et al., 2013 the total shear stress is instead evaluated by means of
the full-field solution, that describes correctly the behavior of displacement and stresses on the whole crack line and takes
fully into account the action of the microstructures.

Fig. 5 shows that for a fixed value of the crack tip speed, the energy release rate slightly increases its magnitude for large
values of h0. As a consequence, for large values of the rotational inertia, a greater flux of energy at the crack tip is detected,
and thus crack initiation and propagation are favoured. Moreover, in Fig. 5 we can also observe that ERR and the ratio E=Ec

decrease as g increase. In particular, the ratio E=Ec is almost one for g ¼ �1, and then it decreases. As it is reported in Fig. 6,
this behavior is observed also in the static case, corresponding to the limit m ¼ 0. This confirms the results illustrated in Radi,
2008 and can be explained with the fact that for large values of g, associated with large values of the characteristic length in
torsion, the toughness of the material increases, because less energy is provided at the crack tip and a shielding effect due to
microstructures is detected. It is important to note that in the quasi-static case the energy release rate is independent by the
value of h0, because the rotational inertia appears only in the dynamical terms of the evolution equation (13) and of the J-
integral (28).

7. Conclusions

A general expression for the J-integral associated to dynamic steady-state cracks subjected to antiplane loading in couple-
stress elastic materials has been derived. The effects of both finite characteristics lengths as well as rotational inertia are in-
cluded in the analysis. The generalized J-integral has been proved to be path independent for steadily propagating cracks.



Fig. 6. Variation of the dynamic energy release rate and of the ratio E=Ecl as a function of g for the case m ¼ 0, corresponding to the static limit.
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Asymptotic displacements and stress fields have been derived and used for evaluating the dynamic energy release rate. Sur-
prisingly, the dependence of the energy release rate by the microstructural parameters looks lower than the authors expec-
tations. However, for large values of the characteristic length in torsion the ERR decreases, and thus less energy is provided at
the crack tip and a shielding effect due to microstructures is detected.

The stability of the propagation has been studied by applying the energy-based Griffith criterion (Willis, 1967,Willis,
1971; Obrezanova et al., 2002). The propagation turns out to be unstable for every value of the characteristic length in tor-
sion and rotational inertia. This result appears to be in contrast with those detected in Mishuris et al., 2013, where the max-
imum total shear stress criterion has been adopted, and a stabilizing effect in correspondence of relevant microstructural
contributions is shown. In the authors’ opinion, the discrepancy is due to the fact that the energy release rate depends only
on a single term of the asymptotic displacement field, corresponding to the most singular term of the shear stress. This term
dominates in proximity of the crack tip, whereas as the distance from the crack tip increases the effects of higher order
asymptotic terms which do not contribute to the J-integral become relevant. It is important to note that analogous results
have been detected by comparing the ERR and the T-stress criterion in classical elasticity (Du et al., 1991; Smith et al., 2006).
Moreover, the presence of the microstructures affects stresses and displacement up to a distance from the crack tip of the
order of 5–10 times the characteristic length ‘ (Radi, 2008), and thus cannot be described by the sole leading order term.
Differently, the total shear stress is calculated by means of the full-field solution, that takes fully into account the microstruc-
tural contributions. Therefore, in order to study cracks propagation stability in elastic media with microstructures, fracture
criteria considering also higher order terms must be developed and validated by means of experimental analysis. The tmax

criterion may represent one of the possible alternative methods that could give relevant results concerning microstructural
effects on crack propagation stability.

8. Supplementary material

In this section a general asymptotic solution for the evolution equation (32) is derived. Eq. (32) can be split in the follow-
ing two PDEs
Dw ¼ 0; Dw� k2w;xx ¼ 0: ð58Þ
Substituting the asymptotic expression for the displacement (29) into (58)1, and using the derivative rules (30), the following
ODE for the unknown function FsðhÞ is derived:
F 00s ðhÞ þ s2FsðhÞ ¼ 0: ð59Þ
This equation admits the solutions providing:
wIðr; hÞ ¼ rs½C1 cosðshÞ þ C2 sinðshÞ�; ð60Þ
for any s > 0.
Eq. (58)2 can be reduced in the form (58)1 by considering the linear coordinate transformation
X ¼ x; Y ¼ y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
: ð61Þ
Let us denote the transformed coordinates as X ¼ R cos U and Y ¼ R sin U, where:
Rðr; hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ ð1� k2ÞY2

q
¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h

p
; ð62Þ
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UðhÞ ¼ arctan
Y
X

	 

¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
sin hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2 sin2 h
p

 !
: ð63Þ
Then, the general solution of Eq. (58)2 is given by
wIIðr; hÞ ¼ Rs½C3 cosðsUðhÞÞ þ C4 sinðsUðhÞÞ�; ð64Þ
for any s > 0.
Finally, the general solution of the governing equation (32) is obtained by the sum of wI and wII , given respectively by (60)

and (64). By using expression (63), we get:
wðr; hÞ ¼ rs½C1 cosðshÞ þ C2 sinðshÞ þ ð1� k2 sin2 hÞ
s=2
ðC3 cosðsUðhÞÞ þ C4 sinðsUðhÞÞÞ�: ð65Þ
Since the asymptotic expansion of the loading function (17) contains only integer powers of r, for non-integer values of
the exponent s, which in our case means for s – 1;2, the boundary conditions (15) at h ¼ 0 and (16) at h ¼ p yield the fol-
lowing linear and homogeneous system for the unknown constants C1, C2, C3 and C4, equivalent to that derived for the trac-
tion-free problem (Radi & Gei, 2004; Radi, 2007, 2008):
C1 þ C3 ¼ 0;

sðs� 1Þ½ð1þ gÞC1 þ ð1þ g� k2ÞC3� ¼ 0;

sðs� 1Þf½ð1þ gÞC1 þ ð1þ g� k2ÞC3� cosðspÞ þ ½ð1þ gÞC2 þ ð1þ g� k2ÞC4� sinðspÞg ¼ 0;

sðs� 1Þðs� 2Þ ½ð1þ g� k2ÞC2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
ð1þ gÞC4� cosðspÞ � ½ð1þ g� k2ÞC1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
ð1þ gÞC3� sinðspÞ

n o
¼ 0:

ð66Þ
Then from (66) it necessarily follows that C1 ¼ C3 ¼ 0 and
½ð1þ gÞC2 þ ð1þ g� k2ÞC4� sinðspÞ ¼ 0;

½ð1þ g� k2ÞC2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
ð1þ gÞC4� cosðspÞ ¼ 0:

ð67Þ
Eqs. (67) admit a non trivial solution for sin 2ps ¼ 0, namely for s ¼ n=2 where n 2 N. In particular, for n odd one obtains
from (67)1:
C4 ¼ �
1þ g

1þ g� k2 C2; ð68Þ
and consequently from (65)
wðr; hÞ ¼ C2rn=2 sin
n
2

h
� �

� 1þ g
1þ g� k2 ð1� k2 sin2 hÞ

n=4
sin

n
2

UðhÞ
� �" #

: ð69Þ
For n even, from (67)2 it follows:
C4 ¼ �
1þ g� k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
ð1þ gÞ

C2; ð70Þ
and consequently from (65)
wðr; hÞ ¼ C2rn=2 sin
n
2

h
� �

� 1þ g� k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
ð1þ gÞ

ð1� k2 sin2 hÞ
n=4

sin
n
2

UðhÞ
� �" #

: ð71Þ
Since we are considering values in the range 1 6 s < 3, the terms corresponding to s ¼ 1;3=2;2;5=2 need to be included in
the asymptotic solution. The terms of the order s ¼ 3=2 and s ¼ 5=2 possess the form (69), while the terms s ¼ 1;2 corre-
spond to degenerate cases of Eq. (32), and need to be treated separately.

For s ¼ 1, the general solution of Eq. (32) may be found by solving the problem
Dw ¼ r�1ð1� k2 sin2 hÞ
�1=2
ðC3 cos UðhÞ � C4 sin UðhÞÞ; ð72Þ
namely
Dw ¼ r�1ð1� k2 sin2 hÞ
�1

C3 cos h� C4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
sin h

� �
; ð73Þ
By using the method of variation of the parameters, one can find the following solution of Eq. (73) in the separate variable
form (29)
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wðr; hÞ ¼ r

2k2 C1 þ C3 logð1� k2 sin2 hÞ þ 2C4ðU� h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
Þ

h i
cos hþ C2 � 2C3ðU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
� hÞ

hn
þC4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
logð1� k2 sin2 hÞ

i
sin h

o
: ð74Þ
The boundary conditions (15) and (16) necessarily imply that C1 ¼ C3 ¼ C4 ¼ 0, so that the corresponding solution re-
duces to
wðr; hÞ ¼ C2r sin h; ð75Þ
where C2 depends by the amplitude of the loading (17) and also by the constant associated to the term s ¼ 3, that is ne-
glected in our analysis.

For s ¼ 2, the general solution of Eq. (32) may be found by solving the problem
Dw ¼ C3 þ C4UðhÞ; ð76Þ
namely
Dw ¼ C3 þ C4 arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
sin hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2 sin2 h
p
 !

; ð77Þ
By using the method of variation of the parameters, one can find the following solution of Eq. (77) in the separate variable
form (29)
wðr; hÞ ¼ r2 C1 cos 2hþ C2 sin 2hþ C3

4
þ C4

2k2 ðk
2 sin2 hþ cos 2hÞUþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
sin 2h log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� k2 sin2 hÞ

q
� h cos 2h

	 
� �� �
:

ð78Þ
The boundary conditions (15) and (16) necessarily imply that C1 ¼ C3 ¼ C4 ¼ 0, so that the corresponding solution re-
duces to
wðr; hÞ ¼ C2r2 sin 2h: ð79Þ
where C2 depends by the amplitude of the loading (17) and also by the constant associated to the term s ¼ 4, that is ne-
glected in our analysis.
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Appendix A

In this appendix, we demonstrate that the dynamic J-integral expression (23) for a Mode III steady-state propagating
crack in couple stress elastic materials is path independent.

Considering a closed oriented path formed by two crack tip contours C1 and C2 and by the segments of the crack faces of
length d that connect the ends of these contours, the energy flux integral corresponding to this entire closed path Ctot for a
Mode III steady state crack in couple-stress materials is given by
FðCtotÞ ¼ FðC2Þ � FðC1Þ ¼ v
I

Ctot

½ðW þ TÞnx � tT n � ezw;x � lT n �u;x�ds; ðA:1Þ
then from the definition (23) we derive
J ðCtotÞ ¼ J ðC2Þ � J ðC1Þ ¼
I

Ctot

½ðW þ TÞnx � tT n � ezw;x � lT n �u;x�ds; ðA:2Þ
where the notation J ðC1Þ and J ðC2Þ denotes that the dynamic J-integral (23) is evaluated respect to the crack tip contours
C1 and C2, respectively. Applying the divergence theorem to the (A.2) we obtain and remembering that nx ¼ n � ex, we obtain
JC2Þ � J ðC1Þ ¼
Z

Atot

r � ½ðW þ TÞex � tT ezw;x � lTu;x�dA; ðA:3Þ
where Atot is the area within the closed area. For the antiplane steady-state problem the strain elastic energy density and the
kinetic energy density are given by
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W ¼ 1
2
ðr13w;x þ r23w;y þ l11u1;x þ l12u2;x þ l21u1;y þ l22u2;yÞ; ðA:4Þ

T ¼ v2

2
ðqw2

;x þ Ju2
1;x þ Ju2

2;xÞ; ðA:5Þ
the first term of the integral (A.3) is the given by
r � ½ðW þ TÞex� ¼ ðW þ TÞ;x ¼ v2ðqw;xxw;x þ Ju1;xxu1;x þ Ju2;xxu2;xÞ þ
1
2
ðr13;xw;x þ r13w;xx þ r23;xw;y þ r23w3;yxÞ

þ 1
2
ðl11;xu1;x þ l11u1;xx þ l12;xu2;x þ l12u2;xx þ l21;xu1;y þ l21u1;yx þ l22;xu2;y þ l22u2;yxÞ: ðA:6Þ
Taking into account the dynamic equilibrium conditions (5), the second term can be written as follows
r � ðtT ezw;xÞ ¼ ðr � tTÞ � ezw;x þ tT � rw;x ¼ q€uw;x þ ðr13 þ s13Þw;xx þ ðr23 þ s23Þw;yx

¼ qv2w;xxw;x þ ðr13 þ s13Þw;xx þ ðr23 þ s23Þw;yx; ðA:7Þ
while the third
r � ðlTu;xÞ ¼ ðr � lTÞ �u;x þ lT � ru;x

¼ ðJ €u1 � 2s23Þu1;x þ ðJ €u2 þ 2s13Þu2;x þ l11u1;x þ l12u2;x þ l21u1;y þ l22u2;y

¼ ðJv2u1;xx � 2s23Þu1;x þ ðJv
2u2;xx þ 2s13Þu2;x þ l11u1;x þ l12u2;x þ l21u1;y þ l22u2;y: ðA:8Þ
Substituting (A.6), (A.7) and (A.8) into the integral (A.3) and writing u1 and u2 as functions of the displacement by means of
relations (1)(3,4), we obtain
J ðC2Þ � J ðC1Þ ¼
Z

Atot

1
2

r13;xw;x þ r23;xw;y þ
1
2
ðl11;xw;yx � l12;xw;xx þ l21;xw;yy � l22;xw;xyÞ

	 
�

�1
2

r13w;xx þ r23w;yx þ
1
2
ðl11w;yxx � l12w;xxx þ l21w;yyx � l22w;xyxÞ

	 
�
dA; ðA:9Þ
finally, introducing into the (A.9) expressions (8) and (9), defining the stress and couple-stress tensors in function of the
derivatives of the displacement, we get:
J ðC2Þ � J ðC1Þ ¼
G‘2

2

Z
Atot

½ðw;xxw;xxx þw;yyw;yyx � gðw;yyxw;xx þw;xxxw;yyÞÞ

� ðw;xxw;xxx þw;yyw;yyx � gðw;yyxw;xx þw;xxxw;yyÞÞ�dA ¼ 0: ðA:10Þ
We have thus demonstrated that for a Mode III steady state crack propagation in couple-stress elastic materials the dif-
ference between the energy release rate calculated considering two different paths around the crack tip is zero, as a conse-
quence we can conclude that the J-integral expression (23) is path independent.

Appendix B

In this appendix we demonstrate that the two alternative expressions for the J-integral (56), one of which is in function of
the tractions and the other of the reduced tractions, are equivalent. The equivalence of the two forms is demonstrated for a
general three-dimensional steady state crack problem, and the expressions (56), valid for the Mode III, are derived as a par-
ticular case.

On the basis of general expression for the energy flux (19), for a steady state three-dimensional crack propagating in cou-
ple stress elastic materials the J-integral is defined as follows:
J ¼
Z

C
½ðW þ TÞnx � tT n � u;x þ lT n �u;x�ds: ðB:1Þ
An alternative expression for this integral is given in function of the reduced tractions p and of the couple stress tractions
q (Georgiadis, 2003; Gourgiotis et al., 2011):
J ¼
Z

C
½ðW þ TÞnx � p � u;x � q �u;x�ds: ðB:2Þ
We now demonstrate that expressions (B.1) and (B.2) are equivalent. Remembering the definition of the reduced tractions
and of the couple stress tractions (4), the following relations are derived:
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p � u;x ¼ tT n � u;x þ
1
2
ðrlnn � nÞ � u;x

q �u;x ¼ lT n �u;x � lnnn �u;x: ðB:3Þ
Making the difference between expressions (B.1) and (B.2), we obtain:
1
2

Z
C
½ðrlnn � nÞ � u;x�ds�

Z
C
ðlnnn �u;xÞds ¼ 1

2
eijk

Z
C
ðlnn;injuk;xÞds� 1

2
ekji

Z
C
ðlnnnkui;xjÞds; ðB:4Þ
where eijk and ekji are elements of the Levi–Civita tensor, and the components of the rotations vector u have been expressed
in function of the displacements according to kinematic compatibility conditions introduced by Koiter, 1964 and reported in
Section 2 for the antiplane case. Taking into account the permutation properties of the Levi–Civita tensor elements ekji ¼ ejik

and eijk ¼ �ekji, the (B.4) becomes:
�1
2
ekji

Z
C
ðlnn;injuk;xÞds� 1

2
ekji

Z
C
ðlnnnkui;xjÞds ¼ �1

2
ekji

Z
C
ðlnn;injuk;xÞds� 1

2
ejik

Z
C
ðlnnnjuk;xiÞds

¼ �1
2
ekji

Z
C
ðlnn;injuk;x þ lnnnjuk;xiÞds ¼ �1

2

Z
C

njekjiðlnnuk;xÞ;ids: ðB:5Þ
Defining the vector a ¼ lnnu;x of components ak ¼ lnnuk;x, the (B.5) can be rewritten as:
�1
2

Z
C

njekjiak;ids ¼ �1
2

Z
C

njejikak;ids ¼ �1
2

Z
C

njbjds; ðB:6Þ
where bj ¼ ejikak;i are elements of the vector b ¼ rota. Applying the divergence theorem, it follows that:
�1
2

Z
C

b � nds ¼ �1
2

Z
A
ðr � bÞ dA ¼ �1

2

Z
A
½r � ðr � aÞ� dA ¼ 0: ðB:7Þ
We have demonstrated that the difference between the two alternative forms of the J-integral (B.1) and (B.2) is zero, then
expressions (B.1) and (B.2) are equivalent. For a Mode III crack, using the definition of the out-of-plane displacement (12), the
(B.1) becomes:
J ¼
Z

C
½ðW þ TÞnx � tT n � ezw;x � lT n �u;x�ds: ðB:8Þ
In the same antiplane case, the following relations are derived:
p � u;x ¼ p3 �w;x ¼ ðp � ezÞrw � ex; ðB:9Þ
q �u;x ¼ q1u1;x þ q2u2;x ¼ ½ðruÞT q� � ex; ðB:10Þ
then, substituting these expressions in Eq. (B.2), we finally obtain the second form for the J-integral (24):
J ¼
Z

C
½ðW þ TÞn� p � ezrw� ðruÞT q� � exds: ðB:11Þ
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