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The focus of the article is on the analysis of a semi-infinite crack at the interface between two dissimilar
anisotropic elastic materials, loaded by a general asymmetrical system of forces acting on the crack faces.
Recently derived symmetric and skew-symmetric weight function matrices are introduced for both plane
strain and antiplane shear cracks, and used together with the fundamental reciprocal identity (Betti for-
mula) in order to formulate the elastic fracture problem in terms of singular integral equations relating
the applied loading and the resulting crack opening. The proposed compact formulation can be used to
solve many problems in linear elastic fracture mechanics (for example various classic crack problems
in homogeneous and heterogeneous anisotropic media, as piezoceramics or composite materials). This
formulation is also fundamental in many multifield theories, where the elastic problem is coupled with
other concurrent physical phenomena.
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1. Introduction and formulation of the problem

The method of singular integral equations in linear elasticity
was first developed for solving two-dimensional problems (Mush-
kelishvili, 1953), and later extended to three-dimensional cases by
means of multi-dimensional singular integral operators theory
(Kupradze et al., 1979; Mikhlin and Prössdorf, 1980). Singular inte-
gral formulations for both two and three-dimensional crack prob-
lems have been derived by means of a general approach based on
Green’s function method (Weaver, 1977; Budiansky and Rice,
1979; Linkov et al., 1997). As a result, the displacements and the
stresses are defined by integral relations involving the Green’s
functions, for which explicit expressions are required (Bigoni and
Capuani, 2002). Although Green’s functions for many two and
three-dimensional crack problems in isotropic and anisotropic
elastic materials have been derived (Sinclair and Hirth, 1975;
Weaver, 1977; Pan, 2000, 2003; Pan and Yuan, 2000), their utiliza-
tion in evaluating physical displacements and stress fields on the
crack faces implies, especially in the anisotropic case, challenging
numerical estimation of integrals which convergence should be as-
serted carefully. Moreover, the approach based on Green’s function
method works when the tractions applied on the discontinuity
surface are symmetric, but not in the case of asymmetric loading
acting on the crack faces.
ll rights reserved.

).
Recently, using a procedure based on Betti’s reciprocal theorem
and weight functions1 an alternative method for deriving integral
identities relating the applied loading and the resulting crack open-
ing has been developed for two and three-dimensional semi-infinite
interfacial cracks between dissimilar isotropic materials by Piccolro-
az and Mishuris (2013). In the two-dimensional case, the obtained
identities contain Cauchy type singular operators together with alge-
braic terms. The algebraic terms vanish in the case of homogeneous
materials. This approach avoids the use of the Green’s functions
without assuming the load to be symmetric.

The aim of this paper is to derive analogous integral identities
for the case of semi-infinite interfacial cracks in anisotropic bima-
terials subjected to two-dimensional deformations.

General expressions for symmetric and skew-symmetric weight
functions for interfacial cracks in two-dimensional anisotropic
bimaterials have been recently derived by Morini et al. (2013) by
means of Stroh representation of displacements and fields (Stroh,
1962) combined with a Riemann–Hilbert formulation of the trac-
tion problem at the interface (Suo, 1990b). These expressions for
the weight functions are used together with the results obtained
for isotropic media by Piccolroaz and Mishuris (2013) in order to
obtain integral formulation for interfacial cracks problems in
1 Defined by Bueckner (1985) as singular non-trivial solutions of the homogeneous
traction-free problem and later derived for general three-dimensional problems by
Willis and Movchan (1995), and for interfacial cracks by Gao (1992) and Piccolroaz
et al. (2009).
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anisotropic bimaterial solids with general asymmetric load applied
at the crack faces.

We consider a two-dimensional semi-infinite crack between
two dissimilar anisotropic elastic materials with asymmetric load-
ing applied to the crack faces, the geometry of the system is shown
in Fig. 1. Further in the text, we will use the superscripts (1) and (2)

to denote the quantities related to the upper and the lower elastic
half planes, respectively. The crack is situated along the negative
semi-axis x1 < 0. Both in-plane and antiplane stress and deforma-
tion, which in fully anisotropic materials are coupled (Ting, 1995),
are taken into account. The symmetrical and skew-symmetrical
parts of the loading are defined as follows:

hpi ¼ 1
2
ðpþ þ p�Þ; spt ¼ pþ � p�; ð1Þ

where pþ and p� denote the loading applied on the upper and lower
crack faces, x2 ¼ 0þ and x2 ¼ 0�, respectively (see Fig. 1).

In Section 2 preliminary results needed for the derivation of the
integral identities and for the complete explanation of the pro-
posed method are reported. In Section 2.1, the fundamental reci-
procal identity and the weight functions, defined as special
singular solution of the homogeneous traction-free problem are
introduced. In Section 2.2, symmetric and skew-symmetric weight
functions matrices for interfacial cracks in anisotropic bimaterials
recently derived by Morini et al. (2013) are reported.

Section 3 contains the main results of the paper: integral identi-
ties (34), (35), (64) and (65) for two-dimensional crack problems be-
tween two dissimilar anisotropic materials are derived and
discussed in details. The integral identities are derived for mono-
clinic-type materials, which are the most general class of anisotropic
media where both in-plane and antiplane strain and in-plane and
antiplane stress are uncoupled (Ting, 1995; Ting, 2000), and the
Mode III can be treated separately by Mode I and II. By means of Bet-
ti’s formula and weight functions, both antiplane and plane strain
fracture problems are formulated in terms of singular integral equa-
tions relating the applied loading and the resulting crack opening.

In Section 4, the obtained integral identities are used for study-
ing cracks in monoclinic bimaterials loaded by systems of line
forces acting on the crack faces. The proposed examples show that
using the identities explicit expressions for crack opening and trac-
tions ahead of the crack tip can be derived for both antiplane and
in-plane problems. These simple illustrative cases demonstrate
also that the proposed integral formulation is particularly easy to
apply and can be very useful especially in the analysis of phenom-
ena where the elastic behavior of the material is coupled with
other physical effects, as for example hydraulic fracturing, where
both anisotropy of the geological materials and fluid motion must
be taken into account.
Fig. 1. Two-dimensional semi-infinite interfacial crack loaded by non necessarily
symmetric forces applied on the crack faces.
Finally, in Appendix A, the Stroh formalism (Stroh, 1962), adopted
by Suo (1990b) and Gao et al. (1992) in analysis of interfacial cracks
in anisotropic bimaterials and recently used by Morini et al. (2013)
for deriving symmetric and skew-symmetric weight functions, is
briefly explained. In particular, explicit expressions for Stroh matri-
ces and surface admittance tensor needed in weight functions
expressions associated to monoclinic materials are reported.

2. Preliminary results

In this section relevant results obtained by several studies
regarding interfacial cracks are reported. These results will be used
further in the paper in order to develop an integral formulation for
the problem of a semi-infinite interfacial crack in anisotropic
bimaterials.

In Section 2.1, we introduce the Betti integral formula for a
crack in an elastic body subjected to two-dimensional deforma-
tions with general asymmetric loading applied at the faces.

In Section 2.2, general matrix equations expressing weight
functions in terms of the associate singular traction vectors, re-
cently derived by Morini et al. (2013), and valid for interfacial
cracks in a wide range of two-dimensional anisotropic bimaterials
are reported.

2.1. The Betti formula

The Betti formula is generally used in linear elasticity in order to
relate the physical solution to the weight function which is defined
as special singular solution to the homogeneous traction-free prob-
lem (Bueckner, 1985; Willis and Movchan, 1995). Since the Betti
integral theorem is independent of the specific elastic constitutive
relations of the material, it applies to both isotropic and aniso-
tropic media in the same form.

The notations u ¼ ðu1;u2;u3ÞT and r ¼ ðr21;r22;r23ÞT are intro-
duced to indicate respectively the physical displacements and the
traction vector acting on the plane x2 ¼ 0. According to the fact
that two-dimensional elastic deformations are here considered,
both displacements and stress do not depend on the variable x3.
Nevertheless, since both in-plane and anti-plane strain and
stress are considered, non-zero components u3 and r23 are ac-
counted for (Ting, 1995). The notations U ¼ ðU1;U2;U3ÞT and
R ¼ ðR21;R22;R23ÞT are introduced to indicate the weight function,
defined by Bueckner (1985) as a non-trivial singular solution of the
homogeneous traction-free problem, and the associated traction
vector, respectively. As it was shown by Willis and Movchan
(1995), the weight function U is defined in a different domain re-
spect to physical displacement, where the crack is placed along
the positive semi-axis x2 > 0. Following the procedure reported
and discussed in Willis and Movchan (1995), Piccolroaz et al.
(2009) and Piccolroaz and Mishuris (2013), from the application
of the Betti integral formula to the physical fields and to weight
functions for both the upper and the lower half-planes in Fig. 1,
we obtain:Z 1

�1
f~RUðx01 � x1;0

þÞ � pþðx1Þ � ~RUðx01 � x1;0
�Þ � p�ðx1Þ

þ ~RUðx01 � x1;0
þÞ � rðþÞðx1;0

þÞ � ~RUðx01 � x1;0
�Þ � rðþÞðx1;0

�Þ

� ½~RRðx01 � x1;0
þÞ � uðx1;0

þÞ þ ~RRðx01 � x1;0
�Þ � uðx1;0

�Þ�gdx1 ¼ 0;

ð2Þ

where ~R is the rotation matrix:

~R ¼
�1 0 0
0 1 0
0 0 �1

0
B@

1
CA;
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pþðx1Þ and p�ðx1Þ are the loading acting on the upper and on the
lower crack faces, respectively, and rðþÞðx1;0Þ is the physical
traction at the interface ahead of the crack tip. The superscript (+)

denotes a function whose support is restricted to the positive
semi-axis, x1 > 0. In Eq. (2), x01 denotes a shift of the weight function
within the plane ðx1; x3Þ and the dot symbol stands for the scalar
product.

Assuming perfect contact conditions at the interface, which im-
plies displacement and traction continuity at the interface ahead of
the crack tip, rðþÞðx1;0Þ can be defined as follows:

rðþÞðx1;0
þÞ ¼ rðþÞðx1;0

�Þ ¼ sðþÞðx1Þ; x1 > 0: ð3Þ

Similarly, also the traction corresponding to the singular solution U
satisfies the continuity at the interface:

Rðx1;0
þÞ ¼ Rðx1;0

�Þ ¼ Rðx1Þ; x1 < 0: ð4Þ

Using these definitions, (2) becomes:Z 1

�1
f~RsUtðx01 � x1Þ � sðþÞðx1Þ � ~RRðx01 � x1Þ � sut

ð�Þðx1Þgdx1

¼ �
Z 1

�1
f~RUðx01 � x1;0

þÞ � pþðx1Þ � ~RUðx01 � x1;0
�Þ

� p�ðx1Þgdx1; ð5Þ

where sut
ð�Þ is the crack opening behind the tip, (�) denotes that its

support is restricted to the negative semi-axis, x1 < 0, and sUt is
known as the symmetric weight function:

sUtðx1Þ ¼ Uðx1;0
þÞ � Uðx1; 0

�Þ: ð6Þ

By expressing the loading acting on the crack faces in terms of the
symmetric and skew-symmetric parts defined by (1), the Betti iden-
tity (5) finally becomes:Z 1

�1
f~RsUtðx01 � x1Þ � sðþÞðx1Þ � ~RRðx01 � x1Þ � sut

ð�Þðx1Þgdx1

¼ �
Z 1

�1
f~RsUtðx01 � x1Þ � ph iðx1Þ þ ~R Uh iðx01 � x1Þ

� sptðx1Þgdx1; ð7Þ

where hUi is known as the skew-symmetric weight function
(Willis and Movchan, 1995; Piccolroaz et al., 2009; Morini et al.,
2013):

hUiðx1Þ ¼
1
2
½Uðx1;0

þÞ þ Uðx1; 0
�Þ�: ð8Þ

The integral identity (7) can be written in an equivalent form using
the convolution respect to x1, denoted by the symbol ⁄ (Arfken and
Weber, 2005):

ð~RsUtÞT � sðþÞ � ð~RRÞT � sut
ð�Þ ¼ �ð~RsUtÞT � hpi � ð~RhUiÞT � spt:

ð9Þ

This integral identity relates physical traction and crack opening to
weight functions and load applied at the crack faces, and will be
used further in the text in order to formulate the interfacial crack
problem between dissimilar anisotropic materials in terms of singu-
lar integral equations.

Note that, in order to simplify notations, in Eq. (9) the scalar
product a � b between vectors a and b is replaced by the ‘‘row by
column’’ product aT b between the row vector aT and the column
vector b.

2.2. Symmetric and skew-symmetric weight functions for anisotropic
bimaterials

Let us introduce the Fourier transform of a generic function f
with respect to the variable x1 as follows:
f̂ ðnÞ ¼ F n½f ðx1Þ� ¼
Z 1

�1
f ðx1Þeinx1 dx1; f ðx1Þ ¼ F�1

x1
½f̂ ðnÞ�

¼ 1
2p

Z 1

�1
f̂ ðnÞe�inx1 dn: ð10Þ

In Morini et al. (2013), the following expressions for the Fourier
transform of the singular displacements U at the interface between
two dissimilar anisotropic media have been derived:

Ûðn;0þÞ ¼ 1
2n
ðYð1Þ � Yð1ÞÞ � 1

2jnj ðY
ð1Þ þ Yð1ÞÞ

� �
R̂�ðnÞ; n 2 R;

ð11Þ

Ûðn;0�Þ ¼ 1
2n
ðYð2Þ � Yð2ÞÞ þ 1

2jnj ðY
ð2Þ þ Yð2ÞÞ

� �
R̂�ðnÞ; n 2 R;

ð12Þ

where R̂� is the Fourier transform of the singular traction at the
interface, which in the case of perfect contact condition is defined
as in expression (4), and Y is the Hermitian definite positive surface
admittance tensor (Gao et al., 1992), depending on the elastic prop-
erties of the materials and defined in details in Appendix A.

The superscripts + and �, used here and in the sequel, denote
functions analytic in the upper and in the lower complex half-
planes, respectively

f̂þðnÞ ¼ F n½f ðþÞðx1Þ�; f̂�ðnÞ ¼ F n½f ð�Þðx1Þ�:

Eqs. (11) and (12) represent general expressions relating the
tractions R̂�ðnÞ applied on the bounding surfaces and the corre-
sponding displacements Ûðn;0þÞ, Ûðn;0�Þ for the upper and lower
half-planes, respectively.

The symmetric and skew-symmetric weight function matri-
ces are derived by taking respectively the jump and the average
of Û :

sÛt
þðnÞ ¼ 1

jnj fi signðnÞ ImðYð1Þ � Yð2ÞÞ � ReðYð1Þ þ Yð2ÞÞgR̂�ðnÞ;

ð13Þ

hÛiðnÞ ¼ 1
2jnj fi signðnÞ ImðYð1Þ þ Yð2ÞÞ � ReðYð1Þ � Yð2ÞÞgR̂�ðnÞ; n 2 R:

ð14Þ

Eqs. (13) and (14) can also be expressed in the compact form:

sÛt
þðnÞ ¼ � 1

jnj fReH� i signðnÞ ImHgR̂�ðnÞ; ð15Þ

hÛiðnÞ ¼ � 1
2jnj fReW� i signðnÞ ImWgR̂�ðnÞ; n 2 R; ð16Þ

where H and W are the bimaterial matrices defined as follows (Suo,
1990b; Ting, 2000):

H ¼ Yð1Þ þ Yð2Þ; ð17Þ
W ¼ Yð1Þ � Yð2Þ: ð18Þ

Expressions (15) and (16) are valid for interfacial cracks in general
anisotropic two-dimensional media. Since in anisotropic materials
in-plane and antiplane displacements and stresses are generally
coupled (Ting, 1996, 2000), for the case of fully anisotropic media
three linearly independent vectors R and then U must be defined
for obtaining a complete basis of the singular solutions space. Nev-
ertheless, there are several classes of anisotropic materials where
in-plane and antiplane displacements and stress are uncoupled
(Ting, 1995) and then Mode III deformation can be treated sepa-
rately from Mode I and II as for the case of isotropic media (Piccol-
roaz et al., 2009, 2010; Piccolroaz and Mishuris, 2013). In the next
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Section integral identities are derived for interfacial crack between
two media belonging to the most general of these classes, known as
monoclinic materials.

3. Integral identities

In this section, following the approach of Piccolroaz and Mishu-
ris (2013), an integral formulation of the problem of a semi-infinite
two-dimensional interfacial crack in anisotropic bimaterials is ob-
tained. A particular class of anisotropic materials, where elastic
properties are symmetrical with respect to a plane, is considered.
These materials are known as monoclinic, and in the case in which
the plane of symmetry coincides with x3 ¼ 0 both in-plane and
antiplane displacements and in-plane and antiplane stress are
uncoupled (Ting, 1995). Monoclinic having plane of symmetry at
x3 ¼ 0 are the most general class of anisotropic materials where
stress and strain are decoupled, and they include as subgroups
all other classes having this property, such as orthotropic and cubic
materials (Horgan and Miller, 1994; Ting, 2000). Explicit expres-
sions for Stroh matrices and surface admittance tensor correspond-
ing to these type of media are reported in Appendix A. These
expressions have been used for evaluating bimaterial matrices
(17) and (18).

In Sections 3.1 and 3.2, antiplane shear and plane strain interfa-
cial cracks problems in monoclinic bimaterials are formulated in
terms of singular integral equations by means of weight function
expressions (15) and (16) and Betti integral identity (9).

3.1. Mode III

Considering antiplane deformations in monoclinic materials, as
it is shown in Appendix A, constitutive relations reduce to scalar
equations relating stresses r23 and r13 to u3, and then the traction
r23 ¼ sþ3 and the displacements derivative for both upper and low-
er half-plane material become (Suo, 1990b):

s3ðx1; x2Þ ¼ L33h3ðz3Þ þ L33h3ðz3Þ; ð19Þ

u3;1ðx1; x2Þ ¼ F33h3ðz3Þ þ F33h3ðz3Þ; ð20Þ

where z3 ¼ x1 þ l3x2. The bimaterial matrices (17) and (18) reduce
to:

H33 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s044s055 � s0245

q� �ð1Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s044s055 � s0245

q� �ð2Þ
; ð21Þ

W33 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s044s055 � s0245

q� �ð1Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s044s055 � s0245

q� �ð2Þ
; ð22Þ

where s0ij are elements of the reduced elastic compliance matrix (see
Appendix A). According to general expressions (15) and (16), the
Fourier transform of symmetric and skew-symmetric weight func-
tions for an antiplane shear crack between two dissimilar mono-
clinic materials are:

sÛ3t
þðnÞ ¼ �H33

jnj R̂�23ðnÞ; hÛ3iðnÞ ¼ �
W33

2jnj R̂
�
23ðnÞ

¼ m
2

sÛ3t
þðnÞ; ð23Þ

where the following non-dimensional parameter has been
introduced:

m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s044s055 � s0245

qh ið1Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s044s055 � s0245

qh ið2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s044s055 � s0245

qh ið1Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s044s055 � s0245

qh ið2Þ : ð24Þ

In the case of antiplane deformations, the Betti formula reduces to
the scalar equation:
sU3t � sðþÞ3 � R23 � su3t
ð�Þ ¼ �sU3t � hp3i � hU3i � sp3t: ð25Þ

Applying the Fourier transform with respect to x1, defined by rela-
tion (10), to this identity, we obtain:

sÛ3t
þŝþ3 � R̂�23sû3t

� ¼ �sÛ3t
þhp̂3i � hÛ3isp̂3t: ð26Þ

Multiplying both sides of (26) by sÛ3t
�1, we obtain:

ŝþ3 � Bsû3t
� ¼ �hp̂3i � Asp̂3t: ð27Þ

The factors in front of the unknown functions are given by:

A ¼ sÛ3t
�1hÛ3i ¼

m
2
; B ¼ sÛ3t

�1R̂3 ¼ �
jnj

H33
: ð28Þ

If we apply the inverse Fourier transform to (27), we derive two
distinct relationships corresponding to the two cases x1 < 0 and
x1 > 0:

hp3iðx1Þ þ F�1
x1<0½Asp̂3t� ¼ F�1

x1<0½Bsû3t
��; x1 < 0; ð29Þ

sþ3 ðx1Þ ¼ F�1
x1>0½Bsû3t

��; x1 > 0: ð30Þ

It is important to note that the term ŝþ3 cancels from (29) because it
is a ‘‘+’’ function, while ½p̂3� and hp̂3i cancel from (30) because they
are ‘‘�’’ functions.

To proceed further, we need to evaluate the inverse Fourier
transform of the function jnjsû3t

�. Following the procedure illus-
trated by Piccolroaz and Mishuris (2013), we get:

F�1
x1
½jnjsû3t

�� ¼ 1
px1
� @su3t

�

@x1
¼ 1

p

Z 1

�1

1
x1 � g

@su3t
�

@g
dg: ð31Þ

Then we can define the singular operator S and the orthogonal pro-
jectors P� (Pþ þ P� ¼ I) acting on the real axis:

w ¼ Su ¼ 1
px1
�uðx1Þ ¼

1
p

Z 1

�1

uðgÞ
x1 � g

dg; ð32Þ

P�u ¼
uðx1Þ; �x1 P 0;
0; otherwise:

�
ð33Þ

The operator S is a singular operator of Cauchy type, and it trans-
forms any function u satisfying the Hölder condition into a new
function Su which also satisfies this condition (Mushkelishvili,
1946). The properties of the operator S in several functional spaces
have been described in details in Prössdorf (1974).

The integral identities (29) and (30) for a Mode III interfacial
crack between two dissimilar monoclinic materials become:

hp3iðx1Þ þ
m
2

sp3tðx1Þ ¼ �
1

H33
SðsÞ @su3t

ð�Þ

@x1
; x1 < 0; ð34Þ

sðþÞ3 ðx1Þ ¼ �
1

H33
SðcÞ @su3t

ð�Þ

@x1
; x1 > 0; ð35Þ

where SðsÞ ¼ P�SP� is a singular integral operator, and SðcÞ ¼
PþSP� is a compact integral operator (Gakhov and Cherski, 1978;
Krein, 1958; Gohberg and Krein, 1958). These two operators look
similar, but they are essentially different, in fact: SðsÞ : FðR�Þ !
FðR�Þ, while SðcÞ : FðR�Þ ! FðRþÞ, where FðR�Þ is some functional
space of functions defined on R�.

For explaining better this point, the integral identities (34) and
(35) can be written in the extended form:

hp3iðx1Þ þ
m
2

sp3tðx1Þ ¼ �
1

pH33

Z 0

�1

1
x1 � g

@su3t
ð�Þ

@g
dg; x1 < 0;

ð36Þ

sðþÞ3 ðx1Þ ¼ �
1

pH33

Z 0

�1

1
x1 � g

@su3t
ð�Þ

@g
dg; x1 > 0: ð37Þ
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The integral in (36) is a Cauchy-type singular integral with a moving
singularity, whereas the integral in (37) possesses a fixed point sin-
gularity (Duduchava, 1976, 1979).

In the case of a homogeneous monoclinic material, the integral

identities (34) and (35) simplify, since m ¼ 0, H33 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s044s055 � s0245

q
and thus there is no influence of the skew-symmetric loading.

Summarizing, the integral identities for Mode III interfacial
cracks in monoclinic bimaterials are given by Eqs. (34) and (35).
Eq. (34) in an invertible singular integral relation between the ap-
plied loading hp3i, sp3t and the corresponding crack opening

su3t
ð�Þ. Eq. (35) is an additional relation through which it is possi-

ble to define the behavior of the solution su3t
ð�Þ. Since the operator

SðcÞ is compact, it is not invertible, and thus for deriving the trac-

tion ahead of the crack tip sðþÞ3 one needs to evaluate su3t
ð�Þ by

inversion of Eq. (34) (see Mushkelishvili (1946) for details).

3.2. Mode I and II

For plane strain deformations in monoclinic materials, the sur-
face admittance tensor Y is given by a 2� 2 matrix of the form
(Ting, 1995):

Y ¼ s011Pþ iðs011c � s012ÞE; ð38Þ

where:

P ¼
b d

d e

� �
; E ¼

0 �1
1 0

� �
; ð39Þ

l1 þ l2 ¼ aþ ib; l1l2 ¼ c þ id; ð40Þ

e ¼ ad� bc ¼ Im½l1l2ðl1 þ l2Þ�; ð41Þ

in which l1 and l2 are solutions of the eigenvalue problem associ-
ated to balance equations by means of Stroh representation of dis-
placements and stresses (Stroh, 1962; Ting, 1996) (see Appendix A
for more details). Since l1 and l2 are eigenvalues with positive
imaginary part, b is strictly positive, b ¼ Imðl1 þ l2Þ > 0, while
the positive definiteness of the matrix Y, and consequently of P, im-
plies that (Ting, 1995):

e > 0 and be� d2
< 0: ð42Þ

Thus, bimaterial matrices H and W for an interfacial crack between
dissimilar monoclinic materials under plane strain deformations
can be decomposed into real and imaginary parts as follows:

H ¼ Yð1Þ þ Yð2Þ ¼ H0 þ ib
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22

p
E; ð43Þ

W ¼ Yð1Þ � Yð2Þ ¼W0 � ic
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22

p
E; ð44Þ

where matrices H0 and W0 are defined as:

H0 ¼ H11 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22
p

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22
p

H22

 !
; W0 ¼ d1H11 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22
p

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22
p

d2H22

 !
:

ð45Þ
Note that H11 and H22 are real positive parameters defined similarly
to those introduced by Suo (1990b) for orthotropic bimaterials:

H11 ¼ ½bs011�
ð1Þ þ ½bs011�

ð2Þ
; H22 ¼ ½es011�

ð1Þ þ ½es011�
ð2Þ
: ð46Þ

Regarding matrix H, two non-dimensional Dundurs-like parameters
are defined (Ting, 1995; Suo, 1990b; Morini et al., 2013):

a ¼ ½ds011�
ð1Þ þ ½ds011�

ð2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22
p ; b ¼ ½s

0
11c � s012�

ð1Þ � ½s011c � s012�
ð2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H11H22
p ; ð47Þ

while the matrix W depends by four non-dimensional Dundurs-like
parameters (Ting, 1995; Suo, 1990b; Morini et al., 2013):
d1 ¼
½bs011�

ð1Þ � ½bs011�
ð2Þ

H11
; d2 ¼

½es011�
ð1Þ � ½es011�

ð2Þ

H22
; ð48Þ

k ¼ ½ds011�
ð1Þ � ½ds011�

ð2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22
p ; c ¼ � ½s

0
11c � s012�

ð1Þ þ ½s011c � s012�
ð2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H11H22
p : ð49Þ

The Fourier transforms of the symmetric and skew-symmetric
weight functions (15) and (16) for a plane monoclinic bimaterial as-
sume the form:

sÛt
þðnÞ ¼ � 1

jnj H0 � isignðnÞb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22

p
E

	 

R̂�ðnÞ; ð50Þ

hÛiðnÞ ¼ � 1
2jnj W0 þ isignðnÞc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22

p
E

	 

R̂�ðnÞ: ð51Þ

Since in plane strain elastic bimaterials Mode I and Mode II are cou-
pled, two linearly independent singular solutions and tractions
Ui ¼ ðUi

1;U
i
2Þ

T , Ri ¼ ðRi
21;R

i
22Þ

T , i ¼ 1;2, are needed in order to define
a complete basis of the singular solutions space (Piccolroaz et al.,
2009). As a consequence, in this case symmetric and skew-symmet-
ric weight functions [U] and hUi, and the associate traction R are
represented by 2� 2 tensors which may be constructed by ordering
the components of each singular solution in columns:

U ¼
U1

1 U2
1

U1
2 U2

2

 !
; R ¼

R1
21 R2

21

R1
22 R2

22

 !
: ð52Þ

Correspondingly, the rotation matrix ~R reduces to:

~R ¼
�1 0
0 1

� �
: ð53Þ

Applying the Fourier transform to the (9), we obtain:

sÛt
T ~Rŝþ � R̂T ~Rsût

� ¼ �sÛt
T ~Rhp̂i � hÛiT ~Rsp̂t; n 2 R: ð54Þ

Multiplying both sides by ~R�1sÛt
�T , the following identity is

derived:

ŝþ � Bsût
� ¼ �hp̂i � Asp̂t; ð55Þ

where A and B are given by:

A ¼ ~R�1sÛt
�ThÛTi~R; B ¼ ~R�1sÛt

�T R̂T ~R: ð56Þ

Explicit expressions for these matrices can be computed using sym-
metric and skew-symmetric weight functions (50) and (51):

A ¼ 1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22
p

ða2 þ b2 � 1Þ
ðA0 þ i signðnÞA00Þ; ð57Þ

B ¼ jnjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22
p

ða2 þ b2 � 1Þ
ðB0 þ ib signðnÞEÞ; ð58Þ

where A0;A00 and B0 are:

A0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22
p

ðak� bc� d1Þ H22ðk� ad2Þ
H11ðk� ad1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22
p

ðak� bc� d2Þ

 !
; ð59Þ

A00 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22
p

ðacþ bkÞ H22ðcþ bd2Þ
�H11ðcþ bd1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22
p

ðacþ bkÞ

 !
; ð60Þ

B0 ¼

ffiffiffiffiffiffi
H22
H11

q
a

a
ffiffiffiffiffiffi
H11
H22

q
0
B@

1
CA: ð61Þ

Applying the inverse Fourier transform to the identity (55), for the
two cases x1 < 0 and x1 > 0, we get:

hpiðx1Þ þ F�1
x1<0½A½p̂�� ¼ F�1

x1<0½B½û�
��; x1 < 0; ð62Þ
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sðþÞðx1Þ þ F�1
x1>0½A½p̂�� ¼ F�1

x1>0½B½û�
��; x1 > 0: ð63Þ

As for the case of antiplane deformations, illustrated in the previous
Section, the term ŝþ in Eq. (55) cancels from the (62) because it is a
‘‘+’’ function, while hp̂i cancels from the (63) because it is a ‘‘�’’
function.

Using the same inversion procedure of the previous Section the
following integral identities for plane strain deformations in mono-
clinic bimaterials are derived:

hpiðx1Þ þAðsÞ
spt ¼ BðsÞ

@sut
ð�Þ

@x1
; x1 < 0; ð64Þ

sþðx1Þ þAðcÞ
spt ¼ BðcÞ

@sut
ð�Þ

@x1
; x1 > 0; ð65Þ

where matrix operators AðsÞ;BðsÞ : FðR�Þ ! FðR�Þ, and
AðcÞ;BðcÞ : FðR�Þ ! FðRþÞ are defined as follows:

AðsÞ ¼ 1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22
p

ða2 þ b2 � 1Þ
ðA0 þ A00SðsÞÞ; ð66Þ

BðsÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22
p

ða2 þ b2 � 1Þ
ðB0SðsÞ � bEÞ; ð67Þ

AðcÞ ¼ 1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22
p

ða2 þ b2 � 1Þ
A00SðcÞ; ð68Þ

BðcÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22
p

ða2 þ b2 � 1Þ
B0SðcÞ: ð69Þ

Eqs. (64) and (65), together with the definition of operators (66)–
(69), form the system of integral identities for Mode I and II
deformations in monoclinic bimaterials. Eq. (64) is a system of two
coupled singular integral equations, which decouples in the case
where the Dundurs parameters a and b vanish. Observing expres-
sion (47), we can note that b vanishes in the case of a homogeneous
monoclinic material, while a is zero only for some particular
Fig. 2. Geometry of th

Fig. 3. Geometry of the
subclasses of materials, such as for orthotropic materials, where
the quantity d, defined by (40) and representing the imaginary part
of the product of the eigenvalues, vanishes (Suo, 1990a; Gupta et al.,
1992). As a consequence, for a homogeneous orthotropic material,
the system (64) is reduced to the following decoupled equations:

� 1
H11
SðsÞ @su1t

ð�Þ

@x1
¼ hp1iðx1Þ �

c
2

ffiffiffiffiffiffiffiffi
H22

H11

s
SðsÞsp2t; x1 < 0; ð70Þ
� 1
H22
SðsÞ @su2t

ð�Þ

@x1
¼ hp2iðx1Þ �

c
2

ffiffiffiffiffiffiffiffi
H11

H22

s
SðsÞsp1t; x1 < 0: ð71Þ

The solution of these two equations requires the inversion of the
singular operator SðsÞ, which has been performed and discussed in
details by Piccolroaz and Mishuris (2013). The inversion of the ma-
trix operator BðsÞ in the general case requires the analysis of the sys-
tems of singular integral differential equations (Vekua, 1970).
4. Illustrative examples: line forces applied at the crack faces

In this section we report an illustrative example of application
of the integral identities in analysis of interfacial cracks in aniso-
tropic bimaterials. Antiplane (Fig. 2) and plane strain (Fig. 3) inter-
facial cracks in monoclinic bimaterials loaded by line forces acting
on the crack faces are studied by means of the proposed integral
formulation. Explicit expressions for crack opening and tractions
ahead of the tip corresponding to both symmetrical and skew-
symmetrical loading configurations are derived. The proposed
illustrative cases show that the integral identities derived in previ-
ous Section represent a very useful tool for studying interfacial
crack problems in anisotropic materials, and their relevance is even
greater in analysis of scenarios where the elastic problem is cou-
pled with other phenomena, as for example hydraulic fracturing
where both anisotropic elastic behavior of geomaterials and fluid
motion must be taken into account.
e Mode III crack.

Mode I and II crack.
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4.1. Mode III: symmetrical line forces

We consider an antiplane shear crack where the loading is given
by two symmetrical line forces applied on the faces, at a distance a
from the crack tip, and directed along the x3-axis:

hp3iðx1Þ ¼ �Fdðx1 þ aÞ; sp3tðx1Þ ¼ 0; ð72Þ

where d is the Dirac delta function, and F has the dimensions of a
force divided by a length.

For antiplane deformations, the singular integral equations
relating the applied loading and the resulting crack opening is gi-
ven by (34). Inverting the operator SðsÞ by means of procedure pro-
posed by Piccolroaz and Mishuris (2013), we obtain:

@su3t
ð�Þ

@x1
¼ �H33

p
F
Z 0

�1

ffiffiffiffiffi
g
x1

r
dðgþ aÞ
x1 � g

dg

¼ �H33

p
F
ffiffiffiffiffiffiffiffiffi
� a

x1

r
1

x1 þ a
: ð73Þ

Assuming the condition that the crack opening vanishes at zero and
at infinity, and integrating the (73), the following expressions are
derived:

su3tðx1Þ ¼
2F
p

H33 arctanh
ffiffiffiffiffiffiffiffiffi
� x1

a

r
; �a < x1 < 0;

su3tðx1Þ ¼
2F
p

H33 arctanh
ffiffiffiffiffiffiffiffiffi
� a

x1

r
; x1 < �a: ð74Þ

Substituting (73) into Eq. (37), the explicit expression for the trac-
tion ahead of the crack tip can be evaluated:

sðþÞ3 ðx1Þ ¼ �
1

pH33

Z 0

�1

1
x1 � g

@su3t
�

@g
dg ¼ F

p

ffiffiffiffiffi
a
x1

r
1

x1 þ a
: ð75Þ

It is important to note that the derived expressions for the trac-
tion ahead of the crack tip, and the associated crack opening, are
identical to the results derived by Piccolroaz and Mishuris (2013)
for the isotropic case, except for the parameter H33, that is related
to the anisotropy of the media.

The traction expression (75) can then be used for calculating the
stress intensity factor. Applying to this specific case the general
definition introduced for interfacial cracks in anisotropic materials
by Wu (1990) and Hwu (1993a) we obtain:

KIII ¼ lim
x1!0

ffiffiffiffiffiffiffiffiffiffiffi
2px1

p
sðþÞ3 ðx1Þ ¼

ffiffiffiffiffiffi
2
pa

r
F: ð76Þ

The stress intensity factor (76), calculated using (75), is identical to
that obtained by Hwu (1993a) for the same symmetric loading con-
figuration applying a different procedure. This is an important proof
for the validity of the traction expression (75) and consequently of
the associated crack opening (74), derived by means of integral
identities.

4.2. Mode III: skew-symmetrical line forces

We now consider an antiplane shear crack where the loading is
given by two skew-symmetrical line forces applied on the faces, at
a distance a behind the crack tip, and directed along the x3-axis:

hp3iðx1Þ ¼ 0; sp3tðx1Þ ¼ �2Fdðx1 þ aÞ: ð77Þ

Applying the inverse operator ðSðsÞÞ�1 to Eq. (34), we obtain:

@su3t
ð�Þ

@x1
¼ �m

H33

p
F
Z 0

�1

ffiffiffiffiffi
g
x1

r
dðgþ aÞ
x1 � g

dg

¼ �m
H33

p
F
ffiffiffiffiffiffiffiffiffi
� a

x1

r
1

x1 þ a
: ð78Þ

Integrating this expression the crack opening is then derived:
su3tðx1Þ ¼ m
2F
p

H33 arctanh
ffiffiffiffiffiffiffiffiffi
� x1

a

r
; �a < x1 < 0;

su3tðx1Þ ¼ m
2F
p

H33 arctanh
ffiffiffiffiffiffiffiffiffi
� a

x1

r
; x1 < �a: ð79Þ

Substituting (78) into Eq. (37), the traction ahead of the crack tip
becomes:

sðþÞ3 ðx1Þ ¼ m
F
p

ffiffiffiffiffi
a
x1

r
1

x1 þ a
: ð80Þ

The derived expressions (79) and (80) are consistent with the
results obtained in Piccolroaz and Mishuris (2013) for isotropic
media, the only difference consists in the parameter m which char-
acterizes antiplane deformations in anisotropic bimaterials.

Also in this case, since traction expression (80) have been de-
rived, the stress intensity factor can be evaluated using the general
definition:

KIII ¼ lim
x1!0

ffiffiffiffiffiffiffiffiffiffiffi
2px1

p
sðþÞ3 ðx1Þ ¼ m

ffiffiffiffiffiffi
2
pa

r
F: ð81Þ

The explicit expressions for the crack opening (74) and (79), and
for the tractions ahead of the tip (75) and (80) have been derived
only by inversion of the operator SðsÞ and by a simple integration
procedure. This example shows that the integral identities obtained
in Section 3 are fairly easy to use for solving antiplane interface crack
problems in anisotropic materials. Then the integral identities repre-
sent a powerful tool for solving many problems in linear elastic frac-
ture mechanics, especially for studying systems where the elastic
fields are coupled with other physical phenomena.

4.3. Mode I and II: symmetrical line forces

The plane strain crack problem is now addressed. We assume
that the loading is given by two symmetrical line forces applied
on the faces at a distance a from the crack tip and directed respec-
tively along x1 and x2 axis:

hp1iðx1Þ ¼ �F1dðx1 þ aÞ; sp1tðx1Þ ¼ 0; ð82Þ
hp2iðx1Þ ¼ �F2dðx1 þ aÞ; sp2tðx1Þ ¼ 0; ð83Þ

where F1 and F2 have the dimensions of a force divided by a length.
In two-dimensional interfacial elastic crack problems (plane

strain or plane stress), Mode I and II are in general coupled and
stress oscillations near the crack tip must be taken into account
(Suo, 1990b; Hwu, 1993a). The corresponding integral identities
(64) are a system of equations coupled by means of the generalized
Dundurs parameter b (see Eq. (47)), connected to the oscillation in-
dex of the bimaterial e (Suo, 1990b):

e ¼ 1
2p

ln
1� b
1þ b

� �
: ð84Þ

For simplicity, we assume that b is zero, this implies that also the
oscillation index (84) vanishes and that in this particular case we
have no oscillations at the crack tip. Eqs. (64) for x1 < 0 become:

hp1iðx1Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H11H22
p

ða2 � 1Þ

ffiffiffiffiffiffiffiffi
H22

H11

s
SðsÞ @su1t

ð�Þ

@x1
þ aSðsÞ @su2t

ð�Þ

@x1

" #
;

ð85Þ

hp2iðx1Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H11H22
p

ða2 � 1Þ
aSðsÞ @su1t

ð�Þ

@x1
þ

ffiffiffiffiffiffiffiffi
H11

H22

s
SðsÞ @su2t

ð�Þ

@x1

" #
:

ð86Þ

Applying the inverse operator ðSðsÞÞ�1 to both these equations, by
means of some algebraic manipulations the following result is
obtained:



1444 L. Morini et al. / International Journal of Solids and Structures 50 (2013) 1437–1448
@su1t
ð�Þ

@x1
¼ �H11

p
F1 � a

ffiffiffiffiffiffiffiffi
H22

H11

s
F2

 ! ffiffiffiffiffiffiffiffiffi
� a

x1

r
1

x1 þ a
; ð87Þ

@su2t
ð�Þ

@x1
¼ �H22

p
F2 � a

ffiffiffiffiffiffiffiffi
H11

H22

s
F1

 ! ffiffiffiffiffiffiffiffiffi
� a

x1

r
1

x1 þ a
: ð88Þ

Then, after integration, for �a < x1 < 0 we derive:

su1t
ð�Þðx1Þ ¼

2H11

p
F1 � a

ffiffiffiffiffiffiffiffi
H22

H11

s
F2

 !
arctanh

ffiffiffiffiffiffiffiffiffi
� x1

a

r
;

su2t
ð�Þðx1Þ ¼

2H22

p
F2 � a

ffiffiffiffiffiffiffiffi
H11

H22

s
F1

 !
arctanh

ffiffiffiffiffiffiffiffiffi
� x1

a

r
: ð89Þ

And for x1 < �a:

su1t
ð�Þðx1Þ ¼

2H11

p
F1 � a

ffiffiffiffiffiffiffiffi
H22

H11

s
F2

 !
arctanh

ffiffiffiffiffiffiffiffiffi
� a

x1

r
;

su2t
ð�Þðx1Þ ¼

2H22

p
F2 � a

ffiffiffiffiffiffiffiffi
H11

H22

s
F1

 !
arctanh

ffiffiffiffiffiffiffiffiffi
� a

x1

r
: ð90Þ

The tractions components ahead of the crack tip can be evaluated
by (65):

sðþÞ1 ðx1Þ ¼
F1

p

ffiffiffiffiffi
a
x1

r
1

x1 þ a
; ð91Þ

sðþÞ2 ðx1Þ ¼
F2

p

ffiffiffiffiffi
a
x1

r
1

x1 þ a
: ð92Þ

We can observe that, also for the two-dimensional vector problem,
if the loading is given by symmetric line forces applied at the faces,
the corresponding expressions for the traction components ahead of
the crack tip and for stress intensity factors are analogous to that
derived by Piccolroaz and Mishuris (2013) for isotropic bimaterials,
the only difference consists in the constants. The crack opening
components (89) and (90) are coupled to F1 and F2 by means of
the Dundurs parameter a. This means that, even in the case where
the symmetric load possesses only one non-zero component, direc-
ted along x1-axis or x2-axis, the induced crack opening has both x1

and x2 components. This aspect is an important difference respect
to the case of isotropic materials, and it is connected with aniso-
tropic properties of monoclinic media.

In the particular case where a ¼ 0, corresponding to orthotropic
bimaterials, (Suo, 1990a; Gupta et al., 1992), crack opening expres-
sions are similar to the isotropic case, except for the different con-
stants. For �a < x1 < 0:

su1t
ð�Þðx1Þ ¼

2H11

p
F1 arctanh

ffiffiffiffiffiffiffiffiffi
� x1

a

r
;

su2t
ð�Þðx1Þ ¼

2H22

p F2 arctanh
ffiffiffiffiffiffiffiffiffi
� x1

a

r
: ð93Þ

And for x1 < �a:

su1t
ð�Þðx1Þ ¼

2H11

p
F1 arctanh

ffiffiffiffiffiffiffiffiffi
� a

x1

r
;

su2t
ð�Þðx1Þ ¼

2H22

p
F2 arctanh

ffiffiffiffiffiffiffiffiffi
� a

x1

r
: ð94Þ

The tractions expressions (91) and (92) can then be used for
evaluating the stress intensity factors. Applying the general defini-
tion explained in details in Wu (1990) and Hwu (1993a) to this
particular two-dimensional case without oscillation, we obtain
the vectorial formula:
K ¼ lim
x1!0

ffiffiffiffiffiffiffiffiffiffiffi
2px1

p
sðþÞðx1Þ; ð95Þ

where K ¼ ðKII;KIÞT and sðþÞ ¼ ðsðþÞ1 ; sðþÞ2 Þ
T . Inserting (91) and (92)

and evaluating the limit, we get:

KI ¼
ffiffiffiffiffiffi
2
pa

r
F2; KII ¼

ffiffiffiffiffiffi
2
pa

r
F1: ð96Þ

Also in this case, as is it has been detected for the antiplane
problem, the derived stress intensity factors are equal to that ob-
tained by Hwu (1993a) in the limit of vanishing oscillatory index.
This demonstrates that the expressions (91) and (92), obtained
by means of the integral identities, are correct.

In several studies, a unique complex stress intensity factor
accounting both Mode I and Mode II contributions is associated
to two-dimensional interfacial crack problems in anisotropic mate-
rials (Suo, 1990b; Suo et al., 1992; Morini et al., 2013), similarly to
what happens due to the oscillations for cracks between different
isotropic media (Mantic and Paris, 2004; Piccolroaz et al., 2007;
Graciani et al., 2007). It has been shown by Hwu (1993a) that com-
plex stress intensity factor, introduced for anisotropic bimaterials
by Suo (1990b), is linked to the classical stress intensity factors
by a vectorial transformation. In our example, we have assumed
that the generalized Dundurs parameter b and the correlated oscil-
latory index are zero. In this particular case, where there are no
oscillations at the interface and Mode I and II can be decoupled,
Suo (1990b) and Hwu (1993a) analysis lead to the same expres-
sions (95) for real stress intensity factors.

4.4. Mode I and II: skew-symmetrical line forces

We assume that the loading is given by two skew-symmetrical
line forces applied on the faces at a distance a from the crack tip
and directed respectively along x1 and x2 axis:

hp1iðx1Þ ¼ 0; sp1tðx1Þ ¼ �2F1dðx1 þ aÞ; ð97Þ
hp2iðx1Þ ¼ 0; sp2tðx1Þ ¼ �2F2dðx1 þ aÞ: ð98Þ

Also in this case we consider the case where the Dundurs parameter
b associated to crack tip oscillations vanishes. Furthermore, also k is
assumed to be zero. Applying the inverse operator ðSðsÞÞ�1 to the
(64) for x1 < 0 we obtain:

@su1t
ð�Þ

@x1
¼ � F1

p
d1H11

ffiffiffiffiffiffiffiffiffi
� a

x1

r
1

x1 þ a
� cF2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22

p
dðx1 þ aÞ; ð99Þ

@su2t
ð�Þ

@x1
¼ � F2

p
d2H22

ffiffiffiffiffiffiffiffiffi
� a

x1

r
1

x1 þ a
þ cF1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22

p
dðx1 þ aÞ: ð100Þ

Integrating these expressions, for �a < x1 < 0 we derive:

su1t
ð�Þðx1Þ ¼

2F1

p
d1H11 arctanh

ffiffiffiffiffiffiffiffiffi
� x1

a

r
;

su2t
ð�Þðx1Þ ¼

2F2

p
d2H22 arctanh

ffiffiffiffiffiffiffiffiffi
� x1

a

r
; ð101Þ

And for x1 < �a:

su1t
ð�Þðx1Þ ¼

2F1

p
d1H11 arctanh

ffiffiffiffiffiffiffiffiffi
� a

x1

r
þ cF2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22

p
;

su2t
ð�Þðx1Þ ¼

2F2

p
d2H22 arctanh

ffiffiffiffiffiffiffiffiffi
� a

x1

r
� cF1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H11H22

p
; ð102Þ

Except for the constants, these expressions for the crack opening are
identical to those obtained by Piccolroaz and Mishuris (2013) for
the isotropic materials and benchmarked by a comparison with
the Flamant solution for a half-plane loaded by two concentrated
forces at its surface (Barber, 2002). The tractions components ahead
of the crack tip become:
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sðþÞ1 ðx1Þ ¼
1

pð1� a2Þ d1F1 þ ad2F2

ffiffiffiffiffiffiffiffi
H22

H11

s ! ffiffiffiffiffi
a
x1

r
1

x1 þ a
; ð103Þ

sðþÞ2 ðx1Þ ¼
1

pð1� a2Þ d2F2 þ ad1F1

ffiffiffiffiffiffiffiffi
H11

H22

s ! ffiffiffiffiffi
a
x1

r
1

x1 þ a
: ð104Þ

From these expressions we can observe that, if the loading is given
by skew-symmetric line forces applied at the faces, the correspond-
ing traction components (103) and (104) are coupled to F1 and F2 by
means of the Dundurs parameter a. As a consequence, similarly to
what we have detected for the jump behind the tip in presence of
symmetric loading, even in the case where the skew- symmetric
load possesses only one non-zero component, directed along x1-axis
or x2-axis, the associated tractions have both x1 and x2 components.
This coupling effect is not found in isotropic materials, and it is con-
nected with anisotropic properties of monoclinic media.

The stress intensity factors can then be evaluated substituting
the tractions (103) and (104) into the general expression (95):

KI ¼
1

1� a2

ffiffiffiffiffiffi
2
pa

r
d2F2 þ ad1F1

ffiffiffiffiffiffiffiffi
H11

H22

s !
; ð105Þ

KII ¼
1

1� a2

ffiffiffiffiffiffi
2
pa

r
d1F1 þ ad2F2

ffiffiffiffiffiffiffiffi
H22

H11

s !
: ð106Þ

For a ¼ 0, the materials assume orthotropic behavior, and we re-
cover tractions expressions similar to those obtained for isotropic
media:

sðþÞ1 ðx1Þ ¼
F1

p
d1

ffiffiffiffiffi
a
x1

r
1

x1 þ a
; ð107Þ

sðþÞ2 ðx1Þ ¼
F2

p
d2

ffiffiffiffiffi
a
x1

r
1

x1 þ a
: ð108Þ

The stress intensity factors become:

KI ¼ d2

ffiffiffiffiffiffi
2
pa

r
F2; KII ¼ d1

ffiffiffiffiffiffi
2
pa

r
F1: ð109Þ

These expressions for KI and KII , corresponding to orthotropic bima-
terial, possess the same form obtained by Piccolroaz and Mishuris
(2013) for isotropic media.

The skew-symmetric stress intensity factors (105) and (106)
have been normalized, multiplying respectively by

ffiffiffiffiffiffi
pa
p

=ð
ffiffiffi
2
p

F2d2Þ
and

ffiffiffiffiffiffi
pa
p

=ð
ffiffiffi
2
p

F1d1Þ, and plotted in Fig. 4 as functions of the Dun-
durs-like parameter a. In order to satisfy the positive definiteness
of the bimaterial matrix Y, and consequently to verify relations
(42) (Ting, 1995), the value of a must be included in an interval
amin 6 a 6 amax, where the bounds depend on the parameters
H11;H22; d1 and d2. Assuming H11 ¼ 2:01, H22 ¼ 6:98, d1 ¼ 0:72,
d2 ¼ 0:92, which corresponds approximately to a system where
Fig. 4. Normalized stress intensity factors corresponding to skew-symmetric forces (se
computed for H11 ¼ 2:01, H22 ¼ 6:98, d1 ¼ 0:72, d2 ¼ 0:92 and different values of the rat
material (1) is boron and material (2) is aluminium (Suo, 1990a),
we get �0:9839 6 a 6 0:9839. The normalized stress intensity fac-
tors computed for values of a within this interval and for different
values of the ratio F2=F1 between the applied forces are reported in
Fig. 4. As it can be deduced by normalizing expressions (109), for
a ¼ 0 the curves collapse and the materials assume orthotropic
behavior. On the other hand, as the value of a approaches the
bounds amax ¼ 0:9839 and amin ¼ �0:9839, the absolute value of
the skew-symmetric stress intensity factors increases and conse-
quently the response of the system to skew-symmetric loading is
amplified.

The examples illustrated in this section and in Section 4.3 show
that the integral identities can be profitably used for solving vecto-
rial interfacial crack problems in two-dimensional anisotropic elas-
tic media. The crack opening and the tractions ahead of the tip can
be derived without the use of Green’s function, which implies chal-
lenging calculations. For this reason, also in the vectorial case, the
proposed singular integral formulation may represent a very suit-
able technique in analysis of several fracture processes, especially
where coupled fields are involved.
5. Conclusions

The problem of a two-dimensional semi-infinite interfacial
crack in anisotropic bimaterials has been formulated in terms of
singular integral equations by means of weight functions and inte-
gral transforms. The proposed method avoids the use of Green’s
function and the challenging numerical calculations related to such
approach. Integral identities relating the applied loading and the
corresponding crack opening have been obtained for both in-plane
and antiplane strain problems in anisotropic bimaterials. Detailed
explicit derivation of the identities have been performed for mono-
clinic materials, which are the most general class of anisotropic
media allowing decoupling between both in-plane and antiplane
stress and in-plane and antiplane strain (Ting, 1995, 2000). As a
consequence, the obtained integral formulation can be directly
used for studying cracks propagation in all anisotropic media
where in-plane and antiplane problems are decoupled, such as cu-
bic and orthotropic materials (Suo, 1990b). Thanks to the great ver-
satility of the Stroh formalism, the developed approach can also be
easily adapted for studying fracture phenomena in many other
materials, such as piezoelectrics, poroelastics, and quasicrystals.

An example of application of the integral identities to antiplane
and plane strain crack problems where the loading is given by line
forces acting on the faces has been performed. Explicit expressions
for crack opening and tractions ahead of the tip corresponding to
both symmetric and skew-symmetric loading configurations have
been obtained.

The derived integral identities have various relevant applica-
tions especially to multifield problems, where the elasticity equa-
e Fig. 3(B)) as a function of the bimaterial parameter a for �0:9839 6 a 6 0:9839,
io F2=F1: F2=F1 ¼ 0:2, F2=F1 ¼ 0:5, F2=F1 ¼ 1, F2=F1 ¼ 2.
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tions are coupled with other concurrent phenomena, for example,
but not only, to hydraulic fracturing modelling. Furthermore, they
also have their own value from the mathematical point of view, as,
to the authors best knowledge, such identities written in a similar
explicit form for interfacial cracks in anisotropic bimaterials seems
to be unknown in the literature.
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Appendix A. Anisotropic materials: Stroh formalism

In this appendix, complex variable representation for the stress
field and displacements in anisotropic elastic materials subject to
two-dimensional deformations based on Stroh formalism (Stroh,
1962) is summarized. Explicit expressions for Stroh matrices corre-
sponding to monoclinic materials with symmetry plane at x3 ¼ 0
(Ting, 1995) are reported. The surface admittance tensor needed
in the evaluation of bimaterial matrices (15) and (16) and then of
weight functions (17) and (18) is derived.

A.1. Complex variable representation of stress and displacements

For two-dimensional problems in anisotropic elastic materials,
displacements and stress fields can be represented in terms of
complex variable functions matrices by means of two alternative
formulations, proposed respectively by Stroh (1962) and Lekhnit-
skii (1963). Introducing the stress vectors tk ¼ ðr1k;r2k;r3kÞT ,
k ¼ 1;2 and the displacements u ¼ ðu1;u2;u3ÞT , the constitutive
relations connecting the stresses and the strains are written using
the Stroh formulation as follows:

t1 ¼ Qu;1 þ Ru;2; ð110Þ
t2 ¼ RT u;1 þ Tu;2; ð111Þ

The 3 � 3 matrices Q, R and T depend on the material constants, and
are defined as follows (Ting, 1995):

Q ik ¼ Ci1k1; Rik ¼ Ci1k2; Tik ¼ Ci2k2; ð112Þ

where Cijkl are components of the elastic stiffness tensor. Using this
notation, the static equilibrium equations become (Ting, 1995,
2000):

t1;1 þ t2;2 ¼ Qu;11 þ ðR þ RTÞu;12 þ Tu;22 ¼ 0: ð113Þ

The displacement uðx1; x2Þ, which is a general solution of Eq. (113),
has the following form (Suo, 1990b; Ting, 1996):

u ¼ FgðzÞ þ FgðzÞ; ð114Þ

also the derivative of the displacements u;1ðx1; x2Þ and the traction
t2ðx1; x2Þ, can be written in the same form:

t2ðx1; x2Þ ¼ LhðzÞ þ LhðzÞ; ð115Þ

and

u;1ðx1; x2Þ ¼ FhðzÞ þ FhðzÞ; ð116Þ

where hðzÞ ¼ dg=dz, F and L are constant 3 � 3 matrices, defined as
follows:

F ¼ ðf1; f2; f3Þ; L ¼ ðl1; l2; l3Þ: ð117Þ
Note that gðzÞ and hðzÞ are analytic functions vectors with compo-
nents gjðx1 þ ljx2Þ, and hjðx1 þ ljx2Þ and lj are complex numbers
with positive imaginary parts. According to Suo (1990b), if gjðzjÞ
and hjðzjÞ are analytic functions of zj ¼ x1 þ ljx2 in the upper half-
plane (or in the lower half-plane) for one lj, where lj is a complex
number with positive imaginary parts, they are analytic for any lj.
On the basis of this property, here and in the text that follows, the
analysis is reduced to a single complex variable. The eigenvectors f j

and the eigenvalues lj are simultaneously determined inserting
expression (114) into equilibrium equations (113), so that they
are reduced to the eigenvalue problem (Ting, 1996):

½Q þ ðR þ RTÞlj þ Tl2
j �f j ¼ 0: ð118Þ

Moreover, lj are related to f j as follows (Ting, 1995, 1996, 2000):

lj ¼ ½RT þ ljT�f j: ð119Þ

The Hermitian surface admittance tensor, needed in general weight
functions expressions (13) and (14), is defined as Y ¼ iFL�1 (Gao
et al., 1992).

Stroh formalism have been extensively used in analysis of inter-
facial cracks in anisotropic bimaterials by Suo (1990b) and Gao
et al. (1992). Physical displacements and stress fields at the inter-
face between the two materials have been derived, expressing the
boundary conditions in terms of non-homogeneous Riemann–
Hilbert problem and obtaining an algebraic eigenvalue involving
the symmetric bimaterial matrix (17), that is solved in closed form.
Recently, this approach has been extended and used together with
Fourier transform by Morini et al. (2013) for deriving singular solu-
tions U of the elasticity problem with zero traction on the faces
where the crack is placed along the positive semi-axis x1 > 0, and
for evaluating general expressions for symmetric and skew-
symmetric weight functions defined as traces of these functions,
following the method illustrated in Piccolroaz et al. (2009).

A.2. Monoclinic materials

For monoclinic materials with the symmetry plane at x3 ¼ 0,
employing the contracted notation of the stiffness tensor Cijkl

(Suo, 1990b; Ting, 1995, 1996), the three matrices Q, R and T are
given by:

Q ¼
c11 c16 0
c16 c66 0
0 0 c55

0
B@

1
CA; R ¼

c16 c12 0
c66 c26 0
0 0 c45

0
B@

1
CA; T ¼

c66 c26 0
c26 c22 0
0 0 c44

0
B@

1
CA:

This structure of the Stroh matrices is a consequence of the fact that
for this class of anisotropic materials, the reduced 6� 6 stiffness
tensor cij possesses the following important property (Suo, 1990b;
Ting, 2000):

c14 ¼ c15 ¼ c24 ¼ c25 ¼ c46 ¼ c56 ¼ 0: ð120Þ

Substituting matrices Q, R and T into constitutive relations (110)
and (111), we can easily observe that as a consequence of property
(120), for monoclinic materials subject to two- dimensional defor-
mations in-plane strain and antiplane strain are uncoupled and also
in-plane stress antiplane stress are uncoupled. More discussions
and details on decoupling of in-plane and antiplane deformations
and stress are given by Horgan and Miller (1994) and Ting (2000).
The eigenvalues problem (118) then reduces to:

c11 þ 2c16lþ c66l2 c16 þ ðc12 þ c66Þlþ c26l2 0
c16 þ ðc12 þ c66Þlþ c26l2 c66 þ 2c26lþ c22l2 0

0 0 c55 þ 2c45lþ c44l2

0
B@

1
CAf ¼ 0:

ð121Þ

Through the decoupling, the sixth order characteristic equation of
this eigensystem consists in the product between a fourth order
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term corresponding to in-plane strain and a second order term
associated to antiplane deformations (Ting, 1996):

ðc11 þ 2c16lþ c66l2Þðc66 þ 2c26lþ c22l2Þ
� ðc16 þ ðc12 þ c66Þlþ c26l2Þ2 ¼ 0; ð122Þ

c55 þ 2c45lþ c44l2 ¼ 0: ð123Þ

Since these equations possesses real coefficients, the roots are
complex conjugates. Considering only eigenvalues with positive
imaginary part (Suo, 1990b), l1 and l2 are assumed to be roots of
equation (122), while l3 is root of (123).

The illustrated Stroh representation of the elasticity problem is
equivalent to the matrix formulation proposed by Lekhnitskii
(1963), which provides alternative expressions for the eigenvector
matrices F and L in function of the elements of the compliance ma-
trix Sij ¼ C�1

ij . More precisely, Lekhnitskii approach gives a specially
normalized eigenvector matrix F, and expressing the elements of
the stiffness matrix in function of the stiffness parameters it is easy
to check that characteristic equation derived using Lekhnitskii for-
mulation is identical to (122) and (123) (Suo, 1990b; Hwu, 1993b).
In order to obtain compact expressions for the surface admittance
tensor Y and then for bimaterial matrices (17) and (18), particu-
larly convenient for weight functions derivation, we assume this
particular normalization for matrices F and L, reported by Hwu
(1993b), and we express the stiffness reduced tensor elements cij

in function of the elements of the reduced compliance matrix s0ij:

s0ij ¼ sij �
si3s3j

s33
: ð124Þ

An alternative form for characteristic equations (122) and (123) is
derived:

s011l
4 � 2s016l

3 þ ð2s012 þ s066Þl2 � 2s026lþ s022 ¼ 0; ð125Þ

s044 � 2s045lþ s055l
2 ¼ 0: ð126Þ

The Hermitian matrix Y ¼ iFL�1 evaluated using the eigenvector
normalization reported in Hwu (1993b) assumes the form:

Y ¼ iFL�1 ¼ i

s016 � s011ðl1 þ l2Þ s012 � s011l1l2 0
s022

l1l2
� s012 s022

1
l1
þ 1

l2

	 

� s026 0

0 0 s044
l3
� s045

0
BBB@

1
CCCA;
ð127Þ

where l1 and l2 are roots of Eq. (125), and l3 is solution of
Eq. (126) with positive imaginary part, corresponding respectively
to plane strain and antiplane strain. Employing the relations
between l1 and l2 and coefficients of (125) (Suo, 1990b;
Ting, 1995) and between l3 and coefficients of (126) (Suo,
1990b), through some manipulations the following form for Y is
obtained:

Y ¼ iFL�1 ¼

s011 Imðl1 þ l2Þ iðs012 � s011l1l2Þ 0
iðs011l1l2 � s012Þ s011 Imðl1l2ðl1 þ l2ÞÞ 0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s044s055 � s0245

q
0
BB@

1
CCA:

ð128Þ

This general compact expression for the surface admittance tensor
has been used for deriving explicit bimaterial matrices (17) and
(18) and symmetric and skew-symmetric weight functions (15)
and (16). On the basis of property (120), Mode III crack propagation
(antiplane shear) will be treated separately from Mode I and Mode
II (plane strain), as for the case of interfacial cracks in two-dimen-
sional isotropic bimaterials.
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