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Abstract. We analyse a problem of anti-plane shear in a bimaterial plane containing a semi-
infinite crack situated on a soft imperfect interface. The plane also contains a small thin inclusion
(for instance an ellipse with high eccentricity) whose influence on the propagation of the main
crack we investigate. The problem can be considered as modelling bimaterial ceramics which are
joined with a thin adhesive substance. An important element of our approach is the derivation
of a new weight function (a special solution to a homogeneous boundary value problem) in
the imperfect interface setting. The weight function is derived using Fourier transform and
Wiener-Hopf techniques and allows us to obtain an expression for an important constant σ0

(which may be used in a fracture criterion) that describes the leading order of tractions near
the crack tip for the unperturbed problem. We present computations that demonstrate how σ0

varies depending on the extent of interface imperfection and contrast in material stiffness. We
then perform perturbation analysis to derive an expression for the change in the leading order
of tractions near the tip of the main crack induced by the presence of the small defect, whose
sign can be interpreted as the inclusion’s presence having an amplifying or shielding effect on
the propagation of the main crack.

1. Introduction

We consider a problem of anti-plane shear formulated in the whole plane, with different materials
occupying the regions above and below the crack line. The geometry considered contains a
semi-infinite crack situated along a soft imperfect interface; we will formulate and solve a weight
function problem in such a geometry before using the newly derived weight function to describe
the tractions near the crack tip. We will then conduct perturbation analysis to evaluate the effect
of a small inclusion’s presence, in particular whether it encourages or shields the propagation of
the main crack.

Soft imperfect interfaces model a very thin layer of adhesive between two larger bodies of
material. Typically such an interface is represented in the model by transmission conditions
(justified for example in [1]) which impose continuity of tractions across the interface while the
jump in displacement is proportional to the traction.
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Figure 1. Geometry of the crack, imperfect interface, and small defect in a bimaterial plane.

Weight functions are special solutions to homogeneous boundary value problems that aid in
the evaluation of constants describing the behaviour of physical fields near crack tips; a weight
function for the perfect interface analogue of the problem considered here has been previously
constructed [5] but the presence of the imperfect interface fundamentally alters many aspects of
weight functions and their application [6].

Our approach uses Betti’s identity to relate physical fields to the weight function; the
presence of the imperfect interface introduces new challenges here. We present computations
that demonstrate how the stress at the crack tip (which is finite in the imperfect interface
interfacial crack setting and may be used in a fracture criterion) varies depending on the extent
of interface imperfection and the contrast in stiffness between the two matierials. We also draw
comparisons against the previously studied analogous perfect interface case. We then move on
to consider the perturbed problem. In particular, the Betti identity again allows us to use the
weight function to derive an expression for ∆σ0, the change in the leading order of tractions
near the tip of the main crack induced by the presence of the small defect. The sign of ∆σ0
can be interpreted as the inclusion’s presence having an amplifying or shielding effect on the
propagation of the main crack.

2. Physical problem formulation

The geometry under consideration is shown in Figure 1. A crack occupies {(x, y) : x < 0, y = 0}
while an imperfect interface lies along the positive x-axis joining two materials with shear moduli
µ1 and µ2 lying respectively above and below the crack. The methods described are applicable to
arbitrary loadings on the crack faces, although we will concentrate on asymmetric self-balanced
point loadings as shown in Figure 1. A small elliptic inclusion of shear modulus µin is centered
at a point Y , making an angle φ with the positive x-axis and oriented at an angle α to the
horizontal.

The anti-plane shear displacement function u satisfies the Laplace equation

∇2u(x, y) = 0.

We assume continuity of tractions and impose imperfect transmission conditions ahead of the
crack, that is
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where κ is a parameter describing the extent of interface imperfection. On the crack faces,
tractions are prescribed as follows
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where p± are such that the total load is self-balanced.

3. Weight function and Betti identity

The weight function problem is formulated similarly but with zero traction prescribed on the
crack faces and no inclusion is present. Also, the geometry is modified; the crack occupies x > 0
while the imperfect interface occupies x < 0 (the mirror image of the physical problem setup).

The non-trivial solution to this weight function problem can be found by employing the
Wiener-Hopf technique since it is a homogeneous problem of the form Au = 0. This process
involves a suitable choice of factorisation of the Wiener-Hopf kernel that is obtained by
taking Fourier transforms and applying boundary conditions. The factorisation results in a
representation of this Wiener-Hopf kernel as the product of functions analytic in overlapping
half-planes, which upon performing asymptotic analysis yields the imperfect interface weight
function via Liouville’s Theorem.

Betti’s identity can then be applied in an imperfect interface setting; this gives a relationship
between the hitherto unknown physical fields and the newly derived weight function. The
presence of the imperfect interface introduces some changes in the application of Betti’s identity;
details of this derivation are given in [7]. For instance, the Fourier transform of the displacement
jump across y = 0 is analytic in the upper complex half-plane in the perfect interface case, since
the displacement jump is zero across a perfect interface. This is not true for the imperfect
interface and so a new version of the Betti identity is required. The identity takes the following
form, where lowercase u and σ are the physical displacement and out-of-plane stress component,
while uppercase U and Σ are their weight function counterparts. Bars denote Fourier transforms
(with Fourier coordinate ξ) and (±) superscripts represent the restriction of the preceding
quantity to either the positive or negative semi-axis.

JUK(+)(ξ)σ(+)(ξ)− Σ(ξ)JuK(−)(ξ) = − ¯JUK(ξ) ¯〈p〉(ξ)− ¯〈U〉(ξ) ¯JpK(ξ), ξ ∈ R.

4. Asymptotic behaviour near the crack tip

Full radial asymptotics near the tip of an interfacial crack sitting on an imperfect interface have
been constructed in [3]; importantly, along the interface,

σyz ∼ σ0, x → 0+, (1)

where σ0 is a constant we aim to find. This asymptotic behaviour is markedly different to the
equivalent expression for a crack sitting on a perfect interface, where a square root singularity
occurs. That is, in the perfect interface case,

σyz =
KIII√
2π

x−1/2 +O(1), x → 0,

where the constant KIII is the mode III stress intensity factor. Stress intensity factors can be
used in a simple fracture criterion; if KIII exceeds the fracture toughness of the cracked body’s
material, then the crack begins to grow [2]. There is no such singularity in the imperfect case
(as is readily seen in (1)), but the constant σ0 plays an analagous role to KIII in the perfect
interface setting.
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The application of Betti’s identity obtains an expression for the important constant σ0:

σ0 =
1

2
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)

dξ.

Details of the derivation of this expression are given in [7]. We stress here that both the weight
function U and the constant µ0 depend heavily on the parameter of interface imperfection κ.
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Figure 2. Log-log plot of σ0 against κ∗ for differently contrasting materials.

Figure 2 plots σ0 as a function of a dimensionless parameter of interface imperfection κ∗
which is defined as κ∗ = κ(µ1 + µ2)/a, on a log-log plot for a range of differently contrasting
materials described by the dimensionless contrast parameter µ∗ = (µ1−µ2)/(µ1+µ2). The plot

indicates that σ0 = O(κ
−1/2
∗ ) as κ∗ → 0 (a dotted line of slope −1

2 is included in the figure and
clearly lies tangent to the curves as κ∗ → 0) and σ0 = O(κ−1

∗ ) as κ∗ → ∞.
The problem considered is a singular perturbation problem; taking small values of κ > 0

gives a qualitatively different solution to the perfect case in which κ = 0 (as is seen by the
different forms of crack tip asymptotics). This makes the comparison of fields near the crack tip
difficult. However, given two particular pairs of materials with contrast parameters (µ∗)1 and
(µ∗)2 say, we might expect the dimensionless ratio of stress intensity factors (KIII)1/(KIII)2
from the perfect interface case and (σ0)1/(σ0)2 from the imperfect interface case to be similar.
The ratio

r(κ∗) =
(σ0)1/(σ0)2

(KIII)1/(KIII)2
is plotted in Figure 3. From this we see that the ratio does indeed tend to 1 as κ∗ → 0, that is
as the extent of interface imperfection decreases.

Figure 4 plots σ0 as a function of the dimensionless parameter µ∗ for two different
configurations of point loadings. We see that the positioning of the point loadings on the lower
crack face have the least effect for values of µ∗ near −1; this is because the material occupying
the lower half plane in such cases has a much higher shear modulus than the material occupying
the upper half plane and so acts as an almost inelastic body. The exact positioning of the point
loadings therefore has a smaller influence on the value of σ0.
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Figure 3. Plot of the ratio r(κ∗) with
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σ0

Figure 4. Plot of σ0 as a function of µ∗ for
two different configurations of point loadings
on the crack faces.

5. Perturbation analysis

We shall construct an asymptotic solution of the perturbed problem (with the inclusion present)
using the method of Movchan and Movchan [4], that is the asymptotics of the solution will be
taken in the form

u1,2(x, ε) = u
(0)
1,2(x) + εW (1)(ξ) + ε2u

(1)
1,2(x) + o(ε2), ε → 0.

In this expression, the leading term u
(0)
1,2 corresponds to the unperturbed solution while εW (1)

represents a boundary layer concentrated near the small defect that is needed to satisfy perfect

transmission conditions on the boundary of the inclusion. The term ε2u
(1)
1,2 is introduced to fulfil

the boundary conditions on the crack faces and the imperfect interface which are disturbed by
the boundary layer. This term, in turn, will produce perturbations of the crack tip fields and
correspondingly of the constant σ0.

The constant σ0 is expanded in the form

σ0 = σ
(0)
0 + ε2∆σ0 + o(ε2), ε → 0.

Our objective is to find the first order variation ∆σ0 by employing the Betti identity
corresponding to the first order perturbation u(1). The presence of “effective” tractions induced
on the crack faces by the small elastic inclusion causes additional terms to be present:

JUK+(ξ)〈σ(1)〉+(ξ)− 〈Σ〉(ξ)Ju(1)K−(ξ)
= −JUK(ξ)P

−
(ξ)− 〈U〉(ξ)Q−

(ξ)− κ〈Σ〉(ξ)P+
(ξ)− 〈U〉(ξ)Q+

(ξ).

Here, the functions P
±
and Q

±
are computable functions which result from the boundary layer

analysis. Similar reasoning to that employed earlier for finding the unperturbed tractions near

the crack tip σ
(0)
0 yields an expression for ∆σ0 in the form

∆σ0 = −1

2
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π
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]
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+
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}

.
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The sign of ∆σ0 is interpreted as the inclusion’s presence having either a shielding effect on
the propagation of the main crack if ∆σ0 < 0 or an amplifying effect if ∆σ0 > 0. Figure 5 plots
the sign of ∆σ0 for a particular configuration of materials for varying location (characterised
by the angle φ) and orientation α of the small defect. Different analysis should be sought
however when the defect lies very close to the imperfect interface (when φ is near 0), since we
assumed that the inclusion is at a finite distance from the interface between the half-planes in
the boundary layer analysis.

Figure 5. Plot of the sign of ∆σ0 for varying α and φ. The darker shaded areas are those (φ, α)
for which ∆σ0 > 0 while paler regions have ∆σ0 < 0.

6. Conclusions

The method descibed uses a new imperfect interface weight function to aid in the computation
of the leading order of tractions near the crack tip in an imperfect interface crack problem under
arbitrary loadings on the crack faces. Further, perturbation analysis obtains the next term in
the asymptotics which describes the change in the tractions near the crack tip brought about
by the presenece of a small inclusion. The presence of the imperfect interface causes many
significant differences in comparison to the analagous perfect interface problem; in particular
the asymptotic behaviour of tractions near the crack tip is of a different form.
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