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A new privacy model for Location-Based Services (LBSs) has been recently proposed based on users’ footprints-these being a
repre-sentation of the amount of time a user spends in a given area. Unfortunately, while the model is claimed to be independent
from the specific knowledge of the adversary about users’ footprints, we argue that an adversary, that has a more structured
knowledge over time, can pose a threat to the privacy guarantees of the model. The major contribution of this paper is to show
that time is a relevant dimension that needs to be taken into consideration when investigating LBSs privacy issues. In particular, we
show that applying our considerations, user privacy can be violated. We support our claim with analysis and a concrete example.
Furthermore, by analyzing a real data set of vehicular traces, we show that the threat is actually present in a real scenario and that
its effect on jeopardizing user privacy is relevant.

1. Introduction

Location-Based Services (LBSs) can be defined as services
that add value to a user integrating his mobile device’s
location with additional information. Hence, the localization
feature can be considered the main characteristic of a
Location-based service. LBSs can be regarded as a subset of
context-aware applications [1], the most basic context being
the user’s location. Context information is used to deliver a
service and to add value to the service by adapting it to the
user’s personal context.

LBSs are widely spreading, particularly leveraging the
use of mobile devices. As an example, we can consider the
vehicular services that many national transportation infra-
structures are developing: traffic monitoring, hazard warn-
ing, congestion-based, and “pay-as-you-go” road pricing [2,
3]. However, this type of services are subject to a privacy
threat: the possibility to identify the user that requests a given
service and her location at the time of the request. Even
when privacy mechanisms are taken into consideration to
anonymize the users, a user might be reidentified correlating
the access information with other kind of information (e.g.,

the mobility of the user or some specific location-bound
feature). In particular, there are three main issues related to
the privacy of users in LBSs (i) how to anonymize a user;
(ii) how to specify the level of anonymity; and, (iii) how to
guarantee to a given user the same level of desired anonymity
for all of her requests. Common anonymization techniques
leverage the concept of k-anonymity (i) consisting in cloak-
ing the user within a set of k potential users. The feeling-
based model, recently introduced [4, 5], also leverages the
concept of k-anonymity. However, this model is motivated
by the fact that specifying a practical value of k could be a
difficult choice for the user. Hence, the feeling-based model
allows a user to define her desired level of anonymity (ii) by
specifying a given area (e.g., a shopping mall). The entropy
of the selected area is used to describe its popularity. In
turns, the popularity is expressed in terms of footprints of
the visitors in the selected area. The popularity of the user-
specified area is considered later on, in the subsequent user’s
LBSs requests, as the anonymization level that the LBS has to
guarantee to the user (iii).

While the feeling-based approach seems to be promising
from the point of view of user’s awareness of privacy, we
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argue that the specific proposed solution is missing an
important variable: time. In fact, the threat model considered
in the proposals [4, 5] assumes an adversary having the same
amount of information on the users as the one leveraged by
the anonymizer. While this might seem a strong adversary
model, it actually does not take into consideration practical
aspects related to the distribution of such a knowledge
over time. In particular, we consider both of the following
situations to be practical. First, the adversary might have
the information of the users footprints structured over time
(e.g. how many footprints in the morning and how many
in the afternoon). Second, the adversary might just be able
to observe a subset of the footprints (e.g., the adversary is
only able to get footprints information during the morning).
While in the first case the adversary is stronger than the one
consider in [4, 5]—having more structure data—the second
scenario describes a weaker (but more realistic) adversary—
basing its decisions on depleted information. We further
underline that both of these adversary models fall into the
assumption given in [4, 5] about the adversary.

In this work, we highlight the importance of the time
when providing privacy in Location-based Services. We first
show how user privacy can be violated leveraging time, with
respect to the solutions in [4, 5]. In particular, we investigate
on the provided privacy considering a different, more real-
istic adversary model. We argue that the newly introduced
adversary is realistic and that it can also be weaker in terms of
the amount of users information available, but still effective.
We introduce our claim through a practical example; we then
support and verify the claim with simulations and analysis
on a real data set of vehicles’ traces. The rest of the paper is
organized as follows. Section 2 describes the related work in
the area. Section 3 defines the notion of time and presents the
threat model and the feeling-based privacy model. Section 4
shows how user privacy can be violated applying our consid-
erations; we support our claim with both analysis and a prac-
tical example. Section 5 discusses and compares results from
the analysis of a real data set. Section 6 argues about a viable
approach under assumptions sligthly different from the ones
in [4, 5]. Finally, Section 7 reports some concluding remarks.

2. Related Work

One of the main issues that slow down the large-scale
adoption of LBSs is privacy [6]. In particular, given the
peculiarity of these services (e.g., particularly relevant to
mobile user devices), the privacy solutions already designed
for other environments—like the ones based on k-anonymity
[7–9]—result not portable into this context.

The main aspect related to the anonymization of LBSs
regards the users mobility. In fact, mobile users ask for
LBSs from different locations that correspond either to their
current position or other positions of their interest. The first
approach [10] for location anonymity aimed at applying
the k-anonymity concept. The proposal was to reduce the
accuracy of the definition of the user location (defined by
both space and time) when asking for an LBS. The aim
of reducing this accuracy was to cloak the requesting user
within k − 1 other users, present in a broader area and

consider a broader time frame. However, increasing the area
would lead to a coarser service, while increasing the time
frame would lead to a delay of the user’s request.

Several works leveraged on the basic concept introduced
in [10]. For example, the CliqueCloak algorithm [11] aims
at minimizing the size of the cloaking area, while allowing
the user to specify the value of k. However, this solution
is practicable only for small values of k and requires a
high computation overhead. The work in [12] generates a
cloaking area in polynomial time and also considers attacks
that correlate periodic location updates. The possibility of
choosing k is also considered in [13], without considering the
minimization of the cloaking area. Further work [14] pro-
vides a solution for mobile peer-to-peer environment, where
the cloaking area is determined in a distributed way. The
spatial cloaking algorithm proposed in [15] distinguishes
between location privacy (i.e., a user willing to hide her
location) and query privacy (i.e., a user can have her location
revealed, but not her query). The aim is to prevent the
adversary to link the user location to the submitted query.
The motivation stems from the fact that in many applications
the locations of mobile users is publicly known.

All these works do not explicitly consider the fact that
nodes move, and their location-related request might be
correlated. This issue has been first addressed by some works
[16, 17] intended to cope with nodes tracing. However, these
solutions were not developed having LBSs privacy in mind.
In fact, they all report the actual user location. In particular,
the work in [16] introduced the concept of mix zone—a zone
where nodes avoid reporting their locations and exchange
their identification instead. The aim of a mix zone is to make
it hard for an adversary to correlate the pseudonym that a
node used before entering the mix zone, and its pseudonym
once it is out of the mix zone. Selfish behaviour of the
nodes in mix zones has also been considered recently [18], as
well as how pseudonyms aging affects privacy [19]. An idea
similar to the one of mix zone is path confusion [17, 20]—
pseudonyms are exchanged between nodes that have paths
close to each other. The mix zone concept is also applied in
[21] to protect the location privacy of drivers in vehicular
networks (Vanet). The idea is to combine mix zones with
mix networks that leverage on the mobility of vehicles and
the dynamics of road intersections to mix identifiers.

The solution proposed in [22] requires that each LBSs
request comes together with at most k − 1 dummy requests
that simulate the movement of nodes. However, the dummy
traces do not take into consideration the actual geography of
the area where the corresponding dummy user is expected to
be—such type of anomalies could let the adversary identify
the dummy requests. Trajectory anonymization is also con-
sidered in [23], increasing the cloaking area to include exactly
k−1 other users. Unfortunately, continuously increasing the
cloaking area degrades the precision of the LBSs.

The special case of providing location privacy in Vanet
has been addressed in [24]. In this work, authors observed
how Vanet poses specific constraints to mobility of nodes
(vehicles)—the movement being spatially restricted (to lanes
and freeways) and dependent (among vehicles). To tackle
these unique characteristics and they proposed a scheme
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that leverages pseudonyms with some enhancing features
(i) increasing silent period between subsequent broadcast
messages to obtain pseudonyms’ unlinkability; (ii) grouping
vehicles in geographical proximity to avoid overhearing of
pseudonyms. As for vehicle-to-infrastructure communica-
tion, a privacy preserving mechanism can be found in [25].

A slightly different problem, that is avoiding reporting
information about sensitive areas (e.g., a night club), has
also been addressed [26]. Here, anonymization is achieved
using areas instead of users. In fact, the reported location
should include k sensitive areas instead of k users. Similarly,
the framework proposed in [27] provides obfuscation of
sensitive semantic locations-based on the privacy preference
specified by each user. The solution uses a probabilistic
model of space—the semantic locations being expressed
in terms of spatial features—and does not take time into
account. The solution proposed in [28] aims to avoid
reporting the user location. The technique applies a Private
Information Retrieval protocol to let the user of the service
to download directly the LBSs information without requiring
a trusted anonymizer. However, as the amount of data to be
downloaded by the user depends on the total amount of data
stored by the service provider, it may be impractical for a
mobile device.

A problem strictly related to the protection of the user
location privacy is the quantification of the “privacy level”
guaranteed by several solutions. The solution in [20] quan-
tifies location privacy as the duration over which an attacker
could track a subject. The expected error in distance between
a person’s current location and an attacker’s uncertain
estimate of that location is used in [17]. The number of users
k represents the level of privacy in [10] where k-anonymity is
introduced for location privacy. Other works derive metrics
from information theory [29]. For instance, entropy is the
privacy quantifier used in [5, 16]. Whatever location privacy
metric is adopted, it is maximized if no one knows a subject’s
location. Hence, the majority of the proposed solutions
can be considered a trade-off between location privacy and
quality of service. Some interesting solutions to location
privacy in WSNs (Wireless Sensor Networks), sharing some
common points with LBSs, have already been proposed.
In particular, solutions in [30, 31] achieve privacy when
querying a WSN, but sensors are required to partake logical
hierarchy. Open problems highlights and related solution
guidelines for a general privacy model in WSNs are in [32].

The problem of anonymity of trajectories has also been
considered in other contexts. For instance, the work in [33]
proposes a privacy-aware data publishing perspective. Differ-
ently from the LBS context, where the anonymity is centered
on the Location-based service, authors of [33] consider an
off-line and data-centric anonymity on a database of moving
objects. The anonymization is enforced before the database
is made public—the aim being to preserve privacy of people
releasing the data to the public.

In our work, we show that leveraging time-frame pro-
vides an adversary with a powerful tool to compromise
privacy in LBSs. A preliminary investigation, without real
data analysis and consequent discussion, appeared in [34].
In particular, we show an application of this concept by

compromising the privacy claimed in [4, 5], where the
feeling-based model is introduced. Being a reference also for
this paper, we recall this model in Section 3.3. Finally, our
findings are consistent with the recent proposal in [35] where
time is considered one of the aspects to take into account to
protect user location.

3. Preliminaries and Notation

In this section, we propose models and definitions used
in the paper. Section 3.1 introduces the system model.
Section 3.2 formalizes the notion of time applied to time-
related concepts analyzed throughout this work. Section 3.3
gives an overview of the solutions proposed in [4, 5], while
the threat model description can be found in Section 3.4.

3.1. System Model. We consider the same system architecture
used in [4, 5]. We assume mobile nodes (users) communi-
cating with location-based services (LBSs) providers through
a central anonymity server, the location depersonalization
server (LDS), which is considered trusted. The LDS is
managed by some mobile service provider allowing the
(mobile) users to access to wireless communications. The
provider offers the depersonalization service as an added
value service and supplies the LDS with an initial footprints
database derived from users phone calls.

3.2. Formalizing Time. Consistently, with the literature [35],
we consider a discrete timeline, starting from time t0—this
time corresponding to the deployment of the system.
Hence, we formalize the notion of time with the following
definitions.

Definition 1 (time unit). The smallest measurable time unit
we consider in our discrete time-line.

Definition 2 (time period). A time period is a predetermined
number (�) of contiguous time units, � ∈ N+. We denote
periods with pi, 0 ≤ i ≤ ρ, ρ being the number of periods
from the system start-up.

Definition 3 (time slice). A time slice of a period p is defined
to be a time interval of a predetermined length s < �. We
denote time slice j of time period p with T

p
j .

Thus, a time period is composed of q = �/s time slices.
We assume, without loss of generality, that q ∈ N.

Definition 4 (time frame). A time frame is defined to be
the set obtained as the union of the ith time slice of each
period. We denote a time frame with ̂Ti. Hence, ̂Tj =
{Tp0

j ,T
p1

j , . . . ,T
pρ
j }.

For a practical discussion, time parameters to be fixed
are thus the length � of the period and the length of the
time slice s. As an example, if we fix � to be one week, and
s to be one day, the period p is set to be the pth week,
T

p
1 = Sunday,T

p
2 = Monday, . . . ,T

p
7 = Saturday represent

the days of the pth week.



4 International Journal of Vehicular Technology

3.3. Feeling-Based Privacy Model. The aim of the work in [5]
is to provide location privacy protection for users requesting
location-based services enhancing the k-anonymity model.
The privacy model proposed introduces the concept of
feeling-based privacy, based on the intuition of privacy being
mainly a matter of feeling. The user is allowed to express a
privacy requirement by specifying a spatial region in which
she would feel comfortably cloaked (public region). Their
solution then transforms the intuitive notion of user privacy
feeling, in a quantitative evaluation of the level of protection
provided, using the user-specified region. They define the
entropy of a spatial region to measure the popularity of
that region. This popularity is then used as the quantity
describing the user privacy requirement: the popularity of
the location disclosed by the anonymizer on behalf of the
user, is required to be at least that of the specified public
region. Formally, they provide the following definitions.

Definition 5 (entropy). Let R be a spatial region and S(R) =
{u1,u2, . . . ,um} be the set of users having footprints in R. Let
ni(1 ≤ i ≤ m) be the number of footprints that user ui has
in R, and N =∑m

i=1 ni. The entropy of R is defined as E(R) =
−∑m

i=1(ni/N) · log(ni/N).

Definition 6 (popularity). The popularity of R is defined as
P(R) = 2E(R).

The entropy is used to address the problem of the
possible dominant presence of some users in a certain region.
This phenomenon makes the number of visitors of a region
not sufficient to quantify its popularity. The property that
P(R) is higher if m is larger is preserved even using entropy:
a region is more popular if it has more visitors. Also, a
skewed distribution of footprints significantly reduces the
P(R) with respect to a symmetric distribution. The entropy
is also intended by the authors as the amount of additional
information needed for the adversary to identify the service
user from S(R) when R is reported as her location in
requesting an LBSs.

3.4. Threat Model. In this section, we present the threat
model we consider. In particular, we define two types of
adversary: ADV and ADVT , both satisfying the assumptions
provided in [5]. In particular, ADV mimics the adversary
considered in [4, 5]. ADV is able to identify users in a
cloaking region correlating with restricted spaces. However,
it will not be able to reidentify the user who requests the
service. We assume the adversary being present from time
t0, that is from the system deployment. Hence, we observe
that the adversary may coincide with the LBSs provider. In
fact, it could be highly interested in exploiting the location
knowledge (historical) of the LDS anonymizer—potentially
motivated by commercial or marketing purposes. Thus, ADV
and LBSs will be used interchangeably throughout the paper.

Some existing techniques use current location of k neigh-
bours of the service requester to protect from the adversary
and to calculate the cloaking area. These techniques protect
the anonymity of the service users but not their location
privacy. An adversary identifying the users in the cloaking

area knows their locations as it is aware of their presence in
the cloaking area at the time of the service request.

The idea to use footprints, that is historical data, makes
the adversary weaker as it is not able to know neither who
requested the service nor who was really there at the time
of the service request. From this core idea, introduced in
[4] and applied by the same authors to mobile user’s trajec-
tory can be extracted in [5], another implicit assumption:
the indistinguishability for the ADV between current and
historical visitors of the cloaking area. This is equivalent
to assume that ADV can not have instantaneous access to
current users location data. If this will be the case, the usage
of historical locations would not be suitable to compute the
cloaking box for depersonalization. As an example, let us
suppose the LDS reporting a cloaking area for a user, based
on a five footprints (historical) calculation. If the user is the
only one actually in that area and the LBSs knows the user
location at each time instant, the latter would immediately
identify the service requester. Thus, we also assume the users
location knowledge held by the adversary to be the footprints
information provided by the LDS anonymizer. We denote
such a knowledge with LK.

In this work, we also consider a time-aware adversary,
ADVT , that has just additional information on time frames.
Hence, we assume ADVT has the same knowledge of ADV
(the footprints information database), with the difference
that such a knowledge takes also into account the different
time frames ̂Tj . We denote ADVT knowledge with LKT . We
can observe that the knowledge of ADVT might be lower
than the knowledge of ADV as it could know footprints
information regarding just a portion of the time slices.
Figure 1 illustrates the comparison of the knowledge of the
two adversaries. For example, Table daily stands for the
footprints data information of ADV. Table morning and
Table afternoon stand for the footprints data information in
Table daily, split on two time frames. We assume that ADVT

may know both Table morning and Table afternoon or, in a
weaker version, just one of the two.

Hence, two scenarios may apply to ADVT : it has the same
user footprints information of ADV split on time frames, or
ADVT has less user footprints information than ADV, having
footprints information only for some time frames.

Table 1 summarizes the notation used in this work.

4. Time Warp: Facing
The Time-Aware Adversary

In this section, we aim to investigate on the privacy guaran-
teed by the solution in [5] when facing ADVT . Section 4.1
introduces the adversary model used and an example show-
ing how user privacy can be violated. Section 4.2 provides an
evaluation of the adversary effectiveness against the privacy
guarantees of the protocol in [5].

4.1. The Time-Aware Adversary Model. Our adversary model
is motivated by the fact that the privacy of user’s location
may be highly influenced by the time frames considered. For
instance, we might refer to several real scenarios: a theatre is
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Table
afternoon

Table
morning

Table
daily

ADV ADVT

Figure 1: ADV and ADVT footprints location knowledge.

Table 1: Notation table.

R A spatial region

S(R) Set of users having footprints in R

E(R) Entropy of region R

P(R) Popularity of region R

pi ith time period, 0 ≤ i ≤ ρ

ρ Number of periods from system start-up

T
p
i ith time slice of a period p

q l/s, number of slices composing a period
̂Tj Time frame ̂Tj={Tp0

j ,T
p1
j , . . . ,T

pρ
j }

E(R, ̂Tj)
Entropy of region R, during time slice x of
time period p

P(R, ̂Tj) Popularity of region R, for time frame ̂Tj

ui
Generic ith user of a set of users, 1 ≤ i ≤ m,
m ∈ N

ui, ̂Tj

Generic ith user who have footprints in R in
time frame ̂Tj

ni Number of footprints of user ui in R

ni, ̂Tj

Number of footprints of user ui in R in time
frame ̂Tj

N Total number of footprints in a region R

a physical place where users concentrate only on particular
days and in specific time frames, restaurants are most likely
to be crowded at lunch and dinner time, and, office buildings
are supposed to be almost empty during night. We show that
with the knowledge held by ADVT , the LDS is no more able
to guarantee to users the claimed level of privacy. Further,
we will also show scenarios where the entropy of the user
public region is actually lower than the entropy calculated
by the LDS. Therefore, the adversary will need less effort—
with respect to what assumed by the LDS—to identify the
user. Further, We will show that ADVT may be more effective
than ADV even if provided with less knowledge. This, as we
will formally show at the end of this section, is due to the
fact that time severely affects the entropy and the popularity
of a cloaking region. This may result in a reduced amount of
additional information needed for the adversary to identify
the service user (see Section 3.3).

Definition 7 (entropy in ̂Tj). Let R be a spatial region

and S(R, ̂Tj) the set of users who have footprints in R, if

observed during time frame ̂Tj , that is, S(R, ̂Tj) = {u1, ̂Tj
,

u2, ̂Tj
, . . . ,um, ̂Tj

}, where ni, ̂Tj
(1 ≤ i ≤ m) is the number of

footprints that user ui has in R during the time frame ̂Tj and

N
̂Tj
= ∑m

i=1 ni, ̂Tj
. We define the entropy of R at time ̂Tj as

E(R, ̂Tj) = −
∑m

i=1(ni, ̂Tj
/N

̂Tj
) · log(ni, ̂Tj

/N
̂Tj

).

Definition 8 (popularity in ̂Tj). We define the popularity of

R at time frame ̂Tj as P(R, ̂Tj) = 2E(R, ̂Tj ).

We observe that we can rewrite the quantities in
Definition 5, using our Definition 7. More formally, we
consider: N =∑q

x=1 N ̂Tj
and ni =

∑q
x=1 ni, ̂Tj

.

We use the following example to support our discussions
and to compare with the privacy model in [4, 5].

Example 1. Let us consider a user, Alice, requesting a LBS
from her office building. She feels her privacy is preserved
when specifying her office as the public region. In Alice’s
office, employees are organized on work shifts. Part of the
employees are on a morning shift and the remaining ones on
an afternoon shift. Let us consider m = 4 users (u1, u2, u3,
u4) for the region corresponding to Alice’s office (later on
also referred as region R1), each of them having 16 footprints
in the LDS footprints database. This scenario is depicted in
Figure 2. The corresponding footprints data for u1, u2, u3,
u4 are provided and highlighted in the first column of Tables
2(a), 2(b), and 2(c), respectively.

Data in Table 2(a) represent the footprints information
used by the LDS to calculate the entropy and the popularity
of Alice’s office. The results of the calculation determine a
corresponding spatial region Rj (column labels in Table 2)
used to cloak the user location. Hence, Table 2(a) also
represents the knowledge of ADV. Tables 2(b) and 2(c)
instead represent the structured knowledge of ADVT , that
is the same information of ADV when taking into account
two time frames: ̂T1 = morning and ̂T2 = afternoon. Each
table is provided with additional column data to show that
both the entropy and the popularity depend on footprints
distribution among visitors. In fact, it is possible to check
that in each reported scenario the total number of footprints
per user remains unchanged. Let us take the values of
entropy and popularity in Table 2(a) as reference point
to evaluate entropy and popularity calculations reported
for each data column in Tables 2(b) and 2(c). As it is
shown in Table 2(a) column 1, the maximum is obtained
from footprints uniform distribution (column 1). We can
observe that a more structured knowledge, like that of
ADVT in Tables 2(b) and 2(c) may result in the following
possible scenarios. (i) ADVT entropy and popularity values
are strictly less than that of ADV. This is the case for the
first and the second data columns in Table 2(c) and for the
first column in Table 2(b), compared to the corresponding
columns in Table 2(a). (ii) ADVT entropy and popularity
values are equal to that of ADV (see Tables 2(b) and 2(c)
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u1

u2

u3

u4

(a) ADV: daily

u1, ^T1
u2, ^T1

(b) ADVT: morning

u3, ^T2
u4, ^T2

(c) ADVT: afternoon

Figure 2: ADV and ADVT knowledge.

Table 2: ADV and ADVT table data.

(a) ADV: daily

User R1 R2

u1 16 9

u2 16 16

u3 16 18

u4 16 21

E(R) 2 1.94

P(R) 4 3.84

(b) ADVT : morning

User R1 R2 R3

u1, ̂T1
16 4 8

u2, ̂T1
16 8 8

u3, ̂T1
0 9 8

u4, ̂T1
0 11 8

E(R, ̂T1) 1 1.92 2

P(R, ̂T1) 2 3.78 4

(c) ADVT : afternoon

User R1 R2 R3

u1, ̂T2
0 5 8

u2, ̂T2
0 8 8

u3, ̂T2
16 9 8

u4, ̂T2
16 10 8

E(R, ̂T2) 1 1.96 2

P(R, ̂T2) 2 3.88 4

column 3). (iii) ADVT entropy and popularity values are
greater than that of ADV. This is the case for the second
column in Table 2(b) with entropy 1.51—greater than the
corresponding 1.49 in Table 2(a).

In the following, we formally prove that an anonymizer
using the aggregated data can guarantee the level of privacy
requested by the user only if it is facing the adversary ADV.
In fact, we prove that when the anonymizer is facing ADVT ,
the following two cases can also happen: (i) the anonymizer
is not able to guarantee to the user the requested level of
privacy. (ii) the anonymizer is degrading the accuracy of
the location information for the LBSs, exceeding the level of
privacy requested by the user.

Theorem 1. Given a spatial region R and footprints data ̂Ti

related to the ith time slice, footprints distributions exist such
that E(R, ̂Ti) /=E(R).

Proof. The proof is a direct consequence of the two following
cases.

Case 1. If ni, ̂Tj
satisfies ni, ̂Tj

≤ ni · N ̂Tj
/N , then E(R, ̂Tj) ≤

E(R). In fact, the condition can be rewritten as: (ni, ̂Tj
/N

̂Tj
) ≤

(ni/N). Since the log function is monotonically increasing,
logni, ̂Tj

/N
̂Tj
≤ logni/N . As a consequence, E(R, ̂Tj) ≤ E(R).

Case 2. If ni, ̂Tj
satisfies ni, ̂Tj

> ni · (N
̂Tj
/N), then E(R, ̂Tj) >

E(R). The proof is similar to the proof of Case 1.

Case 1 shows that with a time-aware adversary, ADVT ,
and the LDS is not always able to guarantee the level of
privacy requested by the user. This happens when E(R, ̂Ti) <
E(R). In fact, if this is the case, the region R does not achieve
an entropy at least equivalent to the public region specified
by the user in order to meet her privacy requirement. Case
2 shows that with a time-aware adversary, ADVT , the LDS is
not always able to guarantee the maximum level of accuracy
for the LBSs service requested by the user. This happens when
E(R, ̂Ti) > E(R). If this is the case, the LDS introduces a loss
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Figure 3: Comparing entropy between ADV and ADVT : ̂T2

(afternoon) footprints distribution, u1, ̂T2
= 4, 8, 16.

in service accuracy—since a region larger than necessary is
used to guarantee the user requested level of privacy.

4.2. Evaluating the Adversary Effectiveness. In this section, we
highlight the importance of the time when providing LBSs
privacy.

To show the influence of the time frames, we evaluated
the adversary effectiveness against the privacy guarantees of
the protocol in [5]. To do so, we plot the analytical results
of some example data. The aim of the graph is to show
how footprints distribution impacts the entropy values used
to measure the required adversary effort. We remind that
the entropy is a measure for the adversary effort needed
to compromise the user privacy. Let us assume the user
selected a desired level of privacy (entropy). On the one
hand, if the anonymizer behaves in such a way that the effort
required to ADVT to compromise privacy is less than the
expected one, the anonymizer is failing in guaranteeing the
claimed level of privacy. On the other hand, each time the
actual level of entropy for ADVT is greater than the one
sufficient for guaranteeing the user’s chosen level of privacy,
the anonymizer is decreasing the quality of the LBSs.

In our example, we assume the user sets the entropy value
(that is the privacy level) to 1.48, represented by the straight
line parallel to the x-axis in Figure 3. We also assume—
as for the example in Section 4—three users being visiting
the region for a total of 48 footprints, while the ADVT

knowledge is split in two time frames: ̂T1 = morning and ̂T2

= afternoon. We use the fixed entropy value (as the one that
would be considered by the solution in [5]) to compare with
different ADVT footprints distributions, sampled as possible
ADVT knowledge at time frame ̂T2 = afternoon. The different
scenarios for footprints in ̂T2 are obtained as follows: (i) we
fix the subset of total ADV footprints for the time frame
̂T2, 24 out of 48 in our example, (ii) we fix the number of
footprints for user u1, ̂T2

, and (iii) we let u2, ̂T2
vary (x-axis),

u3, ̂T2
being determined once u1 and u2 are known. We report

the entropy values computed for u1, ̂T2
, u2, ̂T2

, and u3, ̂T2
on

the y-axis. The analytical results computed on these example
scenarios are reported in Figure 3. The results confirm the
claim of Theorem 1—the actual level of entropy for ADVT

can be smaller or greater than the one expected for ADV.
In Figure 3, three curves are plotted for ADVT , setting,

respectively u1, ̂T2
= 4, u1, ̂T2

= 8, and u1, ̂T2
= 16. Consistently

with Theorem 1, varying footprints distributions may result
in ADVT entropy values (thus adversary effort) much lower
than the one calculated for ADV. This is the case for the
two curves in Figure 3 obtained with u1, ̂T2

= 4 and u1, ̂T2
=

16. ADVT entropy values greater than 1.48 (see Figure 3,
ADVT curve u1, ̂T2

= 8) raise another issue. Indeed, on the

one hand, a greater entropy for ADVT (compared to the
one for ADV) might imply a privacy level higher than the
one requested; on the other hand, this implies a loss in the
service accuracy—cloaking the user in an area bigger than
necessary. While we plotted only the results for the entropy,
the curves we computed for the popularity reflect a shape
similar to the ones for entropy—popularity curves have the
maximum value of 3 for the uniform distribution obtained
setting u1, ̂T2

= 8, u1, ̂T2
= 8, and u1, ̂T2

= 8.
Theorem 1 proves that the problem related to consider-

ing time in designing privacy solutions is relevant. However,
one might ask how much likely is that the distributions
of footprints falls in the case of Theorem 1. In fact, if the
chances to fall into such a scenario were very small, this could
be considered not a big concern. In the sequel, we show
that this is not the case, that is, the chances to match the
conditions for which Theorem 1 holds are not negligible.

To investigate this aspect, we considered the following
example. In a scenario with two users, we set the number
of footprints for the two users, respectively to u1 = 5 and
u1 = 8. We vary all the possible distributions of the user
footprints split into two time frames ̂T1 = morning and
̂T2 = afternoon. For each possible distribution we calculate
the corresponding entropy. Assuming each distribution to
be equally probable, we thus calculate the ratio between
the number of occurrences of each entropy value obtained
and the total number of possible distributions, 54 in our
example. The resulting probability density function is shown
in Figure 4. In particular, Figure 4 reports on the probability
density of the observed entropy. The entropy calculated for
the total number of user footprints is 0.96. It is represented
as a vertical line to highlight the points closest to this value.
Small squares represent the relation between entropy values
(x-axis) and their corresponding probability density (y-axis).
We can also observe that the highest probability (0.26) is
reached for the entropy value zero obtained for all the
distributions, in which at least one of the two users has zero
footprints—14 cases in our example.

Figure 5 reports the entropy values obtained for each
footprints distribution considered at time frame ̂T1 =
morning. On the x-axis we, vary the footprints value for user
u1, ̂T1

, on the y-axis the ones for user u2, ̂T1
, and on the z-axis

we show the resulting entropy. We notice that the values for
u2, ̂T2

and u2, ̂T2
can be derived, once determined the value
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for u1, ̂T1
and u2, ̂T1

, leveraging the above assumptions on the
total number of footprints per user. From Figure 5, we can
observe that the maximum entropy is obtained, as expected,
when the numbers of footprints for user u1 and user u2 are
the same. We can observe this in the diagonal that goes from
point 〈u1 = 0, u2 = 0〉 to the point 〈u1 = 5, u2 = 5〉.
From this diagonal, when the values for u2 remains in the
high range (e.g., u2 = 8), the entropy remains high. However,
when one of the two values decreases, the entropy decreases
accordingly. In particular, as already noticed, when one of the
two values is equal to zero, the entropy also goes to zero.

5. Comparisons and Discussions

The aim of this section is to discuss the results from the
analysis of an existing data set of footprints information.
The series of experiments using real data confirms the
observation that the feeling-based model, and in particular
the solution proposed in [4, 5], while promising in terms of
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Figure 6: Rg global dataset view: cabs footprints per time frames.

user capability to specify the anonymity level, has a problem
in dealing with a realistic adversary such as ADVT .

5.1. Experimenting with Real Data. The San Francisco Cabs
data set is provided by the Crawdad project [36] and contains
traces of 536 cabs vehicles, collected over approximately 30
days in the San Francisco Bay Area (USA). Cab mobility
traces are provided by the cabspotting project [37]. Each
record in the data set takes the form (id, p, t, fare), where
p = (x, y) is the location of the vehicle identified by id
at time t and fare formalizes whether the cab itself is busy
or not at time t. We transform the latitude and longitude
coordinates (x, y) provided by the data set in the UTM
(Universal Transverse of Mercator) system obtaining a grid-
based representation for locations.

We consider for the simulations the region that delimits
the Golden Gate Park in San Francisco (referred as Rg).
Figure 6 reports an overall view of the footprints in the data
set for this region. In particular, on the x-axis we vary the
time frames starting from ̂T1—indicating the 00AM : 02AM
time interval—to ̂T12—indicating the 10P M : 12 PM one.
On the y-axis we represents the cab id, and, on the z-axis we
show the corresponding number of footprints for each cab in
each time frame.

Among the 536 cabs, we select for the simulation the
four cabs (54, 293, 404, 475) with the highest variance as
for the number of footprints, with respect to time frames.
The footprints trend for these cabs is depicted in Figure 7.
We can observe that the footprints of the cab 404 show the
highest variation in the time frame ̂T3 (04 AM : 06 AM), with
632 footprints; at the same time, they show the same value,
0, in three time frames ( ̂T7, ̂T9, ̂T10). This means that data
for cab 404 vary in a large range but do not vary so much
between time frames. On the contrary, the other three cabs
vary in a smaller range: from 0 to approximately 250. Thus,
they present a higher variation with respect to time frames
(see cab 475). Table 3 reports footprints data for the four
selected cabs in the region Rg . More specifically, Table 3(a)
contains the total number of footprints in the data set while
Table 3(b) shows the same data split into 12 time frames.

Similarly to Figure 3, we plotted the results for the
entropy corresponding to the footprints distribution in
Table 3(b). In Figure 8, the points represent the entropy
values calculated for each time frame; the straight line
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Table 3: ADV and ADVT cabs data.

(a) ADV.

Rg daily

id = 54 989

id = 293 808

id = 404 858

id = 475 565

E(Rg) 5.62

P(Rg) 49.20

(b) ADVT : ̂Tj , 1 ≤ j ≤ 12 (2 hours)

Rg ̂T1 ̂T2 ̂T3 ̂T4 ̂T5 ̂T6 ̂T7 ̂T8 ̂T9 ̂T10 ̂T11 ̂T12

id = 54 244 118 52 52 13 85 207 35 72 45 29 37

id = 293 14 48 9 10 14 50 26 67 229 80 160 101

id = 404 12 33 632 111 14 17 0 6 0 0 27 6

id = 475 27 19 23 81 81 159 47 4 13 34 39 38

E(Rg , ̂Tj) 1.94 2.43 1.33 2.50 2.65 2.67 1.92 1.77 2.29 2.67 2.63 2.61

P(Rg , ̂Tj) 3.85 5.39 2.51 5.65 6.30 6.36 3.79 3.43 4.90 6.35 6.22 6.09
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Figure 7: Footprints distribution of four sample cabs, ̂Tj , 1 ≤ j ≤
12 (2 hours).

represents the entropy value obtained from the data set
considered as a whole. Consistently, with the example
in Section 4.1 and with Theorem 1, Figure 8 shows that
considering time frames may result in ADVT entropy values
(e.g., 2.65 for time frame ̂T5) much lower than the one
calculated for ADV (i.e., 5.62).

We also notice that all the entropy values depicted in
Figure 8 are lower with respect to the ADV value of 5.62;
also the maximum gap between ADV and ADVT is quite
significant (i.e., 4.30 for time frame ̂T3 (04 AM : 06 AM)).
This is due to the choice of cabs with a number of footprints
with high variance between time frames. In fact, this choice
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Figure 8: Comparing entropy between ADV and ADVT for cabs:
daily and time frames.

implies obtaining the minimum entropy values and thus the
worst case in the lack of privacy guarantees.

As this is exactly what we expected, we have further
confirmed our preliminary findings through real data anal-
ysis. Figure 9 shows how much the service quality can be
influenced by considering time frames. In particular, we
considered three regions: R1 = Rg , R2, R3 of 5.83, 10.22, and
13.98 km2 area, respectively. The region R1 = Rg matches
the area of the Golden Gate Park, while R2 and R3 expand
the park area. Figure 9(a) reports R1, R2, and R3 on the map
of San Francisco. While one might expect that significantly
increasing the area of the region (from 5.83 to 13.98, in our
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Figure 9: San Francisco cabs: comparing service quality (region
area) and privacy for ADVT

case) will significantly increase the entropy (e.g., being closer
to the ADV entropy value of 5.62), there are cases where this
does not happen. In fact, as we can notice from Figure 9(b),
even significantly increasing the size of the considered region,
the gain in the entropy values is negligible. In particular,
varying time frames (x-axis) and the area of the regions (R1,
R2, R3), the resulting entropy values (y-axis) are very similar.
This highlights how, considering a time-aware adversary,
affects both the privacy and the quality of the service.

6. Revisiting Assumptions and Approaches

We observed how the feeling-based model [4, 5], while
promising in terms of user capability to specify the
anonymity level, has a problem in dealing with a realistic
adversary such as ADVT .

Conducting our experiments on a data set of real vehicles
traces strengthens the validity of assertions, with respect to
experiments performed on synthetically generated datasets
only. Our results also show how the threats to user privacy

in LBSs are realistic and motivates further investigations.
In fact, the results suggest that the problem of protecting
location privacy requires to tackle the assumption that the
adversarial knowledge is unknown to the anonimyzer. We
believe this scenario to be the most challenging and realistic
to consider. In fact, depending on the knowledge that the
anonymizer has about the adversary, the following scenarios
are possible.

(i) The anonymizer knows that the adversary has traces
information structured in time slices of equal size. In
particular, the anonymizer also knows the size of such
time interval.

(ii) The anonymizer knows that the adversary has traces
information structured in time slices of different size.
In particular, the anonymizer also knows the size of
the smaller time slice.

(iii) The anonymizer does not have any information
about the adversary knowledge over the traces.

Let us consider (i) and (ii), that is the hypothesis in which
the anonymizer has some knowledge of the adversary. Under
these hypothesis, a possible direction could be extending the
protocol in [4, 5] in order to handle time in a finer manner,
so as to thwart ADVT . For example, it could be argued that
for each time frame (e.g., ̂T2), the LBSs requests in that
time frame should be anonymized-based on the footprints
of that time frame. We assume the anonymizer being able to
restructure the possessed traces over any possible time frame.
The point is that the anonymization should be computed
considering time frame with time slices that are so small
as the ones considered by the adversary, that is, the LDS
anonymizes against the worst case scenario. This could be an
acceptable solution (that assure the level of privacy promised
to the user), even if at a cost of a worse service than the
one that might be required (i.e., LBS referred to a broader
region). In particular, in case of scenario (i), the anonymizer
needs to anonymize the request-based on the traces in the
same time frame. For scenario (ii), the anonymizer can do
anonymization considering always the smallest time slice
used by the adversary. As an example, if the adversary has
information structured on time slices of three, two and one
hours, the anonymizer should always use time frame of one
hour to compute the anonimization region. Furthermore,
we assume that time slices can only start at multiples of the
smaller time slice. For instance, in the cited example the time
slice can only start at the beginning of an hour—8.00 AM,
9.00 AM, and so on. Anonymizing the user in a consistent
way (i.e., assuring her always the promised level of privacy)
using the footprint model and making no assumption about
the knowledge of the adversary, that is, scenario (iii) still an
open issue that calls for further investigations.

7. Conclusion

We showed that an adversary that has a time-related knowl-
edge different from the one used by the anonymizer poses
a serious threat to the privacy of users of Location-based
Services. We specifically considered a recently proposed
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footprints privacy model. We showed that, once the time is
taken into consideration, the claimed privacy assurance does
not hold anymore, even when the adversary knowledge about
footprints is partial compared to the one of the anonymizer.
We supported our claim with both analysis and a concrete
example. In particular, we considered real mobility traces of
cabs of San Francisco. The analysis of this data set not only
confirmed our claim on a real vehicular network scenario.
It also showed that the size of the highlighted problem is all
but negligible. In practical scenarios, the distance between
the expected (claimed) privacy level is far away from the
one actually granted by the system. We concluded the paper
highlighting further research directions.
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