
Attack Trees vs. Fault Trees: two sides of the
same coin from different currencies $©

Carlos E. Budde1 , Christina Kolb1 , and Mariëlle Stoelinga1,2

1 Formal Methods and Tools, University of Twente, Enschede, the Netherlands
2 Department of Software Science, Radboud University, Nijmegen, the Netherlands

Abstract This work compares formal approaches to define and operate
with attack trees and fault trees. We start by investigating similarities
between the syntactic structure, semantics, and qualitative analysis, of
static attack trees and fault trees. Then we point out differences of the
analysis methods and metrics between the two formalisms, providing a
deeper insight for their dynamic variants. Finally, we overview several ex-
tensions and categorise them using the new concept of dimension, which
allows us to compare these extensions and point out research gaps.

1 Introduction

Attack trees (ats) and fault trees (fts) are popular formalisms that support the
identification, documentation, and analysis of security (resp. safety) risks. They
are part of system-engineering frameworks such as SysML-Sec [28], and count
with commercial tools such as Isograph’s AttackTree and FaultTree+ [14, 15].

The popularity of these formalisms in industry is due to their capacity to
represent complex processes succinctly and to the desired level of detail. In
at (resp. ft) analysis, a hierarchical diagram is designed to systematically
map security (resp. safety) hazards. The resulting model gives insight into the
vulnerabilities of the system, which can then be countered cost-efficiently [18, 34].
The origins. This analogous procedural approach is no coincidence: ats were
inspired on fts. The latter were introduced in 1961 at Bell Labs to study ballistic
missiles [33, 30]. In 1990 ft analysis was “about 39 years old, and has become
a well-recognized tool worldwide” [9]. In contrast, Weiss introduced threat logic
trees—the origin of ats—in 1991, and its “similarity. . . to fault trees suggests
that graph-based security modelling has its roots in safety modelling” [21].

Ever since, these formalisms increased their modelling and analysis power
to best satisfy the needs of the safety or security application domain. This has
separated the syntax and semantics of new ft- and at-based formalisms, in
spite of their sharing the modelling principle of top-down hierarchical decom-
position. In this work we study this disjoint evolution from the perspective of
formal methods. We first show in Sec. 2 that the syntax of their so-called static

$© This work was partially funded by NWO project 15474 (SEQUOIA) and ERC Con-
solidator Grant 864075 (CAESAR).

http://orcid.org/0000-0001-8807-1548
http://orcid.org/0000-0002-4108-6395
http://orcid.org/0000-0001-6793-8165


2 C.E. Budde, C. Kolb, M. Stoelinga

versions, as wells as their corresponding semantics and qualitative analysis, are
mathematically equivalent. The only distinction between static fts and ats as
a formalism is their domain ontology: safety vs. security. This is the root of their
subsequent differentiation, which we study in Sec. 3. To compare their extensions
in a systematic manner we introduce the notion of dimension, which allows us to
contrast parallel (even symmetrical) evolutions. The work concludes in Sec. 4.
Formalism. A formalism is defined by 1. an (unambiguous) syntax to represent
its elements, called models; 2. a semantics that maps each model to a (unique)
mathematical object; 3. a domain ontology in which the models are interpreted.
The three parts of this preliminary definition are formalised in the sequel.
Related work. Surveys on fts are [18] and [30]. The latter covers modelling
and analysis tools. The former pinpoints limitations of fts to assess the reliab-
ility of static systems (only), and mentions extensions that overcome them, e.g.
dynamic fts [8], state-event fts [19], and Stochastic Hybrid FT Automata [6].
Standard ft analysis and its extensions are also extensively discussed in [30],
including technical details of different ft models and analyses.

Surveys on attack trees, [21] and [34], present the state of the art in graphical-
hierarchical attack/defense modelling. The latter is a modern and comprehensive
summary on the use of formal methods to enhance security evaluation. It refer-
ences software tools, and discusses steps for industrial technology transfer.

2 Similarities between fault and attack trees

ats and fts follow the same modelling principle: an expert panel identifies a
main event of interest—one top element—and refine it logically to the level of
well-understood basic components or actions—the set of basic elements—[21, 30].
This analogous model-building process results in identical syntactic structures.

2.1 Syntactic structure: static fts and ats

The vanilla version of fts and ats, so-called static fault or attack trees, have
the same syntax. We unify them under the concept of logical-decomposition tree.

Definition 1 (ldt). A logical-decomposition tree (ldt for short) is a tuple
T = 〈N, t, ch〉 where: (i) N is a finite set of nodes; (ii) t : N → {AND,OR,LEAF}
gives the type of each node; (iii) ch : N → 2N gives the (possibly empty) set of
children of a node. Moreover, T satisfies the following constraints: (a) 〈N,E〉 is
a connected directed acyclic graph (dag), where E =

{
(v, u) ∈ N2 | u ∈ ch(v)

}
;

(b) T has a unique root, denoted RT : ∃!RT ∈ N. ∀v ∈ N. RT 6∈ ch(v); (c) LEAF
nodes NL ⊆ N are the leaves of T : ∀v ∈ N.t(v) = LEAF ⇔ v ∈ NL ⇔ ch(v) = ∅.

So, syntactically, static fts and ats are ldts (vot gates in static fts are
syntactic sugar of and and or gates). ldts can be proper trees or dags: the
difference is that in proper trees, each child node has exactly one parent. Node
v ∈ N is the parent of u ∈ N iff u is a child of v, i.e. T has the edge v → u. By
definition, LEAF nodes are not parents: parent nodes are called gates.



Attack Trees vs. Fault Trees 3

Logical gates. An ldt represents the logical decomposition of events via dis-
junction and conjunction, which can be interpreted as a Boolean function. Con-
sider e.g. a wooden gate that can break due to rotten wooden planks or rusty
hinges (or both); and the hinges rust if they are made of iron and the environ-
ment is humid and sufficient time elapses. This decomposition is safety-oriented.
From an analogous security perspective, the wooden gate is breached by dis-
lodging the hinges or cracking the wooden planks, and hinges can be dislodged
if the alloy is fragile and the attacker has a crowbar and enough strength.
Both cases yield the ldt 〈{a, b, c, d, g1, g2}, t, ch〉 with leaves NL = {a, b, c, d}
and gates t(g1) = AND, t(g2) = OR, s.t. ch(g1) = {a, g2}, ch(g2) = {b, c, d}. This
represents the Boolean function λ abcd . a∨ (b∧c∧d) whose atoms take safety or
security meaning: this is denoted or(a,and(b, c, d)) and visualised as Fig. 1a.
Visualisation. fts and ats are graphical formalisms, drawn as in Fig. 1 with
the root on top, and every child connected to an (upper) parent by a line. Leaves
are circles, and logical gates resemble their electronic-circuit counterparts.

Figure 1: T1 has tree
structure; the or gate g1
is the root; g2 is an and
gate. T2 has dag struc-
ture: y has two parents. (a) or(a, and(b, c, d)) (b) and(or(x, y), or(y, z))

2.2 Semantics & analysis

Once an ldt model T has been created, it is studied to find safety/security
vulnerabilities of the system. For this, T is bestowed with formal semantics.
Structure function. These semantics can be given via a function fT : 2NL → B
that indicates whether a set of basic elements trigger the top element of T .
That is, fT (A) = > iff the Boolean function represented by T is satisfied by
the mapping

(
A 7→ >

)
∪

(
(NL \ A) 7→ ⊥

)
, where \ denotes set difference. For

instance for T1 in Fig. 1a, to evaluate fT1({a, c}) one maps a and c to>, b and d to
⊥, and evaluates the Boolean function represented by T1—λ abcd . a∨(b∧c∧d)—
which returns >. This so-called structure function fT is given by the syntactic
structure of T , and hence it is analogous for static fts and ats [17, 30].
Evidence. The set A ⊆ NL on which fT is evaluated is called evidence: for ats
it represents the steps carried out by an attacker; for fts it represents elements
that have failed. If fT (A) = > then A is called valid evidence; else it is invalid.
Valid evidence A is called minimal if no proper subset of A is valid. For instance
in Fig. 1, {a} and {x, z} are minimal evidence of T1 and T2 resp., {a, b} is also
valid (but not minimal) evidence, and {x} is invalid. In ft analysis, minimal
evidence is also called “minimal cut set” or “prime implicant.”
Formal semantics. Static fts and ats are coherent: adding basic elements to
evidence preserves its validity [3]. That is, if fT (A) = >, then fT (A ∪ {a}) = >
for every a ∈ NL. Thus, all valid evidence of T—i.e. that can trigger its top



4 C.E. Budde, C. Kolb, M. Stoelinga

element—is characterised by the collection of minimal evidence. This gives rise
to the formal semantics of T : JT K = {A ⊆ NL | fT (A) = > ∧ A is minimal}.†

Qualitative analysis. Since JT K subsumes all ways to trigger the top element of
T , its computation provides key information on the vulnerability of the system.
For fts, any A ∈ JT K with few elements pinpoints a safety hazard—where a
few basic failures can trigger a system-level failure—and likewise for ats. The
amount of subsets in JT K can be exponential on the number of nodes in T [24].
Since this hinders computations, and given the interest in small sets from JT K,
ft analysis sometimes bounds the size of the minimal evidence to compute [32].

Thus, static fts and ats are mathematically equivalent: their syntax is given
by an ldt, T , and their semantics by the set of minimal evidence, JT K. What
sets them apart as formalisms is their domain ontology, i.e. their application
domain: safety and security have different goals, fulfilled by enriching ldts
with (a) attributes on the leaves, and (b) new types of gates. In Sec. 3 we show
how this is the root of several differences between fts and ats.

3 Differences between fault and attack trees

The aforementioned similarities apply only to static fts and ats. Later ex-
tensions to these formalisms, e.g. to include notions of complement and dy-
namic behaviour, have caused them to grow in different directions. We discuss
this in Sec. 3.2 but first we show, in Sec. 3.1, that the different goals of the
safety/security domains break the analogies even for static fts and ats.

3.1 Analyses that differ for static fts and ats

Quantitative analysis. Beyond the constitution of each set A ∈ JT K, it is
useful to quantify their relevance. For example, if every basic element ai has a
probability pi ∈ [0, 1] of occurrence, one can compute the total probability of
some evidence A [26]. Similarly, values λi ∈ R>0 can describe the rate at which
these basic probabilities increase with time. Then one can measure the system
unreliability, i.e. the probability of triggering the top element at various mission
times. Rates also enable time-only measurements, such as the mean time it takes
for some evidence A ∈ JT K to be observed [30].

All these quantitative queries, that deal with the probability and frequency of
occurrence of events, are characteristic of ft analysis [9, 24, 30, 32]. The reason is
that it is feasible and useful to estimate e.g. the mean time to failure (mttf) of
machine components: this allows engineers to compute safe, cost-optimal policies
for inspection, maintenance, and replacement of company assets [29].

In contrast, the probability of basic attacks in ats are very hard to know [11].
Unknown vulnerabilities may increase it, also its frequency, and the conditional
probability tables are usually not-knowable. Therefore, it is typical to query the
max (rather than total) attack probability [34]. This is also cost-driven: rather
than try everything, an attacker may only choose the most promising attack.
†There are other equivalent ways to define static at/ft semantics, e.g. bundles [25].



Attack Trees vs. Fault Trees 5

The time for an attack is also described differently than for a failure: whereas
failures typically have mttf or rate values, basic attacks steps can be given
[min,max] intervals, and further differentiate activation from execution time [23].

Finally, quantitative analyses in ats can be richer than in fts, exploring
attribute domains beyond time and probability. These include the cost to carry
out certain attacks, the skill or psychological profile required to do it, the max
damaged caused, and Pareto analyses thereof [2, 11, 23].

Figure 2: Probability
computation: at (left,
red) vs. ft (right, blue)

Propagation of values through logical gates.
When the at or ft is a proper tree, quantitative
queries can be computed bottom-up directly on its
syntactic structure. For this, the values of the basic
elements are propagated upwards in the tree [25]. For
instance if basic elements a and b cost resp. e 3 and
e 7, then the cost of or(a, b) is the min, e 3, and the
cost of and(a, b) is the sum, e 10.

However, here too we find a remarkable difference
between static fts and ats, that is overlooked by many reviews in spite of its
apparent impact in quantitative analyses. In fts, the “probability of failure”
asks for total probability, so the (probability) value of an or gate is the sum of
the values of its children, minus the value of their intersection. Instead and as
indicated above, attacks are characterised by their max probability, so the value
of an or gate in an at is the max value among its children. This is illustrated
in Fig. 2: the values in the basic elements are given; the probability of an and
gate is the product of its children; but if T3 is an at, its (max) attack probability
is .35; and if it is an ft, its (total) failure probability is .455.

This different propagation of values also affects conjunctive gates (and),
most notably with time attributes. The basic elements in static fts refer to
failures in components, which are under simultaneous use and therefore whose
degradation is concurrent. Thus the mttf of an and gate is the max across the
mttf of its children. ats, in contrast, have more ways to describe a conjunc-
tion of activities. In particular they could require time-exclusion: consider one
attacker who must perform multiple actions, e.g. deactivating an alarm and si-
lencing the dog. Here, the time to execute all attacks is not the max, but the sum
of the times [1]. ats can indicate this with a new gate: sequential-and (sand).

Generally speaking, static ats and fts have begotten independent exten-
sions that introduce new gates. For instance, seq enforcers in fts can be seen
as analogous to sand gates in ats. In general, however, these extensions further
differentiate the at and ft formalisms, as we discuss in Sec. 3.2.

3.2 Extensions of the formalisms

So far we considered (only) static fts and ats, pointing out their similarities
and differences. In this section we revise several extensions that grow beyond
them. We first overview some prominent formalisms in Table 1, and then refine
the comparison by defining and making use of the concept of dimension.



6 C.E. Budde, C. Kolb, M. Stoelinga

Form. Extensions Main features

fts
dft [8] Dynamic fts fts + pand + spare + fdep
rft [4, 7] Repairable fts fts + repair boxes
e-dft [10] Extended dfts dfts + gen. spares + triggers
se-ft [27] State/Event fts fts + Petri nets in leaves

ats sand-at [16] sand attack trees ats with sequential and
adtree [20] Attack–defense trees ats + defenses

fts
&

ats

bdmp [5] Boolean Markov proc. fts + ats + triggers + repairs
cft [31] Component fts ats + fts with modular structure
aft [22] Attack-Fault Trees sand-ats + dfts
ft-at [12] fts integrated to ats fts whose bes are refined as ats

Table 1: Overview of extensions to the ft and at formalisms

Safety extensions of fts. The first formalisms in Table 1 are important
extensions of fts: dfts are static fts plus pand gates (that fail if all children
fail in left-to-right order), spare gates (for spare parts), and fdeps (that
model common-cause failures); rfts are static fts with repair boxes, that can
repair failed bes; and e-dfts are generalised dfts with triggers, which allow
arbitrary subtrees as spares, and whose fdeps can trigger gates as well as bes.
fts + security. While dfts, rfts, and e-dfts, improve safety modelling
in fault trees, other extensions can cover security aspects. For instance, se-fts
have Petri nets as basic elements. These are more versatile than the usual two-
state bes, allowing state changes that can model safety and security hazards.
Security extension of ats. There also exist extensions to improve security
modelling of attack trees: sand-ats add dynamic behaviour to ats, by for-
cing attacks to occur in a specific order via sand gates‡; and adtrees model
protections against attacks via special defense nodes.
Combinations of fts and ats. All those formalisms extend either fts or
ats, but there also exist formalisms that combine them. bdmps can have ats
as subtrees of fts and vice versa, and allow propagations of failures/attacks
(and repairs) via triggers among gates. cfts add modular fts to ats, to foster
large-system analysis via decoupled studies of smaller components. In contrast,
afts trade scalability for versatility, by merging dfts (with all its dynamic
gates) with ats plus sand gates. Finally, ft-ats refine the bes in fault trees
via attack trees, modelling attackers that try to force a system failure.

Note that, interestingly and to the best of our knowledge, no formalism that
combines fts with ats includes defenses. More importantly, we find independ-
ent extensions that overlap in some modelling goals, e.g. rfts and the repairs
of bdmps. We compare these (partial) overlaps via dimensions.

Dimensions. An extension augments the modelling power of fts/ats. Some
extensions reach to each other, e.g. afts and bdmps are in both domain onto-
logies (safety and security). But other extensions are parallel: compare dfts to
‡sands in ats force a sequence of events, similarly to seq enforcers in certain flavours
of fts; this differs from pand gates in dfts, which observe the order of events.



Attack Trees vs. Fault Trees 7

sand-ats, both of which make the order of events relevant but without crossing
the safety/security line. We thus identify different ways to classify the space of
formalisms, where a dimension d defines (not necessarily exclusive) classes that
are orthogonal to those defined by another dimension d′. For example, the do-
main ontology can be seen as a domain dimension: it defines the classes safety
and security s.t. the formalisms {ft,dft} are in safety, {at,sand-at}
are in security, and {aft,bdmp} are in both. Further dimensions to clas-
sify formalisms include dynamics—the order of events matters or not—and
complement—there is a single type of event (e.g. attacks), or complementary
types (also defenses). Fig. 3 shows a scheme of this 3D classification.

securitysafety

c
o
m
p
l
e
-

m
e
n
t

dynamic

static

FT

DFT SAND-ATAFT

ADTreeRFT

ATFT-AT

Figure 3: Dimensional split of formalisms: domain, dynamics, and complement.

Such concept of dimension resembles that of an ontology in information sci-
ence [13]. For us, different dimensions yield orthogonal classifications of the same
set of individuals. These individuals are the formalisms within scope: we use
Table 1 as the scope, but Def. 2 generalises to any ft/at extension.

Definition 2 (Dimension). A dimension is an ontology with two or more non-
empty classes, whose individuals are the formalisms from Table 1. A dimensional
base D = {di}n

i=1 is a finite set of orthogonal dimensions.

So far we have compared formalisms exclusively from the perspective of the
domain dimension: we now turn our attention to dynamics and complement.

Note, however, that these three dimensions—that Table 2 defines in our full
scope—are not exhaustive. We identify at least an extra complexity dimension,
sensitive to the number of states of the basic elements. In terms of complexity,
fts and ats are simple (binary states), while se-fts and Fault Maintenance
Trees [29] are complex (its basic elements are resp. Petri nets and Erlang chains).
Dynamics. This dimension classifies formalisms based on whether their se-
mantics caters for order. The broadest possible classes are static and dynamic.
The success of the top element in a static formalism does not depend on the
order in which the basic elements occur. This includes fts, ats, cfts, at-fts,
and adtrees. Other formalisms in Table 1 are dynamic: they either enforce an
order, e.g. sand gates and seq enforcers; or the propagation of success in some
gates depends on it, e.g. pand gates in dfts. Besides a richer semantics (that
affects qualitative analyses), dynamic formalisms have more complex quantitat-
ive analyses. In a static at, the attack time of a conjunctive gate is the max
time among its children. Instead, in a sand-at, it is the max or the sum of the
times, depending on whether the gate is a “parallel” and or a sequential-and.



8 C.E. Budde, C. Kolb, M. Stoelinga

Dimension ft dft rft e-dft se-ft bdmp cft aft ft-at sand-at adtree at
safety X X X X X X X X X

do
m

.
security X X X X X X X X

static X X X X X
dy

n.
dynamic X X X X X X X
single X X X X X X X X X

cm
p.

dual X X X

Table 2: Dimensional split of formalisms in Table 1

Complement. This dimension has two classes: dual formalisms have two com-
plementary type of events; single formalisms have one. By event we mean a
change of state, whose multiplicity can have syntactic support via a type system,
or it can reside entirely at semantic level. An example of the latter are repairs in
rfts: their (single-typed) basic elements can transit in both directions between
their active and failed states. An example of dual events via types are attack- vs.
defense-nodes in adtrees: given an attack, if the counter-defense occurs, then
the state of the corresponding gate changes first to “attacked” and then to “not
attacked.” This differs from the absence of an attack for quantitative queries,
e.g. to compute attack cost. In Table 1, the only formalisms in the dual class
of this complement dimension are adtree, rft, and bdmp. All the rest are
single: only one change of state can happen, namely a failure (resp. an attack)
that involves a transition from an active to a failed (resp. attacked) state.

Finally, we note that comparing the classification of different dimensions
helps to spot research gaps. For instance, from the five formalisms in both classes
of the domain dimension, only bdmps are dual as per complement. Since that
comes from repairs of failed basic elements, we know that no formalism in Table 1
that combines safety and security includes defenses, as pointed out earlier.

4 Conclusions and future work

We have compared fts against ats, showing how they model system vulner-
abilities in the same mathematical static way. However, their different domain
ontologies—safety for fts, security for ats—gives rise to different quantitative
analyses. This shows in the algebra used to propagate values through gates, e.g.
to compute the probability of a failure vs. that of an attack. Moreover, new gates
have been added to fts and ats, extending these formalisms in directions that
sometimes cross each other. We introduced the concept of dimension to classify
these extensions, thus generalising the safety/security dichotomy.

These studies can be deepened by finding new dimensions to compare form-
alisms. Our dimensional split offers a high-level view that helps to spot research
gaps. In particular, we found no formalism that merges ats and fts, that also
includes defenses against attacks. Neither have we found formalisms with clearly-
differentiated at/ft submodules, such as ft-ats, that also offer dynamic gates
and repairs, such as bdmps. The industrial relevance of model visualisation, plus
the need for versatile modelling, makes this gap a promising line of research.



Attack Trees vs. Fault Trees 9

References

1. Arnold, F., Hermanns, H., Pulungan, R., Stoelinga, M.: Time-dependent analysis
of attacks. In: POST. LNCS, vol. 8414, pp. 285–305. Springer Berlin Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54792-8_16

2. Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees.
In: POST. LNCS, vol. 9036, pp. 95–114. Springer Berlin Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46666-7_6

3. Barlow, R.E., Proschan, F.: Statistical theory of reliability and life testing: probab-
ility models. Intl. series in decision processes, Holt, Rinehart and Winston (1975)

4. Bobbio, A., Codetta-Raiteri, D.: Parametric fault trees with dynamic
gates and repair boxes. In: RAMS. pp. 459–465. IEEE (2004). ht-
tps://doi.org/10.1109/RAMS.2004.1285491

5. Bouissou, M.: BDMP (Boolean logic Driven Markov Processes) as an alternative
to Event Trees. ESREL 2008 (2008)

6. Chiacchio, F., D’Urso, D., Compagno, L., Pennisi, M., Pappalardo, F., Manno, G.:
SHyFTA, a stochastic hybrid fault tree automaton for the modelling and simula-
tion of dynamic reliability problems. Expert Systems with Applications 47, 42–57
(2016). https://doi.org/10.1016/j.eswa.2015.10.046

7. Codetta-Raiteri, D., Iacono, M., Franceschinis, G., Vittorini, V.: Repairable fault
tree for the automatic evaluation of repair policies. In: DSN. pp. 659–668. IEEE
Computer Society (2004). https://doi.org/10.1109/DSN.2004.1311936

8. Dugan, J., Bavuso, S., Boyd, M.: Fault trees and sequence dependencies. In: ARMS.
pp. 286–293. IEEE (1990). https://doi.org/10.1109/ARMS.1990.67971

9. Ericson, C.A.: Fault tree analysis – A history. In: 17th International System Safety
Conference. pp. 1–9 (1999)

10. F., A., A., B., der Berg F., V., M., G.D.S.: DFTCalc: A Tool for Efficient Fault Tree
Analysis. Computer Safety, Reliability, and Security. SAFECOMP 2013 8153(1),
55–87 (06 2013)

11. Fila, B., Wideł, W.: Attack–defense trees for abusing optical power meters: A case
study and the osead tool experience report. In: GraMSec. LNCS, vol. 10510, pp.
95–125. Springer International Publishing (2019). https://doi.org/10.1007%2F978-
3-319-66845-1_22

12. Fovino, I.N., Masera, M., De Cian, A.: Integrating cyber attacks within fault
trees. Reliability Engineering & System Safety 94(9), 1394–1402 (2009). ht-
tps://doi.org/10.1016/j.ress.2009.02.020

13. Guarino, N.: Formal ontology, conceptual analysis and knowledge representation.
International Journal of Human-Computer Studies 43(5), 625–640 (1995). ht-
tps://doi.org/https://doi.org/10.1006/ijhc.1995.1066

14. Isograph: AttackTree, https://www.isograph.com/software/attacktree/
15. Isograph: FaultTree+, https://www.isograph.com/software/

reliability-workbench/fault-tree-analysis-software/fault-tree-analysis/
16. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees

with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) ICT Systems
Security and Privacy Protection. pp. 339–353. Springer International Publishing,
Cham (2015)

17. Jürgenson, A., Willemson, J.: Computing exact outcomes of multi-parameter at-
tack trees. In: OTM. LNCS, vol. 5332, pp. 1036–1051. Springer Berlin Heidelberg
(2008). https://doi.org/10.1007/978-3-540-88873-4_8

https://doi.org/10.1007/978-3-642-54792-8_16
https://doi.org/10.1007/978-3-662-46666-7_6
https://doi.org/10.1109/RAMS.2004.1285491
https://doi.org/10.1109/RAMS.2004.1285491
https://doi.org/10.1016/j.eswa.2015.10.046
https://doi.org/10.1109/DSN.2004.1311936
https://doi.org/10.1109/ARMS.1990.67971
https://doi.org/10.1007%2F978-3-319-66845-1_22
https://doi.org/10.1007%2F978-3-319-66845-1_22
https://doi.org/10.1016/j.ress.2009.02.020
https://doi.org/10.1016/j.ress.2009.02.020
https://doi.org/https://doi.org/10.1006/ijhc.1995.1066
https://doi.org/https://doi.org/10.1006/ijhc.1995.1066
https://www.isograph.com/software/attacktree/
https://www.isograph.com/software/reliability-workbench/fault-tree-analysis-software/fault-tree-analysis/
https://www.isograph.com/software/reliability-workbench/fault-tree-analysis-software/fault-tree-analysis/
https://doi.org/10.1007/978-3-540-88873-4_8


10 C.E. Budde, C. Kolb, M. Stoelinga

18. Kabir, S.: An overview of fault tree analysis and its application in model based
dependability analysis. Expert Systems with Applications 77, 114–135 (2017). ht-
tps://doi.org/10.1016/j.eswa.2017.01.058

19. Kaiser, B., Gramlich, C., Förster, M.: State/event fault trees—A safety analysis
model for software-controlled systems. Reliability Engineering & System Safety
92(11), 1521–1537 (2007). https://doi.org/10.1016/j.ress.2006.10.010

20. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–
defense trees. In: FAST. LNCS, vol. 6561, pp. 80–95. Springer Berlin Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19751-2_6

21. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense
modeling: Don’t miss the forest for the attack trees. Computer Science Review
13–14, 1–38 (2014). https://doi.org/10.1016/j.cosrev.2014.07.001

22. Kumar, R., Stoelinga, M.: Quantitative security and safety analysis with Attack-
Fault Trees. In: 18th International Symposium on HASE. pp. 25–32 (2017)

23. Kumar, R., Ruijters, E., Stoelinga, M.: Quantitative attack tree analysis via priced
timed automata. In: FORMATS. LNCS, vol. 9268, pp. 156–171. Springer Interna-
tional Publishing (2015). https://doi.org/10.1007/978-3-319-22975-1_11

24. Lee, W., Grosh, D., Tillman, F., Lie, C.: Fault tree analysis, methods, and ap-
plications—A review. IEEE Transactions on Reliability R-34(3), 194–203 (1985).
https://doi.org/10.1109/TR.1985.5222114

25. Mauw, S., Oostdijk, M.: Foundations of Attack Trees. In: ICISC.
LNCS, vol. 3935, pp. 186–198. Springer Berlin Heidelberg (2006). ht-
tps://doi.org/10.1007/11734727_17

26. Rauzy, A.: New algorithms for fault trees analysis. Reliability Engineering & Sys-
tem Safety 40(3), 203–211 (1993). https://doi.org/10.1016/0951-8320(93)90060-C

27. Roth, M., Liggesmeyer, P.: Modeling and Analysis of Safety-Critical Cyber Physical
Systems using State/Event Fault Trees. In: SAFECOMP (2013)

28. Roudier, Y., Apvrille, L.: SysML-Sec: A model driven approach for designing safe
and secure systems. In: MODELSWARD. pp. 655–664. IEEE (2015)

29. Ruijters, E., Guck, D., Drolenga, P., Peters, M., Stoelinga, M.: Maintenance ana-
lysis and optimization via statistical model checking. In: QEST. LNCS, vol. 9826,
pp. 331–347. Springer (2016). https://doi.org/10.1007/978-3-319-43425-4_22

30. Ruijters, E., Stoelinga, M.: Fault Tree Analysis: A survey of the state-of-the-art
in modeling, analysis and tools. Computer Science Review 15–16, 29–62 (2015).
https://doi.org/10.1016/j.cosrev.2015.03.001

31. Steiner, M., Liggesmeyer, P.: Combination of safety and security analysis - finding
security problems that threaten the safety of a system (2016)

32. Vesely, W., Stamatelatos, M., Dugan, J., Fragola, J., Minarick, J., Railsback, J.:
Fault tree handbook with aerospace applications. NASA Office of Safety and Mis-
sion Assurance (2002), version 1.1

33. Watson, H.: Launch control safety study. Tech. Rep. Section VII, Vol. 1, Bell Labs
(1961)

34. Wideł, W., Audinot, M., Fila, B., Pinchinat, S.: Beyond 2014: Formal methods
for attack tree–based security modeling. ACM Comput. Surv. 52(4) (2019). ht-
tps://doi.org/10.1145/3331524

https://doi.org/10.1016/j.eswa.2017.01.058
https://doi.org/10.1016/j.eswa.2017.01.058
https://doi.org/10.1016/j.ress.2006.10.010
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1016/j.cosrev.2014.07.001
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1109/TR.1985.5222114
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17
https://doi.org/10.1016/0951-8320(93)90060-C
https://doi.org/10.1007/978-3-319-43425-4_22
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1145/3331524
https://doi.org/10.1145/3331524

	Attack Trees vs. Fault Trees: two sides of the same coin from different currencies

