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SUMMARY

The asymptotic behavior of a linearly elastic composite material that contains a thin in-
terphase of thickness ε is described and analyzed by means of two complementary meth-
ods: the asymptotic expansions method and the study of the weak form using variational
methods on Sobolev spaces. We recover the solution of the system of linearized elasticity
in the two dimensional vectorial case and we find limit transmission conditions.

The same steps are followed for harmonic oscillations of the elasticity system, and
different solutions are found for concentrated mass densities. The cases in which the
elastic coefficients depend on ε , for soft as well as stiff materials are considered. An
approximated solution is found for harmonic oscillations of the elasticity system and limit
transmission conditions are derived.

Considering a bounded rectangular composite domain, with an ε-dependent subdo-
main, we describe the weak formulation of the linearized system of elasticity. In the case
of constant elastic coefficients, we estimate the bounds of the strain tensor and so, the
energetic functional in the rescaled domain. We perform a variational formulation of the
system of linearized elasticity and find estimates for the energetic functional of the system.
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Introduction

This work brings a twofold approach in the study of the asymptotic behavior of elastic
anisotropic composite materials. The main interest is to describe and analyze the asymp-
totic behavior of an elastic composite material when one of its components is assumed to
be dependent on a small parameter. Not only the geometry, but also some of the phys-
ical variables used in the mathematical modeling of such elastic systems are considered
dependent on the same parameter. More, if the component which is dependent on the pa-
rameter happens to separate completely other components of the same composite, we call
it interphase and its asymptotic behavior, both geometric and density wise plays a crucial
role in the limit description of the system, when the parameter tends to zero.

xxx

y

r

θ

R R+ ε

An approximated solution is found for the harmonic oscillations of the linearized sys-
tem of elasticity by means of asymptotic expansions method in particular cases of con-
centrated mass densities. In the following, we will call an interphase, a thin domain of
thickness ε and an interface the interphase’s limit when ε → 0. Transmission conditions
on the boundaries of the interphase are imposed both where the continuity of displace-
ment and tractions are concerned and limit transmission conditions are obtained in the
case when the parameter tends to zero. In the second part of the thesis, a qualitative study
is being performed in order to verify and match the results found by the method of asymp-
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totic expansions. In the second part, a bounded, curvature free geometry is imposed for
the system of linearized elasticity.

Estimates are being presented and a limit formulation gives bounds for the solution of
the system. In the first chapter we introduce some basic theory on the linearized system
of elasticity and its strong form and the passing to the weak form. This approach is used
mostly in engineering. In the second chapter we give the mathematical background of
functional analysis defining notions as weak derivative, function spaces like Lp(Ω), and
the well known Sobolev type spaces. In this chapter we also present some of the most
important theorems in the study of Sobolev spaces: the Sobolev imbedding theorem and
it’s compact version - the Rellich-Kondrachov theorem. The Sobolev imbedding theorem
is presented for the case of bounded as well as unbounded domains. Inequalities like that
of Poincaré and Friedrichs are presented, since they are of great importance in estimating
the elastic energy.

In the third chapter we present existence conditions for the solution of the linearized
system of elasticity. A case of uniqueness for Dirichlet boundary conditions imposed
on a three dimensional bounded elastic body is presented. Korn type inequalities are
crucial for estimating the bounds of the strain tensor. In the fourth chapter we introduce
the Korn inequalities for bounded domains with functions in the spaces W 1,2(Ω) and
W 1,2

0 (Ω). For estimating traces of the functions we present several lemmas throughout
the first four chapters pointing how we can find bounds in small neighborhoods of a point
or on parts of a boundary. The fifth chapter is concerned with presenting two problems
that we like to solve in detail by means of asymptotic expansions. We solve the system
of linearized elasticity for statics as well as harmonic oscillations with mixed boundary
conditions in the form of continuity of displacement and continuity of tractions through
the two boundaries of the thin interphase.

When imposing the elasticity operator to this domain with different anisotropy for each
component and considering continuity of displacement and tractions on the boundary lay-
ers, we compute an approximated solution in the thin interphase and we write limit trans-
mission conditions that reflect the direct dependence of the traction components with re-
spect to the small parameter ε . The limit transmission conditions describe the asymptotic
behavior of the system when the small parameter ε tends to zero. We underline that the
problems solved are multiple in the sense that several variables are ε dependent. When
performing the limit we can observe the dependence in the behavior of the system when
the elasticity tensor changes with ε , representing a more soft or stiff material that occupies
the interphase. The critical cases of very soft or very stiff materials are sometimes called
in the literature explosion of coefficients (see Attouch [Att]).
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In the case of harmonic oscillations, the system shows a similar behavior as in the static
case unless we considered concentrated mass densities. When considering concentrated
mass densities per unit volume, a solution can be recovered in an explicit way that has
direct dependence on all the parameters of the system. Moreover, different ε-dependent
scalings of the mass densities recover the same solution for different types of materials
considered. As in the statical case, the limit transmission conditions depend on ε . More-
over, in this case, we observe an explicit dependence of the transmission conditions with
respect to parameters like the frequency ω and the mass density M.
The last chapter is devoted to describing and analyzing the asymptotic behavior of a
bounded composite material that contains a thin component of thickness ε written in weak
form. A general case for body forces applied on the domain is considered.

x

y

0

1

1+ ε

1

3

We estimate the rescaled energetic functional a priori estimates in Sobolev spaces. The
method of asymptotic expansions and the study of the linearized elasticity system in weak
form are complementary. The second approach brings a weak formulation of the limit
problem which reflects the limit boundary value problem while the first one can find an
approximated solution.

In the last part of this introduction we will refer some literature for the various con-
nections of the problems treated. We start by recommending some books on nonlinear
solid mechanics and continuum mechanics. Since the theory needed in this study is that
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of linear elasticity we will not present here any theoretical background on nonlinear elas-
ticity. But we still like to present a theoretical introduction to how to linearize the system
of elasticity in the first chapter. Since the notions used there are of particular detail from
nonlinear theory, we refer to the books of Antman [An], Bigoni [B], Berdichevsky [Ber],
Gurtin [Gu], Holzapfel [H], Liu [L], Truesdell and Noll [TN].

Where linear elasticity is concerned we recommend the books of Gurtin [Gu], Ogden
[O]. For asymptotic expansions solutions we refer to Oleinik [Ol] and Ladyzhenskaya
[Lad]. Solutions of the elasticity system under harmonic oscillations for different com-
posites can be found in works like Sanchez-Palencia [SPZ]. For references on functional
analysis and partial differential equations and Sobolev spaces we recommend the books
of Brezis [Bre], Adams [Ad], Miranda [Mir]. Some of the books and papers in which
the same type of problems are being treated by means on Γ-convergence are Acerbi and
Buttazzo [AB1], [AB2],Braides [Bra], [DM], Serra-Cassano [SC]. For etimates of Korn
type and elasticity treated in the weak form, we refer to Ciarlet [Cia1], [Cia2], Cioră-
nescu [Cio] and Oleinik [Ol]. Important articles studying asymptotic behavior of elastic
structures, thin elastic structures, as well as multi-domains containing an ε-dependent
components are those of Bigoni et al. [B1], [B2], [B3], Mishouris et al. [M], Gaudiello
[G1], [G2], [G3], [G4] and Freddi [Fr1].
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CHAPTER

ONE

LINEAR ELASTICITY

1.1. Derivation of linear theory of elasticity

We start by presenting a theoretical background on linear elasticity by bringing a point
of view from the nonlinear theory towards the linearized equations of elasticity. We de-
duce the linearized theory of elasticity when the gradient of displacement ∇u is small.
Considering the constitutive equation

S = Ŝ( F ) (1.1)

for the Piola-Kirchhoff stress, we start by linearizing this equation.

In order to describe the behavior of this equation when

H = ∇u → 0, (1.2)

we consider Ŝ( F ) as a function of H using the relation

F = I + H. (1.3)

Theorem 1 (Asymptotic form of constitutive relation) An important step is to assume that
the residual stress vanishes. Then

13



Ŝ( F ) = C [ E ]+O( H ) (1.4)

as H → 0, where C is the elasticity tensor and

E =
1
2
(

H + HT ) (1.5)

is the infinitesimal strain.

Proof

Since the residual stress vanishes, we conclude that

Ŝ( F ) = Ŝ( I )+DŜ( I ) [ H ]+O( H ) (1.6)
= C [ H ]+O( H ) (1.7)
= C [ E ]+O(H ). (1.8)

Using equation (1.4) we can write the asymptotic form of the constitutive equation as

S = C [ E ]+O( ∇u ). (1.9)

If the residual stress in the reference configuration vanishes, then to within terms of
O( ∇u ) as ∇u → 0 the stress S is a linear function of the infinitesimal strain E . Since
C has symmetric values, to within the same error S is symmetric.

The linear theory of elasticity is based on the stress-strain law when the order O is
neglected, the strain displacement relation and the equation of motion:



S = C [ E ]

E =
1
2

(
∇u + ( ∇u )T

)
div S + b0 = ρü

(1.10)
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These equations are expressed in terms of displacement

u( p, t ) = x( p, t ) − p (1.11)

rather than the motion x . It is important to emphasize that the formal derivation of the
linearized constitutive equation (1.10), was based on the following two assumptions.

(a) The residual stress in the reference configuration vanishes.

(b) The displacement gradient is small.

Observation 1 E = S = 0 is an infinitesimal rigid displacement.

Given C, ρ0, b0 , (1.10) is a linear system of partial differential equations for the fields
u, E, S .
When the body is isotropic, (1.10) can be replaced by

S = 2µE+λ (trE)I. (1.12)

If the body is homogeneous, ρo,µ,λ are constants. If we assume that the body is
homogeneous and isotropic.

div
(

∇u + ( ∇u )T
)

= 4u + ∇ div u (1.13)

and

trE = div u, (1.14)

the second and third equation in (1.10) and (1.12) are easily combined to give the dis-
placement equation of motion

µ 4u + ( µ +λ )∇ div u + b0 = ρ0ü. (1.15)

In the statical theory, ü = 0 and we have the displacement equation of equilibrium

λ4u + ( λ +µ )∇ div u + b0 = 0. (1.16)

15



1.2. Linear elastostatics

The system of field equations for the statical behavior of an elastic body, in the frame-
work of the linear theory, consists of the strain-displacement relation

E =
1
2

(
∇u + ( ∇u )T

)
, (1.17)

the stress-strain relation

S = C [ E ] , (1.18)

and the equation of equilibrium

div S + b = 0, (1.19)

where b ≡ b0 . The elasticity tensor C , which is a linear mapping of tensors into sym-
metric tensors, will generally depend on the position p in Ω ; writing Cp to emphasize
this dependence, we assume henceforth that Cp is a smooth function of p on Ω .

A list [ u, E, S ] of fields which are smooth on Ω and satisfy (1.1),(1.4), (1.5), for a
given body force b will be called an elastic state corresponding to b . By (1.1) and (1.4),
the properties of C, E, S are symmetric.

Assuming that Ω is bounded, we have the following theorem:

Theorem 2 (Theorem of Work and Energy)

Let [ u, E, S ] be an elastic state corresponding to the body force b . Then

∫
∂Ω

( S( u ) ) ·n dA +
∫
Ω

b ·u dV = 2 U { E } (1.20)

where

U =
1
2

∫
Ω

E ·C [ E ] dV (1.21)

is the strain energy.
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The proof of this theorem is the immediate consequence of the following lemma:

Lemma 1 Let S be a smooth symmetric tensor field on B , let ũ be a smooth vector
field on Ω , and let

div S + b = 0, (1.22)

Ẽ =
1
2

(
∇ũ + ( ∇ũ )T

)
. (1.23)

Then,

∫
∂Ω

( S( ũ ) ) ·n dA +
∫
Ω

b · ũ dV =
∫
Ω

S · Ẽ dV (1.24)

Proof

By the symmetry of S and the divergence theorem,

∫
∂Ω

( S( ũ ) ) ·n dA =
∫
∂Ω

( S( ũ ) ) ·n dA (1.25)

=
∫
Ω

div ( S( ũ ) ) dV (1.26)

=
∫
Ω

( ũ · div S + S ·∇ũ ) dV (1.27)

S ·∇ũ = S ·
{

1
2

(
∇ũ+(∇ũ)T

)}
= S · Ẽ (1.28)

These equations imply (1.24).

We can interpret the left side of (1.20) as the work done by the external forces; (1.20)
asserts that this work is equal to twice the strain energy. When C is definite positive,
U { E } ≥ 0 , and the work is nonnegative.
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1.3. Principle of Minimum Potential Energy

Theorem 3 Assume that C is symmetric and positive definite. Let s= [u,E,S] be a solu-
tion of the mixed problem. Then

Φ{ s } ≤ Φ{ s̃ } (1.29)

for every kinematically admissible state s̃ =
[

ũ, Ẽ, S̃
]

and equality holds if ũ = u + w
with w an infinitesimal rigid displacement of Ω .

Proof

Let
w = ũ − u; Ē = Ẽ − E. (1.30)

Then, since s and s̃ is kinematically admissible,

Ē =
1
2

(
∇w + ( w )T

)
, (1.31)

w = 0 on S1. (1.32)

Further, since C is symmetric and S = C [ E ],

Ẽ ·C
[

Ẽ
]

= E ·C [ E ] + Ē ·C
[

Ē
]
+ E ·C

[
Ē
]
+ Ē ·C [ E ] (1.33)

= E ·C [ E ] + Ē ·C
[

Ē
]
+ 2S · Ē (1.34)

hence

U
{

Ẽ
}
− U { E } = U

{
Ē
}
+
∫
Ω

S · Ē dV. (1.35)

Because s is a solution, we conclude from (1.32), and (1.24) with ũ and Ẽ replaced
by w and Ē that
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∫
Ω

S · Ē dV =
∫
∂Ω

Sn ·w dA +
∫
Ω

b ·w dV =
∫
S2

ŝ ·w dA +
∫
Ω

b ·w dV. (1.36)

In view of the last two relations,

Φ{ s̃ } − Φ{ s } = U
{

Ē
}
. (1.37)

Thus, since C is positive definite,

Φ{ s } ≤ Φ{ s̃ } (1.38)

and

Φ{ s } = Φ{ s̃ } only when Ē = 0; (1.39)

that is, only when w = ū − u is an infinitesimal rigid displacement.

The principle of minimum potential energy asserts that the difference between the strain
energy and the work done by the body force and prescribed surface traction assumes
a smaller value for the solution of the mixed problem than for any other kinematically
admissible state.

1.4. Elastodynamics

Given the equations described before:

E =
1
2

(
∇u + ( ∇u )T

)
S = C[ E ]

div S + b = ρü

(1.40)

we assume that Ω is bounded and ρ is continuous. Let [ u, E, S ] be a list of fields on
Ω× [ 0,∞ ) with u of class C2 and E and S smooth, and suppose that the equations
hold with b given body force field on Ω× [ 0,∞ ) .
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[ u, E, S ] is called an elastic process corresponding to b . Since E is time dependent,
the strain energy

U { E } =
1
2

∫
Ω

E ·C[ E ] dV (1.41)

depends on time. If C is symmetric

1
2
( E ·C[ E ] )· =

1
2
(

Ė ·C[ E ] + E ·C[ Ė ]
)
= Ė ·C[ E ] = S · Ė (1.42)

Thus,

( U { E } )· =
∫
Ω

S · Ė dV (1.43)

so that the rate of change of strain energy is equal to the stress power.

Theorem 4 (Theorem of power and energy)

Assume that C is symmetric. Let [ u, E, S ] be an elastic process corresponding to
the body force b . Then

∫
∂Ω

Sn · u̇ dA +
∫
Ω

b · u̇ dV = ( U { E } + K { u̇ } ) (1.44)

where

K {u̇} =
1
2

∫
Ω

ρu̇2 dV (1.45)

is the kinetic energy.
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CHAPTER

TWO

SOBOLEV SPACES

2.1. Weak derivatives

In order to understand the concept of weak formulation of an equilibrium equation, we
must first bring to attention basic notions like weak derivatives. For particular definitions
of some of the notations where functional analysis is concerned we invite to the references
indicated in the introduction as well as in the bibliography provided. We will define first
the concept of a function being the weak derivative of another function.

Let u ∈ L1
loc(Ω). If there exists vα ∈ L1

loc(Ω) such that Tvα
= Dα Tu in D ′(Ω) ,

then it is unique up to sets of measure zero and is called weak or distributional derivative
of u and denoted by Dα u .

Dα u = vα in the weak sense, provided vα ∈ L1
loc(Ω) satisfies:

∫
Ω

u(x) Dα
φ(x) dx = (−1)|α|

∫
Ω

vα(x) φ(x) dx (2.1)

for every φ ∈ D(Ω) .

If u is sufficiently smooth to have a continuous partial derivative Dα in the usual sense,
the Dα is also a weak partial derivative of u. Dα may exist in the weak sense without
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existing in the classical sense.

2.2. The Lp spaces

In order to introduce the definition of p-integrable function spaces, we will first bring a
few basic definitions from topology.

Definition 1 Let ( Ω, M , µ ) denote a measure space, i.e., Ω is a set and M is a
σ -algebra in Ω , i.e., M is a collection of subsets of Ω such that:

1. ∅ ∈ M

2. A ∈ M ⇒ Ac ∈ M

3.
∞⋃

n=1

An ∈ M for An ∈ M , ∀ n.

µ is a measure. The members of M are called measurable sets. We can write either
|A| or µ(A) .

Definition 2 Ω is σ -finite, i.e. ∃ a countable family ( Ωn ) in M such that Ω =
∞⋃

n=1
Ωn and µ( Ωn ) ≤ ∞, ∀ n.

Definition 3 (The Lp spaces)
Let p ∈ R with 1 < p < ∞ ; we set

Lp(Ω) =
{

f : Ω → R; f is measurable and | f |p ∈ L1(Ω)
}

(2.2)

with

‖ f‖Lp(Ω) = ‖ f‖p =

 ∫
Ω

| f (x)|p dµ

1/p

(2.3)

Observation 2 ‖.‖p is a norm.
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2.3. Definition of W m,p(Ω)

Definition 4 (Sobolev norm) Let us consider m a positive integer and 1 ≤ p < ∞ .
Then we can define a functional ‖.‖m,p as:

‖u‖m,p =

(
∑

0≤|α|≤m
‖Dα u‖p

p

)1/p

if 1≤ p < ∞ (2.4)

‖u‖m,∞ = max
0≤|α|≤m

‖Dα u‖∞ (2.5)

for any function u for which the right side makes sense, ‖.‖p being the norm in Lp(Ω) .

Definition 5 (The spaces Hm,p(Ω) )For any positive integer m and 1≤ p ≤∞ we define
the vector space:

Hm,p(Ω) = the completion of
{

u ∈ Cm(Ω)| ‖u‖m,p < ∞
}

(2.6)

with respect to the norm ‖.‖m,p .

Definition 6 (The Sobolev spaces W m,p(Ω) )For any positive integer m and 1≤ p ≤∞

we define the vector spaces on which ‖.‖m,p is a norm:

W m,p(Ω) = { u ∈ Lp(Ω)|Dα u ∈ Lp(Ω) for 0 ≤ |α| ≤ m } (2.7)

where Dα is the weak partial derivative of u .

Theorem 5 (Meyers-Serrin, 1964)
Let Ω be an open set in RN . Then:Hm,p(Ω) ≡ W m,p(Ω).

2.3.The space W 1,2(Ω)

Definition 7 (W 1,p(Ω))
Let Ω ⊂ Rn be an open set and let p ∈ R with 1 ≤ p ≤ ∞ . The Sobolev space
W 1,p(Ω) is defined by

W 1,p(Ω) =


u ∈ Lp(Ω)

∣∣∣∣ ∃ g1, ...,gn ∈ Lp(Ω) such that∫
Ω

u
∂ϕ

∂xi
= −

∫
Ω

giϕ, ∀ ϕ ∈ C∞
c (Ω), ∀ i = 1,2, ...,n

 (2.8)
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Also,

‖u‖W 1,p = ‖u‖p +
n

∑
i=1

∥∥∥∥ ∂u
∂xi

∥∥∥∥
p

(2.9)

For p = 2 in the last definition, we get W 1,2(Ω) or H1(Ω) .

Proposition 1 Equipped with the scalar product

〈u,v〉=
∫
Ω

(u(x)v(x)+∇u(x) ·∇v(x))dx (2.10)

and with the norm

‖u‖W 1,2(Ω) =

 ∫
Ω

( |u(x)|2 + |∇u(x)|2 ) dx

1/2

(2.11)

the Sobolev space W 1,2(Ω) is a Hilbert space.

Proof

It is obvious that (2.10) is a scalar product in W 1,2(Ω). It therefore remains to show
that W 1,2(Ω) is complete for the associated norm. Let (un)n≥1 be a Cauchy sequence
in L2(Ω). As L2(Ω) is complete, there exist limits u and wi such that un converges to

u and
∂un

∂xi
converges to wi in L2(Ω). Now, by definition of the weak derivative of un ,

for every function φ ∈ C∞
c Ω , we have

∫
Ω

un(x)
∂φ

∂xi
(x) dx = −

∫
Ω

∂un

∂xi
(x)φ(x) dx. (2.12)

Passing to the limit for n → +∞ , we obtain

∫
Ω

u(x)
∂φ

∂xi
(x) dx = −

∫
Ω

wi(x)φ(x) dx, (2.13)

which proves that u is differentiable in the weak sense and that wi is the ith weak partial

derivative of u ,
∂u
∂xi

. Therefore, u belongs to W 1,2(Ω) and (un)n≥1 converges to u

in W 1,2(Ω).
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It is very important in practice to know if regular functions are dense in the Sobolev
space W 1,2(Ω). This partly justifies the idea of a Sobolev space which occurs very simply
as the set of regular functions completed by the limits of sequences of regular functions
in the energy norm ‖u‖W 1,2(Ω). This allows us to prove several properties easily by es-
tablishing them first for regular functions, then by using a density argument.

2.4. Definition of W m,p
0 (Ω)

Definition 8 W m,p
0 (Ω) = the closure of C∞

0 (Ω) in the space W m,p(Ω)

For any m, the chain of imbeddings

W m,p
0 (Ω) → W m,p(Ω) → Lp(Ω) (2.14)

holds.

2.4.The space W 1,2
0 (Ω)

Let us now define another Sobolev space which is a subspace of W 1,2(Ω) and which
will be very useful for problems with Dirichlet boundary conditions.

Definition 9 Let C∞
c (Ω) be the space of functions of class C∞ with compact support in

Ω. The Sobolev space W 1,2
0 (Ω) is defined as the closure of C∞

c (Ω) in W 1,2(Ω) .

W 1,2
0 (Ω) is in fact the subspace of W 1,2(Ω) composed of functions which are zero on

the boundary ∂Ω since this is the case for functions of C∞
c (Ω̄). In general, W 1,2

0 (Ω) is
strictly smaller than W 1,2(Ω) since C∞

c (Ω) is a strict subspace of C∞
c (Ω̄). An important

exception is the case where Ω = RN : in effect, in this case Ω̄ = RN = Ω shows
that C∞

c (RN) is dense in W 1,2(RN), therefore we have W 1,2
0 (RN) = W 1,2(RN). This

exception is easily understood as the whole space RN does not have a boundary.

Proposition 2 Equipped with the scalar product of W 1,2(Ω) , the Sobolev space W 1,2
0 (Ω)

is a Hilbert space.

Proof By definition W 1,2
0 (Ω) is a closed subspace of W 1,2(Ω) (which is a Hilbert

space), therefore it is also a Hilbert space.

An essential result for the applications of the fifth chapter is the following inequality.

25



2.5. Sobolev imbedding theorem

In this section, we will present the well known imbedding theorem of Sobolev. The
proofs will not be presented here since they are very long and can be found in the books
of Brezis [Bre], Adams [Ad] or Evans [E].

Observation 3 If Ω has dimension 1, then W 1,p(Ω) ⊂ L∞(Ω) with continuous injection,
for all 1 ≤ p ≤ ∞ . In dimension N = 2 , this inclusion is true only for p > N . When
p≤ N one can construct functions in W 1,p that do not belong to L∞(Ω) .

Nevertheless, an important result, essentially due to Sobolev, asserts that if 1 ≤ p < N
then W 1,p(Ω) ⊂ Lp∗(Ω) with continuous injection, for some p∗ ∈ (p,+∞) . This
result is often called the Sobolev imbedding theorem. We will show the two cases: when
Ω = RN and the case Ω ⊂ RN .

2.5.The case Ω = RN

Theorem 6 (Sobolev, Gagliardo, Nirenberg) Let 1≤ p≤ ∞. Then

W 1,p(RN) ⊂ Lp∗(RN), (2.15)

where p∗ is given by
1
p∗

=
1
p
− 1

N
, and there exists a constant C = C(p,N) such

that

‖u‖p∗ ≤ C‖∇u‖p, ∀ u ∈ W 1,p(RN). (2.16)

Lemma 2 Let N ≥ 2 and let f1, f2, f3, ..., fN ∈ LN−1(RN−1). For x ∈ RN and i ≤
p ≤ N set

x̃i = ( x1,x2, ....,xi−1,xi+1, ...,xN ) ∈ RN−1, (2.17)

i.e. xi is omitted from the list. Then the function

f (x) = f1(x̃1) f2(x̃2)... fN(x̃N), x ∈ RN , (2.18)

belongs to L1(RN) and
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‖ f‖L1(RN) ≤
N

∏
i=1
‖ fi‖LN−1(RN−1). (2.19)

Corollary 1 Let 1≤ p < N . Then

W 1,p(RN) ⊂ Lq(RN), ∀ q ∈ [p, p∗] (2.20)

with continuous injection.

Corollary 2 (Limit case p = N )
We have

W 1,p(RN) ⊂ Lq(RN), ∀ q ∈ [N,+∞). (2.21)

Theorem 7 (Morrey) Let p > N. Then

W 1,p(RN) ⊂ L∞(RN) (2.22)

with continuous injection.
Furthermore, for all u ∈W 1,p(RN) we have

|u(x)−u(y)| ≤ C|x− y|α‖∇u‖p a.e. x,y ∈ RN (2.23)

where α = 1− (N/p) and C is a constant (depending only on p and N).

Corollary 3 Let m ≥ 1 be an integer and let p ∈ [1,+∞) . We have for
1
q

=
1
p
− m

N
:

W m,p(RN) ⊂ Lq(RN), if
1
p
− m

N
> 0

W m,p(RN) ⊂ Lq(RN), ∀ q ∈ [p,+∞), if
1
p
− m

N
= 0

W m,p(RN) ⊂ L∞(RN), if
1
p
− m

N
< 0

(2.24)

and all these injections are continuous. Moreover, if m − (N/p) > 0 is not an integer
set

k = [ m − (N/p) ] and θ = m − (N/p) − k (0 < θ < 1). (2.25)

We have, for all u ∈ W m,p(R)N ,
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‖Dα u‖L∞(RN) ≤ C ‖u‖W m,p(RN), ∀ α with |α| ≤ k (2.26)

and

|Dα u(x) − Dα u(y) | ≤ C ‖u‖W m,p(RN)|x−y|θ a.e. x,y ∈ RN , ∀α with |α| = k. (2.27)

In particular, W m,p(RN) ⊂ Ck(RN).

2.5.The case Ω ⊂ RN

We suppose that Ω is an open set of class C1 with bounded boundary or else Ω = RN
+.

Corollary 4 Let 1≤ p ≤ ∞. We have for
1
p∗

=
1
p
− 1

N
:


W 1,p(Ω) ⊂ Lp∗(Ω), if p < N
W 1,p(Ω) ⊂ Lq(Ω), ∀ q ∈ [p,+∞), if p = N

W 1,p(Ω) ⊂ L∞(Ω), if p > N
(2.28)

and all these injections are continuous. Moreover, if p > N we have, for all u ∈
W 1,p(Ω) ,

| u(x) − u(y) | ≤ C ‖ u ‖W 1,p | x− y |α a.e. x,y ∈ Ω (2.29)

with α = 1 − ( N/p ) and C depends only one Ω, p and N . In particular,

W 1,p(Ω) ⊂ C(Ω̄) (2.30)

2.6. Compactness. Rellich-Kondrachov theorem

Theorem 8 (Rellich-Kondrachov) Suppose that Ω is bounded and of class C1 . Then

we have the following compact injections, for
1
p∗

=
1
p
− 1

N
:
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
W 1,p(Ω) ⊂ Lq(Ω), ∀ q ∈ [1, p∗), if p < N
W 1,p(Ω) ⊂ Lq(Ω), ∀ q ∈ [p,+∞), if p = N

W 1,p(Ω) ⊂ C(Ω̄), if p > N.

(2.31)

In particular, W 1,p ⊂ Lp with compact injection for all p and all N.

2.7. Poincaré inequality

Theorem 9 (Poincaré inequality) Let Ω be a bounded, connected, open subset of Rn

with a C1 boundary ∂Ω . Assume 1≤ p ≤ ∞. Then there exists a constant, depending
only on n, p and Ω such that

‖ u − (u)Ω ‖Lp(Ω) ≤ C‖ Du ‖Lp(Ω) (2.32)

for each function u ∈ W 1,p(Ω).

Proof

We argue by contradiction. If the stated estimate is false, then

∃, for each integer k = 1,2, ... a function uk ∈ W 1,p(Ω) (2.33)

satisfying

‖ uk − (uk)Ω ‖ > k‖Duk‖Lp(Ω). (2.34)

We renormalize by defining

vk :=
uk − (uk)Ω

‖ uk − (uk)Ω ‖Lp(Ω)
, k = 1,2, ... (2.35)

Then

(vk)Ω = 0,‖ vk ‖Lp(Ω) = 1 (2.36)
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and (2.34) implies ‖Dvk‖Lp(Ω) <
1
k
,k = 1,2, ...

In particular, the functions {vk}∞

k=1 are bounded in W 1,p(Ω).
From the Rellich-Kondrachov theorem we have

∃ { vk j }
∞
j=1 ⊂ { vk }∞

k=1 (2.37)

and a function v ∈ Lp(Ω) such that

vk j → v in Lp(Ω). (2.38)

From (2.35) it follows that

(v)Ω = 0,‖ v ‖Lp(Ω) = 1. (2.39)

For each i = 1,2, ...,n and φ ∈ C∞
c (Ω) that

∫
Ω

vφxi dx = lim
k j→∞

∫
Ω

vk j φxi dx = − lim
k j → ∞

∫
Ω

vk j ,xiφ dx = 0 (2.40)

Consequently, v ∈ W 1,p(Ω) , with Dv = 0 a.e..

Thus v is constant, since Ω is connected. However, this conclusion is at variance
with (2.39): since v is constant and (v)Ω = 0, we must have v ≡ 0 ; in which case
‖v‖Lp(Ω) = 0. This contradiction establishes estimate (2.32).

2.8. Generalized Poincaré inequality

Theorem 10 ( Poincaré inequality on a ball) Assume 1 ≤ p ≤ ∞. Then there exists a
constant C, depending only on n and p such that

‖ u − (u)x,r ‖Lp(B(x,r)) ≤ Cr‖ Du ‖Lp(B(x,r)) (2.41)

for each ball B(x,r) ⊂ Rn and each function u ∈ W 1,p(B0(x,r)).
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Proof The case Ω = B0(0,1) follows from the Poincaré inequality. In general, if
u ∈ W 1,p(B0(x,r)) we have

v(y) := u( x + ry ), y ∈ B(0,1). (2.42)

Then v ∈ W 1,p(B0(0,1)) and we have

‖v− (v)0,1‖Lp(B(0,1)) ≤C‖Dv‖Lp(B(0,1)). (2.43)

Changing variables, we can recover estimate (2.41).

2.9. Friedrichs inequality

Theorem 11 Friedrichs Inequality Let Ω be a bounded Lipschitz domain and let γ be
a subset of its boundary ∂Ω. Suppose that γ has a positive Lebesgue measure on ∂Ω.
Then for any ϕ ∈ W 1,2(Ω,γ) the inequality

‖ ϕ ‖L2(Ω) ≤ ‖ ∇ϕ ‖L2(Ω) (2.44)

holds with a constant C independent of ϕ . If γ = ∂Ω then the inequality holds for any
bounded domain Ω and any ϕ ∈ W 1,2

0 (Ω).

W m,2(Ω,γ) , for m > 0 is the completion with respect to the norm of the subspace of
C∞(Ω̄) formed by all functions vanishing in a neighborhood of γ .

2.10. Traces

Theorem 12 (Trace) Let Ω be an open bounded regular set of class C1 , or Ω = RN
+.

We define the trace mapping

{
W 1,2(Ω) ∩ C(Ω̄) → L2(∂Ω) ∩ C( ¯∂Ω)

v → γ0(v) = v
∣∣
∂Ω

(2.45)
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This mapping γ0 is extended by continuity to a continuous linear mapping of W 1,2(Ω)
into L2(∂Ω) , again called γ0 . In particular, there exists a constant C > 0 such that,
for every function v ∈ W 1,2(Ω) , we have

‖ v ‖L2(∂Ω) ≤ C‖ v ‖W 1,2(Ω). (2.46)

Proof

Let us proof the result for the half-space Ω = RN
+ = x ∈ RN , xN > 0. Let v ∈

C∞
c (R̄N

+). With the notation x = (x′,xN) , we have

|v(x′,0)|2 = −2
∞∫
0

v(x′,xN)
∂v

∂xN
(x′,xN) dxN , (2.47)

and, by using the inequality 2ab ≤ a2 + b2 ,

|v(x′,0)|2 ≤
∞∫
0

(
| v( x′,xN ) |2 +

∣∣∣∣ ∂v
∂xN

( x′,xN )

∣∣∣∣2
)

dxN . (2.48)

By integration in x′ , we deduce

∫
RN−1

| v(x′,0) |2 ≤
∫
RN
+

(
| v(x) |2 +

∣∣∣∣ ∂v
∂xN

(x)
∣∣∣∣2
)

dx (2.49)

that is, ‖ v ‖L2( ∂RN
+ ) ≤ ‖ v ‖W 1,2(RN

+)
. By the density of C∞

c (R̄N
+) in W 1,2(RN

+) , we
therefore obtain the result.

For an open bounded regular set of class C1 , we use and argument involving local
coordinates on the boundary which allows us to reduce it to the case of Ω = RN

+.
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CHAPTER

THREE

EXISTENCE AND UNIQUENESS

We will consider the elasticity system with mixed boundary conditions:
div (2µe(u))+λ tr (e(u))I = f , in Ω

u = 0, on ∂ΩD

σn = g, on ∂ΩN

(3.1)

Theorem 13 (Weak Solution) Let Ω be a regular open bounded connected set of class
C1 of RN . Let f ∈ L2(Ω)N and g ∈ L2(∂ΩN)

N . We define the space

V =
{

v ∈ W 1,2(Ω)N such that v = 0 on ∂ΩD
}
. (3.2)

There exists a unique (weak) solution u ∈ V of (3.1) which depends linearly and contin-
uously on the data f and g .
Proof

The space V , defined by (3.2), contains the Dirichlet boundary condition on ∂ΩD and
is a Hilbert space as a closed subspace of W 1,2(Ω)N . We then obtain the variational
formulation: find u ∈ V such that

∫
Ω

2µe(u) · e(v) dx +
∫
Ω

λ div u div v dx =
∫
Ω

f · v dx +
∫

∂ΩN

g · v ds, ∀ v ∈ V. (3.3)
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To be able to apply the Lax-Milgram theorem to the variational formulation of the
elasticity system, the only delicate hypothesis to be verified is once again the coercivity of
the bilinear form. In other words, we must show that there exists a constant C > 0 such
that, for every function v ∈ V , we have

‖ v ‖W 1,2(Ω) ≤ C‖e(v)‖L2(Ω). (3.4)

First we note that ‖ e(v) ‖L2(Ω) = 0 implies that v = 0 . Suppose therefore that
‖ e(v) ‖L2(Ω) = 0. We check that, if M 6= 0, then the points x , solutions of b + Mx = 0 ,
form a line in R3 and a point in R2. Now v(x) = 0 on ∂ΩD , which has nonzero surface
measure, therefore M = 0 and b = 0. If (3.3) is false, then there exists a sequence
vn ∈ V such that

‖ vn ‖W 1,2(Ω) = 1 > n ‖ e(vn) ‖L2(Ω). (3.5)

In particular, the sequence e(vn) tends to zero in L2(Ω)N2
. On the other hand, as vn is

bounded in W 1,2(Ω)N , by application of the Rellich theorem, there exists a subsequence
vn which converges in L2(Ω)N . Korn’s inequality implies that

‖ vn′ − vp′ ‖2
W 1,2(Ω) ≤ C‖ vn′ − vp′ ‖2

L2(Ω) + ‖ e(vn′) − e(vp′) ‖2
L2(Ω) (3.6)

from which we deduce that the sequence vn′ is Cauchy in W 1,2(Ω)N , and therefore
converges to a limit v∞ which satisfies ‖ e(v∞) ‖L2(Ω) = 0. As this is a norm we deduce
that the limit is zero, v∞ = 0, which is a contradiction with the fact that

‖ vn′ ‖W 1,2(Ω) = 1. (3.7)

The mapping ( f ,g) → u is linear. To show that it is continuous from L2(Ω)N ×
L2(∂Ω)N into W 1,2(Ω)N , we take v = u in the variational formulation (3.3). By using
the coercivity of the bilinear form and by bounding the linear form above, we obtain the
energy estimate

C‖ u ‖2
W 1,2(Ω) ≤ ‖ f ‖L2(Ω)‖ u ‖L2(Ω) + ‖ g ‖L2(∂ΩN)

‖ u ‖L2(∂Ω). (3.8)

Thanks to the Poincaré inequality and to the trace theorem, we can bound the term on
the right of (3.8) above by C

(
‖ f ‖L2(Ω) + ‖ g ‖L2(∂ΩN)

)
‖ u ‖W 1,2(Ω), which proves the

continuity.
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The variational formulation is nothing other than the principle of virtual work in me-
chanics. Following this analogy, the space V is the space of kinematically admissible dis-
placements v , and the space of symmetric tensors S ∈ L2(Ω)N2

, such that − div σ = f
in Ω and Sn = g on ∂ΩN is that of tensors of statically admissible stress tensors. For
the Laplacian, the solution of the variational formulation (3.3) attains the minimum of a
mechanical energy defined for v ∈V by

J(v) =
1
2

∫
Ω

(
2µ|e(v)|2 + λ | div v |2

)
dx −

∫
Ω

f · v dx −
∫

∂ΩN

g · v ds (3.9)

In mechanical terms, J(v) is the sum of the energy of deformation

1
2

∫
Ω

(
2µ|e(v)|2 + λ | div v |2

)
dx (3.10)

and of the potential energy of exterior forces (or work of exterior forces up to a given
sign)

−
∫
Ω

f · v dx −
∫

∂ΩN

g · v ds (3.11)

Remark 1 When the Lamé coefficients are constant and the boundary conditions are
Dirichlet and homogeneous, the elasticity equations may be rearranged to the Lamé sys-
tem: {

−µ∆u − ( µ + λ )∇( div u) = f , in Ω

u = 0, on ∂Ω
(3.12)

3.0.Lax-Milgram Theory

We describe an abstract theory to obtain the existence and the uniqueness of the solution
of a variational formulation in a Hilbert space. We denote by V a real Hilbert space with
scalar product <,> and norm ‖ · ‖. We consider a variational formulation of the type:

find u ∈ V , such that a( u,v ) = L( v ), for every v ∈ V. (3.13)

The hypotheses on a and L are:

(i) Continuous Linear Operator
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L(·) is a continuous linear form on V, that is, v → L(v) is linear from V to R
and there ∃C > 0 such that

|L( v )| ≤ C‖ v ‖, for all v ∈ V ; (3.14)

(ii) Bilinear Form

a(·, ·) is a bilinear form on V, that is, w → a( w,v ) is a linear form from V into
R for all v ∈ V ; and v → a(w,v) is a linear form from V into R for all w ∈ V ;

(iii) Continuous Bilinear Form

a(·, ·) is continuous, that is, ∃M > 0 such that

|a(w,v)| ≤ M‖w‖‖v‖, for all w,v ∈ V ; (3.15)

(iv) Coercive (or Elliptic) Bilinear Form

a(·, ·) is coercive (or elliptic), that is, ∃ υ > 0 such that

a(v,v) ≥ υ ‖v‖2, for allv ∈ V (3.16)

Theorem 14 (Riesz representation theorem)

Let V be a real Hilbert space, and let V
′

be its dual. For every continuous linear form
L ∈ V

′
there exists a unique y ∈ V such that

L(x) = 〈 y,x 〉, ∀ x ∈ V. (3.17)

Further, we have

‖L‖V ′ = ‖y‖ (3.18)

Proof Let M = KerL. This is a closed subspace of V since L is continuous. If M = V ,
then L is identically zero and we have y = 0. If M 6= V , then there exists z ∈ V \M .
Let zM be its projection over M. As z does not belong to M , z − zM is nonzero and, by
the theorem of projection over a convex set, is orthogonal to every element of M . Finally,
let

z0 =
z − zM

‖z − zM‖
. (3.19)

Every vector x ∈ V can be written
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x = w + λ z0 with λ =
L(x)
‖ L(z0) ‖

. (3.20)

We see easily that L(w) = 0, therefore w ∈ M. This proves that V = Vect(z0)⊕M.By
definition of zM and of z0, we have 〈w,z0〉= 0, which implies

L(x) = 〈 x,z0 〉L(z0), (3.21)

from where then we have the result with y = L(z0)z0 (the uniqueness is obvious). On the
other hand, we have

‖y‖ = |L(z0)|, (3.22)

and

‖L‖V ′ = sup
x∈V,x 6=0

|L(s)|
‖x‖

= L(z0) sup
x∈V,x 6=0

〈x,z0〉
‖x‖

. (3.23)

The maximum in the last term of this equality is attained by x = z0 , which implies that

‖L‖V ′ = ‖y‖. (3.24)

Theorem 15 (Lax - Milgram)
Let V be a real Hilbert space, L(·) a continuous linear form on V , a(·, ·) a continuous
coercive bilinear form on V . Then the variational formulation

find u ∈ V , such that a(u,v) = L(v), for every v ∈ V (3.25)

has a unique solution. Further, this solution depends continuously on the linear form L .

Proof For all w ∈ V , the mapping v → a( w,v ) is a continuous linear form on
V:consequently, Riesz representation theorem implies that there exists an element of V,
denoted A(w) , such that

a( w,v ) = 〈 A(w),v 〉, for all v ∈ V. (3.26)
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Moreover, the bilinearity of a( w,v ) obviously implies the linearity of the mapping
w → A(w). Further, by taking v = A(w) , the continuity of a( w,v ) shows that

‖A(w)‖2 = a( w,A(w) ) ≤ M‖w‖‖A(w)‖; (3.27)

that is, ‖A(w)‖ ≤ M‖w‖ and therefore w → A(w) is continuous.Another application
of the Riesz representation theorem implies that there exists an element of V , denoted by
f , such that ‖ f‖V = ‖L‖V ′ and

L(v) = 〈 f ,v 〉, for all v ∈ V. (3.28)

Finally, the variational problem

find u ∈ V , such that a( u,v ) = L(v), for every v ∈ V (3.29)

is equivalent to:

find u ∈ V , such that A(u) = f . (3.30)

To prove the theorem we must therefore show that the operator A is bijective from V
to V (which implies the existence and the uniqueness of u ) and that its inverse is contin-
uous(which proves the continuous dependence of u with respect to L ).The coercivity of
a( w,v ) shows that

υ‖w‖2 ≤ a( w,w ) = 〈 A(w),w 〉 ≤ ‖A(w)‖‖w‖, (3.31)

which gives

υ‖w‖ ≤ ‖A(w)‖, for allw ∈ V, (3.32)

that is, A is injective.To show that A is injective, that is, Im(A) = V (which is not
obvious if V is infinite dimensional),it is enough to show that Im(A) is closed in V and
that Im(A)⊥ = 0. Indeed, in this case we see that V = 0⊥ = (Im(A)⊥)⊥ = ¯Im(A) =
Im(A), which proves that A is surjective. Let A(wn) be a sequence in Im(A) which
converges to b in V . By virtue of

υ‖w‖ ≤ ‖A(w)‖, for all w ∈ V, (3.33)

we have
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υ‖wn − wp‖ ≤ ‖A(wn) − A(wp)‖ (3.34)

which tends to zero as n and p tend to infinity. Therefore, wn is a Cauchy sequence in
the Hilbert space V ,that is, it converges to a limit w ∈ V.

Then, by continuity of A we deduce that A(wn) converges to A(w) = b ,that is,
b ∈ Im(A) and Im(A) is therefore closed. On the other hand, let v ∈ Im(A)⊥ ; the
coercivity of a( w,v ) implies that

υ‖v‖2 ≤ a( v,v ) = 〈 A(v),v 〉 = 0, (3.35)

that is, v = 0 and Im(A)⊥ = 0 , which proves that A is bijective.Let A−1 be its inverse:
the inequality

υ‖w‖ ≤ ‖A(w)‖, for allw ∈ V, (3.36)

with w = A−1(v) proves A−1 is continuous, therefore the solution u depends on f .
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CHAPTER

FOUR

ESTIMATES. KORN INEQUALITIES

4.1. First Korn inequality

Theorem 16 Let Ω be a bounded domain of RN . Then every vector valued function
u ∈ W 1,2

0 (Ω) satisfies the inequality

‖∇u‖2
L2(Ω) ≤ 2‖e(u)‖2

L2(Ω) (4.1)

Proof Since C∞
0 (Ω) is dense in W 1,2

0 (Ω) , it is sufficient to prove (4.1) for functions
C∞

0 (Ω). By virtue of the Green formula we get

∫
Ω

|e(u)|2 dx =
∫
Ω

(
1
2

∂ui

∂xh

∂ui

∂xh
+

1
2

∂ui

∂xh

∂uh

∂xi

)
dx (4.2)

=
∫
Ω

1
2
|∇u|2 dx −

∫
Ω

1
2

∂ 2ui

∂xh∂xi
uh dx (4.3)

=
1
2

∫
Ω

|∇u|2 dx +
1
2

∫
Ω

∂ui

∂xi

∂uh

∂xh
dx (4.4)

for any u ∈ C∞
0 (Ω) . Therefore (4.1) is valid for u since the second integral in the right

hand side of the last equality is non-negative.
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4.2. Second Korn inequality

For proving this second Korn inequality we will need some preliminary lemmas that
we will give here without proofs. The proofs can be found in the book of Oleinik [Ol].

Lemma 3 Let v ∈ C∞(Ω)∩ L2(Ω), ρ2 a
v ∈ L2(Ω). Then ρ∇v ∈ L2(Ω) and the

estimate

‖ρ∇v‖L2(Ω) ≤ C
(
‖v‖L2(Ω) + ‖ρ

24v‖L2(Ω)

)
(4.5)

holds with a constant C independent of v.

Lemma 4 Let w ∈ C∞ ∈ C∞(Ω) ∩ L2(Ω), ρ
∂ 2w

∂xi∂x j
∈ L2(Ω).

Then w ∈ W 1,2(Ω) and

‖∇w‖L2(Ω) ≤ C

[
‖w‖L2(Ω) +

n

∑
i, j=1
‖ρ ∂ 2w

∂xi∂x j
‖L2(Ω)

]
(4.6)

where the constant C does not depend on w.

Theorem 17 (The second Korn inequality) Let Ω be a bounded Lipschitz domain. Then
each vector valued function u ∈ W 1,2(Ω) satisfies the inequality

‖u‖H2(Ω) ≤ C
(
‖u‖L2(Ω) + ‖e(u)‖L2(Ω)

)
, u = ( u1,u2, ...,un ) ∈ W 1,2(Ω) (4.7)

with a constant C depending only on Ω.

Proof
We can restrict ourselves to the case of u ∈ C∞(Ω̄). By the definition of the matrix e(u)
we have

∂ 2ui

∂x2
j

= 2
∂

∂x j
ei j(u) −

∂

∂xi
e j j(u), (4.8)

with no summation over i and j. Consider the following equations

∆vi =
n

∑
j=1

(
2

∂

∂x j
ei j(u) −

∂

∂xi
e j j(u)

)
=

n

∑
j=1

∂

∂x j
F i

j . (4.9)
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Set F i
j = 0 outside Ω, i, j = 1,2, ...,n . Let vi ∈W 1,2

0 (
◦
Ω be a solution of the equation

(4.9) in a smooth domain
◦
Ω such that Ω̄ ⊂

◦
Ω . According to the well-known a priori

estimate we have

‖vi‖
W 1,2(

◦
Ω )
≤C1

n

∑
j=1
‖F i

j‖L2(Ω) ≤ C2‖e(u)‖L2(Ω). (4.10)

This inequality can be easily obtained by virtue of the Friedrichs inequality and the
integral identity for solutions of the Dirichlet problem for equation (4.9).
Set v = ( v1,v2, ...,vn )

∗, w = u − v.
Then

∆( ei j(w) ) = 0 in Ω, ei j(w) ∈ C∞(Ω), i, j = 1, ...,n (4.11)

Due to (4.10) we get

‖e(w)‖L2(Ω) ≤ ‖e(u)‖L2(Ω) + ‖e(v)‖L2(Ω) ≤ C‖e(u)‖L2(Ω), (4.12)

where the constant C3 does not depend on u. Therefore we find that

‖ ρ∇ei j(w) ‖L2(Ω) ≤C4‖ei j(w)‖L2(Ω) ≤ C5‖e(u)‖L2(Ω). (4.13)

We can see that

∂ 2wi

∂xp∂xl
=

∂

∂xp
eil(w) +

∂

∂xl
eip −

∂

∂xi
el p(w). (4.14)

Therefore, (4.13) yields the inequality∥∥∥∥∥ ρ

n

∑
i, j=1

∣∣∣∣ ∂ 2w
∂xi∂x j

∣∣∣∣
∥∥∥∥∥ ≤ C6‖e(u)‖L2(Ω). (4.15)

So we establish

‖∇w‖L2(Ω) ≤ C7

 ∥∥∥∥∥ ρ

n

∑
i, j=1

∣∣∣∣ ∂ 2w
∂xi∂x j

∣∣∣∣
∥∥∥∥∥

L2(Ω)

+ ‖w‖L2(Ω)

 (4.16)

≤ C8

(
‖e(u)‖L2(Ω)+‖w‖L2(Ω)

)
. (4.17)
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Since w = u − v the above estimate implies

‖∇u‖L2(Ω) ≤ C9

(
‖e(u)‖L2(Ω) + ‖u‖L2(Ω) + ‖v‖W 1,2(Ω)

)
. (4.18)

Therefore, owing to (4.10) we find that (4.7) is satisfied.

4.3. Third Korn inequality

Theorem 18 (Korn inequality for 1-periodic vector valued functions)
Let ω be an unbounded domain in a 1-periodic structure and let ω ∩ Q a domain with
a Lipschitz boundary. Then for any v ∈ Ŵ 1,2(ω) such that

∫
ω∩Q

v dx = 0,Q = (0,1)N (4.19)

the inequality

‖v‖W 1,2(ω∩Q) ≤ C‖e(v)‖L2(ω∩Q) (4.20)

holds with a constant C independent of v.
Proof

Denote by V the linear space consisting of all restrictions to ω ∩ Q of vector valued
functions in Ŵ 1,2(ω) satisfying the conditions (4.19). It is easy to see that V is a closed
subspace of W 1,2(ω ∩ Q) and that any rigid displacement 1-periodic in c is a constant
vector. Therefore if v ∈ V ∩ R then by virtue of (4.19) we have v ≡ 0 .
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CHAPTER

FIVE

ASYMPTOTIC EXPANSIONS

5.1. Elastostatics

Let Ωε be an unbounded domain written in polar coordinates as:

Ω
ε = {(r,θ) : r > 0,0 < θ < 2π} (5.1)

Ω
ε = Ω

b∪Ω
c
ε ∪Ω

a
ε (5.2)

Ω
c
ε = {(r,θ) : 1 < r < R+ ε,0 < θ < 2π} (5.3)

Ω
c
ε = {(r,θ) : 1 < r < R+ ε,0 < θ < 2π} (5.4)

Ω
a
ε = {(r,θ) : r > R+ ε} (5.5)

Consider also, the following boundaries :

γ
− = {(r,θ) : r = 1,0 < θ < 2π} (5.6)

γ
+ = {(r,θ) : r = R+ ε,0 < θ < 2π} (5.7)

We define the displacement field U on Ωε in the following way:
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U(r,θ)≡


Ub, if 0 < r < R;
Uc, if 1 < r < R+ ε;

Ua, if r > R+ ε.

(5.8)

All displacement fields Ub,Uc,Ua are vector fields, defined as:

Ub : Ω
b→ R2 (5.9)

Ub =
(

Ub
r ,U

b
θ

)
(5.10)

Uc : Ω
c
ε → R2 (5.11)

Uc = (Uc
r ,U

c
θ ) (5.12)

Ua : Ω
a
ε → R2 (5.13)

Ua = (Ua
r ,U

a
θ ) (5.14)

and

Ub
α : R→ R;α ∈ {r,θ} (5.15)

Uc
α : R→ R;α ∈ {r,θ} (5.16)

Ua
α : R→ R;α ∈ {r,θ} (5.17)

(5.18)
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Figure 5.1: Thin Cylindrical Interphase

On Ωε , we impose the equations of the linearized system of elasticity in the strong
form with transmission conditions on the inner and outer boundaries of Ωc

ε in the form
of continuity of displacement and continuity of tractions. For now, no forces are being
considered.



− div S(U) = 0, on Ωε ;
Ub(R,θ) = Uc(R,θ);

Uc(R+ ε,θ) = Ua(R+ ε,θ);(
S(Ub) ·n

)
(R,θ) = (S(Uc) ·n)(R,θ);

(S(Uc) ·n)(R+ ε,θ) = (S(Ua) ·n)(R+ ε,θ).

(5.19)

E :=
1
2
(
∇U+(∇U)T ) (5.20)
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In polar coordinates, the strain tensor takes the form:

E =
∂Ur

∂ r
er⊗ er +

1
2

(
1
r

∂Ur

∂θ
+

∂Uθ

∂ r
− 1

r
Uθ

)
(er⊗ eθ + eθ ⊗ er)+

1
r

(
∂Uθ

∂θ
+Ur

)
eθ ⊗ eθ

(5.21)

so, the components of the strain tensor can be written as:

Err =
∂Ur

∂ r
;

Eθθ =
1
r

(
∂Uθ

∂θ
+Ur

)
;

Erθ = Eθr =
1
2

(
1
r

∂Ur

∂θ
+

∂Uθ

∂ r
− 1

r
Uθ

)
.

(5.22)

The constitutive equation for the stress tensor, for a general anisotropic material is:

{S}i j := Ci jhk{E}hk (5.23)

where C is a fourth order tensor called the elasticity tensor. For an isotropic elastic mate-
rial the constitutive law is knows as Hooke’s law and it is written as:

S = λ (tr(E))I+2µE (5.24)

S =

[
λErr +λEθθ +2µErr 2µErθ

2µErθ λErr +λEθθ +2µEθθ

]
(5.25)

So, the components of the stress tensor are:


Srr = (λ +2µ)

∂Ur

∂ r
+λ

1
r

∂Uθ

∂θ
+λ

1
r

Ur;

Sθθ = λ
∂Ur

∂ r
+(λ +2µ)

1
r

∂Uθ

∂θ
+(λ +2µ)

1
r

Ur;

Srθ = µ
1
r

∂Ur

∂θ
+µ

∂Uθ

∂ r
−µ

1
r

Uθ .

(5.26)

We want to study the asymptotic behavior of a cylindrical interphase, occupied by an or-
thotropic material of elastic coefficients Crr,Crθ ,Cθθ ,Gθr included in an infinite isotropic
elastic material and surrounding an isotropic elastic material. Next, we characterize the
materials that occupy these domains:
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The circular inclusion Ωb

Constitutive equations

S = λb (tr(E))I+2µbE (5.27)

S =

[
λbErr +λbEθθ +2µbErr 2µbErθ

2µbErθ λbErr +λbEθθ +2µbEθθ

]
(5.28)



Srr = (λb +2µb)
∂Ub

r

∂ r
+λb

1
r

∂Ub
θ

∂θ
+λb

1
r

Ub
r ;

Sθθ = λb
∂Ub

r

∂ r
+(λb +2µb)

1
r

∂Ub
θ

∂θ
+(λb +2µb)

1
r

Ub
r ;

Srθ = µb
1
r

∂Ub
r

∂θ
+µb

∂Ub
θ

∂ r
−µb

1
r

Ub
θ
.

(5.29)

The equilibrium equations in statics for this material follow the law:

div
(

S
(

Ub
))

= div
(

S
(

Ub
))

r
er + div

(
S
(

Ub
))

θ

eθ = 0 (5.30)

where


div
[
S
(
Ub
)]

r =
∂
[
Srr
(
Ub
)]

∂ r
+

1
r

∂
[
Srθ

(
Ub
)]

∂θ
+

Srr
(
Ub
)
−Sθθ

(
Ub
)

r

div
[
S
(
Ub
)]

θ
=

∂
[
Srθ

(
Ub
)]

∂ r
+

1
r

∂
[
Sθθ

(
Ub
)]

∂θ
+

2
r

Srθ

(
Ub
) (5.31)

Using the last relations, equilibrium equations for material Ωb become

Equilibrium equations

(λb +2µb)
∂ 2Ub

r

∂ r2 +µb
1
r2

∂ 2Ub
r

∂θ 2 − (λb +3µb)
1
r2

∂Ub
θ

∂θ
+(λb +2µb)

1
r

∂Ub
r

∂ r

−(λb +2µb)
1
r2 Ub

r +(λb +µb)
1
r

∂ 2Ub
θ

∂ r∂θ
= 0

µb
∂ 2Ub

θ

∂ r2 +(λb +2µb)
1
r2

∂ 2Ub
θ

∂θ 2 +(λb +3µb)
1
r2

∂Ub
r

∂θ
+µb

1
r

∂Ub
θ

∂ r

−µb
1
r2 Ub

θ
+(λb +µb)

1
r

∂ 2Ub
r

∂θ∂ r
= 0

(5.32)
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For Ωb, the stiffness matrix C is given by

Cb =

λb +2µb λb 0
λb λb +2µb 0
0 0 2µb

 (5.33)

Infinite media Ωa
ε

Constitutive Equations

We will denote the set of points occupied by this material by Ωa
ε . It is an isotropic

material of Lamé modulus λa and shear modulus µa. The prescribed displacement for
this material will be denoted by Ua, which, in polar coordinates can be represented as(
Ua

r ,U
a
θ

)
.

The constitutive equations for this material follow Hooke’s law for isotropic materials.

S = λa (trE)I+2µaE (5.34)

S =

[
λaErr +λaEθθ +2µaErr 2µaErθ

2µaErθ λaErr +λaEθθ +2µaEθθ

]
(5.35)



Srr = (λa +2µa)
∂Ua

r

∂ r
+λa

1
r

∂Ua
θ

∂θ
+λa

1
r

Ua
r ;

Sθθ = λa
∂Ua

r

∂ r
+(λa +2µa)

1
r

∂Ua
θ

∂θ
+(λa +2µa)

1
r

Ua
r ;

Srθ = µa
1
r

∂Ua
r

∂θ
+µa

∂Ua
θ

∂ r
−µa

1
r

Ua
θ
.

(5.36)

Equilibrium equations

The equilibrium equations are:

div
[
S
(

Ub
)]

= div [S(Ua)]r er + div [S(Ua)]
θ

eθ = 0 (5.37)

where
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
div [S(Ua)]r =

∂ [Srr (Ua)]

∂ r
+

1
r

∂ [Srθ (Ua)]

∂θ
+

Srr (Ua)−Sθθ (Ua)

r
div [S(Ua)]

θ
=

∂ [Srθ (Ua)]

∂ r
+

1
r

∂ [Sθθ (Ua)]

∂θ
+

2
r

Srθ (Ua)
(5.38)

Using the last relations, equilibrium equations for material Ωa are



(λa +2µa)
∂ 2Ua

r

∂ r2 +µa
1
r2

∂ 2Ua
r

∂θ 2 − (λa +3µa)
1
r2

∂Ua
θ

∂θ

+(λa +2µa)
1
r

∂Ua
r

∂ r
− (λa +2µa)

1
r2 Ua

r +(λa +µa)
1
r

∂ 2Ua
θ

∂ r∂θ
= 0

µa
∂ 2Ua

θ

∂ r2 +(λa +2µa)
1
r2

∂ 2Ua
θ

∂θ 2 +(λa +3µa)
1
r2

∂Ua
r

∂θ

+µa
1
r

∂Ua
θ

∂ r
−µa

1
r2 Ua

θ
+(λa +µa)

1
r

∂ 2Ua
r

∂θ∂ r
= 0

(5.39)

For Ωa, the stiffness matrix is given by

Ca =

λa +2µa λa 0
λa λa +2µa 0
0 0 2µa

 (5.40)

Cylindrical Interphase Ωc

Constitutive equations

The constitutive equations of this material which is orthotropic will be written in what
follows. The prescribed displacement in Ωa will be denoted by Uc which, in polar coor-
dinates can be written as

(
Uc

r ,U
c
θ

)
The interphase is an orthotropic material characterized

by elastic coefficients Crr,Crθ ,Cθθ ,Gθr. So, the stiffness matrix C for this material is

Cc =

Crr Crθ 0
Crθ Cθθ 0

0 0 2Gθr

 (5.41)

Writing the stress and strain tensors in Voigt notation we will have
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S =

[
Srr Srθ

Srθ Sθθ

]
7→

 Srr
Sθθ√
2Srθ

 (5.42)

E =

[
Err Erθ

Erθ Eθθ

]
7→

 Err
Eθθ√
2Erθ

 (5.43)

This way we can write the constitutive equations of material Ωc by the constitutive law

S =CΩcE (5.44)

So, in matrix form, using the Voigt notation, we write

 Srr
Sθθ√
2Srθ

=

Crr Crθ 0
Crθ Cθθ 0

0 0 2Gθr


 Err

Eθθ√
2Erθ

 (5.45)


Srr =CrrErr +Crθ Eθθ ;
Sθθ =Crθ Err +Cθθ Eθθ ;

Srθ = 2GθrErθ .

(5.46)

Using the components of the strain in terms of displacement, we can rewrite the consti-
tutive equations of the second material:



Srr =Crr
∂Uc

r

∂ r
+Crθ

1
r

(
∂Uc

θ

∂θ
+Uc

r

)
;

Sθθ =Crθ

∂Uc
r

∂ r
+Cθθ

1
r

(
∂Uc

θ

∂θ
+Uc

r

)
;

Srθ = Gθr

(
1
r

∂Uc
r

∂θ
+

∂Uc
θ

∂ r
− 1

r
Uc

θ

)
.

(5.47)

In component form the constitutive equations of the elastic material on Ωc, are:
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

Srr =Crr
∂Uc

r

∂ r
+Crθ

1
r

∂Uc
θ

∂θ
+Crθ

1
r

Uc
r ;

Sθθ =Crθ

∂Uc
r

∂ r
+Cθθ

1
r

∂Uc
θ

∂θ
+Cθθ

1
r

Uc
r ;

Srθ = Gθr
1
r

∂Uc
r

∂θ
+Gθr

∂Uc
θ

∂ r
−Gθr

1
r

Uc
θ
.

(5.48)

Equilibrium equations

Using these last relations and replacing them in the equilibrium equations for an elastic
material, when no forces are applied, we get:



Crr
∂ 2Uc

r

∂ r2 −
1
r

Crθ

∂Uc
θ

∂θ
+

1
r

Crθ

∂ 2Uc
θ

∂ r∂θ
− 1

r2 CrθUc
r

+
1
r

Crθ

∂Uc
r

∂ r
+

1
r

Gθr
∂ 2Uc

r

∂θ 2 +Gθr
∂ 2Uc

θ

∂ r∂θ
− 1

r
Gθr

∂Uc
θ

∂θ

+
1
r
(Crr−Crθ )

∂Uc
r

∂ r
+

1
r2 (Crθ −Cθθ )

∂Uc
θ

∂θ
+

1
r2 (Crθ −Cθθ )Uc

r = 0

− 1
r2 Gθr

∂Uc
r

∂θ
+

1
r

Gθr
∂ 2Uc

r

∂ r∂θ
+Gθr

∂ 2Uc
θ

∂ r2 +
1
r2 GθrUc

θ

−1
r

Gθr
∂Uc

θ

∂ r
+

1
r

Crθ

∂ 2Uc
r

∂ r∂θ
+

1
r2 Cθθ

∂ 2Uc
θ

∂θ 2 +
1
r2 Cθθ

∂Uc
r

∂θ

+
2
r

Gθr
∂Uc

r

∂θ
+2Gθr

∂Uc
θ

∂ r
− 2

r
GθrUc

θ
= 0

(5.49)

In order to perform an asymptotic study of this system, we need to rescale the thin
interphase to a domain of normal dimensions. By that we mean that we need to move the
parameter ε from the geometry of the system into the elasticity operator.

Defining the fast variable ρ =
r−R

ε
then we will have to change from U(r,θ) to

U(ρ,θ), where R is the radius of the circular inclusion and ε is the thickness of the
interphase.
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Figure 5.2: Rescaled Cylindrical Interphase


ρ =

r−R
ε
⇒ r = (ρε +R)

1
r
=

1
(ρε +R)

(5.50)

By the chain rule, we will have the transformations:

∂ 2Uc
r

∂ r2 =
∂

∂ρ
(

∂Uc
r

∂ρ

∂ρ

∂ r
)

∂ρ

∂ r
+

∂

∂θ
(

∂Uc
r

∂ρ

∂ρ

∂ r
)

∂θ

∂ r
+

∂

∂ρ
(

∂Uc
r

∂θ

∂θ

∂ r
)

∂ρ

∂ r
+

∂

∂θ
(

∂Uc
r

∂θ

∂θ

∂ r
)

∂θ

∂ r

=
1
ε2

∂ 2Uc
r

∂ρ2

∂ 2Uc
r

∂θ 2 =
∂

∂ρ
(

∂Uc
r

∂ρ

∂ρ

∂θ
)

∂ρ

∂θ
+

∂

∂θ
(

∂Uc
r

∂ρ

∂ρ

∂θ
)

∂θ

∂θ
+

∂

∂ρ
(

∂Uc
r

∂θ

∂θ

∂θ
)

∂ρ

∂θ
+

∂

∂θ
(

∂Uc
r

∂θ

∂θ

∂θ
)

∂θ

∂θ
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=
∂ 2Uc

r

∂θ 2

∂ 2Uc
θ

∂ r∂θ
=

∂

∂ρ
(

∂Uc
θ

∂ρ

∂ρ

∂ r
)

∂ρ

∂θ
+

∂

∂θ
(

∂Uc
θ

∂ρ

∂ρ

∂ r
)

∂θ

∂θ
+

∂

∂ρ
(

∂Uc
θ

∂θ

∂θ

∂ r
)

∂ρ

∂θ
+

∂

∂θ
(

∂Uc
θ

∂θ

∂θ

∂ r
)

∂θ

∂θ

=
1
ε

∂ 2Uc
θ

∂θ 2

∂Uc
r

∂ r
=

∂Uc
r

∂ρ

∂ρ

∂ r
+

∂Uc
r

∂θ

∂θ

∂ r
=

1
ε

∂Uc
r

∂ρ

∂Uc
θ

∂θ
=

∂Uc
θ

∂ρ

∂ρ

∂θ
+

∂Uc
θ

∂θ

∂θ

∂θ
=

∂Uc
θ

∂θ

∂ 2Uc
θ

∂ r2 =
∂

∂ρ
(

∂Uc
θ

∂ρ

∂ρ

∂ r
)

∂ρ

∂ r
+

∂

∂θ
(

∂Uc
θ

∂ρ

∂ρ

∂ r
)

∂θ

∂ r
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∂

∂ρ
(

∂Uc
θ

∂θ

∂θ

∂ r
)

∂ρ

∂ r
+

∂

∂θ
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θ
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∂θ

∂ r
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∂ r

=
1
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∂ 2Uc
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θ
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∂ρ
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∂Uc
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∂θ
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∂ρ

∂θ
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∂
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θ
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∂θ
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∂θ
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∂
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θ

∂θ

∂θ

∂θ
)
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∂θ
+

∂

∂θ
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∂Uc
θ

∂θ

∂θ

∂θ
)

∂θ

∂θ

=
∂ 2Uc

θ

∂θ 2
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r

∂ r∂θ
=

∂

∂θ
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∂Uc
r

∂ r
) =

∂

∂θ
(

1
ε

∂Uc
r

∂ρ
) =

∂

∂ρ
(

1
ε

∂Uc
r

∂ρ
)

∂ρ

∂θ
+

∂

∂θ
(

1
ε

∂Uc
r

∂ρ
)

∂θ

∂θ

=
1
ε

∂ 2Uc
r

∂ρ∂θ

∂ 2Uc
r

∂ r∂θ
=

∂

∂ρ
(

∂Uc
r

∂ρ

∂ρ

∂ r
)

∂ρ

∂θ
+

∂

∂θ
(

∂Uc
r

∂ρ

∂ρ

∂ r
)

∂θ

∂θ
+

∂

∂ρ
(
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r

∂θ

∂θ

∂ r
)

∂ρ

∂θ
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∂

∂θ
(
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r

∂θ

∂θ

∂ r
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∂θ

∂θ

=
1
ε

∂ 2Uc
r

∂ρ∂θ

∂Uc
θ

∂ r
=

∂Uc
θ

∂ρ

∂ρ
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+

∂Uc
θ

∂θ

∂θ

∂ r
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∂ρ

∂Uc
r

∂θ
=

∂Uc
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∂ρ
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∂θ
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∂Uc
r
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With the change of coordinate, we will also introduce the asymptotic expansions:

Uc
r =

∞

∑
n=0

εn(Uc
r )n

Uc
θ
=

∞

∑
n=0

εn(Uc
θ
)n

∂ 2Uc
r

∂ρ2 =
∂ 2

∂ρ2 Uc
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∂ 2

∂ρ2

(
∞

∑
n=0

εn(Uc
r )n

)
=

∞

∑
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(
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c
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∞
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c
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∞

∑
n=0

(
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r )n
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∂Uc

r
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∂

∂ρ
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r =
∂

∂ρ

(
∞

∑
n=0
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)
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∞

∑
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(
εn ∂

∂ρ
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r )n

)
=

∞

∑
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∂ρ
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r
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∂
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Uc
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∂θ

(
∞

∑
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)
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∞

∑
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∞
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∞
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∞
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∂θ 2 (U
c
θ
)n

)
=

∞

∑
n=0

(
εn ∂ 2(Uc

θ
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(
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∞
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(
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Taking in account the change of variable and the asymptotic expansions,
the system can be written as:
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∂ρ2 +
1
ε

Crθ

1
(ρε +R)

∂ 2Uc
θ

∂ρ∂θ
+

1
ε

Crθ

1
(ρε +R)

∂Uc
r

∂ρ
+

1
ε

Gθr
∂ 2Uc

θ

∂ρ∂θ
+

1
ε
(Crr−Crθ )

1
(ρε +R)

∂Uc
r

∂ρ
−Crθ

1
(ρε +R)
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(5.51)
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1
(ρε +R)

∂ 2Uc
r

∂ρ∂θ
+2Gθr

∂Uc
θ

∂ρ
]+ [−Gθr

1
(ρε +R)2

∂Uc
r

∂θ

+Gθr
1

(ρε +R)2 Uc
θ
+Cθθ

1
(ρε +R)2

∂ 2Uc
θ

∂θ 2 +Cθθ

1
(ρε +R)2

∂Uc
r

∂θ

+Gθr
2

(ρε +R)
∂Uc

r

∂θ
−Gθr

2
(ρε +R)

Uc
θ
] = 0|ε2

(5.52)
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

Crr
∂ 2Uc

r

∂ρ2 + ε[Crθ

1
(ρε +R)

∂ 2Uc
θ

∂ρ∂θ
+Crθ

1
(ρε +R)

∂Uc
r

∂ρ
+Gθr

∂ 2Uc
θ

∂ρ∂θ

+(Crr−Crθ )
1

(ρε +R)
∂Uc

r

∂ρ
]+ ε2[−Crθ

1
(ρε +R)

∂Uc
θ

∂θ
−Crθ

1
(ρε +R)2 Uc

r

+Gθr
1

(ρε +R)
∂ 2Uc

r

∂θ 2 −Gθr
1

(ρε +R)
∂Uc

θ

∂θ
+(Crθ −Cθθ )

1
(ρε +R)2

∂Uc
θ

∂θ

+(Crθ −Cθθ )
1

(ρε +R)2 Uc
r ] = 0

Gθr
∂ 2Uc

θ

∂ρ2 + ε[Gθr
1

(ρε +R)
∂ 2Uc

r

∂ρ∂θ
−Gθr

1
(ρε +R)

∂Uc
θ

∂ρ
+Crθ

1
(ρε +R)

∂ 2Uc
r

∂ρ∂θ

+2Gθr
∂Uc

θ

∂ρ
]+ ε2[−Gθr

1
(ρε +R)2

∂Uc
r

∂θ
+Gθr

1
(ρε +R)2 Uc

θ
+Cθθ

1
(ρε +R)2

∂ 2Uc
θ

∂θ 2

+Cθθ

1
(ρε +R)2

∂Uc
r

∂θ
+Gθr

2
(ρε +R)

∂Uc
r

∂θ
−Gθr

2
(ρε +R)

Uc
θ
] = 0

(5.53)

1
(ρε +R)

=
1
R

1(
ρε

R
+1
) =

1
R

∞

∑
n=0

(−1)n
(

ρε

R

)n
=

1
R

∞

∑
n=0

ε
n
(
−ρ

R

)n
(5.54)

and

Uc
r =

∞

∑
n=0

ε
n (Uc

r )n (5.55)

then, using the Cauchy product for formal power series, we get

1
(ρε +R)

Uc
r =

1
R

∞

∑
n=0

cnε
n (5.56)

where

cn =
n

∑
k=0

(
−ρε

R

)k
(Uc

r )n−k (5.57)

With the same formula, having

1
(ρε +R)

=
∞

∑
n=0

ε
n
(
−ρ

R

)n
(5.58)
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and

∂ 2Uc
θ

∂ρ∂θ
=

∞

∑
n=0

ε
n ∂ 2(Uc

θ
)n

∂ρ∂θ
(5.59)

we get

1
(ρε +R)

∂ 2Uc
θ

∂ρ∂θ
=

∞

∑
n=0

anε
n (5.60)

where

an =
n

∑
k=0

(
−ρ

R

)k ∂ 2
(
Uc

θ

)
n−k

∂ρ∂θ
(5.61)



Crr
∞

∑
n=0

(
εk ∂ 2(Uc

r )k

∂ρ2

)
+ ε[Crθ

1
R

∞

∑
n=0

Anεn +Crθ

1
R

∞

∑
n=0

Bnεn

+Gθr
∞

∑
n=0

εn ∂ 2(Uc
θ
)n

∂ρ∂θ
+(Crr−Crθ )

∞

∑
n=0

Cnεn]

+ε2[−Crθ

1
R

∞

∑
n=0

Dnεn−Crθ

1
R2

∞

∑
n=0

Enεn +Gθr
1
R

∞

∑
n=0

Fnεn

−Gθr
1
R

∞

∑
n=0

Gnεn +(Crθ −Cθθ )
1

R2

∞

∑
n=0

Hnεn +(Crθ −Cθθ )
1

R2

∞

∑
n=0

Inεn] = 0

Gθr
∞

∑
k=0

(
εk ∂ 2(Uc

θ
)k

∂ρ2

)
+ ε[Gθr

1
R

∞

∑
n=0

Jnεn−Gθr
1
R

∞

∑
n=0

Knεn

+Crθ

1
R

∞

∑
n=0

Lnεn +2Gθr
∞

∑
n=0

εn ∂ (Uc
θ
)n

∂ρ
]+ ε2[−Gθr

1
R2

∞

∑
n=0

Mnεn

+Gθr
1

R2

∞

∑
n=0

Nnεn +Cθθ

1
R2

∞

∑
n=0

Onεn

+Cθθ

1
R2

∞

∑
n=0

Pnεn +Gθr
1
R

∞

∑
n=0

Rnεn−Gθr
1
R

∞

∑
n=0

Snεn] = 0

(5.62)

Written in more detail, which is necessary for separating ε-dependent components, we
get:
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Crr[

(
ε0 ∂ 2(Uc

r )0

∂ρ2

)
+

(
ε1 ∂ 2(Uc

r )1

∂ρ2

)
+ ...]+Crθ

1
R
[A0ε1 +A1ε2 + ...]

+Crθ

1
R
[B0ε1 +B1ε2 + ...]+Gθr[ε

1 ∂ 2(Uc
θ
)0

∂ρ∂θ
+ ε2 ∂ 2(Uc

θ
)1

∂ρ∂θ
+ ...]

+(Crr−Crθ )[C0ε1 +C1ε2 + ...]−Crθ

1
R
[D0ε2 +D1ε3 + ...]−Crθ

1
R2 [E0ε2 + ...]

+Gθr
1
R
[F0ε2 +F1ε3 + ...]−Gθr

1
R
[G0ε2 +G1ε3 + ...]

+(Crθ −Cθθ )
1

R2 [H0ε2 +H1ε3 + ...]+ (Crθ −Cθθ )
1

R2 [I0ε2 + I1ε3 + ...] = 0

Gθr[

(
ε0 ∂ 2(Uc

θ
)0

∂ρ2

)
+

(
ε1 ∂ 2(Uc

θ
)1

∂ρ2

)
+

(
ε2 ∂ 2(Uc

θ
)2

∂ρ2

)
+ ...]

+[Gθr
1
R
[J0ε1 + J1ε2 + ...]−Gθr

1
R
[K0ε1 +K1ε2 + ...]+Crθ

1
R
[L0ε1 +L1ε2 + ...]

+2Gθr[ε
1 ∂ (Uc

θ
)0

∂ρ
+ ε2 ∂ (Uc

θ
)n

∂ρ
+ ...]+ [−Gθr

1
R2 [M0ε2 + ...]+Gθr

1
R2 [N0ε2

+N1ε3 + ...]+Cθθ

1
R2 [O0ε2 +O1ε3 + ...]+Cθθ

1
R2 [P0ε2 +P1ε3 + ...]

+Gθr
1
R
[R0ε2 +R1ε3 + ...]−Gθr

1
R
[S0ε2 + ...] = 0

(5.63)

Well known is, that even if divergent, asymptotic expansions give good approximation
at a local level. This is also why, we perform a study of the solution in the thin domain.
Nontheless, a higher order approximation can be performed, but the output would be less
explicit.



ε0
(

Crr
∂ 2(Uc

r )0

∂ρ2

)
+ ε1

(
Crr

∂ 2(Uc
r )1

∂ρ2 +Crθ

1
R

A0 +Crθ

1
R

B0 + ...

)
+ε2

(
Crr

∂ 2(Uc
r )2

∂ρ2 +Gθr
1
R

A1−Gθr
1
R

B1 + ...

)
+ ε3

(
Crr

∂ 2(Uc
r )3

∂ρ2 + ....

)
= 0

ε0
(

Gθr
∂ 2(Uc

r )0

∂ρ2

)
+ ε1

(
Gθr

∂ 2(Uc
r )1

∂ρ2 +Gθr
1
R

J0 +Gθr
1
R

K0 + ...

)
+ε2

(
Gθr

∂ 2(Uc
r )2

∂ρ2 +Gθr
1
R

J1−Gθr
1
R

K1 + ...

)
+ ε3

(
Gθr

∂ 2(Uc
r )3

∂ρ2 + ....

)
= 0

(5.64)
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Here, we choose to approximate the functions in the first term, for a clearer output of
the approximated solution. The system thought, at this point, reduces to the form:


ε0
(

Crr
∂ 2(Uc

r )0

∂ρ2

)
= 0

ε0
(

Gθr
∂ 2(Uc

r )0

∂ρ2

)
= 0

(5.65)

which obviously gives


Crr

∂ 2(Uc
r )0

∂ρ2 = 0

Gθr
∂ 2(Uc

r )0

∂ρ2 = 0
(5.66)

and so, the solution can be written in an approximated form as:


(Uc

r )0 = A(θ)ρ +B(θ)

(Uc
θ
)0 = A(θ)ρ +B(θ)

(5.67)

Stiff Material

Considering on the thin subdomain, an elastic material with elastic properties being
ε-dependent, we can obtain two critical cases for the elasticity of the system: that of the
material occupying the thin domain either as extremely soft or extremely thin. This type
of study is sometimes called in the literature explosion of coefficients.

The goal is to describe in a formal way the asymptotic behavior of a system of linear
elasticity when one of the components reaches an extremal high or low elasticity. The
first one considers extremely stiff materials whereas the second one take in account very
soft materials. We intend to show in these two critical cases, the direct dependence on
our small parameter in the asymptotic behavior of the system. We show that the tractions
which are imposed continuous in our boundary value problem, to have different limit
behaviors.
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Figure 5.3: Thin Stiff Cylindrical Interphase

Considering that the second material becomes stiffer than the inclusion and infinite
media, we will consider the proper rescaling of the elastic coefficients, as



Crr =
1
ε

C∗rr

Crθ =
1
ε

C∗rθ

Cθθ =
1
ε

C∗
θθ

Gθr =
1
ε

G∗
θr

(5.68)

we get the solution
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
∂ 2(Uc

r )0

∂ρ2 = 0

∂ 2(Uc
θ
)0

∂ρ2 = 0
(5.69)

and so,

{
(Uc

r )0 = A(θ)ρ +B(θ)
(Uc

θ
)0 = A(θ)ρ +B(θ)

(5.70)

Soft Material
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R R+ ε

Figure 5.4: Thin Soft Cylindrical Interphase
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Considering that the second matrial becomes softer than the inclusion and infinite me-
dia, we will consider the proper rescaling of the elastic coefficients, as

Crr = εC∗rr

Crθ = εC∗rθ

Cθθ = εC∗
θθ

Gθr = εG∗
θr

(5.71)

In the leading term, this system can be written as:


C∗rr

∂ 2(Uc
r )0

∂ρ2 = 0

G∗
θr

∂ 2(Uc
θ
)0

∂ρ2 = 0
(5.72)

And so, a solution from this, can be written as:


∂ 2(Uc

r )0

∂ρ2 = 0

∂ 2(Uc
θ
)0

∂ρ2 = 0
(5.73)

and so, the solution we recover in the statics case is:

{
(Uc

r )0 = A(θ)ρ +B(θ)
(Uc

θ
)0 = A(θ)ρ +B(θ)

(5.74)

5.1.Limit Transmission conditions

S(Uc) ·n =
1
ε

Crr
∂ (Uc

r )0

∂ρ
nr

Gθr
∂ (Uc

θ
)0

∂ρ
nθ

=
1
ε

[
CrrA(θ)nr
GθrC (θ)nθ

]
(5.75)

The stress-strain relation, in the limit can be written in terms of definition of the deriva-
tive:
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
ε

Crr
Srr ((Uc

r )0) =
∂ (Uc

r )0

∂ r
= lim

ε→0

(Uc
r )0|r=R+ε − (Uc

r )0|r=R

ε

ε

Gθr
Srθ

(
(Uc

θ
)0
)
=

∂ (Uc
θ
)0

∂ r
= lim

ε→0

(Uc
θ
)0|r=R+ε − (Uc

θ
)0|r=R

ε

(5.76)


ε

Crr
Srr ((Uc

r )0) = (Ua
r )0|ρ=1− (Ub

r )0|ρ=0

ε

Gθr
Srθ

(
(Uc

θ
)0
)
= (Ua

θ
)0|ρ=1− (Ub

θ
)0|ρ=0

(5.77)


(Uc

r )0|ρ=0 = (Uc
r )0|ρ=0 + ε

∂ (Uc
r )0

∂ r
|ρ=0 +O

(
ε2
)

(Uc
θ
)0|ρ=0 = (Uc

θ
)0|ρ=0 + ε

∂ (Uc
θ
)0

∂ r
|ρ=0 +O

(
ε2
) (5.78)

Taking only the first term in this expansion we have


ε

Crr
Srr
(
(Ub

r )0|ρ=0
)
= (Ua

r )0|ρ=0− (Ub
r )0|ρ=0 = J(Uc

r )0K
ε

Gθr
Srθ

(
(Ub

θ
)0|ρ=0

)
= (Ua

θ
)0|ρ=0− (Ub

θ
)0|ρ=0 = J(Uc

θ
)0K

(5.79)

Stiff Material

S(Uc) ·n =
1
ε

Crr
∂ (Uc

r )0

∂ρ
nr

Gθr
∂ (Uc

θ
)0

∂ρ
nθ

=
1
ε


1
ε

C∗rrA(θ)nr

1
ε

G∗
θrC (θ)nθ

=
1
ε2

[
C∗rrA(θ)nr
G∗

θrC (θ)nθ

]
(5.80)

The stress-strain relation, in the limit can be written in terms of definition of the deriva-
tive:


1
ε2 C∗rrSrr ((Uc

r )0) =
∂ (Uc

r )0

∂ r
= lim

ε→0

((Uc
r )0)r=R+ε

− ((Uc
r )0)r=R

ε

1
ε2 G∗

θrSrθ

(
(Uc

θ
)0
)
=

∂ (Uc
θ
)0

∂ r
= lim

ε→0

(
(Uc

θ
)0
)

r=R+ε
−
(
(Uc

θ
)0
)

r=R

ε

(5.81)
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
ε2

C∗rr
Srr ((Uc

r )0) = (Ua
r )0|ρ=1− (Ub

r )0|ρ=0

ε2

G∗
θr

Srθ

(
(Uc

θ
)0
)
= (Ua

θ
)0|ρ=1− (Ub

θ
)0|ρ=0

(5.82)


(Uc

r )0|ρ=0 = (Uc
r )0|ρ=0 + ε

∂ (Uc
r )0

∂ r
|ρ=0 +O

(
ε2
)

(Uc
θ
)0|ρ=0 = (Uc

θ
)0|ρ=0 + ε

∂ (Uc
θ
)0

∂ r
|ρ=0 +O

(
ε2
) (5.83)

Taking only the first term in this expansion we have


ε2

C∗rr
Srr
(
(Ub

r )0|ρ=0
)
= (Ua

r )0|ρ=0− (Ub
r )0|ρ=0 = J(Uc

r )0K

ε2

G∗
θr

Srθ

(
(Ub

θ
)0|ρ=0

)
= (Ua

θ
)0|ρ=0− (Ub

θ
)0|ρ=0 = J(Uc

θ
)0K

(5.84)

Soft Material

S(Uc) ·n =
1
ε

Crr
∂ (Uc

r )0

∂ρ
nr

Gθr
∂ (Uc

θ
)0

∂ρ
nθ

=
1
ε

[
εC∗rrA(θ)nr
εG∗

θrC (θ)nθ

]
=

[
C∗rrA(θ)nr
G∗

θrC (θ)nθ

]
(5.85)

The stress-strain relation, in the limit can be written in terms of definition of the deriva-
tive:


1

C∗rr
Srr ((Uc

r )0) =
∂ (Uc

r )0

∂ r
= lim

ε→0

(Uc
r )0|r=R+ε − (Uc

r )0|r=R

ε

1
G∗

θr
Srθ

(
(Uc

θ
)0
)
=

∂ (Uc
θ
)0

∂ r
= lim

ε→0

(Uc
θ
)0|r=R+ε − (Uc

θ
)0|r=R

ε

(5.86)


1

C∗rr
Srr ((Uc

r )0) = (Ua
r )0|ρ=1− (Ub

r )0|ρ=0

1
G∗

θr
Srθ

(
(Uc

θ
)0
)
= (Ua

θ
)0|ρ=1− (Ub

θ
)0|ρ=0

(5.87)
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
(Uc

r )0|ρ=0 = (Uc
r )0|ρ=0 + ε

∂ (Uc
r )0

∂ r
|ρ=0 +O

(
ε2
)

(Uc
θ
)0|ρ=0 = (Uc

θ
)0|ρ=0 + ε

∂ (Uc
θ
)0

∂ r
|ρ=0 +O

(
ε2
) (5.88)

Taking only the first term in this expansion we have


1

C∗rr
Srr
(
(Ub

r )0|ρ=0
)
= (Ua

r )0|ρ=0− (Ub
r )0|ρ=0 = J(Uc

r )0K

1
G∗

θr
Srθ

(
(Ub

θ
)0|ρ=0

)
= (Ua

θ
)0|ρ=0− (Ub

θ
)0|ρ=0 = J(Uc

θ
)0K

(5.89)

New Elastic Coefficients

The elastic coefficients in the new formulation for the stiffer, respectively, for the softer
material considered, can be written in dependence to their initial counterparts.

Stiff Material



C∗rr = εCrr

C∗rθ
= εCrθ

C∗
θθ

= εCθθ

G∗
θr = εGθr

(5.90)

Soft Material



C∗rr =
1
ε

Crr

C∗rθ
=

1
ε

Crθ

C∗
θθ

=
1
ε

Cθθ

G∗
θr =

1
ε

Gθr

(5.91)

67



5.2. Harmonic oscillations

Starting from the wave equation

div S(U(r,θ , t)) = M
∂ 2U(r,θ , t)

∂ t2 (5.92)

and applying a Fourier transform as:

U(r,θ , t) = e−iωtŪ(r,θ) (5.93)

where we denoted by M the mass density of the material and ω represents the frequency.

We denoted the mass density by M for simple practical reasons,since ρ has already
been used as the rescaling variable.

div S(Ū(r,θ)) = −Mω
2Ū(r,θ) (5.94)

This last system represents the system of linearized elasticity in the frequency domain
and which can be written in vectorial form, on the cylindrical interphase as:

Crr
∂ 2Ūc

r

∂ r2 −
1
r

Crθ

∂Ūc
θ

∂θ
+

1
r

Crθ

∂ 2Ūc
θ

∂ r∂θ
− 1

r2 CrθŪc
r +

1
r

Crθ

∂Ūc
r

∂ r

+
1
r

Gθr
∂ 2Ūc

r

∂θ 2 +Gθr
∂ 2Ūc

θ

∂ r∂θ
− 1

r
Gθr

∂Ūc
θ

∂θ
+

1
r
(Crr−Crθ )

∂Ūc
r

∂ r

+
1
r2 (Crθ −Cθθ )

∂Ūc
θ

∂θ
+

1
r2 (Crθ −Cθθ )Ūc

r =−Mω2Ūc
r

− 1
r2 Gθr

∂Ūc
r

∂θ
+

1
r

Gθr
∂ 2Ūc

r

∂ r∂θ
+Gθr

∂ 2Ūc
θ

∂ r2 +
1
r2 GθrŪc

θ
− 1

r
Gθr

∂Ūc
θ

∂ r

+
1
r

Crθ

∂ 2Ūc
r

∂ r∂θ
+

1
r2 Cθθ

∂ 2Ūc
θ

∂θ 2 +
1
r2 Cθθ

∂Ūc
r

∂θ
+

2
r

Gθr
∂Ūc

r

∂θ

+2Gθr
∂Ūc

θ

∂ r
− 2

r
GθrŪc

θ
=−Mω2Ūc

θ

(5.95)

As in the statical case, for the fast variable ρ =
r−R

ε
then we will have to change from

u(r,θ) to u(ρ,θ), where R is the radius of the circular inclusion and ε is the thickness of
the interphase.
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
ρ =

r−R
ε
⇒ r = (ρε +R)

1
r
=

1
(ρε +R)

(5.96)

For the change of variable, the system becomes:



1
ε2 Crr

∂ 2Ūc
r

∂ρ2 +
1
ε

Crθ

1
(ρε +R)

∂ 2Ūc
θ

∂ρ∂θ
+

1
ε

Crθ

1
(ρε +R)

∂Ūc
r

∂ρ

+
1
ε

Gθr
∂ 2Ūc

θ

∂ρ∂θ
+

1
ε
(Crr−Crθ )

1
(ρε +R)

∂Ūc
r

∂ρ
−Crθ

1
(ρε +R)

∂Ūc
θ

∂θ

−Crθ

1
(ρε +R)2 Ūc

r +Gθr
1

(ρε +R)
∂ 2Ūc

r

∂θ 2 −Gθr
1

(ρε +R)
∂Ūc

θ

∂θ

+(Crθ −Cθθ )
1

(ρε +R)2
∂Ūc

θ

∂θ
+(Crθ −Cθθ )

1
(ρε +R)2 Ūc

r =−Mω2Ūc
r

1
ε2 Gθr

∂ 2Ūc
θ

∂ρ2 +
1
ε

Gθr
1

(ρε +R)
∂ 2Ūc

r

∂ρ∂θ
− 1

ε
Gθr

1
(ρε +R)

∂Ūc
θ

∂ρ

+
1
ε

Crθ

1
(ρε +R)

∂ 2Ūc
r

∂ρ∂θ
+

1
ε

2Gθr
∂Ūc

θ

∂ρ
−Gθr

1
(ρε +R)2

∂Ūc
r

∂θ

+Gθr
1

(ρε +R)2 Ūc
θ
+Cθθ

1
(ρε +R)2

∂ 2Ūc
θ

∂θ 2 +Cθθ

1
(ρε +R)2

∂Ūc
r

∂θ

+Gθr
2

(ρε +R)
∂Ūc

r

∂θ
−Gθr

2
(ρε +R)

Ūc
θ
=−Mω2Ūc

θ

(5.97)

In the following, going through the same steps as we did in the statical case, only taking
in account the left-hand side component of the system, we arrive at the form:
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

ε0
[
Crr

∂ 2(Ūc
r )0

∂ρ2

]
+ ε1

[
Crr

∂ 2(Ūc
r )1

∂ρ2 +Crθ

1
R

A0 +Crθ

1
R

B0 + ...

]
+ε2

[
Crr

∂ 2(Ūc
r )2

∂ρ2 +Gθr
1
R

A1−Gθr
1
R

B1 + ...

]
+ ε3

[
Crr

∂ 2(Ūc
r )3

∂ρ2 + ...

]
=−Mε2ω2

[
ε0(Ūc

r )0 + ε1(Ūc
r )1 + ε2(Ūc

r )2 + ε3(Ūc
r )3 + ...

]
ε0
[

Gθr
∂ 2(Ūc

r )0

∂ρ2

]
+ ε1

[
Gθr

∂ 2(Ūc
r )1

∂ρ2 +Gθr
1
R

J0 +Gθr
1
R

K0 + ...

]
+ε2

[
Gθr

∂ 2(Ūc
r )2

∂ρ2 +Gθr
1
R

J1−Gθr
1
R

K1 + ...

]
+ ε3

[
Gθr

∂ 2(Ūc
r )3

∂ρ2 + ...

]
=−Mε2ω2

[
ε0(Ūc

θ
)0 + ε1(Ūc

θ
)1 + ε2(Ūc

θ
)2 + ε3(Ūc

θ
)3 + ...

]

(5.98)

In the leading term, the system can be written as:


ε0
[
Crr

∂ 2(Ūc
r )0

∂ρ2

]
=−Mε2ω2

[
ε0(Ūc

r )0
]

ε0
[

Gθr
∂ 2(Ūc

r )0

∂ρ2

]
=−Mε2ω2

[
ε0(Ūc

θ
)0
] (5.99)


Crr

∂ 2(Ūc
r )0

∂ρ2 =−Mε2ω2(Ūc
r )0

Gθr
∂ 2(Ūc

r )0

∂ρ2 =−Mε2ω2(Ūc
θ
)0

(5.100)


∂ 2(Ūc

r )0

∂ρ2 = 0

∂ 2(Ūc
θ
)0

∂ρ2 = 0
(5.101)

and so, the solution is, like in the static case

{
(Ūc

r )0 = A(θ)ρ +B(θ)
(Ūc

θ
)0 = A(θ)ρ +B(θ)

(5.102)
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For the rescaling of the mass density as
M =

1
ε2 M∗

M =
1
ε2 M∗

(5.103)


Crr

∂ 2(Ūc
r )0

∂ρ2 =−M∗ω2(Ūc
r )0

Gθr
∂ 2(Ūc

θ
)0

∂ρ2 =−M∗ω2(Ūc
θ
)0

(5.104)

We get the solution 
(Ūc

r )0 =C1 cos
ρωM∗

Crr
+C2 sin

ρωM∗

Crr

(Ūc
θ
)0 =C3 cos

ρωM∗

Gθr
+C4 sin

ρωM∗

Gθr

(5.105)

Stiff Material

Considering that the second material becomes stiffer than the inclusion and infinite
media, we will consider the proper rescaling of the elastic coefficients, as



Crr =
1
ε

C∗rr

Crθ =
1
ε

C∗rθ

Cθθ =
1
ε

C∗
θθ

Gθr =
1
ε

G∗
θr

(5.106)

In the leading term, this system can be written as:


C∗rr

∂ 2(Ūc
r )0

∂ρ2 =−ε3Mω2(Ūc
r )0

G∗
θr

∂ 2(Ūc
θ
)0

∂ρ2 =−ε3Mω2(Ūc
θ
)0

(5.107)
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And so, a solution from this, can be written as:


∂ 2(Ūc

r )0

∂ρ2 = 0

∂ 2(Ūc
θ
)0

∂ρ2 = 0
(5.108)

and so,

{
(Ūc

r )0 = A(θ)ρ +B(θ)
(Ūc

θ
)0 = A(θ)ρ +B(θ)

(5.109)

For the rescaling of the mass density as


M =

1
ε3 M∗

M =
1
ε3 M∗

(5.110)


Crr(

∂ 2(Ūc
r )0

∂ρ2 ) =−M∗ω2(Ūc
r )0

Gθr(
∂ 2(Ūc

θ
)0

∂ρ2 ) =−M∗ω2(Ūc
θ
)0

(5.111)

So, we get the solution


(Ūc

r )0 =C1 cos
ρωM∗

Crr
+C2 sin

ρωM∗

Crr

(Ūc
θ
)0 =C3 cos

ρωM∗

Gθr
+C4 sin

ρωM∗

Gθr

(5.112)
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Figure 5.5: Cylindrical Interphase. High Mass Density

Soft Material

Considering that the second material becomes softer than the inclusion and infinite
media, we will consider the proper rescaling of the elastic coefficients, as



Crr = εC∗rr

Crθ = εC∗rθ

Cθθ = εC∗
θθ

Gθr = εG∗
θr

(5.113)

we get
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
C∗rr

∂ 2(Ūc
r )0

∂ρ2 =−εMω2(Ūc
r )0

G∗
θr

∂ 2(Ūc
θ
)0

∂ρ2 =−εMω2(Ūc
θ
)0

(5.114)

And so, a solution from this, can be written as:


∂ 2(Ūc

r )0

∂ρ2 = 0

∂ 2(Ūc
θ
)0

∂ρ2 = 0
(5.115)

and so,

{
(Ūc

r )0 = A(θ)ρ +B(θ)
(Ūc

θ
)0 = A(θ)ρ +B(θ)

(5.116)

For the rescaling of the mass density as
M =

1
ε

M∗

M =
1
ε

M∗
(5.117)


C∗rr

∂ 2(Ūc
r )0

∂ρ2 =−M∗ω2(Ūc
r )0

G∗
θr

∂ 2(Ūc
θ
)0

∂ρ2 =−M∗ω2(Ūc
θ
)0

(5.118)

we get the solution


(Ūc

r )0 =C1 cos
ρωM∗

Crr
+C2 sin

ρωM∗

Crr

(Ūc
θ
)0 =C3 cos

ρωM∗

Gθr
+C4 sin

ρωM∗

Gθr

(5.119)
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5.2.Limit Transmission Conditions

S
(
Ūc) ·n =

1
ε

[
Srr ((Ūc

r )0)nr
Sθr ((Ūc

r )0)nθ

]
(5.120)

The stress-strain relation, in the limit can be written in terms of definition of the deriva-
tive:


Srr =

Crr

ε

∂ (Ūc
r )0

∂ρ
+Crθ

1
ρε +1

(Ūc
r )0

Srθ =
Gθr

ε

∂
(
Ūc

θ

)
0

∂ρ
−Gθr

1
ρε +1

(Ūc
r )0

(5.121)

∂ (Ūc
r )0

∂ρ
=

M∗ω
Crr

{
−C2 sin

M∗ωρ

Crr
+C1 cos

M∗ωρ

Crr

}
(5.122)

∂ (Ūc
θ
)0

∂ρ
=

M∗ω
Gθr

{
−C4 sin

M∗ωρ

Gθr
+C3 cos

M∗ωρ

Gθr

}
(5.123)

So,

Srr =
Crr

ε

{
M∗ω
Crr

{
−C2 sin

M∗ωρ

Crr
+C1 cos

M∗ωρ

Crr

}}
(5.124)

+
Crθ

ρε +1

{
C1 cos

ρωM∗

Crr
+C2 sin

ρωM∗

Crr

}
Srθ =

Gθr

ε

{
M∗ω
Gθr

{
−C4 sin

M∗ωρ

Gθr
+C3 cos

M∗ωρ

Gθr

}}
(5.125)

− Gθr

ρε +1

{
C3 cos

ρωM∗

Gθr
+C4 sin

ρωM∗

Gθr

}

and
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Srr =
M∗ω

ε

{
−C2 sin

M∗ωρ

Crr
+C1 cos

M∗ωρ

Crr

}
(5.126)

+
Crθ

ρε +1

{
C1 cos

ρωM∗

Crr
+C2 sin

ρωM∗

Crr

}
Srθ =

M∗ω
ε

{
−C4 sin

M∗ωρ

Gθr
+C3 cos

M∗ωρ

Gθr

}
(5.127)

− Gθr

ρε +1

{
C3 cos

ρωM∗

Gθr
+C4 sin

ρωM∗

Gθr

}

When ε → 0 we get

Srr = Crθ

{
C1 cos

ρωM∗

Crr
+C2 sin

ρωM∗

Crr

}
Srθ = Gθr

{
C3 cos

ρωM∗

Gθr
+C4 sin

ρωM∗

Gθr

}

Stiff Material

S
(
Ūc) ·n =

1
ε

[
Srr ((Ūc

r )0)nr
Sθr ((Ūc

r )0)nθ

]
(5.128)

for



Crr =
1
ε

C∗rr

Crθ =
1
ε

C∗rθ

Cθθ =
1
ε

C∗
θθ

Gθr =
1
ε

G∗
θr

(5.129)

we get

76



Srr =
M∗ω

ε

{
−C2 sin

εM∗ωρ

C∗rr
+C1 cos

εM∗ωρ

C∗rr

}
(5.130)

+
C∗rθ

ρε +1

{
C1 cos

ερωM∗

C∗rr
+C2 sin

ερωM∗

C∗rr

}
Srθ =

M∗ω
ε

{
−C4 sin

εM∗ωρ

G∗
θr

+C3 cos
εM∗ωρ

G∗
θr

}
(5.131)

− Gθr

ρε +1

{
C3 cos

ερωM∗

G∗
θr

+C4 sin
ερωM∗

G∗
θr

}

Soft Material

S
(
Ūc) ·n =

1
ε

[
Srr ((Ūc

r )0)nr
Sθr ((Ūc

r )0)nθ

]
(5.132)

for



Crr = εC∗rr

Crθ = εC∗rθ

Cθθ = εC∗
θθ

Gθr = εG∗
θr

(5.133)

we get

Srr =
M∗ω

ε

{
−C2 sin

M∗ωρ

εC∗rr
+C1 cos

M∗ωρ

εC∗rr

}
(5.134)

+
C∗rθ

ρε +1

{
C1 cos

ρωM∗

εC∗rr
+C2 sin

ρωM∗

εC∗rr

}
Srθ =

M∗ω
ε

{
−C4 sin

M∗ωρ

εG∗
θr

+C3 cos
M∗ωρ

εG∗
θr

}
(5.135)

−
εG∗

θr
ρε +1

{
C3 cos

ρωM∗

εG∗
θr

+C4 sin
ρωM∗

εG∗
θr

}

New Elastic Coefficients
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The dependence of limit transmission conditions with respect to new elastic coefficients
considered as imposing a stiffer or softer material in the thin interphase, is written in an
explicit way and also the new elastic coefficients, like in the static case, can be written in
terms of the initially imposed coefficients.

Stiff Material 

C∗rr = εCrr

C∗rθ
= εCrθ

C∗
θθ

= εCθθ

G∗
θr = εGθr

(5.136)

Soft Material 

C∗rr =
1
ε

Crr

C∗rθ
=

1
ε

Crθ

C∗
θθ

=
1
ε

Cθθ

G∗
θr =

1
ε

Gθr

(5.137)
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CHAPTER

SIX

VARIATIONAL METHOD

6.1. Description of Problem

We consider the linearized system of elasticity in R2 on a bounded open domain com-
posed of three subdomains, of which one is dependent of a small parameter ε . We will
denote the domain with Ωε and define it like:

Ω
ε = Ω

b∪Ω
c
ε ∪Ω

a
ε (6.1)

Ω
b =

{
(X ,Y ) ∈ R2|0 < X < 1,0 < Y < 1

}
Ω

c
ε =

{
(X ,Y ) ∈ R2|0 < X < 1,1 < Y < 1+ ε

}
Ω

a
ε =

{
(X ,Y ) ∈ R2|0 < X < 1,1+ ε < Y < 3

}
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In this domain, we solve the weak form of the following boundary value problem:

− div S(Uα) = Fα , on Ωα
ε ,α ∈ {b,c,a}

Ub(X ,0) = 0

Uα(0,Y ) = Uα(1,Y );α ∈ {b,c,a}

Ua(X ,3) = 0

Transmission conditions in thin domain

Ub(X ,1) = Uc(X ,1)

Uc(X ,1+ ε) = Ua(X ,1+ ε)(
S(Ub) ·n

)
(X ,1) = (S(Uc) ·n)(X ,1)

(S(Uc) ·n)(X ,1+ ε) = (S(Ua) ·n)(X ,1+ ε).

(6.2)

x

y

Ωε

Ωb

Ωc
ε

Ωa
ε

0

1

1+ ε

1

3

Figure 6.1: Thin Rectangular Interphase
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The displacement vector field in the ’thin’ domain splits depending on the subdomain
like:

Ub : Ω
b ⊂ R2→ R2 (6.3)

Ub = (Ub
1 ,U

b
2 )

Uc : Ω
c
ε ⊂ R2→ R2 (6.4)

Uc = (Uc
1 ,U

c
2 )

Ua : Ω
a
ε ⊂ R2→ R2 (6.5)

Ua = (Ua
1 ,U

a
2 )

Also, the strain tensor is defined separately for each subdomain.


e(Ub) =


∂Ub

1
∂X

1
2

(
∂Ub

1
∂Y

+
∂Ub

2
∂X

)
1
2

(
∂Ub

1
∂Y

+
∂Ub

2
∂X

)
∂Ub

2
∂Y


e(Ub) ∈ (L2(Ωb))2×2

(6.6)



e(Uc) =


∂Uc

1
∂X

1
2

(
∂Uc

1
∂Y

+
∂Uc

2
∂X

)

1
2

(
∂Uc

1
∂Y

+
∂Uc

2
∂X

)
∂Uc

2
∂Y


e(Uc) ∈ (L2(Ωc

ε))
2×2

(6.7)



e(Ua) =


∂Ua

1
∂X

1
2

(
∂Ua

1
∂Y

+
∂Ua

2
∂X

)

1
2

(
∂Ua

1
∂Y

+
∂Ua

2
∂X

)
∂Ua

2
∂Y


e(Ua) ∈ (L2(Ωa

ε))
2×2

(6.8)
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So, in the domain Ωε we solve the weak form of the elasticity system:

Find U ∈ Vε such that∫
Ωε

[Ce(U),e(V)]dXdY =
∫
Ωε

F ·VdXdY (6.9)

for any V ∈ Vε

where

Vε =


U := (Ub,Uc,Ua) ∈ (H1(Ωb))2× (H1(Ωc

ε))
2× (H1(Ωa

ε))
2 such that{

Ub(X ,0) = 0,Uα(0,Y ) = Uα(1,Y );α ∈ {b,c,a}
Ua(X ,3) = 0,Ub(X ,1) = Uc(X ,1),Uc(x,1+ ε) = Ua(X ,1+ ε)

 (6.10)

We consider C the 4th order elasticity tensor with constant coefficients satisfying the
symmetry and coercivity conditions:

∃C > 0,∀ξ ∈ R2×2
s , [Cξ ,ξ ]≥C|ξ |2 (6.11)

(Cξ )i j = ∑
hk

Ci jhkξhk (6.12)

The scalar product [., .] in R2×2 is defined by:

[ζ ,ξ ] = ∑
i j

ζi jξi j (6.13)

We also consider the forces

F≡


Fb ∈ L2(Ωb)2, if (X ,Y ) ∈Ωb

Fc ∈ L2(Ωc
ε)

2, if (X ,Y ) ∈Ωc
ε

Fa ∈ L2(Ωa
ε)

2, if (X ,Y ) ∈Ωa
ε

(6.14)
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The weak form of this problem can be written in more detail as:

Find U = (Ub,Uc,Ua) ∈ Vε such that∫
Ωb

[
Ce(Ub),e(Vb)

]
dXdY +

∫
Ωc

ε

[Ce(Uc),e(Vc)]dXdY +
∫
Ωa

ε

[Ce(Ua),e(Va)]dXdY =

=
∫
Ωb

Fb ·VbdXdY +
∫
Ωc

ε

Fc ·VcdXdY +
∫
Ωa

ε

Fa ·VadXdY

for any V = (V b,V c,V a) ∈ Vε

6.2. Rescaling

In the following, we will rescale the domain, the displacement field and the strains in
order to be able to write the problem in a fixed domain independent of ε . However, by
rescaling the problem we basically move the small parameter from the geometry to the
system of elasticity, step that allows us to understand how the mechanics of the system is
dependent of the small parameter.

Ω = Ω
b∪Ω

c∪Ω
a (6.15)

Ω
b =

{
(x,y) ∈ R2|0 < x < 1,0 < y < 1

}
Ω

c =
{
(x,y) ∈ R2|0 < x < 1,1 < y < 2

}
Ω

a =
{
(x,y) ∈ R2|0 < x < 1,2 < y < 3

}

ub : Ω
b ⊂ R2→ R2 (6.16)

ub := (ub
1,u

b
2)

uc : Ω
c ⊂ R2→ R2 (6.17)

uc := (uc
1,u

c
2)

ua : Ω
a ⊂ R2→ R2 (6.18)

ua := (ua
1,u

a
2)

(6.19)
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0

1

2

1

3

Figure 6.2: Rescaled Rectangular Interphase
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At this point we can see the dependence of the displacement and strain vector fields in
the fixed domain through the parameter ε of the displacement and strain in the domain
that contains an ε-dependent subdomain.

Using the dipslacement rescaling

ub
1(x,y) = Ub

1 (x,y) (6.20)
ub

2(x,y) = Ub
2 (x,y) (6.21)

x = X

y = Y

uc
1(x,y) =

√
εUc

1 (x,(y−1)ε +1) (6.22)
uc

2(x,y) = ε
√

εUc
2 (x,(y−1)ε +1) (6.23)

x = X

(y−1)ε +1 = Y

ua
1(x,y) = Ua

1 (x,(y−2)(2− ε)+1+ ε) (6.24)
ua

2(x,y) = (2− ε)Ua
2 (x,(y−2)(2− ε)+1+ ε) (6.25)

x = X

(y−2)(2− ε)+1+ ε = Y

with the change of variable

∂Ub
1

∂X
=

∂ub
1

∂x
(6.26)

∂Ub
1

∂Y
=

∂ub
1

∂y
(6.27)

∂Ub
2

∂X
=

∂ub
2

∂x
(6.28)

∂Ub
2

∂Y
=

∂ub
2

∂y
(6.29)
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∂Uc
1

∂X
=

1√
ε

∂uc
1

∂x
(6.30)

∂Uc
1

∂Y
=

1
ε
√

ε

∂uc
1

∂y
(6.31)

∂Uc
2

∂X
=

1
ε
√

ε

∂uc
2

∂x
(6.32)

∂Uc
2

∂Y
=

1
ε2
√

ε

∂uc
2

∂y
(6.33)

∂Ua
1

∂X
=

∂ua
1

∂x
(6.34)

∂Ua
1

∂Y
=

1
(2− ε)

∂ua
1

∂y
(6.35)

∂Ua
2

∂X
=

1
(2− ε)

∂ua
2

∂x
(6.36)

∂Ua
2

∂Y
=

1
(2− ε)2

∂ua
2

∂y
(6.37)

we get the rescaling of the strain:

eε(ub) =

e11(ub) e12(ub)

e12(ub) e22(ub)

 (6.38)

eε(uc) =


1√
ε

e11(uc)
1

ε
√

ε
e12(uc)

1
ε
√

ε
e12(uc)

1
ε2
√

ε
e22(uc)

 (6.39)

eε(ua) =


e11(ua)

1
(2− ε)

e12(ua)

1
(2− ε)

e12(ua)
1

(2− ε)2 e22(ua)

 (6.40)
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Also, when moving the transmission conditions onto the normal domain, we get:

Ub(X ,1) = Uc(X ,1)⇒

{√
εub

1(x,1) = uc
1(x,1)

ε
√

εub
2(x,1) = uc

2(x,1)
(6.41)

Uc(X ,1+ ε) = Ua(X ,1+ ε)⇒

uc
1(x,2) =

√
εua

1(x,2)

uc
2(x,2) =

ε
√

ε

2− ε
ua

2(x,2)
(6.42)

For the rescaling of the forces:

f b
1 (x,y) = Fb

1 (X ,Y )

f b
2 (x,y) = Fb

2 (X ,Y )

f c
1 (x,y) = Fc

1 (X ,Y )

ε f c
2 (x,y) = Fc

2 (X ,Y )

f a
1 (x,y) = Fa

1 (X ,Y )

(2− ε) f a
2 (x,y) = Fa

2 (X ,Y )

we get:

∫
Ωb

C|e(ub)|2dxdy+
∫
Ωc

C|e(uc)|2dxdy+(2− ε)
∫
Ωa

C|e(uc)|2dxdy

=
∫
Ωb

fbubdxdy+
√

ε

∫
Ωc

fcucdxdy+(2− ε)
∫
Ωa

fauadxdy

(6.43)

6.3. Estimates

Theorem 19 (Korn Inequality)

‖v‖H1(Ω) ≤ C
(
‖v‖L2(Ω)+‖e(v)‖L2(Ω)

)
,∀v ∈ H1(Ω)

Corollary 5 Let Ω be an open set and Γ a part of its boundary. Then

∃C > 0 such that ‖v‖H1(Ω) ≤C
(
‖e(v)‖L2(Ω)+‖v

∣∣
Γ
‖L2(Γ)

)
,∀v ∈ H1(Ω)
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Observation 4 If e(u) = 0 on Ω and u = 0 on a part of ∂Ω then u = 0 on all Ω.

Corollary 6 Let Ω be a rectangle and Γ a part of its boundary. Then

∃C > 0 : ‖v‖H1(Ω) ≤C
(
‖e(v)‖L2(Ω)+‖v

∣∣
Γ
‖L2(Γ)

)
,∀v ∈ H1(Ω)

Proof Suppose ∃{vn}n∈N ⊆ H1(Ω) :

1 = ‖vn‖H1(Ω) > u
(
‖e(vn)‖L2(Ω)+‖vn

∣∣
Γ
‖L2(Ω)

)
,∀n ∈ N (6.44)

For a subsequence

vn ⇀ v ∈ H1(Ω),vn→∈ L2(Ω),e(vn)→ 0 ∈ L2(Ω)

vn
∣∣
Γ
→ 0 ∈ L2(Γ)⇒ e(v) = 0,v

∣∣
Γ
= 0⇒ v = 0.

Moreover,

‖vn− vm‖H1(Ω)

Korn Inequality
≤ C

(
‖vn− vm‖L2(Ω)+‖e(vn)− e(vm)‖L2(Ω)

)
⇒ {vn}n∈N is Cauchy in H1(Ω)

⇒ vn→ v ∈ H1(Ω)

⇒ ‖v‖= 1. False.

⇒ v = 0

In the following we will estimate each of the energetic integrals on Ωb,Ωc,Ωa.

∫
Ωa

|eε(ua
ε)|2 ≥

∫
Ωa

|e(ua)|2
Korn Inequality
≥ C‖ua‖2

H1(Ωa) (6.45)

‖uc‖2
H1(Ωc)

Corrolary
≤ C

(
‖e(uc)‖2

L2(Ωc)+‖u
c‖2

L2(Γy=2)

)
≤ C

(
‖ec(uc)‖2

L2(Ωc)+‖u
c‖2

L2(Γy=2)

)
Transmission conditions

≤ C
(
‖ec(uc)‖2

L2(Ωc)+ ε‖ua
1‖2

L2(Γy=2)
+ ε

3‖ua
2‖2

L2(Γy=2)

)
from(6.45)
≤ C

(
‖ec

ε(u
c)‖2

L2(Ωc)+‖e
c(ua)‖2

L2(Ωa)

)
(6.46)
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∫
Ωb

|eb
ε(u

b)|2 =
∫
Ωb

|eb(ub)|2
Korn Inequality
≥ C‖ub‖2

H1(Ωb)
(6.47)

Choosing u as test function in the variational formulation and using the estimates (6.45),
(6.46), (6.47)we obtain that the displacement is bounded in H1(Ωb),H1(Ωc),H1(Ωa).

‖ua‖H1(Ωa) ≤ C (6.48)
‖uc‖H1(Ωc) ≤ C (6.49)

‖ub‖H1(Ωb) ≤ C (6.50)
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APPENDIX

A

FUNCTION SPACES

Cc(Ω) = the space of continuous functions with compact support in Ω

Ck(Ω) = the space of k times continuously differentiable functions on Ω,k ≥ 0

C∞(Ω) =
⋂

k≥0
Ck(Ω)

Ck(Ω̄) = functions in Ck(Ω) such that for every multi-index α with |α| ≤ k, the
function x 7→ Dα u(x) admits a continuous extension to Ω̄

C∞(Ω̄) =
⋂

k≥0
Ck(Ω̄)

C0,α(Ω̄) =

u ∈C(Ω̄)| sup
x,y∈Ω

x 6=y

|u(x)−u(y)|
|x− y|α

< ∞

 with 0 < α < 1

Ck,α(Ω̄) =
{

u ∈Ck(Ω)|D ju ∈C0,α(Ω̄)∀ j, | j| ≤ k
}

Lp(Ω) =

{
u : Ω→ R|u is measurable and

∫
Ω

|u|p < ∞

}
,1≤ p < ∞

L∞(Ω) = {u : Ω→ R|u is measurable and |u(x)| ≤C a.e. in Ω for some constant C}

W m,p(Ω),W 1,p(Ω),W 1,p
0 (Ω),W 1,2(Ω),W 1,2

0 (Ω),Hm(Ω) = Sobolev spaces
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APPENDIX

B

HÖLDER INEQUALITY

Theorem 20 (Hölder inequality)

Assume that f ∈ Lp and g ∈ Lp′ with 1≤ p≤ ∞. Then f g ∈ L1 and

∫
| f g| ≤ ‖ f‖p‖g‖p′ . (B.1)

Proof The conclusion is obvious if p = 1 or p = ∞; therefore we assume that 1≤ p≤ ∞.
We recall Young’s inequality:

ab≤ 1
p

ap +
1
p′

bp′ ,∀a≥ 0,∀b≥ 0. (B.2)

log
(

1
p

ap +
1
p′

bp′
)
≥ 1

p
logap +

1
p′

logbp′ = logab. (B.3)

We have

| f (x)g(x)| ≤ 1
p
| f (x)|p + 1

p′
|g(x)|p′ ,a.e.x ∈Ω. (B.4)

It follows that f g ∈ L1 and

∫
| f g| ≤ 1

p
‖ f‖p

p +
1
p′
‖g‖p′

p′ . (B.5)
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Replacing f by λ f (λ > 0) in (B.5), yields

∫
| f g| ≤ λ p−1

p
‖ f‖p

p +
1

λ p′
‖g‖p′

p′ . (B.6)

Choosing λ = ‖ f‖−1
p ‖g‖

p′/p
p (so as to minimize the right-hand side in (B.6), we obtain

(B.1).
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APPENDIX

C

STRAIN TENSOR IN POLAR COORDINATES

In this small appendix we like to present the transformation of the strain tensor from
Cartesian to polar coordinates: Given the strain tensor, by definition as the symmetric part

of the gradient, in Cartesian coordinates, e(u) =
1
2

(
∇u+(∇u)T

)
we compute first the

gradient in polar coordinates:

∇u = ~∇⊗~u (C.1)

=

(
r̂∂r +

1
r

∂θ θ̂

)
⊗
(
ur r̂+uθ θ̂

)
+ r̂
(
uθ ,r⊗ θ̂ +uθ ⊗ θ̂,r

)
+ θ̂

(
1
r

ur,θ ⊗ r̂+
1
r

ur⊗ r̂,θ

)
θ̂

(
1
r

uθ ,θ ⊗ θ̂ +uθ ⊗
1
r

θ̂,θ

)
= r̂ (ur,r⊗ r̂)+ r̂

(
uθ ,r⊗ θ̂

)
+ θ̂

(
1
r

ur,θ ⊗ r̂+
1
r

ur⊗ θ̂

)
+ θ̂

(
1
r

uθ ,θ ⊗ θ̂ −uθ ⊗
1
r

r̂
)

= ur,r r̂⊗ r̂+uθ ,r r̂⊗ θ̂ +
1
r

ur,θ θ̂ ⊗ r̂+
1
r

urθ̂ ⊗ θ̂ +
1
r

uθ ,θ θ̂ ⊗ θ̂

− 1
r

uθ θ̂ ⊗ r̂

= ur,r r̂⊗ r̂+ur,r r̂⊗ θ̂ +
1
r

(
ur,θ −uθ

)
θ̂ ⊗ r̂+

1
r

(
ur +uθ ,θ

)
θ̂ ⊗ θ̂ (C.2)

where
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

r̂ :=
~r
|~r|

|~r|= 1

θ̂ :=
~θ

|~θ |
|~θ |= 1

(C.3)

are the unit base vectors for polar coordinates.

~u = ur r̂+uθ θ̂

~∇ = ∂r r̂+
1
r

∂θ θ̂

~r = (cosθ ,sinθ)

~θ = (−sinθ ,cosθ)

(C.4)

Also, we know that:



∂~r
∂ r

= 0

∂~θ

∂ r
= 0

∂~r
∂θ

= ~θ

∂~θ

∂θ
=−~r

(C.5)

∇u(r,θ) =


ur,r uθ ,r

1
r

(
ur,θ −uθ

) 1
r

(
uθ ,θ +ur

)
 (C.6)

(∇u(r,θ))T =


ur,r

1
r

(
ur,θ −uθ

)
uθ ,r

1
r

(
uθ ,θ +ur

)
 (C.7)
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e(u) =
1
2

(
∇u+(∇u)T

)
=


ur,r

1
2

(
1
r

ur,θ +uθ ,r−
1
r

uθ

)
1
2

(
1
r

ur,θ +uθ ,r−
1
r

uθ

)
1
r

(
uθ ,θ +ur

)

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