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Abstract
Under-coverage and nonresponse problems are jointly present in most socio-eco-

nomic surveys. The purpose of this paper is to propose an estimation strategy that

accounts for both problems by performing a two-step calibration. The first cali-

bration exploits a set of auxiliary variables only available for the units in the

sampled population to account for nonresponse. The second calibration exploits a

different set of auxiliary variables available for the whole population, to account for

under-coverage. The two calibrations are then unified in a double-calibration esti-

mator. Mean and variance of the estimator are derived up to the first order of

approximation. Conditions ensuring approximate unbiasedness are derived and

discussed. The strategy is empirically checked by a simulation study performed on a

set of artificial populations. A case study is derived from the European Union

Statistics on Income and Living Conditions survey data. The strategy proposed is

flexible and suitable in most situations in which both under-coverage and nonre-

sponse are present.
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1 Introduction

Särndal et al. (1992, p. 8) establish four requirements to select a probability sample,

setting the perimeter for the definition of a sampling design under the randomization

principle. One requirement is that the procedure to select the sample ensure

invariably positive probabilities to enter the sample for all units in the population.

This requirement may not be suitable in some situations such as in establishment

surveys, such as the Economic Census conducted by the U.S. Census Bureau, in

which the population of businesses is characterized by a highly skewed distribution

in the survey variables (Glasser 1962). In this case, different approaches are

commonly used, essentially based on the partition of population into strata

determined by several business characteristics (e.g. size), and some strata are

completely censused, some are sampled, and some are neglected, based on the

features of units or the ability to contact them (Sigman and Monsour 1995). As

happens in establishment surveys conducted by the U.S. Bureau of Economic

Analysis, very small establishments are excluded a priori from the population to be

sampled, due to the costs in building and updating a sampling frame, against an

expected slight gain in efficiency of the estimators (see e.g. Hidiroglou 1986;

De Haan et al. 1999; Rivest 2002). These instances are known in the literature as

cut-off sampling (Knaub 2008; Benedetti et al. 2010; Haziza et al. 2010a). A similar

position can be seen in social surveys on households, such as the Household Finance

and Consumption Survey managed by the European Central Bank, characterized by

the missed observation of population units considered ineligible for the survey, i.e.

dwellings that are vacant, not habitable, with non-eligible members, etc., with

consequences on the estimation of living conditions and poverty rate (Nicoletti et al.

2011). In this framework it is worth distinguishing between cut-off sampling,

alternatively referred to as planned under-coverage, which is often used in socio-

economic surveys and unplanned under-coverage which is typical in social surveys.

In the first case, auxiliary information is available for all the units in the non-

covered portion of the population, whereas only population totals are available in

the second case (see e.g. Lehtonen and Veijanen 2009). Owing to the aforemen-

tioned under-coverage of the whole population, the unadjusted estimator is biased in

these situations. Bias is usually corrected in the literature by means of model-based

techniques (see, among others, Kott 2006; Haziza et al. 2010a). Recently, a solution

to under-coverage problem has been proposed by Fattorini et al. (2018) in which the

properties of the resulting estimator are evaluated in relation to the sampling design

while all the population characteristics are held fixed. In particular, the authors

propose adopting a calibration technique in which the weights originally attributed

to each sample observation are modified in such a way as to be able to estimate the

population totals of a set of auxiliary variables without error. The rationale behind

calibration is evident: if the calibrated weights guess the population totals of the

auxiliary variables without errors, they should also be suitable for estimating the

total of the survey variable, providing a relationship exists between the survey

variable and the auxiliaries. Obviously, calibration is likely to perform well in terms

of precision under a strong linear relationship.
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Socio-economic surveys also involve unit nonresponse, the more so the higher

the sensitivity of the survey variables (e.g. sexual behavior, drug consumption, etc.).

However undesirable, nonresponse is a natural contingency in surveys, so the

damage to estimations and inferences needs to be addressed (Groves and Peytcheva

2008). This is crucial in survey sampling theory and is extensively treated in the

literature (e.g. Brick and Montaquila 2009). Extensively applied methods include

post-stratification (Holt and Smith 1979), response homogeneity groups (Särndal

et al. 1992), and, more recently, model-based techniques including imputation and

nonresponse propensity weighting (Särndal and Lundström 2005; Haziza et al.

2010b). In particular, nonresponse propensity weighting assumes that each unit of

the sampled population has a strictly positive probability to respond. A model is

then used to estimate the probabilities of respondent units from the sample by

connecting these probabilities to auxiliary information by means of logistic

regression models (Chang and Kott 2008). In addition to this source of uncertainty,

the requirement of positive response probability seems to tighten in socio-economic

surveys, because some units will not respond in any situation (e.g. homeless and

geographically mobile individuals and families). Alternatively, Fattorini et al.

(2013) attempt a design-based solution in which population values and nonresponse

are viewed as fixed characteristics. For this purpose, they once again use the

calibration technique, defined in the literature as nonresponse calibration weighting

by Haziza et al. (2010b). In this case, weights originally attributed to each

respondent unit are modified in such a way as to be able to estimate the population

totals of a set of auxiliary variables without error.

In most cases under-coverage and nonresponse problems are jointly present in

socio-economic surveys. Therefore, a general indication in the treatment of both

problems concerns the use of any available auxiliary information, even if some is

not available to all units of the population. In this paper, we build on the availability

of a set of auxiliary variables for the whole population while another set is available

only for the sampled portion. In establishment surveys, for example, much financial

information may be available only for businesses of adequate size, such as

corporations, and may not be for small businesses excluded from the sampling, such

as micro-enterprises. Moreover, owing to recent data collection developments, the

additional information may derive from big data, e.g. data from internet and

telephone use, social networks, online purchases, etc.

The purpose of this paper is to propose double-calibration estimators. The use of

calibration in two or more steps is not new and has already been used, among others,

by Folsom and Singh (2000) and Estevao and Särndal (2006). Moreover, it has been

routinely adopted by National Statistical Offices for many years. Here we propose

an estimation strategy that considers both under-coverage and nonresponse

problems, solving them by performing double calibration. The first calibration

exploits a set of auxiliary variables available only for the units in the sampled

population to account for nonresponse; the second calibration exploits a different set

of auxiliary variables available for the whole population, to account for under-

coverage. Joining together the two calibrations, we propose a double-calibration

estimator that is applicable to all cases in which both under-coverage and

nonresponse problems are present.
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The paper is structured as follow. In Sect. 2, some preliminaries and notations are

given. Section 3 is devoted to the construction of the double-calibration estimator

and in Sect. 4 some statistical properties (expectation and variance) are derived. In

order to check the efficiency of the strategy, in Sect. 5 Monte Carlo simulation

studies are performed to explore several scenarios. In Sect. 6, using data from the

European Union Statistics on Income and Living Conditions survey and from

Statistics Denmark data, a case study to estimate the total income of Danish

households in 2013 is presented and discussed. Some concluding remarks are given

in Sect. 7.

2 Preliminaries and notation

Denote as U ¼ u1; :::; uNf g a finite population of N units. Let yj, with j 2 U, the

value for unit j of the survey variable Y. We aim to estimate the population total

TY ¼
P

j2U yj. For the whole population there exists a vector Z of M auxiliary

variables whose values zj ¼ zj1; :::; zjM
� �t

are known for each j 2 U, in such a way

that the vector of totals TZ ¼
P

j2U zj is also known.

In this setting, for one of the reasons mentioned in the introduction, only a sub-

population UB of size NB\N units is sampled using a fixed-size design having first-

and second-order inclusion probabilities pj; pjh for any h[ j 2 UB. Denote by

TYðBÞ ¼
P

j2UB
yj the unknown total of Y in UB. Moreover, suppose that additional

information exists in the sub-population UB. More precisely suppose that there

exists a vector X of K auxiliary variables whose values xj ¼ xj1; :::; xjM
� �t

are known

for each j 2 UB in such a way that the vector of totals TXðBÞ ¼
P

j2UB
xj is also

known. In this setting, denote by TZðBÞ ¼
P

j2UB
zj the known vector of total of the

zjs in the sub-population UB.

A random sample S of n\NB units is selected from the sub-population UB by

means of the adopted sampling scheme. As often happens in practice, especially in

socio-economic surveys, the sample may be affected by nonresponses, in such a

way that the sample is split into two sub-samples, the sub-sample R � S of the

respondent units and the sub-sample S� R of the nonrespondent units.

The set presented above shows two problems to solve: first, a correction for

nonresponses is necessary, in order to estimate TYðBÞ; second, since the sample S is

selected from UB and not from U, any TYðBÞ estimator is biased, so a correction is

needed in order to estimate TY . We propose a calibration in two steps, developed in

the following sub-sections.
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3 The double-calibration estimator

3.1 First calibration: from respondent group to sampled sub-population

The first issue to deal with is the nonresponse problem in a sample. Since S is

selected in UB, in the absence of nonresponses, it would be possible to estimate

TYðBÞ by means of the well-known Horvitz–Thompson (HT) estimator

T̂YðBÞ ¼
X

j2S

yj
pj ð1Þ

and T̂YðBÞ would be an unbiased estimator for TYðBÞ if all pj are positive. However,

owing to nonresponses, any unadjusted estimator is destined to be a biased estimator

of TYðBÞ. Following results obtained in Särndal and Lundström (2005), the bias may

be reduced by exploiting the X-vector of auxiliary information. The resulting

estimator is

T̂YðBÞcal ¼ b̂tRTXðBÞ ð2Þ

where b̂R ¼ Â�1
R âR is the least-square coefficient vector of the regression of Y vs X;

performed on the respondent sample R, i.e. ÂR ¼
P

j2R
xjx

t
j

pj
and âR ¼

P
j2R

yjxj
pj

and

the unit constant is tacitly adopted as the first auxiliary variable in the vector X.

The properties of T̂YðBÞcal are derived in Fattorini et al. (2013). The population is

partitioned into respondent and nonrespondent strata and the estimator is

approximately unbiased if the relationship between Y and X is similar in both the

strata. Practically speaking, this condition is similar to the one assumed in most

model-based nonresponse treatments (for a discussion, see Haziza and Lesage

2016).

3.2 Second calibration: from sampled sub-population to the whole
population

Because T̂YðBÞcal is, at most, an approximately unbiased estimator of TYðBÞ, it is a

biased estimator of TY . Indeed, the sampling scheme adopted to select S generates a

sampling design onto UB but not onto U, and units of U � UB cannot enter the

sample. Therefore, the missed selection of some population units leads to a bias due

to population under-coverage and it is necessary to correct the estimator T̂YðBÞcal.

Fattorini et al. (2018) called these schemes as pseudo designs and proposed a

design-based calibration estimation based on a single auxiliary variable having a

proportional relationship with the survey variable. In order to extend this approach

to vectors of auxiliary variables and to more general linear relationships, the

population under-coverage is handled by the calibration criterion proposed by

Särndal and Lundström (2005). Specifically, if the yjs were available for each j 2 S,

the information furnished by the M auxiliary variables Z, available for all the

population units, could be exploited by means of the calibration estimator
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T̂YðcalÞ ¼ d̂tBTZ ð3Þ

where d̂B ¼ Ĉ�1
B ĉB is the least-square coefficient vector of the regression of Y vs Z,

performed on the whole sample S, i.e. ĈB ¼
P

j2S
zjz

t
j

pj
and ĈB ¼

P
j2S

yjzj
pj
.

If we suppose once again that the unit constant is adopted as the first auxiliary

variable in the vector Z, then the calibration estimator (3) could be rewritten as

T̂YðcalÞ ¼ T̂YðBÞ þ d̂tBðTZ � T̂ZðBÞÞ ð4Þ

where T̂ZðBÞ ¼
P

j2S
zj
pj
is the HT estimator of the totals of the zjs in the sampled sub-

population UB (see Appendix A.1 for the proof).

However, the estimator T̂YðcalÞ is only virtual, because knowing the values of the

survey variable only for the respondent subset R, neither the HT estimator T̂YðBÞ nor

the least-squares coefficient vector d̂B ¼ Ĉ�1
B ĉB are known. Therefore, exploiting

Eq. (4), a double calibration estimator can be constructed by using T̂YðBÞcal instead

of T̂YðBÞ and d̂R ¼ Ĉ�1
R ĉR, instead of d̂B where ĈR ¼

P
j2R

zjz
t
j

pj
and ĈR ¼

P
j2R

yjzj
pj
.

Practically speaking, the resulting estimator of the whole population total turns out

to be

T̂YðdcalÞ ¼ T̂YðBÞcal þ d̂tRðTZ � T̂ZðBÞÞ ¼ b̂tRTXðBÞ þ d̂tRðTZ � T̂ZðBÞÞ ð5Þ

With the double calibration estimator, the information provided by X and Z is

exploited to handle both nonresponses and population under-coverage.

4 Statistical properties of the double calibration estimator

Denote by UBðRÞ the stratum of respondent units in the sub-population UB and by

UBðNRÞ the stratum of nonrespondent units. As suggested by Fattorini et al. (2013),

introduce a dummy variable as rj ¼ 1 if j 2 UBðRÞ and rj ¼ 0 if j 2 UBðNRÞ.

Therefore, using the rjs indicators ÂR, âR, ĈR and ĉR can be rewritten as

ÂR ¼
P

j2S
rjxjx

t
j

pj
, âR ¼

P
j2S

rjyjxj
pj

,ĈR ¼
P

j2S
rjzjz

t
j

pj
and ĈR ¼

P
j2S

rjyjzj
pj

. Therefore, the

previous matrices and vectors as well as the double calibration estimator T̂YðdcalÞ
depend on the selection of the sole sample S, while nonresponses are accounted for

in the rjs, which are a fixed characteristic of the population.

It is worth noting that in this perspective, ÂR, âR, ĈR, ĉR and T̂ZðBÞ are HT

estimators of AR ¼
P

j2UB
rjxjx

t
j ¼

P
j2UBðRÞ

xjx
t
j, aR ¼

P
j2UB

rjyjxj ¼
P

j2UBðRÞ
yjxj,

CR ¼
P

j2UB
rjzjz

t
j ¼

P
j2UBðRÞ

zjz
t
j, cR ¼

P
j2UB

rjyjzj ¼
P

j2UBðRÞ
yjzj and of TZðBÞ,

respectively. Therefore, because T̂YðdcalÞ is differentiable with respect to ÂR, âR, ĈR,

ĉR and T̂ZðBÞ, it can be approximated up to the first term by a Taylor series around

the true population counterparts AR, aR, CR, cR and TZðBÞ. The equation of the first-

order Taylor series approximation of T̂YðdcalÞ is derived in Appendix A.2.
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4.1 Approximate expectation

From the first-order Taylor series approximation of T̂YðdcalÞ it immediately follows

that

AEðT̂YðdcalÞÞ ¼ btRTXðBÞ þ dtRðTZ � TZðBÞÞ ð6Þ

where bR ¼ A�1
R aR is the least-square coefficient vector of the regression of Y vs X

performed on the respondent stratum UBðRÞ and dR ¼ C�1
R cR is the least-square

coefficient vector of the regression of Y vs Z performed in the same stratum.

Exploiting equation (6), after some algebra shown in Appendix A.3, proves that the

double calibration estimator is unbiased up to the first-order approximation if:

1. the linear relationship between Y and X is similar in the respondent and

nonrespondent strata of UB, i.e. bR � bNR, where bNR is the least-square

coefficient vector of the regression of Y vs X performed on the nonrespondent

stratum UBðNRÞ;

2. the linear relationship between Y and Z is similar in the respondent stratum and

in the whole sub-population UB, i.e. dR � dB, where dB is the least-square

coefficient vector of the regression of Y vs Z performed on the whole sub-

population UB;

3. the linear relationship between Y and Z is similar in the two sub-populations UB

and U � UB, i.e. dB � dNB, where dNB is the least-square coefficient vector of

the regression of Y vs Z performed on the whole sub-population U � UB.

It is worth noting that the approximate expectation in Eq. (6) does not depend on the

design (e.g., first and second order inclusion probabilities), but only on the

population characteristics. Therefore, under conditions 1–3, design-unbiasedness

holds irrespective of the sampling design adopted.

4.2 Approximate variance and variance estimation

From equation (A.3) of Appendix A.2, the first-order Taylor series approximation of

T̂YðdcalÞ is rewritten as a translation of an HT estimator, in the sense that

T̂YðdcalÞ ¼ cost þ
X

j2S

uj
pj

where

uj ¼ rj yjx
t
j � atRA

�1
R xjx

t
j

� �
A�1
R TXðBÞþ

þ rj yjz
t
j � ctRC

�1
R zjz

t
j

� �
C�1
R TZ � TZðBÞ
� �

� ctRC
�1
R zj; j 2 UB

are the influence values (e.g. Davison and Hinkley 1997).

Therefore, the approximate variance of T̂YðdcalÞ turns out to be (e.g. Särndal et al.

1992, p. 175)
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AV T̂YðdcalÞ
� �

¼
X

h[ j2UB

ðpjph � pjhÞ
uj
pj

� uh
ph

� 	2

ð7Þ

On the basis of Eq. (7), the well-known Sen–Yates–Grundy (SYG) variance esti-

mator is given by

V̂
2

SYG ¼
X

h[ j2S
ðpjph � pjhÞ

ûj
pj

� ûh
ph

� 	2

ð8Þ

where

ûj ¼ rj yjx
t
j � âtRÂ

�1
R xjx

t
j

� �
Â�1
R TXðBÞþ

þ rj yjz
t
j � Ĉt

RĈ
�1
R zjz

t
j

� �
Ĉ�1
R TZ � T̂ZðBÞ
� �

� Ĉt
RĈ

�1
R zj; j 2 S

are the empirical influence values computed for each sample unit.

5 Simulation study

Simulations were used to check the performance of the proposed estimator. We

considered a population U of N ¼ 10000 units and a sub-population UB � U of

NB ¼ 7500 units. We assumed that the values zj of an auxiliary variable Z were

available for each j 2 U and were adopted for sample under-coverage calibration.

Moreover, we assumed that the values xj of an auxiliary variable X achieved from

additional information were available for each j 2 UB and were adopted in

nonresponse calibration. We also assumed that the sub-population UB was

partitioned into respondent and non-respondent strata UBðRÞ and UBðNRÞ, respec-

tively. Three sizes were assumed for the respondent stratum, NBðRÞ ¼
2250; 4500; 6750 units corresponding to response rates of 30%, 60% and 90%,

respectively. Moreover, variables were generated respecting some criteria, in order

to explore several scenarios, as explained below.

5.1 Unbiasedness of T̂YðdcalÞ

The auxiliary variables X and Z and the survey variables Y were generated from a

tri-variate normal distribution. The expectations and variances of X and Z were

assumed to be equal to 1, while the expectation and variance of Y were assumed to

be equal to 2 and 4, respectively. These setups assured that each variable had a

coefficient of variation of 1. The correlation between X and Y was set at

qXY ¼ 0:3; 0:6; 0:9; similarly, the correlation between Z and Y was set at

qZY ¼ 0:3; 0:6; 0:9, giving rise to nine scenarios. The correlation between X and Z
was set at the minimum possible value qXZ such that the resulting variance-

covariance matrix is positive-definite. Once the nine variance-covariance matrices

were established the 10000 values of Z and Y and the 7500 values of X were

generated using the triangular square root of the variance-covariance matrix (e.g.
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Johnson 2013, Sect. 4.1). Subsequently, the first NBðRÞ units of UB were assumed to

be the respondent portion of the population, ensuring in this way compliance with

conditions 1.�3., i.e. the approximate unbiasedness of the double calibration

estimator. Simple random sampling without replacement (SRSWOR) was the

sampling scheme adopted to select samples of sizes n ¼ 75; 250; 500 from UB. If the

same sampling efforts were adopted to select samples from the whole population U
and in the absence of nonresponses, then the HT estimator of the total would give

rise to relative root means squared errors

RRMSESRSWOR ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N � n

Nn

r

CVY ð9Þ

where CVY is the coefficient of variation of the survey variable. Equation (9) was

taken as the benchmark for the performance of the double calibration estimator.

For each combination of respondent sizes NBðRÞ, correlations between X and Y,

correlations between Z and Y, and sample sizes n, 10000 random samples were

selected by means of SRSWOR from UB, and the double calibration estimates

T̂ i ¼ i ¼ 1; :::; 10000ð Þ were computed using equation (5). Moreover, from each

simulated sample, the variance estimates V̂
2

i ¼ i ¼ 1; :::; 10000ð Þ were also

computed using equation (8), which under SRSWOR is reduced to

V̂
2

SYG ¼ NB NB � nð Þ s
2
û

n
ð10Þ

where s2û is the sampling variance of the ûjs. Once the variance estimates were

computed from (10), the RRMSE estimates ^RRMSEi ¼ V̂ i

T̂ i
were achieved together

with the confidence intervals at the nominal level of 0.95, T̂ i � 2V̂ i. Therefore, from

the resulting Monte Carlo distributions of these quantities, the expectations

EðT̂YðdcalÞÞ ¼ 1
10000

P10000
i¼1 T̂ i and mean squared errors MSEðT̂YðdcalÞÞ ¼

1
10000

P10000
i¼1 ðT̂ i � TYÞ2 of the double calibration estimator were empirically derived

from which the relative bias RB ¼ EðT̂YðdcalÞÞ�TY
TY

and the relative root mean squared

errors RRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEðT̂YðdcalÞÞ

p
TY

were derived. The expectations of the RRMSE esti-

mator ERRMSEE ¼ 1
10000

P10000
i¼1

^RRMSEi and the coverage of the 0.95 confidence

interval COV95 ¼ 1
10000

P10000
i¼1 IðT̂ i � 2V̂ i � TY � T̂ i þ 2V̂ iÞ are also computed. The

most relevant results of the Monte Carlo simulations are shown in Tables 1 and 2,

while the remaining simulation results are shown in Tables B.1–B.7 of the

Appendix B.

The simulation results suggest the following remarks. The first order approx-

imation of relative bias and RRMSE are very accurate in most cases. The

discrepancies between approximation and the empirical values achieved from the

Monte Carlo distributions are usually smaller than one percent point and become

lower with high levels of response and correlations. The theoretical findings for the

bias reduction, shown in Sect. 4.1 are fully confirmed by the simulation results. The

artificial populations considered in the study meet unbiasedness conditions 1.�3.
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Indeed the empirical values of the relative bias are negligible (invariably about one

percentage point) irrespective of the level of correlation of the survey variable with

the auxiliaries. While the level of correlation does not affect the bias reduction, it

has a relevant impact on the precision. When correlations are strong the double

calibration estimator proves efficient, reaching values of RRMSE that are even

smaller than those achieved by the HT estimator with the same sampling effort and

Table 1 Percentage values of RB, ARRMSE, RRMSE, ERRMSEE, COV95 and first order approximation

of relative bias (ARB) achieved from a population of 10000 units, a sampled sub-population of 7500 units

with 2250, 4500 and 6750 respondent units, sample sizes n ¼ 75; 250; 500 selected by means of simple

random sampling without replacement

NBðRÞ ARB n RB ARRSME RRMSE ERRMSEE COV95

2250 - 1.7 75 - 1.7 20.0 21.0 (11.5) 20.7 92.1

2250 - 1.7 250 - 1.8 10.8 11.1 (6.2) 11.1 94.4

2250 - 1.7 500 - 1.9 7.5 7.8 (4.4) 7.7 94.4

4500 - 1.0 75 - 1.0 14.1 14.4 (11.5) 14.4 94.2

4500 - 1.0 250 - 1.1 7.6 7.7 (6.2) 7.7 94.8

4500 - 1.0 500 - 1.1 5.3 5.4 (4.4) 5.4 95.0

6750 - 1.5 75 - 1.6 11.2 11.5 (11.5) 11.5 94.8

6750 - 1.5 250 - 1.6 6.1 6.3 (6.2) 6.2 94.4

6750 - 1.5 500 - 1.5 4.2 4.5 (4.4) 4.3 94.1

Correlations qXY ¼ 0:3 and qZY ¼ 0:3 . Values in parentheses are the RRMSEs of the Horvitz–Thompson

estimator in the absence of nonresponse and under-coverage

Table 2 Percentage values of RB, ARRMSE, RRMSE, ERRMSEE, COV95 and first order approximation

of relative bias (ARB) achieved from a population of 10000 units, a sampled sub-population of 7500 units

with 2250, 4500 and 6750 respondent units, sample sizes n ¼ 75; 250; 500 selected by means of simple

random sampling without replacement

NBðRÞ ARB n RB ARRSME RRMSE ERRMSEE COV95

2250 - 0.6 75 - 0.6 8.3 8.7 (11.5) 8.7 95.3

2250 - 0.6 250 - 0.6 4.5 4.6 (6.2) 4.6 95.3

2250 - 0.6 500 - 0.7 3.1 3.2 (4.4) 3.2 95.1

4500 - 1.0 75 - 0.9 6.8 7.0 (11.5) 7.0 95.4

4500 - 1.0 250 - 0.9 3.7 3.8 (6.2) 3.7 95.1

4500 - 1.0 500 - 0.9 2.6 2.7 (4.4) 2.6 94.1

6750 - 1.0 75 - 1.0 6.2 6.4 (11.5) 6.4 95.7

6750 - 1.0 250 - 0.9 3.4 3.5 (6.2) 3.4 94.3

6750 - 1.0 500 - 0.9 2.3 2.5 (4.4) 2.4 93.6

Correlations qXY ¼ 0:9 and qZY ¼ 0:9. Values in parentheses are the RRMSEs of the Horvitz–Thompson

estimator in the absence of nonresponse and under-coverage
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in the absence of nonresponse and under-coverage. Obviously precision increases

with the level of response.

The RRMSE estimator obtained from the variance estimator (8) is approximately

unbiased providing also confidence intervals with coverage near to the nominal

level of 95% in most cases. Because the estimator (8) actually estimates the

approximate variance, some exceptions occur when the variance approximations

(and subsequently the RRMSE) turn out be smaller than the true values.

5.2 Robustness of T̂YðdcalÞ when conditions 1.-3. do not hold

Additional simulations were performed to achieve insights on the robustness of the

proposed estimator when the approximate unbiasedness conditions 1.�3. were

moderately violated in such a way that an amount of bias was invariably involved.

Indeed, as stated by Särndal and Lundström, (2005, p. 98), when an estimator is

biased, its bias should be the main concern, given that ‘‘if an estimator is greatly
biased, it is poor consolation that its variance is low’’. Hence, here too, if a massive

bias were present it would heavily impact on RRMSE, deteriorating the estimator

performance. To investigate this issue, the linear relationship between Y and X was

assumed to be different in the respondent and nonrespondent strata of UB, as in the

following scheme:

(a) when the correlation among Y and X in the respondent stratum was equal to

0.3, the same correlation in the nonrespondent stratum was decreased or

increased to 0.2 or to 0.4;

(b) when the correlation among Y and X in the respondent stratum was equal to

0.6, the same correlation in the nonrespondent stratum is decreased or

increased to 0.5 or to 0.7;

(c) when the correlation among Y and X in the respondent stratum was equal to

0.9, the same correlation in the nonrespondent stratum is decreased or

increased to 0.8 or to 0.95.

Similarly, the linear relationship between Y and Z was assumed to be different in the

subpopulations UB and U � UB , following the scheme:

(a) when the correlation among Y and Z in the sub-population U � UB was equal

to 0.3, the same correlation in the sub-population UB was decreased or

increased to 0.2 or to 0.4;

(b) when the correlation among Y and Z in the sub-population U � UB was equal

to 0.6, the same correlation in the sub-population UB was decreased or

increased to 0.5 or to 0.7;

(c) when the correlation among Y and Z in the sub-population U � UB was equal

to 0.9, the same correlation in the sub-population UB was decreased or

increased to 0.8 or to 0.95.

As explained, each decrease or increase in the correlation between Y and X was

paired with the corresponding decrease or increase in the correlation between Y and
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Z, giving rise to a total of twelve scenarios: six representing different (and weaker)

relationships of Y with X and Z in the nonrespondent stratum and subpopulation UB,

respectively; the other six representing different (and stronger) relationships. As in

the previous simulation experiment, expectations and variances of X and Z were

assumed to be equal to 1 and expectation and variance of Y were assumed to be

equal to 2 and 4, respectively. The correlation between X and Z was set at the

minimum possible value ensuring a positive-definite variance-covariance matrix.

Once the twelve variance-covariance were established, simulations proceeded as

described above, with the same performance indices computed on the resulting

Monte Carlo distributions. Some results are rset out in Tables 3 and 4, while

remaining simulation results are given in Tables C.1–C.10 in the Appendix C.

The simulation results suggest the following remarks. The first order approx-

imation of relative bias and RRMSE remain accurate with discrepancies usually

smaller than one percent point. Even under different relationships of Ywith X and Z,
the relative bias remains moderate (invariably below 1.6 percentage point). The

moderate increases in bias also entail moderate increases in RRMSE and

approximately unbiased RRMSE estimation, with confidence intervals having

coverages near to their nominal value. These results show a promising robustness of

the estimator in the presence of moderate differences in the relationships of Y with

X and Z in respondent and nonrespondent strata and sub-populations, respectively.

Table 3 Percentage values of RB, ARRMSE, RRMSE, ERRMSEE, COV95 and first order approximation

of relative bias (ARB) achieved from a population of 10000 units, a sampled sub-population of 7500 units

with 2250, 4500 and 6750 respondent units, sample sizes n ¼ 75; 250; 500 selected by means of simple

random sampling without replacement

NBðRÞ ARB n RB ARRSME RRMSE ERRMSEE COV95

2250 - 1.1 75 - 1.0 10.4 10.8 (11.6) 10.4 93.6

2250 - 1.1 250 - 1.1 5.6 5.6 (6.3) 5.5 94.7

2250 - 1.1 500 - 1.1 3.9 3.9 (4.4) 3.8 94.3

4500 - 0.4 75 - 0.2 7.2 7.2 (11.6) 7.2 95.1

4500 - 0.4 250 - 0.4 3.8 3.8 (6.3) 3.8 95.3

4500 - 0.4 500 - 0.4 2.7 2.7 (4.4) 2.6 95.0

6750 - 0.1 75 - 0.1 5.8 5.8 (11.6) 5.8 95.0

6750 - 0.1 250 - 0.1 3.1 3.1 (6.3) 3.1 95.4

6750 - 0.1 500 - 0.1 2.1 2.1 (4.4) 2.1 95.0

Correlations qXY ¼ 0:8 in UB, qXY ¼ 0:9 in the respondent stratum, qZY ¼ 0:3 in U � UB, and qZY ¼ 0:2
in UB. Values in parentheses are the RRMSEs of the Horvitz–Thompson estimator in the absence of

nonresponse and under-coverage
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6 An application to the European Union Statistics on Income
and Living Conditions survey

National statistical institutes periodically collect data on living conditions through

household surveys. Information contents concern several aspects of living

conditions, such as, among others, features and expenses incurred to manage the

dwelling, material deprivation and welfare indicators, individual and household

incomes. The European Union Statistics on Income and Living Conditions survey

was created from the previous experience of the European Community Household

Panel (ECHP). The survey was launched in 2003 in seven countries (Belgium,

Denmark, Greece, Ireland, Luxembourg, Austria and Norway), and was extended to

all the 28-EU member countries, plus Switzerland, Norway, Iceland, FYROM and

Serbia. It is conducted yearly and gathers information about European households.

Some rules on how to conduct the survey are established by Eurostat, such as,

among others, the frequency and the period to which questions must refer, and the

aggregation level of some longitudinal and cross-sectional estimates. Other aspects

of the survey are set independently by each country, such as, for instance, the

sampling design and the sample size, leading to several discrepancies between

countries (see, among others, Goedemé 2013; Lohmann 2011).

Moreover, the population coverage of surveys like these is incomplete.

Individuals who do not live in households, as well as the homeless, the physically

or mentally unable, geographically mobile and displaced individuals are not always

represented in national-level data. It is estimated that worldwide some 300 to 350

million people may be missing from survey sampling frames, at least 45% omitted

altogether by design, or because they are likely to be undercounted (Carr-Hill 2013).

Table 4 Percentage values of RB, ARRMSE, RRMSE, ERRMSEE, COV95 and first order approximation

of relative bias (ARB) achieved from a population of 10000 units, a sampled sub-population of 7500 units

with 2250, 4500 and 6750 respondent units, sample sizes n ¼ 75; 250; 500 selected by means of simple

random sampling without replacement

NBðRÞ ARB n RB ARRSME RRMSE ERRMSEE COV95

2250 - 0.8 75 - 1.0 15.8 16.7 (11.6) 16.2 93.4

2250 - 0.8 250 - 1.1 8.6 8.7 (6.3) 8.6 94.7

2250 - 0.8 500 - 1.3 6.0 6.0 (4.4) 6.0 94.8

4500 - 0.1 75 - 0.2 10.0 10.1 (11.6) 10.0 94.7

4500 - 0.1 250 - 0.1 5.4 5.3 (6.3) 5.4 95.3

4500 - 0.1 500 0.0 3.7 3.7 (4.4) 3.7 95.2

6750 0.1 75 0.2 7.0 7.1 (11.56) 7.0 94.6

6750 0.1 250 0.2 3.8 3.8 (6.3) 3.7 95.0

6750 0.1 500 0.2 2.6 2.6 (4.4) 2.6 95.6

Correlations qXY ¼ 0:2 in UB, qXY ¼ 0:3 in the respondent stratum, qZY ¼ 0:9 in U � UB, and qZY ¼ 0:8
in UB. Values in parentheses are the RRMSEs of the Horvitz–Thompson estimator in the absence of

nonresponse and under-coverage
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The European Union Statistics on Income and Living Conditions survey, which

involves approximately 300,000 households across Europe, is no exception and is

affected by under-coverage, and the samples selected are affected by nonresponses.

We propose an example of the use of the double-calibration estimator in the 2013

wave of the European Union Statistics on Income and Living Conditions survey in

Denmark (hereafter DK-SILC). Data on respondents are freely available from the

Eurostat website, while the further information required was taken from Statistics

Denmark.

The reference population U consists of households residing in Denmark, except

for those habitually living in a foreign country or cohabitations as orphanages,

religious institutes, etc. On the Statistics Denmark website, the household

population size in 2013 was equal to 2891119 units. The DK-SILC survey is based

on a simple random sampling without replacement design, so that inclusion

probabilities are equal for all units in the population. The sampling unit is the

individual person and the household is defined as the household in which the

selected person is member. This is because a household in Denmark is defined as

comprising one or more individuals. Households eligible for DK-SILC are those in

which the sampling unit is a person aged 16 or over, living alone or together in

private dwellings and through marriage, parentage, affinity or other relationships.

Hence, the eligible population UB of Danish households is equal to 2416597,

leading to an under-coverage rate of 0.16%.

The 2013 DK-SILC survey was featured a nonresponse rate of about 63%. In

fact, the respondent number was equal to 5419, against a sample of 14702

households. Micro-data about respondents include a great deal of information,

grouped into four sections: Household Register (D), Personal Register (R),

Household Data (H) and Personal Data (P). Variables collected concern items,

most of them qualitative. To implement the present case study, we use quantitative

variables (in euro) with reference to the previous survey year (2012), contained in

the H-section. Specifically, the tax on income and social contributions (HY140G) is

used as the X variable to correct for nonresponse, while the total housing cost

(HH070) is used as the Z variable to correct for under-coverage. The variable Y to be

estimated is total household disposable income (HY020). Sample data suggest that

both auxiliary variables are slightly correlated with the variable to be estimated

(0.38 for X and Y; 0.17 for Z and Y, in the respondent group), revealing an

unfavorable situation, worse than all those presented in Sect. 5. However, from

simulation results, the weak relationships between the survey and the auxiliary

variable should deteriorate precision but, fortunately, bias reduction should not

deteriorate. The estimated total household disposable income is equal to 125739.17

million euros, equivalent to an average household disposable income on U is

43491.52 euros. Since the sampling design is SRSWOR, the variance estimate is

computed as in (10) and the RRMSE estimate is 0.05.

The results obtained need to be understood as an illustration and do not claim to

be official estimates. Clearly, the quality of the results relies on the quality of the

available data. Howsoever, results are in line with those disseminated by Statistics

Denmark. In fact, the average disposable income for all households (population U)
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in 2012 is 329803 Danish krones, corresponding to approximately 44221 euros (at

the average exchange rate in 2013).

7 Final remarks

The proposed double-calibration estimator can be adopted in socio-economic

surveys to jointly account for nonresponse and under-coverage, adopting a two-step

calibration. The first calibration, performed to reduce nonresponse bias, requires a

set of auxiliary variables whose totals are known for the sampled sub-populations

and whose values are known for the respondent units in the sample. The second

calibration, performed to reduce the bias generated by the cut-off sampling, requires

a further set of auxiliary variables whose totals are known for the whole populations

and whose values are known for all the units in the sample. In this setting, no frame

is necessary for the non-sampled sub-population. If the relationships of the survey

variable with the two sets of auxiliaries are approximately similar in sampled and

non-sampled sub-populations as well as in respondent and nonrespondent strata

(conditions 1.�3.), the proposed estimator proves to be effective for reducing bias,

and is also efficient for high-quality auxiliary variables correlated with the variable

of interest. Interestingly, bias remains negligible and precision remains satisfactory

including after moderate changes in the relationship of the variable of interest with

the auxiliary variables in the respondent and nonrespondent strata and subpopu-

lations. Socio-economic surveys may benefit from the application of the double-

calibration estimator. It leads to results very close to those disseminated by national

institutes of statistics and typically achieved by integrating several data sources,

with far less effort in terms of data collection and integration.
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