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Abstract—Grapevine is one of the most important crops 

cultivated across Europe. Climate factors and diseases constantly 

threaten its production. Recently, Flavescence dorée (FD), an 

incurable grapevine disease with the obligation to uproot each 

infected plant, has been widely spread in Europe. The symptoms 

of FD are visually expressed in the late summer. Currently, the 

adopted procedure consists in scouting for infected plants by 

trained experts, which is time-consuming and not frequent 

enough. As stress development causes subtle spectral changes 

before any visible symptoms appear, during the summer of 2022, 

hyperspectral and multispectral images were acquired in the two 

vineyards near Riva del Garda, Trentino, Italy. A classification 

accuracy between 90.2 % and 96.9 % in distinguishing between 

infected and healthy plants was obtained from the hyperspectral 

data. These findings justify further efforts to use an in-house 

developed, affordable multispectral camera, significantly 

reducing equipment cost and procedure complexity while 

mapping the relevant spectral channels. 

Keywords—Grapevine disease detection, Flavescence dorée, 

Hyperspectral imaging, Multispectral camera, Remote sensing. 

I. INTRODUCTION 

For Europe, the grapevine is not only highly important as the 
world’s third most valuable horticultural crop [1] but, due to its 
high socioeconomic role, it embodies a tangible cultural heritage, 
demonstrated by the diversity of grapevine cultivars and 
viticultural practices [2]. The economic impact for Europe 
reflects 3.2 million hectares or 45 % of the world’s total wine-
growing areas, where Spain, France, and Italy together 
accounted for three-quarters (74.9 %) of it [3]. Due to climate 

change, grapevine production is under constant threat, especially 
with drought and heat waves during spring and summer, when 
prolonged exposure to extremely high temperatures can 
negatively affect the plant’s photosynthetic system. Water 
deficit is one of the leading environmental factors limiting 
vegetative growth and berry quality, increasing grape malic acid 
concentration [4]. An additional hazard on grapevine yield is put 
by grapevine trunk diseases [2], among which Flavescence 
dorée (FD) introduces severe consequences and can reduce 
production between 51 % and 92 % compared to healthy plants 
[5]. 

Flavescence dorée is an incurable, severe epidemic disease 
of grapevine in Europe caused by FD-phytoplasma. It is 
transmitted from one plant to another with grafting or by the 
leafhopper Scaphoideus titanus Ball [6]. FD is considered one 
of the most important diseases for the European principal wine-
production areas. Therefore, it is a quarantine disease with the 
following mandatory control procedures: use of healthy plant 
material, spraying insecticides against the vector, and uprooting 
each infected plant to eliminate sources of FD phytoplasma [7]. 
An additional obligation is to remove the whole vineyard when 
the infection exceeds 20 % of all plants. Entire vineyard 
uprooting is causing significant financial damage in the current 
year and for the next 3-5 years since new grapevines need time 
to guarantee a substantial yield. As compensation for losses due 
to the FD, only in 2005, Italian grapevine growers were 
supported with 34 million euros [5]. 

Furthermore, the FD is constantly spreading. For example, 
in Piedmont (Italy), from 2003 to 2018, FD increased from a 
very restricted zone to almost 25 % of the whole Piedmont 
grapevine area [8]. In Trentino Alto-Adige (Italy), FD's presence 
nearly doubled in just one year (from 2021 to 2022) [9]. 
Therefore, to prevent the spreading of FD not only in a 
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monitored vineyard but also to neighboring ones, it is essential 
to detect even a single infected plant over an entire area [10]. 

FD's primary visible symptoms manifest during the summer. 
These symptoms are characterized by leaves rolling downwards 
and acquiring a reddish or yellowish hue in red and white 
cultivars, respectively (Fig. 1). Additionally, shoots exhibit a 
lack of lignification, while berries display signs of wilting and 
drying out [5]. The symptoms progressively spread within the 
canopy during the vegetative season [8]. The visible signs 
usually appear at least a year after infection, but not necessarily 
every year and not on all the branches [11]. Currently, the only 
available solution is to scout vineyards for infected plants. It is 
conducted by trained agronomists and experts. However, this is 
a time-consuming task, and usually, each vineyard is controlled 
once in one or two years due to a lack of skilled individuals, 
leaving too much time for FD to spread around [[5], [12]]. Hence, 
there is high demand for an automatic tool capable of detecting 
FD symptoms and localizing infected zones. It will allow 
localized and direct treatment of contaminated vines, reducing 
soil and water pollution compared with the current procedure, 
which requires up to 10 spraying treatments yearly in the whole 
field [13]. 

 

Fig. 1. FD symptoms in red (left - Cabernet Sauvignon) and white (right - 

Chardonnay) grapevine variety. 

Evidence shows that FD influences photosynthetic capacity 
alongside other morphological changes, such as leaf rolling. It is 
especially valid for hyperspectral data, where the progression of 
stress development causes subtle spectral changes before any 
visible symptoms appear [14]. Several attempts to detect FD 
using hyperspectral or multispectral cameras have been found in 
remote sensing literature. 

In [[10], [15]], researchers used a standard multispectral 
camera (5 bands) to detect FD. The results indicated that FD and 
GTD (Grapevine Trunk Disease, another grapevine with similar 
symptoms) could be detected, with a misclassification between 
these two diseases and the success rate depending on the grape 
variety (red or white grapes). It was suggested that 
misclassifications could be related to the presence of mixed 
soil/vine vegetation or shadow/vine vegetation pixels. 
Segmentation can be improved with higher ground spatial 
resolution. Bendel et al. [16] investigated the possibility of FD 
detection using hyperspectral data in laboratory conditions with 
uniform illumination and the same imaging geometry. Although 
a high correct classification rate was obtained (accuracy was 96 % 
or more depending on variety), further research is needed to 

identify optimal bands for application in vineyards. With a 
similar hyperspectral acquisition setup, an accuracy of 83 % was 
achieved with a deep learning approach [17]. However, 
additional work is required to adapt the process for in-field 
testing and reduce the data dimensionality. Promising detection 
results (precision: 0.92 and 0.89, recall: 0.76 and 0.75 for two 
grapevine varieties) were obtained by using the object detection 
algorithm YOLOv4-tiny and RGB images taken in the vineyard 
[5]. Still, all infected samples have highly expressed symptoms. 
Al-Saddik et al. acquired hyperspectral data in the field with a 
handheld device, collecting four profiles per leaf within a range 
from 350 nm to 2500 nm. The author’s first conclusion was that 
there is no unique optimal index for recognizing FD in all 
scenarios [18]. The most suitable index relies upon the 
grapevine species, soil, vegetation, and climate conditions. 
Authors ascertained that creating indices based on the spectral 
diversities resulting from FD is viable, but this should be tuned 
on the precise context [18]. They continued research by 
selecting eight optimal bands for different scenarios in the whole 
acquired wavelength range [19]. Their next step was to choose 
seven wavelengths up to 1000 nm [12]. A multispectral system 
can be implemented in this range with Silicon as the low-cost 
sensing material. Their most recent work presents a protocol for 
constructing a multispectral system that consists of 4 standard 
cameras, each with a different narrowband filter [13]. The 
number of filters was reduced to four due to dimension and 
weight constraints, as the authors planned that the final device 
should be mounted on a low-altitude UAV. To compensate for 
the reduction of spectral data to only four reflectance values, the 
authors added 4 Haralick texture features for each channel to 
improve classification accuracy. The resulting accuracy was 
between 80.7 % and 92.8 %, depending on grapevine varieties. 
The authors suggested that additional work is needed for 
geometric and radiometric correction to address shadowing and 
reflectance from other surrounding objects. Further, they 
proposed that some other pattern recognition methods can be 
integrated into the procedure with spatial variability of data. 
Interesting conclusions come from [20], where findings were 
based on spatial change of three spectral indices (NDVI, NDRE, 
and VIS/NIR ratio) in each monitored grapevine row. Data were 
acquired using an active optical sensor which measured point 
reflectance at three different wavelengths (670 nm, 730 nm, and 
775 nm) directly in the vineyard, with an approximate distance 
of 80 cm from the plant and 50 cm between each measurement. 
The authors showed a strong correlation between FD’s 
occurrence and spatial change of the three selected indices. 

This paper presents research with a similar approach to the 
protocol described by Al-Saddik et al. [13]. However, instead of 
acquiring hyperspectral data at each leaf in a highly controlled 
procedure, this work uses a hyperspectral camera in the same 
position as an in-house developed multispectral device. The plan 
is to use the multispectral camera as a final device for scouting 
the FD presence. This setup investigated the possibility of FD 
detection using spectral profiles obtained in the scenario where 
the influence of leaf orientation, distance from the camera, 
shadowing, and multi-scattering effect occur. As spectral 
profiles for leaves with highly expressed symptoms have 
noticeable differences compared to the green leaves, the testing 
was restricted to green leaves for both infected and healthy 
plants. This way assesses the possibility of detecting FD when 



 

 

the discoloration of leaves is not highly expressed, which can 
lead to its earlier detection. First, this research tested if this 
detection is feasible when the symptoms are visually noticeable 
on the data acquired in September 2022. The results show 
classification accuracy of 96.1 % for Cabernet Sauvignon and 
96.9 % for Chardonnay. Next, the possibility of performing the 
detection is checked on the data acquired in July 2022, when 
symptoms have a lower severity level. The classification 
accuracies of 91.5 % for Cabernet Sauvignon and 90.6 % for 
Chardonnay were achieved. This is still quite accurate and 
justifies the intention to try the designed multispectral device to 
search for FD presence.  

Fig.2. presents green leaves for both Cabernet Sauvignon 
and Chardonnay when there are no FD symptoms (a and b), with 
signs in July (c and d) and in September (e and f). It is difficult 
to spot differences between images of healthy and infected 
leaves, even in September. Indeed, there are some changes in the 
leave’s texture, but a lot of experience and training are needed 
to notice them in the early stage. On the contrary, those 
differences can be detected in hyperspectral data as they 
influence reflected spectra.  

 

Fig. 2. Example of healthy and infected green leaves. Cabernet Sauvignon: (a) 

healthy, (c) infected from July, (e) infected from September. Chardonnay: (b) 
healthy, (d) infected from July, (f) infected from September.  

The following section describes the acquisition setup, with a 
selection of spectral profiles and their pre-processing. Section 
III explains classification and presents the obtained result. 
Finally, the conclusion and suggestions for future work are 
given in Section IV. 

II. ACQUISITION AND PRE-PROCESSING OF HYPERSPECTRAL 

DATA 

Data were acquired on two vineyards close to Riva del Garda. 
One is with Cabernet Sauvignon (location Bolognano) as 
representative of the red grapevine variety, while the second is 

with the white grape variety Chardonnay (location Nago-
Torbole). For these two vineyards, some plants with FD were 
discovered in 2021 (due to the mandatory procedure, they were 
uprooted). Thus it was likely that FD would be found on the date 
of acquisition, as both varieties are highly susceptible to FD 
(Cabernet Sauvignon shows the highest vulnerability) [21]. 

Campaigns were conducted on 12th July and 22nd September 
2022, between 10:00 and 13:00 in Bolognano and 14:30 and 
17:30 in Nago-Torbole. On both days, it was sunny weather with 
occasionally a few clouds resulting in an illumination variation 
that better represents different acquisition conditions. Obtained 
hyperspectral data contains images of 5(8) healthy and 4(6) 
infected plants in Bolognano, while in Nago-Torbole, 7(8) 
healthy and 6(7) infected plants in July (September) were 
imagined. 

For both campaigns, an FD presence in each plant was 
assessed in the field by a local expert who regularly visually 
observes vineyards to spot newly infected plants and prevent 
further spreading. 

Fig. 3 shows equipment for data acquisition. It consists of 
hyperspectral scanner HySpex Mjolnir V-1240, with 200 
channels in the 400 – 1000 nm range and 1240 samples in each 
channel. The images are obtained by moving the pushbroom 
scanner by a slider. The in-house assembled imaging device 
includes the designed multispectral camera and a thermal 
camera (Seek Mosaic Thermal Core, with a resolution of 
320x240 pixels). This device was mounted on a standard 
photographic tripod, together with the high-quality thermal 
camera FLIR Duo Pro R as a temperature reference sensor. 

 

Fig. 3. Equipment used during both campaigns. 

The multispectral camera was built using Raspberry Pi 4 and 
Arducam Quad-Camera Bundle Kit (four 1 MPx OmniVision 
OV9782 global shutter sensors), with one single, one dual, and 
two triple band filters obtaining nine different narrow bands with 
following central wavelengths 432, 517, 550, 577, 615, 660, 690, 
750, 850 nm. The radiance in each band was reconstructed using 
the procedure described in [22], [23]]. Previously, calibration 
was performed in the laboratory using the same hyperspectral 
scanner, X-Rite® ColorChecker Classic, with 24 uniform 
patches as the target and QTH (Quartz Tungsten Halogen) as a 
light source. A thermal sensor was included since a detectable 
thermal difference between healthy and infected plants was 
reported [24]. In the future, improving the detection of FD using 
multispectral images with thermal data will be considered. The 
developed multispectral device is shown in Fig. 4. Cameras in 



 

 

the visible and near-infrared bands are grouped in the right part 
of the housing, while the thermal camera is toward the left part 
(considering the orientation of Fig. 4).  

 

Fig. 4. Designed imaging device with multispectral and thermal cameras. 

The main reasons for the future use of multispectral and 
thermal cameras are drastically reducing needed investment and 
the amount of generated data that must be processed. 
Information from several spectral bands and thermal data is 
likely enough to distinguish between infected and healthy plants 
with satisfying accuracy. In that case, it will both reduce the cost 
of equipment, and it will simplify the complexity of the 
procedure. 

In each hyperspectral image acquired in July and September, 
a number of rectangular regions of interest (ROI), varying 
between 20 and 40, were selected (see Fig. 5). Each ROI was 
extracted as a patch from one green leaf. The complete patch 
was exposed to sunlight or was in the shadow. After calculating 
the average profile in each ROI, the average value was divided 
by the average spectral radiance of the white box to get 
reflectance. Spectral radiances of the white box in shadow and 
in the sunlight were acquired several times while collecting data 
in each vineyard. Using the described procedure, 110 (112) and 
131 (134) reflectance profiles of healthy and infected plants 
were prepared, respectively, in July (September), for Cabernet 
Sauvignon and 104 (120), and 106 (121) for Chardonnay. 

 

Fig. 5. Example of rectangle ROI used for obtaining reflectance profiles in one 

of the hyperspectral images of an infected plant. 

Several optical phenomena must be considered when 
applying close-range hyperspectral sensing for plant monitoring 
in natural conditions. The radiance of an observed leaf can 
include additive polynomial terms R2, RT, T2, R3, ..., where R 
and T are, respectively, the reflectance and transmittance of the 
surrounding leaves [25]. Then, the radiance sensed by the 

detector is highly affected by the inclination of the leaf toward 
the illumination and by the distance between the leaf and the 
sensor [14]. 

There are two common methods, the Multiplicative Scatter 
Correction (MSC) and Standard Normalize Variate (SNV) 
[14, [25]], suitable to compensate for the described phenomena. 
SNV does not require a predefined reference spectrum, thus it 
was used for pre-processing spectral data. With SNV, each 
profile is divided by its standard variance after subtracting its 
mean value. This normalization removes huge differences in 
reflectivity, especially in the near‑infrared portion of the 
spectrum, where high reflectance from the leaves occurs. Due to 
multi-scattering phenomena, several reflections add together, 
resulting in high variation in the spectrum. This should be 
removed to properly classify the data. Fig. 6 shows the effect of 
SNV correction.   

  

Fig. 6. Example of reflectance spectra before and after SNV correction for a 
healthy plant of Chardonnay variety. 

III. CLASSIFICATION RESULTS 

The feature vector for classifying one spectral profile as 
healthy (class 0) or infected (class 1) contains all wavelengths 
up to 880 nm, i.e., 160 reflectance values. Higher wavelengths 
were excluded as a high noise level is present in that part of the 
spectrum [14]. Wavelength 880 nm was selected as the upper 
end of the passband for the last narrowband filter in the designed 
multispectral camera, centered at 850 nm. A Multi-Layer 
Perceptron (MLP) neural network was chosen as the binary 
classifier, as MLP is frequently used to model complex 
relationships between inputs and outputs in the scientific 
literature [13]. In this study, one hidden layer with ten neurons 
is placed between the input and output layers. To prevent 
overfitting of the model on training data and to better predict 
unseen data, k-fold cross-validation was used [26], where k was 
set to 10, splits were dataset-wise, and n = 5 repeats were 
conducted to reduce the error in the estimate of the mean model 
performance. All code was implanted in Python programming 
language.

 

Fig. 7. Flowchart with all steps of conducted research, from image acquisition 

to classification. 



 

 

Fig. 7 presents the flowchart of the adopted methodology 
together with the structure of the MLP classifier. 

Table 1. shows mean values and standard deviation for 
accuracy, precision, and recall. With the data acquired in 
September, the mean classification accuracy for both varieties is 
very high, i.e., 96.1 % and 96.9 % for Cabernet Sauvignon and 
Chardonnay, respectively. The higher value for the Chardonnay 
variety may be explained by the fact that the texture of the 
Chardonnay's leaf is rougher compared with Cabernet 
Sauvignon. This texture might induce more differences in 
reflectance spectra when symptoms are expressed. An additional 
test using all data together resulted in lower mean accuracy than 
for separate tests of each variety. These findings align with the 
other authors' conclusion that each grapevine variety requires 
fine-tuning of the classification algorithm. 

TABLE I.  CLASSIFICATION RESULTS 

Month 
Grapevine 

variety 

Accuracy [%] 

mean (std) 

Precision [%] 

mean (std) 

Recall [%] 

mean (std) 

Sept. CS 96.1 (3.2) 97.4 (3.9) 95.4 (5.5) 

 Ch 96.9 (3.9) 97.7 (5.1) 96.1 (6.4) 

 CS and Ch 92.3 (4.2) 93.3 (4.4) 92.0 (7.0) 

July CS 91.5 (5.2) 91.3 (6.3) 93.9 (7.4) 

 Ch 90.2 (3.5) 89.2 (5.1) 91.7 (4.8) 

 CS and Ch 88.3 (2.5) 88.3 (2.5) 89.2 (4.0) 

CS - Cabernet Sauvignon, Ch - Chardonnay, std - standard deviation  

The results were different when using data collected in July. 
The mean accuracies are smaller than in September but still very 
satisfactory, i.e., 91.5 % and 90.2 % for Cabernet Sauvignon and 
Chardonnay, respectively. In this one, Cabernet Sauvignon 
shows a slightly higher value than Chardonnay. That can be 
because Cabernet Sauvignon is the most susceptible grapevine 
variety to FD [21], and symptoms are expressed more rapidly in 
the first part of the season. As expected, lower mean accuracy 
was obtained with profiles for both varieties together. 

Acquired data from July and September showed that the 
initial hypothesis is valid. Although visible symptoms are not 
easy to spot, the progression of FD develops subtle spectral 
changes that can be detected using a hyperspectral camera. 

IV. CONCLUSION 

This paper shows that FD detection can be accomplished by 
a hyperspectral camera using reflectance profiles for only green 
leaves when the discoloring is not highly expressed yet. The 
contribution of this research is not only in obtaining high 
accuracy but also in the proposed acquisition setup. As 
mentioned, previous researches were based on hyperspectral 
data collected in highly controlled conditions, which are 
unsuitable for in-field circumstances. For implementation in the 
field, acquired data must include variability influenced by multi-
scattering, leaf orientation, the distance between leaves and the 
camera, and changes in incident light. Otherwise, when applied 
to the field, the trained detector could lead to the wrong 
classification. In this research, data were collected in conditions 
that represent actual vineyard scenarios. In this context, it was 

shown that hyperspectral pre-processing reduces enough 
variability in input data to provide high classification accuracy. 

Furthermore, these results are the starting point for future 
work with the data acquired using the developed multispectral 
camera. The main goal is to reduce needed investment by several 
orders of magnitude. Despite the fact that high accuracy using a 
hyperspectral camera was obtained, its systematic use in the 
field is challenging due to the high price of this instrument. Also, 
in theory, it is possible to use this scanner on a vehicle. However, 
the main issue is the very high cost of that setup. The acquisition 
procedure is time-consuming, and during image collection, 
illumination conditions change which can influence accuracy. 
Time-varying illumination induces variation in the measured 
spectrum that can affect accuracy, which is considered a 
limitation of this research. Although taking images of the 
reference whiteboard to compensate for that effect was 
performed together with spectrum pre-processing technique, it 
would be appropriate to design and use a controlled illumination 
source, possibly placing a camera and illuminator inside a hood 
and on a cart or tractor to change position more rapidly in 
vineyards. This idea will be considered in future research.  

As was stated, the exceptionally high price further restricts 
the application of hyperspectral scanners, and some solution 
based on more affordable multispectral cameras is needed. 
Planned future research is to test the possible FD detection using 
an in-house assembled multispectral system, which is in a lower 
price range compared to commercially available solutions with 
a similar number of bands. This device has nine bands thus, 
contains significantly less information than the channels of a 
hyperspectral camera. However, additional image features, such 
as texture-based, can improve classification results, and they 
will be considered in future research. Furthermore, some recent 
object detection algorithms, like those from the YOLO family, 
are alternative, promising methods for FD detection [5]. If the 
results are satisfying, a platform and procedure to verify this 
approach the next summer will be prepared. 

As a final remark, images of only two grapevine varieties 
were acquired in the presented work. Although Cabernet 
Sauvignon and Chardonnay represent red and white grapes and 
are among the most cultivated grapevine varieties, it would be 
desirable to include other varieties to assess the generalization 
capabilities of the detector and provide a protocol for fine-tuning 
in each specific condition. This will be an additional direction 
for further improvement of current research. 
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