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Abstract

Let R be a real closed field and let X be an affine algebraic variety
over R. We say that X is universally map rigid (UMR for short) if, for
each irreducible affine algebraic variety Y over R, the set of nonconstant
rational maps from Y to X is finite. A bijective map ϕ : X̃ −→ X
from an affine algebraic variety over R to X is called weak change of the
algebraic structure of X if it is regular and ϕ−1 is a Nash map preserving
nonsingular points. We prove that, when dim(X) ≥ 1, there exists a

set {ϕt : X̃t −→ X}t∈R of weak changes of the algebraic structure of X

such that each X̃t is UMR and, for each t, s ∈ R with t 6= s, X̃t and X̃s

are birationally nonisomorphic. As an immediate consequence, we solve
the problem about the cardinality of the moduli space of birationally
nonisomorphic affine real algebraic structures on a topological space, on
an affine real Nash manifold and, when R is the field of real numbers, on
a smooth manifold. The answer to this problem was already known in the
case of compact smooth manifolds.

Mathematics Subject Classification (2000): 14P05, 14P20

1 The theorems

The purpose of this paper is to prove a theorem of rigidity for affine algebraic
varieties over a real closed field, which implies basic facts about the cardinality
of the set of distinct affine real algebraic structures on a topological space or on
a manifold.

Let R be a fixed real closed field. By real algebraic variety, we mean an
affine algebraic variety over R. Algebraic varieties and regular maps between
them are understood in the sense of Serre [20, 8]. The concept of rational map
can be defined in the standard way. Unless otherwise indicated, all real alge-
braic varieties are equipped with the strong topology induced by the ordering
structure on R. We will use standard notions from Real Nash Geometry also
(see [8]).

Let us introduce the notions of universal map rigidity and of weak change
of the algebraic structure of a real algebraic variety.

Definition 1.1 A real algebraic variety X is said to be universally map rigid,
or UMR for short, if, for each irreducible real algebraic variety Y , the set of
nonconstant rational maps from Y to X is finite.

This definition is very restrictive. For example, if a real algebraic variety is
UMR, then its group of birational automorphisms is finite. For this reason, all
rational real algebraic varieties of positive dimension are not UMR. Significant
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examples of UMR real algebraic varieties are the irreducible real algebraic curves
of genus ≥ 2 (see Lemma 2.3 and Section 3).

Recall that a map ψ : X −→ M between real algebraic varieties is said
to be a biregular embedding if ψ(X) is an algebraic subvariety of M and the
restriction of ψ from X to ψ(X) is a biregular isomorphism.

Definition 1.2 Let X and X̃ be real algebraic varieties. We say that a map
ϕ : X̃ −→ X is a weak change of the algebraic structure of X if there exist
nonsingular real algebraic varieties M and M̃ , biregular embeddings ψ : X −→
M and ψ̃ : X̃ −→ M̃ and a bijective map Φ : M̃ −→M such that:

(1) Φ is regular and, when M and M̃ are equipped with their natural structures
of affine real Nash manifold, Φ−1 is a Nash map,

(2) the following diagram commutes

X̃
ψ̃−→ M̃

ϕ ↓ ↓ Φ

X
ψ−→ M.

Observe that, if ϕ : X̃ −→ X has the above properties, then it is bijective and
regular, and ϕ−1 is a Nash map which sends nonsingular points into nonsingular
points. In particular, if X is nonsingular, then X̃ is nonsingular also.

We have the following theorem of rigidity.

Theorem 1.3 Given a real algebraic variety X, there is a weak change ϕ :
X̃ −→ X of its algebraic structure such that X̃ is UMR.

Let X and Y be real algebraic varieties. By the symbol X 67→ Y , we mean
that every rational map from X to Y is Zariski locally constant or, equivalently,
that every rational map from an irreducible component of X to Y is constant.

Definition 1.4 We say that X and Y are algebraically unfriendly if both con-
ditions X 67→ Y and Y 67→ X hold.

Observe that if X and Y are algebraically unfriendly, then they are bira-
tionally nonisomorphic also.

Let X be a fixed real algebraic variety of positive dimension.
Applying Theorem 1.3 to X ×R, we obtain the main result of this paper:

Theorem 1.5 There exists a set {ϕt : X̃t −→ X}t∈R of weak changes of the
algebraic structure of X such that each X̃t is UMR and, for each t, s ∈ R with
t 6= s, X̃t and X̃s are algebraically unfriendly.

This result allows us to compute the cardinality of the moduli space of
birationally nonisomorphic affine real algebraic structures on a topological space,
on an affine real Nash manifold and on a smooth manifold.

Corollary 1.6 Let T be a topological space. Suppose T is infinite and admits
an affine real algebraic structure. Then the set of birationally nonisomorphic
UMR affine real algebraic structures on T is equipollent to R.
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When R = R, examples of topological spaces admitting an affine real al-
gebraic structure can be found in [1, 2, 3, 4, 5, 7, 17]. In [10], it is proved
that every affine real Nash manifold is Nash isomorphic to a nonsingular real
algebraic variety so we have:

Corollary 1.7 Given a Nash submanifold N of Rn of positive dimension, the
set of birationally nonisomorphic UMR nonsingular real algebraic varieties that
are Nash isomorphic to N is equipollent to R.

Suppose now R = R. Recall that a smooth manifold admits a structure of
nonsingular real algebraic variety if and only if it is diffeomorphic to the interior
of a compact smooth manifold with (possibly empty) boundary (see [1, 22]).

Corollary 1.8 Let M be a smooth manifold. Suppose M has positive dimension
and is diffeomorphic to the interior of a compact smooth manifold with (possibly
empty) boundary. Then the set of birationally nonisomorphic UMR nonsingular
real algebraic varieties that are diffeomorphic to M has the power of continuum.

The previous result was already known when M is compact and the UMR
condition is dropped [6, 9].

Remark. Since the set of real algebraic varieties is equipollent to R, the three
previous corollaries remain true if we replace “birationally” with “biregularly”
and/or we omit the UMR condition.

The theorems presented above were announced in [12, Section 3]. Further
results concerning rigidity–type properties of regular and rational maps between
real algebraic varieties can be found in [14].

Our proofs are based on elementary arguments. We are greatly indebted to
Marco Forti and János Kollár for their help in improving the original version of
Theorem 1.5. We thank also A. Tognoli, R. Benedetti, E. Ballico, S. Baratella
and M. Andreatta for several useful discussions.

2 A real de Franchis theorem and a technique
of Whitney

The main results of this section are Lemma 2.3 and Lemma 2.8. The first is a
real version of the classical finiteness theorem of de Franchis [11], which follows
immediately from Theorem 1.4 of [13] and Lemma 3.1 of [14]. The second
concerns the existence of vector bases of Rn having good properties with respect
to a given algebraic subset of Rn. The proof of this result is available adapting
to the real algebraic situation the arguments used by Whitney in Section 10,
Chapter 7 of [23]. The present section is, however, self–contained.

Let C be the algebraic closure of the fixed real closed field R, which coincides
with R[

√
−1 ] = R[x]/(x2 + 1). Equip each projective space Pn(C) with its

natural structure of algebraic variety over C, indicate by σn : Pn(C) −→ Pn(C)
the complex conjugation map and identify Pn(R) with the fixed point set of
σn. A subset S of Pn(C) is said to be defined over R if it is σn–invariant and
its real part S(R) is defined as the intersection S ∩ Pn(R). By real algebraic
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curve and complex algebraic curve (defined over R), we mean respectively a 1–
dimensional irreducible real algebraic variety and a 1–dimensional nonsingular
irreducible Zariski closed algebraic subvariety of some Pn(C) (defined over R).
For each real algebraic curve D, there is a unique (up to biregular isomorphism)
complex algebraic curve DC defined over R such that DC(R), viewed in the
natural way as a real algebraic variety, is birationally isomorphic to D. Such
a curve DC is called nonsingular projective complexification of D. The genus
g(D) of D is defined to be the genus g(DC) of DC .

Let X be a real algebraic variety. We indicate by Nonsing(X) the set of
nonsingular points of X of maximum dimension, i.e., of dimension dim(X). If
an algebraic subvariety D of X is a real algebraic curve, then we say that D is a
real algebraic curve of X (recall that, according to Serre’s definition, algebraic
subvarieties are assumed to be Zariski locally closed). For each integer k and
for each point p of X, we denote by CX(k, p) the set of real algebraic curves of
X of genus k and containing p.

Definition 2.1 Let X be an algebraic subset of Rn of dimension r. First,
suppose r < n. We define the complete intersection degree cideg(X,Rn) of X
in Rn as the minimum integer c such that there are a point p ∈ Nonsing(X)
and polynomials P1, . . . , Pn−r in R[x1, . . . , xn] vanishing on X with independent
gradients at p and c =

∏n−r
i=1 deg(Pi). If r = n, then we consider cideg(X,Rn)

equal to 1.

Lemma 2.2 Let X be an irreducible algebraic subset of Rn and let Z be a non–
empty Zariski open subset of X. Define c := cideg(X,Rn) and e := (c− 1)(c−
2)/2. Then there are k ∈ {0, 1, . . . , e} and p ∈ Z such that

⋃
D∈CX(k,p)D is

Zariski dense in X.

Proof. Let r := dim(X). If r = n, then the lemma is evident. Suppose r < n.
By definition of c, there are polynomials P1, . . . , Pn−r vanishing on X with in-
dependent gradients at some point of Nonsing(X) such that c =

∏n−r
i=1 deg(Pi).

For each i ∈ {1, . . . , n−r}, define Xi := P−1
i (0). Fix a point p ∈ Nonsing(X)∩Z

such that the gradients of P1, . . . , Pn−r at p are independent. Identify Rn with a
subset of Pn(R) by the affine chart which maps (x1, . . . , xn) into [x1, . . . , xn, 1].
Consider X and each Xi as subsets of Pn(R) and hence as subsets of Pn(C). Let
L be the set of (n−r+1)–dimensional linear subspaces of Pn(R) containing p and
transverse to Nonsing(X) at p. For each L ∈ L, denote by DL the irreducible
component of L∩X containing p. Observe that each DL is a real algebraic curve
of X. Fix L ∈ L and denote by LC , DL,C , X1,C , . . . , Xn−r,C the Zariski closures
of L,DL, X1, . . . , Xn−r in Pn(C) respectively. Remark that DL,C is an irre-
ducible component of LC ∩

⋂n−r
i=1 Xi,C , p ∈ Nonsing(LC)∩

⋂n−r
i=1 Nonsing(Xi,C)

and Nonsing(LC) and {Nonsing(Xi,C)}n−ri=1 are in general position in Pn(C) lo-
cally at p. By Bezout’s theorem, it follows that deg(DL,C) ≤

∏n−r
i=1 deg(Xi,C) ≤

c. Applying the Castelnuovo Bound Theorem, we obtain that the geometric
genus of DL,C , which is equal to g(DL), is less than or equal to e. On the other
hand, the Implicit Function Theorem for Nash maps ensures that

⋃
L∈LDL

contains a neighborhood of p in Nonsing(X) so it is Zariski dense in X. Since
X is irreducible and

⋃
L∈LDL ⊂

⋃e
k=0

⋃
D∈CX(k,p)D, there is k ∈ {0, 1, . . . , e}

such that
⋃
D∈CX(k,p)D is Zariski dense in X.
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Let X and Y be real algebraic varieties. Suppose X irreducible. We indi-
cate by Ratio∗(X,Y ) (resp. R∗(X,Y )) the set of nonconstant rational (resp.
regular) maps from X to Y .

Let D and E be real algebraic curves, let f ∈ R∗(D,E) and let DC and
EC be the nonsingular projective complexifications of D and E respectively.
Define Df := Nonsing(D) ∩ f−1(Nonsing(E)) and f ′ : Df −→ Nonsing(E)
as the restriction of f from Df to Nonsing(E). Identify Df and Nonsing(E)
with Zariski open subsets of DC(R) and EC(R) respectively. By Zariski’s Main
Theorem, we know that there is a unique complex regular map fC : DC −→ EC
which extends f ′. This map is called complexification of f .

Let A and B be complex algebraic curves. Suppose g(B) ≥ 2. The finiteness
theorem of de Franchis asserts that the set R∗

C(A,B) of nonconstant complex
regular maps from A to B is finite. In [18], H. Martens improved this result
showing first the existence of an upper bound for ]R∗

C(A,B) depending only
on g(A). Let N be the set of non–negative integers. We denote by M : N ×
(N \ {0, 1}) −→ N the function which maps (a, b) into the maximum integer
k ∈ N such that there are complex algebraic curves A and B with g(A) = a,
g(B) = b and ]R∗

C(A,B) = k. By Hurwitz’s formula, it follows thatM(a, b) = 0
if a < b so we can define the function M∗ as the smallest function f : N× (N \
{0, 1}) −→ N such that M ≤ f and f(a, b + 1) ≤ f(a, b) ≤ f(a+ 1, b) for each
(a, b) ∈ N× (N \ {0, 1}). An explicit upper bound for M∗ can be found in [21].

Lemma 2.3 Let X be an irreducible algebraic subset of Rn and let D be a
real algebraic curve with g(D) ≥ 2. Then Ratio∗(X,D) is finite. Moreover, if
c := cideg(X,Rn) and e := (c− 1)(c− 2)/2, then we have:

]Ratio∗(X,D) ≤M∗(e, g(D)).

Proof. Let h := M∗(e, g(D)). Suppose ]Ratio∗(X,D) > h. Then, there
are a non–empty Zariski open subset Z of X and maps f0, . . . , fh in R∗(Z,D)
which represent distinct elements of Ratio∗(X,D). By Lemma 2.2, there are
k ∈ {0, 1, . . . , e} and p ∈ Z such that

⋃
E∈CX(k,p)E is Zariski dense in X. Define

∆ :=
⋃h
i=0 f

−1
i (fi(p)) ∪

⋃
i 6=j{x ∈ Z | fi(x) = fj(x)}.

Since ∆ is a proper Zariski closed subset of Z, there is E ∈ CX(k, p) such that
E 6⊂ ∆. Let E′ := E ∩ Z. Observe that g(E′) = g(E) = k. By definition
of ∆, we have that the maps f0|E′ , . . . , fh|E′ are h + 1 distinct elements of
R∗(E′, D). In particular, their complexifications are h+ 1 distinct elements of
R∗
C(E′C , DC). This is impossible. In fact, by the de Franchis–Martens theorem,

]R∗
C(E′C , DC) ≤M(k, g(D)) ≤ h.

By Nash set, we mean a Nash subset of an open semi–algebraic subset of
some Rn (see Definition 8.6.1 of [8]). Let V ⊂ Rn be a Nash set. A point
p of V is Nash nonsingular of dimension d if there is an open semi–algebraic
neighborhood P of p in Rn such that V ∩ P is a Nash submanifold of Rn of
dimension d. Indicate by V ∗ the set of Nash nonsingular points of V of maximum
dimension. Let W ⊂ Rm be another Nash set. A map f : V −→ W is a Nash
map if there exists an open semi–algebraic neighborhood U of V in Rn and an
extension F : U −→ Rm of f from U to Rm, which is Nash, i.e., semi–algebraic
of class C∞.
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The next result is quite known. However, for completeness, we give a simple
proof. First, we fix a convenction: the dimension of the empty set is equal to
−1.

Lemma 2.4 Let V and W be Nash sets and let f : V −→ W be a Nash
map. For each integer k, the sets Sk(f) := {x ∈ V | dim(f−1(f(x))) ≥ k}
and Tk(f) := {y ∈W | dim(f−1(y)) ≥ k} are semi–algebraic.

Proof. Fix an integer k. We may suppose k non–negative. The set Sk(f)
is the inverse image of Tk(f) under f so it suffices to prove that Tk(f) is a
semi–algebraic subset of W . Let us proceed by induction on ν := dim(V ). The
case ν = 0 is evident. Let ν ≥ 1. Indicate by V1, . . . , Vq the Nash irreducible
components of V . Since Tk(f) =

⋃q
i=1 Tk(f |Vi

), we may suppose that V is
Nash irreducible. Moreover, replacing W with the smallest Nash subset of
W containing f(V ), we may suppose that dim(f(V )) = dim(W ) also. Let
V be the smallest Nash subset of W containing V \ V ∗. By Sard’s theorem,
there is a Nash subset Y of W such that W \ Y ⊂ W ∗, dim(f−1(Y )) < ν
and the restriction g of f from V \ (V ∪ f−1(Y )) to W \ Y is a submersion.
In particular, we have that Tk(g) = f(V \ V ) \ Y if k ≤ ν − dim(W ) and
Tk(g) = ∅ if k > ν − dim(W ). In any case, Tk(g) is semi–algebraic. Since
dim(V ∪ f−1(Y )) < ν and Tk(f) = Tk(g) ∪ Tk(f |V ∪f−1(Y )), the lemma follows
by induction.

Let Gn,k(R) be the grassmannian of k–dimensional vector subspaces of Rn.
For each L ∈ Gn,k(R) and for each x ∈ Rn, we indicate by x + L the affine
k–plane of Rn defined as {x+ v ∈ Rn | v ∈ L}. As is usual, Gn,1(R) is denoted
by Pn−1(R). For each v ∈ Rn \{0}, we use the symbol [v] to indicate the vector
line of Rn generated by v, viewed as an element of Pn−1(R). Given a family
{S1, . . . , Sm} of subsets of Rn, we denote by Span(S1, . . . , Sm) the smallest
vector subspace of Rn containing

⋃m
i=1 Si.

In the remainder of this section, X will be a fixed algebraic subset of Rn of
dimension r.

Definition 2.5 Let k ∈ {0, 1, . . . , n−r} and let L ∈ Gn,k(R). We say that L is
good for X in Rn if supx∈Rn ]((x+L)∩X) is finite. We denote by Wk(X,Rn)
the set of elements of Gn,k(R) good for X in Rn.

Lemma 2.6 For each k ∈ {0, 1, . . . , n−r}, Wk(X,Rn) is a dense semi–algebraic
subset of Gn,k(R).

Proof. Step I. Let us show that each Wk(X,Rn) is semi–algebraic. Fix k ∈
{0, 1, . . . , n − r}. For each L ∈ Gn,k(R), let L⊥ be the orthogonal of L in Rn

and let πL : Rn −→ L⊥ be the orthogonal projection of Rn onto L⊥. Define
V := {(x, L) ∈ Rn×Gn,k(R) |x ∈ L⊥} and ρ : X×Gn,k(R) −→ V by ρ(x, L) :=
(πL(x), L). Observe that V is Zariski closed in Rn×Gn,k(R), ρ is a regular map
and, for each (x, L) ∈ X×Gn,k(R), ρ−1(ρ(x, L)) = ((x+L)∩X)×{L}. Let S∗k
be the set of points (x, L) ∈ X×Gn,k(R) such that the dimension of ρ−1(ρ(x, L))
is positive and let πn,k : Rn × Gn,k(R) −→ Gn,k(R) be the natural projection.
We have that S∗k (and hence πn,k(S∗k)) is semi–algebraic. On the other hand,
using Milnor’s theorem concerning upper bounds for the sum of Betti numbers
of a real algebraic set [8, Proposition 11.5.4], it follows easily that Sk(X,Rn) is
equal to Gn,k(R) \ πn,k(S∗k) and hence it is semi–algebraic.
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Step II. We will prove that each Wk(X,Rn) is dense in Gn,k(R). First, let
us consider the case k = 1 (hence n > r). If r = 0, then it is evident. Let
r ≥ 1 (hence n ≥ 2). We know that W1(X,Rn) = Pn−1(R) \ πn,1(S∗1 ) so it
suffices to show that, as a semi–algebraic set, πn,1(S∗1 ) has dimension < n− 1.
Suppose this is not true. Then there are a non–empty Nash submanifold M of
X × Pn−1(R) contained in S∗1 and an open subset N of Pn−1(R) contained in
πn,1(S∗1 ) such that the restriction π′ : M −→ N of πn,1 from M to N is a Nash
isomorphism. Let φn : Rn−1 −→ Pn−1(R) be the affine chart of Pn−1(R) which
maps w = (w1, . . . , wn−1) into [w] where w := (w1, . . . , wn−1, 1) ∈ Rn, let U be
a non-empty open semi–algebraic subset of Rn−1 such that φn(U) ⊂ N and let
G : U −→ Rn be the unique Nash map such that (π′)−1([w]) = (G(w), [w]) for
each w ∈ U . Define the Nash map ψ : U×R −→ Rn by ψ(w, t) := G(w)+tw and
the Nash function Dψ : U ×R −→ R as the determinant of the jacobian matrix
of ψ. Observe that, being (G(w), [w]) ∈ S∗1 for each w ∈ U , ψ(U ×R) ⊂ X. Fix
w ∈ U . By simple considerations, we see that Dψ(w, t) is a monic polynomial
in R[t] of degree n−1 so, for some t, Dψ(w, t) 6= 0. In particular, it follows that
ψ(U × R) (and hence X) has dimension n, which contradicts our assumption.
Let us complete the proof proceeding by induction on n ≥ r. If n = r, the
density is evident. Let n > r. The case k = 0 is also evident so we may suppose
that k ≥ 1. Fix L0 ∈ Gn,k(R). Let ν0 be an element of Pn−1(R) contained in
L0. By the case k = 1, we can choose ν ∈W1(X,Rn) so close to ν0 that ν⊥ 6⊃ L0

and L′ := Span(ν, L0∩ ν⊥) is arbitrarily close to L0. Let πν : Rn −→ ν⊥ be the
orthogonal projection of Rn onto ν⊥ and let Xν be the Zariski closure of πν(X)
in ν⊥. Observe that, being ν ∈ W1(X,Rn), dim(Xν) = r. By induction, there
is a (k− 1)–dimensional vector subspace T of ν⊥ good for Xν in ν⊥ so close to
L0∩ν⊥ that L := Span(ν, T ) is arbitrarily close to L′ (and hence to L0). Define
a, b ∈ N as follows: a := supx∈Rn ]((x+ν)∩X) and b := supx∈ν⊥ ]((x+T )∩Xν).
Fix x ∈ Rn. We have that (πν(x)+T )∩Xν = {p1, . . . , pm} where m ≤ b. Since
(x + L) ∩ X =

⋃m
j=1((pj + ν) ∩ X), ]((x + L) ∩ X) ≤ ab. It follows that

L ∈Wk(X,Rn) and the proof is complete.

Let (Rn)n∗ be the set of n–uples (v1, . . . , vn) in (Rn)n such that {v1, . . . , vn}
is a base of Rn. Equip (Rn)n∗ with the relative topology induced by (Rn)n.
Define an equivalence relation on (Rn)n∗ as follows: (v1, . . . , vn) ∼ (v′1, . . . , v

′
n)

if and only if the sets {[v1], . . . , [vn]} and {[v′1], . . . , [v′n]} coincide. Indicate by
B(Rn) the quotient topological space (Rn)n∗/ ∼. Observe that B(Rn) can be
identified, in a natural way, with a dense open subset of (Pn−1(R))nsym. We call
an element {ν1, . . . , νn} of B(Rn) geometric base of Rn and each vector line νi
axis of such base. Let B be a geometric base of Rn and let k ∈ {0, 1, . . . , n}. A
coordinate k–plane of B is a k–dimensional vector subspace of Rn generated by
k axes of B. The unique coordinate 0–plane of B is {0}.

Definition 2.7 We say that a geometric base B of Rn is good for X if, for
each k ∈ {0, 1, . . . , n− r}, all coordinate k–planes of B are good for X in Rn.

Lemma 2.8 Let H(X,Rn) be the set of elements of B(Rn) good for X. Then
the interior of H(X,Rn) in B(Rn) is dense in B(Rn). In particular, H(X,Rn)
is non–empty.

Proof. The case n = r is evident. Suppose n > r. Let σ : (Rn)n∗ −→ B(Rn)
be the natural projection. For each k ∈ {1, . . . , n − r}, let Hk be the interior
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of Wk(X,Rn) in Gn,k(R). By Lemma 2.6, it follows that each Hk is a dense
(semi–algebraic) subset of Gn,k(R). For each χ ⊂ {1, . . . , n} with χ 6= ∅, let ϕχ :
(Rn)n∗ −→ Gn,]χ(R) be the map which sends (v1, . . . , vn) into Span({vi}i∈χ).
Define the map

ϕ : (Rn)n∗ −→
∏
χ⊂{1,...,n},1≤]χ≤n−r Gn,]χ(R)

by ϕ :=
∏
χ⊂{1,...,n},1≤]χ≤n−r ϕχ and the set H by

H := ϕ−1
(∏

χ⊂{1,...,n},1≤]χ≤n−rH]χ

)
.

Since each map ϕχ is continuous and open, we have that H is a dense open
subset of (Rn)n∗ . On the other hand, H = σ−1(σ(H)) so σ(H) is a dense open
subset of B(Rn). Since σ(H) is contained in H(X,Rn), we are done.

3 Proofs of the theorems

We need some preparations.
Let E1, . . . , En be real algebraic curves, let T be the product variety

∏n
i=1Ei

and let Y be a s–dimensional algebraic subvariety of T . For each χ ⊂ {1, . . . , n},
define Tχ :=

∏
i∈χEi (where T∅ is considered equal to a point) and indicate by

πχ : T −→ Tχ the natural projection. We say that Y is in good position into
T if, for each χ ⊂ {1, . . . , n} with ]χ ≥ s, Gχ(Y, T ) := supp∈Tχ

](Y ∩ π−1
χ (p)) is

finite. If Y has this property, then, for each k ∈ {0, 1, . . . , n− s}, we define the
integer Gk(Y, T ) :=

∑
χ⊂{1,...,n},]χ=n−kGχ(Y, T ).

Let X be a r–dimensional algebraic subset of Rn and let k ∈ {0, 1, . . . , n−r}.
Given a k–plane L good for X in Rn, we define the integer NL(X,Rn) :=
supx∈Rn ]((x + L) ∩ X). Let B be a geometric base of Rn good for X. Indi-
cate by B(k) the set of coordinate k–planes of B and define NB(k)(X,Rn) :=∑
L∈B(k)NL(X,Rn). Observe that, if B is the geometric base of Rn induced

by the canonical base, then B is good for X if and only if X is in good posi-
tion into Rn. Moreover, in this situation, Gk(X,Rn) = NB(k)(X,Rn) for each
k ∈ {0, 1, . . . , n− r}.

Let d be an odd positive integer. Define the nonsingular real algebraic curve
Dd as {(x, y) ∈ R2 | yd = 1 + x2d} and the regular map ψd : Dd −→ R by
ψd(x, y) := x. Since Dd is the graph of the Nash function on R which maps
x into d

√
1 + x2d, we have that ψd is a Nash isomorphism. Let us show that

g(Dd) ≥ (d − 1)(d − 2)/2. Let Fd := {(x, y) ∈ R2 |xd + yd = 1} and let Pd :
Dd −→ Fd be the polynomial map defined by Pd(x, y) := (−x2, y). Evidently,
the complexification Pd,C : Dd,C −→ Fd,C of Pd is nonconstant so, by Hurwitz’s
formula, it follows that g(Dd) ≥ g(Fd) = (d− 1)(d− 2)/2 as desired.

Proof of Theorem 1.3. Step I. Without loss of generality, we may suppose that
X is a r–dimensional algebraic subset of Rn with r ≥ 1 and n ≥ 2r − 1. By
Lemma 2.8, there is a geometric base B of Rn good for X. Up to a linear change
of coordinates of Rn, we may suppose that B coincides with the geometric base
of Rn induced by the canonical base. Let d be an odd positive integer such
that h := (d − 1)(d − 2)/2 ≥ 2 and let Dd and ψd : Dd −→ R be as above.
Define T as the product variety Dn

d , ψnd : T −→ Rn as the nth–power of ψd,
X̃ := (ψnd )−1(X) and ϕ : X̃ −→ X as the restriction of ψnd from X̃ to X. It
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is immediate to see that ϕ is a weak change of the algebraic structure of X
and X̃ is in good position into T . Moreover, for each k ∈ {0, 1, . . . , n − r},
Gk(X̃, T ) = NB(k)(X,Rn).

Step II. We will show that, for each irreducible algebraic subset Y of some
Rm, it holds:

]Ratio∗(Y, X̃) ≤
∑r−1
k=0NB(k)(X,Rn) · M∗(eY , h)n−k (1)

where, setting cY := cideg(Y,Rm), eY := (cY − 1)(cY − 2)/2. In particu-
lar, X̃ will be UMR. Fix such a Y . By Lemma 2.3, we know that M :=
]Ratio∗(Y,Dd) ≤M∗(eY , h) (recall that g(Dd) ≥ h). IfM = 0, thenRatio∗(Y, T ) =
∅ so Ratio∗(Y, X̃) = ∅ also and (1) is true. Suppose M ≥ 1. Let Z be a non–
empty Zariski open subset of Y and let g1, . . . , gM ∈ R∗(Z,Dd) such that the
rational maps from Y to Dd represented by the pairs {(Z, gi)}Mi=1 are exactly the
elements of Ratio∗(Y,Dd). Observe that R∗(Z,Dd) = {g1, . . . , gM}. Define:

R∗ := {f ∈ R∗(Z, T ) | f(Z) ⊂ X̃}.

Identify Ratio∗(Y, X̃) with R∗ in the natural way. For each i ∈ {1, . . . , n},
indicate by πi : T −→ Dd the natural projection of T onto its ith–coordinate
space. For each χ ⊂ {1, . . . , n} with χ 6= ∅, let F (χ) be the set of functions from
χ to {1, . . . ,M}, let χ′ := {1, . . . , n} \ χ and define Tχ′ and πχ′ : T −→ Tχ′ as
above. Moreover, for each χ ⊂ {1, . . . , n} with χ 6= ∅ and for ξ ∈ F (χ), define:

R∗
χ,ξ := {f ∈ R∗ |πi ◦ f = gξ(i) for each i ∈ χ, πχ′ ◦ f is constant}.

Evidently, the family of R∗
χ,ξ’s is a partition of R∗. Fix χ ⊂ {1, . . . , n} with

χ 6= ∅ and ξ ∈ F (χ). First, suppose ]χ ≤ n − r. Let us show that R∗
χ,ξ = ∅.

Suppose this is not true. Then there would exist f ∈ R∗(Z, T ) and p ∈ Tχ′

such that f(Z) ⊂ X̃ ∩ π−1
χ′ (p). Since X̃ is in good position into T , f would

be constant which contradicts our assumption. Suppose now ]χ > n − r and
R∗
χ,ξ 6= ∅. Fix z ∈ Z. Define Ψz : R∗

χ,ξ −→ X̃ by Ψz(f) := f(z) and zχ,ξ as the
point of Tχ such that {zχ,ξ} = πχ(f(Z)) for some (and hence every) element f
of R∗

χ,ξ. Evidently, Ψz is injective and Ψz(R∗
χ,ξ) ⊂ X̃ ∩π−1

χ (zχ,ξ). On the other
hand, ]χ ≥ n − r + 1 ≥ r so, by the good position of X̃ into T , we infer that
R∗
χ,ξ is finite and ]R∗

χ,ξ ≤ Gχ(X̃, T ). In particular, R∗ is finite and it holds:

]R∗ =
∑
χ⊂{1,...,n}, ]χ>n−r Gχ(X̃, T ) · ]F (χ) =

=
∑r−1
k=0Gk(X̃, T ) ·Mn−k =

=
∑r−1
k=0NB(k)(X,Rn) ·Mn−k ≤

≤
∑r−1
k=0NB(k)(X,Rn) · M∗(eY , h)n−k.

The next lemma is the semi–algebraic version of a result suggested to us by
János Kollár. It will be used in the proof of Theorem 3.3 below.

Lemma 3.1 Let M be a Nash submanifold of Rn, let ν be an integer and let
f : M −→ R be a Nash function such that, for each s ∈ f(M), f−1(s) is
a semi–algebraically connected Nash submanifolds of Rn of dimension ν. For
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each s ∈ f(M), denote by Xs the Zariski closure of f−1(s) in Rn. Let Y be
a real algebraic variety. Define Kf (Y ) as the set of points s of f(M) such
that there exists a nonconstant rational map from Xs to Y . Then Kf (Y ) is a
countable union of semi–algebraic subsets of R.

Proof. Replacing M with the graph of f , we may suppose that M is a Nash
submanifold of Rn×R and f coincides with the restriction to M of the natural
projection of Rn × R onto R. Moreover, without loss of generality, we may
suppose that Y in an algebraic subset of Rm also. For each d ∈ N, define
Nd :=

(
n+d
d

)
. Identify each polynomial q in R[x1, . . . , xn] of degree ≤ d with

the point of RNd , whose coordinates are the coefficients of q. In this way, if
p̄ = (p1, . . . , pm) is a m–uple of polynomials in R[x1, . . . , xn] of degree ≤ d,
then p̄ correspondes with a point of RmNd . Let q ∈ RNd , let p̄ ∈ RmNd and
let A be a subset of Rm. Denote by (p̄/q)−1(A) the empty set if q = 0 or the
set {x ∈ Rn \ q−1(0) | p̄(x)/q(x) ∈ A} if q 6= 0. For each s ∈ f(M), define
Ms := f−1(s) and, for each d ∈ N, define:

R(d) := R×RmNd ×RNd ,
Kd := {(s, p̄, q) ∈ R(d) | ∅ 6= Ms \ q−1(0) ⊂ (p̄/q)−1(Y )},
Gd := {(s, p̄, q, y) ∈ R(d) ×Rm | ∅ 6= Ms \ q−1(0) ⊂ (p̄/q)−1(y)}

and denote by πd : R(d) × Rm −→ R(d) and ρd : R(d) −→ R the natural
projections. It is immediate to see that Kf (Y ) =

⋃
d∈N ρd(Kd \ πd(Gd)) so

it suffices to prove that, for each d ∈ N, both Kd and Gd are semi–algebraic
subsets of R(d) and of R(d)×Rm respectively. Let g be the polynomial in R[y] =
R[y1, . . . , ym] such that g−1(0) = Y . Write g as follows: g(y) :=

∑e
j=0 gj(y)

where e is the degree of g and each gj is a homogeneous polynomial in R[y]
of degree j. Define the polynomial G ∈ R[y, t] = R[y1, . . . , ym, t] by G(y, t) :=∑e
j=0 t

e−jgj(y) and observe that G(y, t) = teg(yt ) over Rm × (R \ {0}). Define:
the Nash set M (d) ⊂ Rn ×R(d) by

M (d) := M ×RmNd ×RNd ,

the algebraic subset Qd of Rn ×R(d) by

Qd := {(x, s, p̄, q) ∈ Rn ×R(d) | q(x) = 0},

the polynomial function ξd : Rn × R(d) −→ R and the algebraic subset Sd of
Rn ×R(d) by

ξd(x, s, p̄, q) := G(p̄(x), q(x)) and Sd := ξ−1
d (0),

the Nash map Πd : (M (d) ∩ Sd) \ Qd −→ R(d) as the restriction to (M (d) ∩
Sd) \ Qd of the natural projection of Rn × R(d) onto R(d) and the Nash map
ηd : M (d) \Qd −→ R(d) ×Rm by

ηd(x, s, p̄, q) := (s, p̄, q, p̄(x)/q(x)).

For each (s, p̄, q) ∈ R(d) and for each y ∈ Rm, we have:

Π−1
d (s, p̄, q) = (Ms ∩ (p̄/q)−1(Y ))× {(s, p̄, q)}

and
η−1
d (s, p̄, q, y) = (Ms ∩ (p̄/q)−1(y))× {(s, p̄, q)}.
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In particular, it holds: Kd = {(s, p̄, q) ∈ R(d) | dim(Π−1
d (s, p̄, q)) ≥ ν} and

Gd = {(s, p̄, q, y) ∈ R(d) × Rm | dim(η−1
d (s, p̄, q, y)) ≥ ν}. By Lemma 2.4, Kd

and Gd are semi–algebraic as desired.

Let X be a real algebraic variety. Denote by A(X) the set of Nash nonsin-
gular points of X. Since A(X) is semi–algebraic, we know that it has finitely
many semi–algebraically connected components. Let M1, . . . ,Ma be such semi–
algebraically connected components and, for each i ∈ {1, . . . , a}, let M i be the
Zariski closure of Mi in X. Observe that the set {M1, . . . ,Ma} contains the
set of irreducible components of X. Let Y be a real algebraic variety. By the
symbol X  Y , we mean that, for some i ∈ {1, . . . , a}, there is a nonconstant
rational map from M i to Y .

Definition 3.2 We say that X and Y are algebraically enemy if both conditions
X  Y and Y  X do not hold.

Observe that if X and Y are algebraically enemy, then they are algebraically
unfriendly also.

The following result extends Theorem 1.5.

Theorem 3.3 Given a real algebraic variety X of positive dimension, there
exists a set {ϕt : X̃t −→ X}t∈R of weak changes of the algebraic structure of
X such that each X̃t is UMR and, for each t, s ∈ R with t 6= s, X̃t and X̃s are
algebraically enemy.

Proof. We organize the proof into four steps.
Step I. We begin as in Step I of the proof of Theorem 1.3. We may suppose

that X is a r–dimensional algebraic subset of Rn with n ≥ 2r. Identify X with
X×{0} ⊂ Rn×R = Rn+1 and Rn+1 with Rn+1×{0} ⊂ Rn+1×Rn+1 = R2n+2.
Let c := cideg(X,Rn+1). Applying Lemma 2.8 to X × R ⊂ Rn+1, we find
a linear automorphism Ψ : Rn+1 −→ Rn+1 such that the geometric base B
of Rn+1 induced by the canonical base is good for X∗ := Ψ(X). For each
t ∈ R, define Xt := Ψ(X × {t}). Fix an odd positive integer d such that
h := (d − 1)(d − 2)/2 ≥ 2. Define: Dd ⊂ R2 and ψd : Dd −→ R as above,
ψn+1
d : Dn+1

d −→ Rn+1 as the (n+1)th–power of ψd, X̃∗ := (ψn+1
d )−1(X∗) and,

for each t ∈ R, X̃t := (ψn+1
d )−1(Xt) ⊂ R2n+2, ϕ̃t : X̃t −→ Xt as the restriction

of ψn+1
d from X̃t to Xt and ϕt : X̃t −→ X as the composition π ◦Ψ−1 ◦ ϕ̃t where

π : X × R −→ X is the natural projection. Observe that each ϕt is a weak
change of the algebraic structure of X and X̃∗ is in good position into Dn+1

d .
By hypothesis n+1 ≥ 2(r+1)− 1 so, applying Step II of the proof of Theorem
1.3 to X̃∗, we obtain that, for each irreducible algebraic subset Y of some Rm,
it holds:

]Ratio∗(Y, X̃∗) ≤
∑r
k=0NB(k)(X∗, Rn+1) · M∗(eY , h)n+1−k (2)

where, setting cY := cideg(Y,Rm), eY := (cY − 1)(cY − 2)/2. In particular, X̃∗

is UMR and hence each X̃t is.
Step II. Let M1, . . . ,Ma be the semi–algebraically connected components of

A(X) and letM1, . . . ,Ma be their Zariski closures inX. Let γ := max i∈{1,...,a} cideg(M i, R
n+1).

For each t ∈ R and for each i ∈ {1, . . . , a}, define M∗
i,t := ϕ−1

t (Mi) and M
∗
i,t as
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the Zariski closure of M∗
i,t in X̃t. Observe that, being ϕt a Nash isomorphism,

M∗
1,t, . . . ,M

∗
a,t are the semi–algebraically connected components of A(X̃t) for

each t ∈ R. We will show that:

max i∈{1,...,a} cideg(M
∗
i,t, R

2n+2) ≤ (2d)n+1γ (3)

for each t ∈ R. Fix t ∈ R. Let πt : Xt −→ X be the biregular isomorphism
defined by πt := π◦Ψ−1|Xt . For each i ∈ {1, . . . , a}, define Mi,t := π−1

t (Mi) and
M i,t as the Zariski closure of Mi,t in Xt. Observe that X and Xt are affinely
equivalent so cideg(M i, R

n+1) = cideg(M i,t, R
n+1) for each i ∈ {1, . . . , a}.

In particular, γ = max i∈{1,...,a} cideg(M i,t, R
n+1). Fix i ∈ {1, . . . , a}. Since

ϕ̃t(M∗
i,t) = Mi,t, there is a non–empty open subset U of Nonsing(M i,t) such

that (ϕ̃t)−1(U) is a non–empty open subset of Nonsing(M
∗
i,t). Let ρ : R2n+2 −→

Rn+1 be the natural projection of Rn+1 ×Rn+1 onto its first coordinate space.
Since (ϕ̃t)−1(U) = Dn+1

d ∩ ρ−1(U) and M
∗
i,t is irreducible, it is easy to verify

that cideg(M
∗
i,t, R

2n+2) ≤ (2d)n+1cideg(M i,t, R
n+1). In particular, we have (3).

Step III. For each t ∈ R, we define:
At := {s ∈ R \ {t} | X̃t  X̃s},
Bt := {s ∈ R \ {t} | X̃s  X̃t},
Ct := R \ (At ∪Bt) = {t} ∪ {s ∈ R | X̃t and X̃s are alg. enemy}.

Moreover, we define:
e := 1

2

(
(2d)n+1γ − 1

) (
(2d)n+1γ − 2

)
,

b :=
∑r
k=0NB(k)(X∗, Rn+1) · M∗(e, h)n+1−k,

` := ab.
From (2) and (3), it follows immediately that:

supt∈R ]At < `. (4)

Let t1, . . . , t` be distinct elements of R. We have:⋂`
i=1Bti is empty. (5)

Otherwise, fixed t in
⋂`
i=1Bti , At would contain {t1, . . . , t`} and (4) would be

contradicted. In particular, it holds:

the set R \
⋃`
i=1 Cti is finite. (6)

In fact, R \
⋃`
i=1 Cti =

⋂`
i=1(Ati ∪Bti) ⊂

⋃`
i=1Ati so, from (4), it follows that

](R \
⋃`
i=1 Cti) < `2.

We will show that there is a non–empty open (bounded or unbounded) in-
terval I of R such that

I ∩Bt is countable for each t ∈ I. (7)

Fix t ∈ R. For each i ∈ {1, . . . , a}, define: the Nash submanifold M (i) of R2n+2

by M (i) := (ψn+1
d )−1(Ψ(Mi × R)), the Nash function fi : M (i) −→ R as the

restriction to M (i) of the composition map π ◦Ψ−1 ◦ψn+1
d and Ki(X̃t) as the set

of points s of R such that there is a nonconstant rational map from the Zariski
closure of f−1

i (s) = M∗
i,t in R2n+2 (which is M

∗
i,s) to X̃t. Applying Lemma 3.1

to each fi, we obtain that Ki(X̃t) is a countable union of semi–algebraic subsets
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of R for each i ∈ {1, . . . , a}. Since Bt =
⋃a
i=1(Ki(X̃t) \ {t}), we have that Bt is

a countable union of semi–algebraic subsets of R also. Indicate by Int(Bt) the
interior of Bt in R and define Nt := Bt \ Int(Bt). Since a semi–algebraic subset
of R is a finite union of points and open intervals, it follows that Nt is countable.
Thanks to this property of Nt, it suffices to prove the existence of a non–empty
open interval I of R such that I ∩ Int(Bt) = ∅ for each t ∈ I. Suppose this is
not true. Then, by a simple inductive argument, it would be possible to find a
`–uple (t1, . . . , t`) of distinct points of R such that ti ∈

⋂i
k=1 Int(Btk) for each

i ∈ {1, . . . , `}. In particular,
⋂`
k=1Btk would contain the point t`, which is

impossible by (5). This proves (7). Let I be an interval of R, which satisfies
(7). Since I is equipollent to R, replacing R with I and At, Bt and Ct with
I ∩At, I ∩Bt and I ∩ Ct respectively, we may suppose that

the set R \ Ct = At ∪Bt is countable for each t ∈ R. (8)

Given a subset S of R and an integer k ∈ N, we say that S has the property
P(k) if ]S = ]R and the set S \

⋃k
i=1 Cti is finite for each k–uple (t1, . . . , tk) of

distinct elements of S. Let L be the set of positive integers k such that there is
a subset S of R having the property P(k). Thanks to (6), we know that ` ∈ L
so L is non–empty. Let `∗ be the minimum of L and let R∗ be a subset of R
with the property P(`∗). Let us show that, for each t ∈ R∗, ](R∗ \ Ct) < ]R∗.
If `∗ = 1, this is obvious because each set R∗ \ Ct is finite. Let `∗ ≥ 2. If there
would exist t ∈ R∗ with ](R∗ \Ct) = ]R∗, then R∗ \Ct would satisfy P(`∗ − 1)
contradicting the minimality of l∗. In this way, replacing R with R∗ and each
Ct with Ct ∩R∗, we may suppose that:

](R \ Ct) < ]R for each t ∈ R. (9)

Step IV. We will prove the existence of a subset H of R equipollent to R
such that, for each t, s ∈ H with t 6= s, s ∈ Ct or, equivalently, H ⊂

⋂
t∈H Ct

(observe that s ∈ Ct implies t ∈ Cs). Evidently, the set {ϕt : X̃t −→ X}t∈H will
satisfy the properties required in Theorem 1.5. Let F be the family of subsets
S of R such that S ⊂

⋂
t∈S Ct, equipped with the partial ordering induced by

the inclusion. Observe that F is non–empty because {t} ∈ F for each t ∈ R.
Moreover, if {Sj}j∈J is a chain in F , then

⋃
j∈J Sj is an upper bound in F

for that chain. In this way, by Zorn’s lemma, F has a maximal element H.
Remark that H =

⋂
t∈H Ct. Otherwise, there would exist s ∈ (

⋂
t∈H Ct) \ H

and H∪{s} would be an element of F contradicting the maximality of H. Since
R \ H =

⋃
t∈H(R \ Ct), using (8) when R is uncountable and (9) when R is

countable, we obtain that H is equipollent to R. The proof is complete.
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