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Abstract

Let R be a real closed field and let X be an affine algebraic variety
over R. We say that X is universally map rigid (UMR for short) if, for
each irreducible affine algebraic variety Y over R, the set of nonconstant
rational maps from Y to X is finite. A bijective map ¢ : X — X
from an affine algebraic variety over R to X is called weak change of the
algebraic structure of X if it is regular and ¢ ' is a Nash map preserving
nonsingular points. We prove that, when dim(X) > 1, there exists a
set {¢t : X't — X }ier of weak changes of the algebraic structure of X
such that each X, is UMR and, for each t,s € R with t # s, X, and X,
are birationally nonisomorphic. As an immediate consequence, we solve
the problem about the cardinality of the moduli space of birationally
nonisomorphic affine real algebraic structures on a topological space, on
an affine real Nash manifold and, when R is the field of real numbers, on
a smooth manifold. The answer to this problem was already known in the
case of compact smooth manifolds.

Mathematics Subject Classification (2000): 14P05, 14P20

1 The theorems

The purpose of this paper is to prove a theorem of rigidity for affine algebraic
varieties over a real closed field, which implies basic facts about the cardinality
of the set of distinct affine real algebraic structures on a topological space or on
a manifold.

Let R be a fixed real closed field. By real algebraic variety, we mean an
affine algebraic variety over R. Algebraic varieties and regular maps between
them are understood in the sense of Serre [20, 8]. The concept of rational map
can be defined in the standard way. Unless otherwise indicated, all real alge-
braic varieties are equipped with the strong topology induced by the ordering
structure on R. We will use standard notions from Real Nash Geometry also
(see [8]).

Let us introduce the notions of universal map rigidity and of weak change
of the algebraic structure of a real algebraic variety.

Definition 1.1 A real algebraic variety X is said to be universally map rigid,
or UMR for short, if, for each irreducible real algebraic variety Y, the set of
nonconstant rational maps from'Y to X 1is finite.

This definition is very restrictive. For example, if a real algebraic variety is
UMR, then its group of birational automorphisms is finite. For this reason, all
rational real algebraic varieties of positive dimension are not UMR. Significant



examples of UMR real algebraic varieties are the irreducible real algebraic curves
of genus > 2 (see Lemma 2.3 and Section 3).

Recall that a map ¢ : X — M between real algebraic varieties is said
to be a biregular embedding if /(X)) is an algebraic subvariety of M and the
restriction of ¢ from X to ¥(X) is a biregular isomorphism.

Definition 1.2 Let X and X be real algebraic varieties. We say that a map
¢ : X — X is a weak change of the algebraic structure of X if there ewist
nonsingular real algebraic varieties M and M, biregular embeddings v : X —
M and ¢ : X — M and a bijective map ® : M — M such that:

(1) @ is regular and, when M and M are equipped with their natural structures
of affine real Nash manifold, ®~' is a Nash map,

(2) the following diagram commutes

X 5 M
el le
x

Observe that, if ¢ : X — X has the above properties, then it is bijective and
regular, and ¢! is a Nash map which sends nonsingular points into nonsingular
points. In particular, if X is nonsingular, then X is nonsingular also.

We have the following theorem of rigidity.

Theorem 1.3 Given a real algebraic variety X, there is a weak change ¢ :
X — X of its algebraic structure such that X is UMR.

Let X and Y be real algebraic varieties. By the symbol X +4 Y we mean
that every rational map from X to Y is Zariski locally constant or, equivalently,
that every rational map from an irreducible component of X to Y is constant.

Definition 1.4 We say that X and Y are algebraically unfriendly if both con-
ditions X &Y and Y v/ X hold.

Observe that if X and Y are algebraically unfriendly, then they are bira-
tionally nonisomorphic also.

Let X be a fixed real algebraic variety of positive dimension.

Applying Theorem 1.3 to X x R, we obtain the main result of this paper:

Theorem 1.5 There exists a set {¢; : )?t — X }ier of weak changes of the
algebraic structure of X such that each Xy is UMR and, for each t,s € R with
t # s, Xy and X are algebraically unfriendly.

This result allows us to compute the cardinality of the moduli space of
birationally nonisomorphic affine real algebraic structures on a topological space,
on an affine real Nash manifold and on a smooth manifold.

Corollary 1.6 Let T be a topological space. Suppose T is infinite and admits
an affine real algebraic structure. Then the set of birationally nonisomorphic
UMR affine real algebraic structures on T is equipollent to R.



When R = R, examples of topological spaces admitting an affine real al-
gebraic structure can be found in [1, 2, 3, 4, 5, 7, 17]. In [10], it is proved
that every affine real Nash manifold is Nash isomorphic to a nonsingular real
algebraic variety so we have:

Corollary 1.7 Given a Nash submanifold N of R™ of positive dimension, the
set of birationally nonisomorphic UMR, nonsingular real algebraic varieties that
are Nash isomorphic to N is equipollent to R.

Suppose now R = R. Recall that a smooth manifold admits a structure of
nonsingular real algebraic variety if and only if it is diffeomorphic to the interior
of a compact smooth manifold with (possibly empty) boundary (see [1, 22]).

Corollary 1.8 Let M be a smooth manifold. Suppose M has positive dimension
and is diffeomorphic to the interior of a compact smooth manifold with (possibly
empty) boundary. Then the set of birationally nonisomorphic UMR, nonsingular
real algebraic varieties that are diffeomorphic to M has the power of continuum.

The previous result was already known when M is compact and the UMR
condition is dropped [6, 9].

Remark. Since the set of real algebraic varieties is equipollent to R, the three
previous corollaries remain true if we replace “birationally” with “biregularly”
and/or we omit the UMR condition.

The theorems presented above were announced in [12, Section 3]. Further
results concerning rigidity—type properties of regular and rational maps between
real algebraic varieties can be found in [14].

Our proofs are based on elementary arguments. We are greatly indebted to
Marco Forti and Janos Kollar for their help in improving the original version of
Theorem 1.5. We thank also A. Tognoli, R. Benedetti, E. Ballico, S. Baratella
and M. Andreatta for several useful discussions.

2 A real de Franchis theorem and a technique
of Whitney

The main results of this section are Lemma 2.3 and Lemma 2.8. The first is a
real version of the classical finiteness theorem of de Franchis [11], which follows
immediately from Theorem 1.4 of [13] and Lemma 3.1 of [14]. The second
concerns the existence of vector bases of R™ having good properties with respect
to a given algebraic subset of R™. The proof of this result is available adapting
to the real algebraic situation the arguments used by Whitney in Section 10,
Chapter 7 of [23]. The present section is, however, self-contained.

Let C be the algebraic closure of the fixed real closed field R, which coincides
with R[v/—1] = R[z]/(x® + 1). Equip each projective space P"(C) with its
natural structure of algebraic variety over C, indicate by o, : P*(C) — P"(C)
the complex conjugation map and identify P™(R) with the fixed point set of
on. A subset S of P*(C) is said to be defined over R if it is o, ~invariant and
its real part S(R) is defined as the intersection S N P™(R). By real algebraic



curve and complex algebraic curve (defined over R), we mean respectively a 1-
dimensional irreducible real algebraic variety and a 1-dimensional nonsingular
irreducible Zariski closed algebraic subvariety of some P"(C) (defined over R).
For each real algebraic curve D, there is a unique (up to biregular isomorphism)
complex algebraic curve D¢ defined over R such that Do (R), viewed in the
natural way as a real algebraic variety, is birationally isomorphic to D. Such
a curve D¢ is called nonsingular projective complexification of D. The genus
g(D) of D is defined to be the genus g(D¢) of De.

Let X be a real algebraic variety. We indicate by Nonsing(X) the set of
nonsingular points of X of maximum dimension, i.e., of dimension dim(X). If
an algebraic subvariety D of X is a real algebraic curve, then we say that D is a
real algebraic curve of X (recall that, according to Serre’s definition, algebraic
subvarieties are assumed to be Zariski locally closed). For each integer k and
for each point p of X, we denote by Cx (k,p) the set of real algebraic curves of
X of genus k and containing p.

Definition 2.1 Let X be an algebraic subset of R™ of dimension r. First,
suppose r < n. We define the complete intersection degree cideg(X, R™) of X
in R™ as the minimum integer ¢ such that there are a point p € Nonsing(X)
and polynomials Py, ..., P,_, in R[x1,...,x,] vanishing on X with independent
gradients at p and ¢ = [[;_, deg(P;). If r = n, then we consider cideg(X, R™)
equal to 1.

Lemma 2.2 Let X be an irreducible algebraic subset of R™ and let Z be a non—
empty Zariski open subset of X. Define ¢ := cideg(X, R") and e :== (¢ — 1)(c —
2)/2. Then there are k € {0,1,...,e} and p € Z such that Upecy ) D s
Zariski dense in X.

Proof. Let r := dim(X). If r = n, then the lemma is evident. Suppose r < n.
By definition of ¢, there are polynomials P, ..., P,_, vanishing on X with in-
dependent gradients at some point of Nonsing(X) such that ¢ =[]\, deg(P;).
For eachi € {1,...,n—r}, define X; := P, (0). Fix a point p € Nonsing(X)NZ
such that the gradients of P, ..., P,_, at p are independent. Identify R™ with a
subset of P"(R) by the affine chart which maps (x1,...,z,) into [z1,...,zp, 1].
Consider X and each X; as subsets of P"(R) and hence as subsets of P*(C). Let
L be the set of (n—r+1)-dimensional linear subspaces of P"(R) containing p and
transverse to Nonsing(X) at p. For each L € £, denote by Dy, the irreducible
component of LN X containing p. Observe that each Dy, is a real algebraic curve
of X. Fix L € £ and denote by Lc, Dy ¢, X1,c,- .., Xn—r,c the Zariski closures
of L,Dp, X1,...,X,—, in P*(C) respectively. Remark that Dy ¢ is an irre-
ducible component of Le N[, X;.c, p € Nonsing(L¢) N();—; Nonsing(X; )
and Nonsing(L¢) and {Nonsing(X; ¢)}7] are in general position in P*(C) lo-
cally at p. By Bezout’s theorem, it follows that deg(Dp, c) < [}, deg(X; ) <
c. Applying the Castelnuovo Bound Theorem, we obtain that the geometric
genus of Dy, ¢, which is equal to g(Dy), is less than or equal to e. On the other
hand, the Implicit Function Theorem for Nash maps ensures that (J, ., DL
contains a neighborhood of p in Nonsing(X) so it is Zariski dense in X. Since
X is irreducible and {J, ., D C Uj_ Ubecey (k) D> there is k € {0,1,... e}

such that Upec, (1) D 18 Zariski dense in X.



Let X and Y be real algebraic varieties. Suppose X irreducible. We indi-
cate by Ratio™(X,Y) (resp. R*(X,Y)) the set of nonconstant rational (resp.
regular) maps from X to Y.

Let D and E be real algebraic curves, let f € R*(D,E) and let D¢ and
E¢ be the nonsingular projective complexifications of D and E respectively.
Define D; := Nonsing(D) N f~!(Nonsing(FE)) and f' : Dy — Nonsing(E)
as the restriction of f from Dy to Nonsing(FE). Identify Dy and Nonsing(FE)
with Zariski open subsets of Do (R) and Ec(R) respectively. By Zariski’s Main
Theorem, we know that there is a unique complex regular map fc : Do — E¢
which extends f’. This map is called complexification of f.

Let A and B be complex algebraic curves. Suppose g(B) > 2. The finiteness
theorem of de Franchis asserts that the set R¢ (A, B) of nonconstant complex
regular maps from A to B is finite. In [18], H. Martens improved this result
showing first the existence of an upper bound for R} (A, B) depending only
on g(A). Let N be the set of non—negative integers. We denote by M : N x
(N'\ {0,1}) — N the function which maps (a,b) into the maximum integer
k € N such that there are complex algebraic curves A and B with g(A) = a,
g(B) = band §R (A, B) = k. By Hurwitz’s formula, it follows that M(a,b) = 0
if @ < b so we can define the function M, as the smallest function f: N x (N'\
{0,1}) — N such that M < f and f(a,b0+ 1) < f(a,b) < f(a + 1,b) for each
(a,b) € N x (N\{0,1}). An explicit upper bound for M, can be found in [21].

Lemma 2.3 Let X be an irreducible algebraic subset of R™ and let D be a
real algebraic curve with g(D) > 2. Then Ratio* (X, D) is finite. Moreover, if
¢ := cideg(X, R") and e := (¢ — 1)(c — 2)/2, then we have:

fRatio* (X, D) < M. (e, g(D)).

Proof. Let h := M.,(e,g(D)). Suppose fRatio*(X,D) > h. Then, there
are a non—empty Zariski open subset Z of X and maps fo,..., fr in R*(Z, D)
which represent distinct elements of Ratio™(X, D). By Lemma 2.2, there are
ke€{0,1,...,e} and p € Z such that UEGCX(,W) E is Zariski dense in X. Define

A= [T i) UU{z € Z] file) = fi(2)}-

Since A is a proper Zariski closed subset of Z, there is E € Cx(k,p) such that
E ¢ A. Let E' := ENZ. Observe that g(E’) = g(F) = k. By definition
of A, we have that the maps fo|g’,..., fa|pr are h + 1 distinct elements of
R*(E', D). In particular, their complexifications are h + 1 distinct elements of
R&(EG, De). This is impossible. In fact, by the de Franchis—-Martens theorem,
{R (Bl De) < M(k,g(D)) < h.

By Nash set, we mean a Nash subset of an open semi-algebraic subset of
some R"™ (see Definition 8.6.1 of [8]). Let V' C R™ be a Nash set. A point
p of V is Nash nonsingular of dimension d if there is an open semi—algebraic
neighborhood P of p in R™ such that V' N P is a Nash submanifold of R™ of
dimension d. Indicate by V* the set of Nash nonsingular points of V' of maximum
dimension. Let W C R™ be another Nash set. A map f:V — W is a Nash
map if there exists an open semi-algebraic neighborhood U of V in R™ and an
extension F': U — R™ of f from U to R™, which is Nash, i.e., semi—algebraic
of class C*°.



The next result is quite known. However, for completeness, we give a simple
proof. First, we fix a convenction: the dimension of the empty set is equal to
—1.

Lemma 2.4 Let V and W be Nash sets and let f : V. — W be a Nash
map. For each integer k, the sets Si(f) := {z € V| dim(f~*(f(z))) > k}
and Ty, (f) :=={y € W | dim(f~(y)) > k} are semi—algebraic.

Proof. Fix an integer k. We may suppose k non-negative. The set Si(f)
is the inverse image of Tj(f) under f so it suffices to prove that Tj(f) is a
semi-algebraic subset of W. Let us proceed by induction on v := dim(V'). The
case v = 0 is evident. Let v > 1. Indicate by Vi,...,V, the Nash irreducible
components of V. Since Ti(f) = Ui, Tk(f|v;), we may suppose that V is
Nash irreducible. Moreover, replacing W with the smallest Nash subset of
W containing f(V'), we may suppose that dim(f(V)) = dim(W) also. Let
V be the smallest Nash subset of W containing V \ V*. By Sard’s theorem,
there is a Nash subset Y of W such that W\ Y C W*, dim(f~}(V)) < v
and the restriction g of f from V \ (VU f~}(Y)) to W \ Y is a submersion.
In particular, we have that Ty(g) = f(V\V)\Y if & < v — dim(W) and
Ti(g) = 0 if & > v — dim(W). In any case, Tx(g) is semi-algebraic. Since
dim(V U f~1(Y)) < v and Ty(f) = Tk(g) U Ti(fl7up-1(v)), the lemma follows
by induction.

Let G,, x(R) be the grassmannian of k—dimensional vector subspaces of R™.
For each L € G, x(R) and for each € R", we indicate by = + L the affine
k-plane of R™ defined as {x +v € R |v € L}. As is usual, G, 1(R) is denoted
by P"~1(R). For each v € R™\ {0}, we use the symbol [v] to indicate the vector
line of R™ generated by v, viewed as an element of P"~1(R). Given a family
{S1,...,8m} of subsets of R™, we denote by Span(Si,...,S) the smallest
vector subspace of R" containing | J~, S;.

In the remainder of this section, X will be a fixed algebraic subset of R™ of
dimension r.

Definition 2.5 Let k € {0,1,...,n—r} and let L € G,, ,(R). We say that L is
good for X in R™ if sup,cpn #((z + L) N X) is finite. We denote by Wi,(X, R™)
the set of elements of Gy, x(R) good for X in R™.

Lemma 2.6 Foreachk € {0,1,...,n—r}, Wi(X, R") is a dense semi—algebraic
subset of Gy 1 (R).

Proof. Step I. Let us show that each Wi (X, R™) is semi-algebraic. Fix k €
{0,1,...,n —r}. For each L € G, 1(R), let L' be the orthogonal of L in R"
and let 77, : R* — L' be the orthogonal projection of R™ onto L*. Define
Vi={(z,L) € R"xG, x(R)|x € L*} and p: X xG,, x(R) — V by p(z, L) :=
(mr(z),L). Observe that V is Zariski closed in R™ x G,, x(R), p is a regular map
and, for each (z,L) € X x G, 1 (R), p~ ' (p(x, L)) = ((x+L)NX) x {L}. Let S;
be the set of points (z, L) € X X G, x(R) such that the dimension of p~!(p(z, L))
is positive and let m, ; : R" X G, x(R) — G, x(R) be the natural projection.
We have that S} (and hence , (S} )) is semi-algebraic. On the other hand,
using Milnor’s theorem concerning upper bounds for the sum of Betti numbers
of a real algebraic set [8, Proposition 11.5.4], it follows easily that Sk (X, R"™) is
equal to Gy, x(R) \ mn 1(S}) and hence it is semi-algebraic.



Step II. We will prove that each Wi (X, R™) is dense in G,, (R). First, let
us consider the case k = 1 (hence n > r). If » = 0, then it is evident. Let
r > 1 (hence n > 2). We know that Wy (X, R") = P"}(R) \ m,1(S}) so it
suffices to show that, as a semi-algebraic set, m, 1(S7) has dimension < n — 1.
Suppose this is not true. Then there are a non-empty Nash submanifold M of
X x P""1(R) contained in S; and an open subset N of P"~!(R) contained in
7n,1(ST) such that the restriction 7’ : M — N of 7, 1 from M to N is a Nash
isomorphism. Let ¢, : R"~! — P"~!(R) be the affine chart of P"~!(R) which
maps w = (wy,...,Ww,—1) into [@] where w := (w1, ..., Wnp—1,1) € R™, let U be
a non-empty open semi-algebraic subset of R"~! such that ¢,,(U) C N and let
G : U — R" be the unique Nash map such that (7/)~1([w]) = (G(w), [w]) for
each w € U. Define the Nash map ¢ : U xR — R" by ¢(w, t) := G(w)+tw and
the Nash function Dy, : U x R — R as the determinant of the jacobian matrix
of ¢. Observe that, being (G(w), [w]) € St for each w € U, ¢(U x R) C X. Fix
w € U. By simple considerations, we see that Dy (w,t) is a monic polynomial
in RJt] of degree n—1 so, for some ¢, Dy (w,t) # 0. In particular, it follows that
(U x R) (and hence X) has dimension n, which contradicts our assumption.
Let us complete the proof proceeding by induction on n > r. If n = r, the
density is evident. Let n > r. The case k = 0 is also evident so we may suppose
that k > 1. Fix Lo € G, x(R). Let v be an element of P"~!(R) contained in
L. By the case k = 1, we can choose v € W1 (X, R") so close to vy that v+ % Lo
and L' := Span(v, Lo Nv™) is arbitrarily close to Lg. Let 7, : R* — v be the
orthogonal projection of R™ onto v+ and let X, be the Zariski closure of 7, (X)
in v+, Observe that, being v € Wy (X, R"), dim(X,) = r. By induction, there
is a (k — 1)-dimensional vector subspace T of v+ good for X, in v+ so close to
LoNvt that L := Span(v, T) is arbitrarily close to L’ (and hence to Lg). Define
a,b € N as follows: a := sup,cp» f((x+v)NX) and b := sup ¢+ H((z+T)NX,).
Fix x € R". We have that (7, (z)+T)NX, = {p1,...,pm} where m < b. Since
(z+L)NX = UL ((p; +v)NX), §((x + L) N X) < ab. It follows that
L € Wi(X, R"™) and the proof is complete.

Let (R™)7? be the set of n—uples (vy,...,vy,) in (R™)"™ such that {vy,...,v,}
is a base of R™. Equip (R™)? with the relative topology induced by (R™)".
Define an equivalence relation on (R™)? as follows: (v1,...,v,) ~ (v],...,v})
if and only if the sets {[v1],..., [vn]} and {[v{],...,[v},]} coincide. Indicate by
B(R™) the quotient topological space (R™)?/ ~. Observe that B(R"™) can be
identified, in a natural way, with a dense open subset of (P"~!(R))Z . We call
an element {v1,...,v,} of B(R"™) geometric base of R™ and each vector line v;
axis of such base. Let B be a geometric base of R™ and let k € {0,1,...,n}. A
coordinate k—plane of B is a k—dimensional vector subspace of R™ generated by

k axes of B. The unique coordinate O—plane of B is {0}.

Definition 2.7 We say that a geometric base B of R"™ is good for X if, for
each k € {0,1,...,n —r}, all coordinate k—planes of B are good for X in R™.

Lemma 2.8 Let H(X, R") be the set of elements of B(R™) good for X. Then
the interior of H(X, R™) in B(R"™) is dense in B(R™). In particular, H(X, R")
18 non—empty.

Proof. The case n = r is evident. Suppose n > r. Let o : (R")? — B(R"™)
be the natural projection. For each k € {1,...,n — r}, let Hy be the interior



of Wi(X,R") in G, (R). By Lemma 2.6, it follows that each Hj is a dense
(semi-algebraic) subset of G,, x(R). For each x C {1,...,n} with x # 0, let ¢, :
(R™)? — Gp gy (R) be the map which sends (v1,...,vy) into Span({v;}iey)-
Define the map

2 (Rn):} - ch{l,...,n},lgﬁxgn—r GnaﬂX(R)

by ¢ := 11, .n}1<tx<n—r Px and the set H by

.....

H:= 5071 (ch{l,4..,n},1§}ixgn—r HﬁX) :

Since each map ¢, is continuous and open, we have that H is a dense open
subset of (R™)". On the other hand, H = 0~ !(0(H)) so o(H) is a dense open
subset of B(R™). Since o(H) is contained in H(X, R"), we are done.

3 Proofs of the theorems

We need some preparations.

Let E, ..., E, be real algebraic curves, let T' be the product variety [[, E;
and let Y be a s—dimensional algebraic subvariety of T. For each x C {1,...,n},
define T}, := Hiex E; (where Ty is considered equal to a point) and indicate by
my : T — T, the natural projection. We say that Y is in good position into
T if, for each x C {1,...,n} with fx > s, G\ (Y, T) 1= sup,eq §(Y N7 ' (p)) is
finite. If Y has this property, then, for each k € {0,1,...,n — s}, we define the
integer G (Y, T) := ZxC{l,...,n},ﬁX:nfk G, (Y, T).

Let X be a r—dimensional algebraic subset of R™ and let k € {0,1,...,n—r}.
Given a k-plane L good for X in R", we define the integer Ny (X, R") :=
sup,epn 8((z + L) N X). Let B be a geometric base of R™ good for X. Indi-
cate by B(k) the set of coordinate k-planes of B and define Np() (X, R") :=
> renr) NVL(X, R"). Observe that, if B is the geometric base of R" induced
by the canonical base, then B is good for X if and only if X is in good posi-
tion into R"™. Moreover, in this situation, Gx(X, R") = N, (X, R") for each
ke{0,1,...,n—r}.

Let d be an odd positive integer. Define the nonsingular real algebraic curve
Dy as {(z,y) € R?|y? = 1+ 22?} and the regular map g : Dy — R by
Ya(x,y) := x. Since Dy is the graph of the Nash function on R which maps
x into V14 224, we have that 14 is a Nash isomorphism. Let us show that
g(Dg) > (d —1)(d —2)/2. Let Fy := {(z,y) € R*|2¢ +y% = 1} and let P, :
D4 — Fj; be the polynomial map defined by P;(x,y) := (—22,y). Evidently,
the complexification Py ¢ : Dg,c — Fy,c of Py is nonconstant so, by Hurwitz’s
formula, it follows that g(Dg) > g(Fy) = (d — 1)(d — 2)/2 as desired.

Proof of Theorem 1.3. Step I. Without loss of generality, we may suppose that
X is a r—dimensional algebraic subset of R™ with r > 1 and n > 2r — 1. By
Lemma 2.8, there is a geometric base B of R™ good for X. Up to a linear change
of coordinates of R™, we may suppose that B coincides with the geometric base
of R™ induced by the canonical base. Let d be an odd positive integer such
that h := (d — 1)(d — 2)/2 > 2 and let Dy and 14 : Dy — R be as above.
Define T' as the product variety D}, 9} : T — R™ as the nth—power of 1),

X = (¥7)71(X) and ¢ : X — X as the restriction of ¥} from X to X. It



is immediate to see that ¢ is a weak change of the algebraic structure of X
and X is in good position into T. Moreover, for each k € {0,1,...,n — r},
Gr(X,T) = Np( (X, R").

Step II. We will show that, for each irreducible algebraic subset Y of some
R™ it holds:

{Ratio™(V, X) < 32120 Npgo (X, B") - Mu(ey h)" (1)

where, setting cy := cideg(Y,R™), ey := (cy — 1)(cy — 2)/2. In particu-
lar, X will be UMR. Fix such a Y. By Lemma 2.3, we know that M :=

fRatio* (Y, Dq) < M. (ey,h) (recall that g(Dgq) > h). If M = 0, then Ratio*(Y,T) =

0 so Ratio*(Y,X) = () also and (1) is true. Suppose M > 1. Let Z be a non-
empty Zariski open subset of Y and let g1,...,g9pm € R*(Z, Dg) such that the
rational maps from Y to Dy represented by the pairs {(Z, g;)}, are exactly the
elements of Ratio* (Y, D). Observe that R*(Z, Dg) = {¢1,...,9m}. Define:

R*:={f e R*(Z,T)| f(Z) Cc X}.

Identify Ratio*(Y,X) with R* in the natural way. For each i € {1,...,n},
indicate by m; : T — Dy the natural projection of T onto its i*"—coordinate
space. For each x C {1,...,n} with x # 0, let F'(x) be the set of functions from
x to {1,...,M}, let X’ :={1,...,n}\ x and define T and 7, : T — T as
above. Moreover, for each x C {1,...,n} with x # () and for £ € F(x), define:

Ry ¢ ={f € R*|miof = geu for each i € x, mys o f is constant}.

Evidently, the family of R} .’s is a partition of R*. Fix x C {1,...,n} with
x # 0 and € € F(x). Flrst suppose fx < n —r. Let us show that R e = = 0.
Suppose this is not true. Then there would exist f € R*(Z,T) and p € T\~

such that f(Z) ¢ X N T Y(p). Since X is in good position into T, f would
be constant which contradicts our assumption. Suppose now fx > n — 7 and

¢ 7 0. Fix z € Z. Define ¥, : R} . — X by W.(f) := f(2) and z, ¢ as the
pomt of T\, such that {2y ¢} = m(f(Z)) for some (and hence every) element f

of R} ;. Evidently, U, is injective and . (R} ;) C Xﬂﬂ' '(2y,¢). On the other

hand, fx > n —r + 1 > r so, by the good posmon of X into T, we infer that
R}, ¢ 1s finite and R} , < Gy (X,T). In particular, R* is finite and it holds:

fR* = Zxc{l,.“,n},ﬁx>n77‘ GX(XvT) HF(x) =
= Yo Ge(X,T) - Mk =
= Xhco Now (X, RY) - MM F <
< Silo Npy (X, R™) - M. ey, h)"*.

The next lemma is the semi—algebraic version of a result suggested to us by
Janos Kollar. It will be used in the proof of Theorem 3.3 below.

Lemma 3.1 Let M be a Nash submanifold of R", let v be an integer and let
f: M — R be a Nash function such that, for each s € f(M), f=1(s) is
a semi—algebraically connected Nash submanifolds of R™ of dimension v. For



each s € f(M), denote by X, the Zariski closure of f~1(s) in R™. LetY be
a real algebraic variety. Define K¢(Y') as the set of points s of f(M) such
that there exists a nonconstant rational map from X to' Y. Then K;(Y) is a
countable union of semi—algebraic subsets of R.

Proof. Replacing M with the graph of f, we may suppose that M is a Nash
submanifold of R"™ x R and f coincides with the restriction to M of the natural
projection of R™ x R onto R. Moreover, without loss of generality, we may
suppose that Y in an algebraic subset of R™ also. For each d € N, define
Ny = (”jd). Identify each polynomial ¢ in R[z1,...,,] of degree < d with
the point of R™¢, whose coordinates are the coefficients of ¢. In this way, if
p = (p1,...,pm) is a m—uple of polynomials in R[zq,...,x,] of degree < d,
then p correspondes with a point of R™N¢, Let ¢ € RN¢, let p € R™N¢ and
let A be a subset of R™. Denote by (p/q)"'(A) the empty set if ¢ = 0 or the
set {x € R"\ ¢ Y0)|p(x)/q(x) € A} if ¢ # 0. For each s € f(M), define
M, := f~1(s) and, for each d € N, define:

R@ = R x RmNa x RNa,

Ka:={(s,p,0) € RV | 0 £ M, \ ¢~(0) € (p/a)"“(¥)},

Ga:={(s,p,q,y) € R x R™| 0 # M, \ ¢~*(0)  (p/a) " ()}
and denote by mq : R4 x R — R@ and pg : R — R the natural
projections. It is immediate to see that Kp(Y) = Uzenpa(Ka \ ma(Ga)) so
it suffices to prove that, for each d € N, both K; and G4 are semi-algebraic
subsets of R and of R x R™ respectively. Let g be the polynomial in Rly] =
R[y1,...,ym] such that g=1(0) = Y. Write g as follows: g(y) := > 5=09i (W)
where e is the degree of g and each g; is a homogeneous polynomial in R]y]
of degree j. Define the polynomial G € R[y,t] = R[y1,...,Ym,t] by G(y,t) :=
> =0t 7g;(y) and observe that G(y,t) = t°g(¥) over R™ x (R\ {0}). Define:
the Nash set M@ C R™ x R(@ by

M@ = M x RmNa x RNa,
the algebraic subset Qg4 of R” x R4 by
Qa := {(z,5,p.q) € R" x R |q(z) = 0},

the polynomial function &; : R” x R — R and the algebraic subset Sg of
R" x R® by

gd(xa 5, D, (]) = G(ﬁ(%%q(l‘)) and Sd = 5(;1(0)5

the Nash map II; : (M@ N Sy)\ Qu — R@ as the restriction to (M@ N
S4) \ Qq of the natural projection of R” x R onto R(Y and the Nash map
ng: M@\ Qs — R x R™ by

na(z, s,0,q) = (s,p,4,p(x)/q(z)).
For each (s,p,q) € RY and for each y € R™, we have:
;" (s,5,9) = (Ms 0 (p/q) " (Y)) x {(s,,9)}

and
ng ' (s,0.q,y) = (M0 (5/q) 7 (y) x {(s,7.9)}-
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In particular, it holds: K4 = {(s,p,q) € R | dim(II;'(s,p,q)) > v} and
Ga = {(s,0,¢,y) € R x R™| dim(n;*(s,p,q,y)) > v}. By Lemma 2.4, K4
and G4 are semi—algebraic as desired.

Let X be a real algebraic variety. Denote by A(X) the set of Nash nonsin-
gular points of X. Since A(X) is semi-algebraic, we know that it has finitely
many semi—algebraically connected components. Let My, ..., M, be such semi—
algebraically connected components and, for each i € {1,...,a}, let M; be the
Zariski closure of M; in X. Observe that the set {My,..., M,} contains the
set of irreducible components of X. Let Y be a real algebraic variety. By the
symbol X ~» Y we mean that, for some i € {1,...,a}, there is a nonconstant
rational map from M; to Y.

Definition 3.2 We say that X and Y are algebraically enemy if both conditions
X ~Y andY ~~ X do not hold.

Observe that if X and Y are algebraically enemy, then they are algebraically
unfriendly also.
The following result extends Theorem 1.5.

Theorem 3.3 Given a real algebraic variety X of positive dimension, there
exists a set {p: : X¢ — X }ier of weak changes of the algebraic structure of
X such that each )?t is UMR and, for each t,s € R with t # s, )~(t and )?s are
algebraically enemy.

Proof. We organize the proof into four steps.

Step I. We begin as in Step I of the proof of Theorem 1.3. We may suppose
that X is a r—dimensional algebraic subset of R™ with n > 2r. Identify X with
X x{0} C R"x R= R""! and R"*! with R"*! x {0} ¢ R*"*! x Rt = R2n+2,
Let ¢ := cideg(X, R"!). Applying Lemma 2.8 to X x R C R""!, we find
a linear automorphism ¥ : R"*! — R"*! such that the geometric base B
of R"*! induced by the canonical base is good for X* := W¥(X). For each
t € R, define X; := U(X x {t}). Fix an odd positive integer d such that
h = (d—1)(d —2)/2 > 2. Define: D; C R? and ¢4 : Dy — R as above,

ntt pytt —LR”H as the (n+ 1)®—power of de)Z'* = () 7H(X*) and,
for each t € R, X; := ( g+1)’1(Xt) C R**2 &, : X; — X, as the restriction
of 1/13“ from )?t to Xy and ¢y : )?t — X as the composition 7o ¥~ 0, where
m: X X R — X is the natural projection. Observe that each ¢; is a weak
change of the algebraic structure of X and X* is in good position into DZH.
By hypothesis n+1 > 2(r+1) — 1 so, applying Step II of the proof of Theorem
1.3t0 X * we obtain that, for each irreducible algebraic subset Y of some R™,
it holds:

tRatio* (Y, X*) < Sr_o Npy (X5, R*1) - M. (ey, h)" 1=k 2)

where, setting ¢y := cideg(Y, R™), ey := (¢y — 1)(cy —2)/2. In particular, X*

is UMR and hence each X; is.

Step II. Let My, ..., M, be the semi—algebraically connected components of
A(X) andlet My,..., M, be their Zariski closures in X. Let v := max (1, 4} cideg(M;, R" ).
For each t € R and for each i € {1,...,a}, define M, := ;1 (M;) and M;t as

11



the Zariski closure of M, in )Aft. Observe that, being ¢; a Nash isomorphism,

Miy, ..., My, are the semi-algebraically connected components of A()Z't) for
each t € R. We will show that:

maxe(,...q} cideg(M; ,, R*"+2) < (2d)" 'y 3)

for each t € R. Fix t € R. Let m : Xy — X be the biregular isomorphism
defined by 7; := moW~!|x,. For eachi € {1,...,a}, define M; ; := n; *(M;) and
M, as the Zariski closure of M;; in X;. Observe that X and X; are affinely
equivalent so cideg(M;, R"*1) = cideg(M;,, R"*!) for each i € {1,...,a}.

In particular, v = max;c(,. q cideg(M;, R"™'). Fix i € {1,...,a}. Since
(p't(Mi"jt) = M,,, there is a non-empty open subset U of Nonsing(M, ;) such
that (¢¢)~1(U) is a non—empty open subset of Nonsing(ﬁzt). Let p: R?n+2 —
R™*! be the natural projection of R"t! x R"*! onto its first coordinate space.
Since (;)~1(U) = D N p~1(U) and MZt is irreducible, it is easy to verify
that cideg(ﬁzt, R*+2) < (2d)"*lcideg(M; 1, R™*1). In particular, we have (3).

Step III. For each t € R, we define:

At = {S S R\{t}|Xt ~ X5}7

B, :={se R\ {t}| X, ~ X;},

Cy =R\ (A4 UB,) = {t} U{s € R| X; and X, are alg. encmy}.
Moreover, we define:

e =1 ((2d)" 1y —1) ((2d)" 1y —2),

b= ko Nog) (X, ") - Mu(e, h)"H17F,

{:= ab.

From (2) and (3), it follows immediately that:

sup,ep 1A4: < L. (4)

Let ¢1,...,t, be distinct elements of R. We have:
¢ .
=y Bt is empty. (5)

Otherwise, fixed ¢ in ﬂle By,, Ay would contain {t1,...,t} and (4) would be
contradicted. In particular, it holds:

the set R\ Ule C, is finite. (6)

In fact, R\ Ule Cy, = ﬂle(Ati UB,) C Ule Ay, so, from (4), it follows that
BRA\ Uiy Cu) < 2.

We will show that there is a non—empty open (bounded or unbounded) in-
terval I of R such that

1IN B, is countable for each t € I. (7)
Fix t € R. For each i € {1,...,a}, define: the Nash submanifold M) of R?>"+2
by MW = (5T~ (¥(M; x R)), the Nash function f; : M@ — R as the
restriction to M® of the composition map 7o W1 01/12”'1 and ICl-()Z't) as the set
of points s of R such that there is a nonconstant rational map from the Zariski
closure of f;'(s) = Mj, in R*"*2 (which is M, ) to X;. Applying Lemma 3.1

to each f;, we obtain that /ci()?t) is a countable union of semi—algebraic subsets
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of R for each i € {1,...,a}. Since B; = U?;l(Ki(Xt) \ {t}), we have that By is
a countable union of semi-algebraic subsets of R also. Indicate by Int(B;) the
interior of By in R and define N; := By \ Int(B;). Since a semi-algebraic subset
of R is a finite union of points and open intervals, it follows that N; is countable.
Thanks to this property of IV, it suffices to prove the existence of a non—empty
open interval I of R such that I NInt(B;) = @ for each ¢t € I. Suppose this is
not true. Then, by a simple inductive argument, it would be possible to find a
(—uple (t1,...,t;) of distinct points of R such that t; € (), _; Int(B,) for each
1 € {1,...,¢}. In particular, ﬂizl By, would contain the point ¢y, which is
impossible by (5). This proves (7). Let I be an interval of R, which satisfies
(7). Since I is equipollent to R, replacing R with I and A;, B; and C; with
IN A, INB; and I N Cy respectively, we may suppose that

the set R\ Cy = A; U B, is countable for each t € R. (8)

Given a subset S of R and an integer k € N, we say that S has the property
P(k) if §S = ¢R and the set S\ Ule C4, is finite for each k—uple (¢1,...,t;) of
distinct elements of S. Let L be the set of positive integers k such that there is
a subset S of R having the property P(k). Thanks to (6), we know that ¢ € L
so L is non—empty. Let £* be the minimum of L and let R* be a subset of R
with the property P(£*). Let us show that, for each t € R*, #(R* \ C;) < {R*.
If ¢* = 1, this is obvious because each set R* \ C is finite. Let £* > 2. If there
would exist t € R* with #(R* \ C;) = §R*, then R*\ C; would satisfy P(¢* — 1)
contradicting the minimality of [*. In this way, replacing R with R* and each
Cy with C; N R*, we may suppose that:

#(R\ Cy) < R for each t € R. (9)

Step IV. We will prove the existence of a subset H of R equipollent to R
such that, for each t,s € H with t # s, s € C; or, equivalently, H C [,y Ct
(observe that s € Cy implies t € C5). Evidently, the set {(; : X, — X ten will
satisfy the properties required in Theorem 1.5. Let F be the family of subsets
S of R such that S C [,c4 Ct, equipped with the partial ordering induced by
the inclusion. Observe that F is non-empty because {t} € F for each ¢t € R.
Moreover, if {S;};e;s is a chain in F, then (J;c;S; is an upper bound in F
for that chain. In this way, by Zorn’s lemma, F has a maximal element H.
Remark that H = [,cy C¢. Otherwise, there would exist s € ((),cpy Ct) \ H
and HU{s} would be an element of F contradicting the maximality of H. Since
R\ H = U,cu(R\ Cy), using (8) when R is uncountable and (9) when R is
countable, we obtain that H is equipollent to R. The proof is complete.
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