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Chapter 1

Preface

Looking back on the path that led me to writing this thesis, one cannot say that it was
always a straight one. Having been to Trento for the first time of my life in September
2007, it took me just a couple of days to decide to enrol in the doctoral school of the
Università di Trento. Since I had already started a research project at the Technische
Universität München earlier that year, the original idea of both my supervisors, Prof.
Augusto Visintin and Prof. Martin Brokate, was to do a joint PhD between the Univer-
sità di Trento and the Technische Universität München, and that I stay half of my time
in Italy and the other half in Germany. Yet, once more it turned out that life was non-
deterministic. In the end, I spent the entire time from December 2007 to October 2010
in Trento, I wrote one PhD thesis which I defended in December 2009 at the Technische
Universität München, and I wrote this PhD thesis which I shall defend at the Università
di Trento within this month. Over the years that have passed since 2007, just like any
other PhD student, I had to struggle with the inevitable ups and downs, with the joy and
the frustration that comes along with science and mathematics, with the uncertainty and
the concern that some error, some ε might have escaped my attention, and all the other
things that make a PhD student’s life what it is. For instance, when I came to Trento, I
only spoke two languages (besides German, of course) – English and also some Math-
ematics, but with a strong analysis accent. Unfortunately, I had to find out that both
are unsuitable to lead a life outside the faculty building. To make a long story short, I
found myself working on one PhD thesis, yet another PhD thesis, and all that while I
was also trying to get a grip on the Italian language (di cui mi sono ‘disperatamente’
innamorato alla fine). After having submitted my thesis in München in summer 2009
and passed my Italian language exams not long after, for the first time since I started
doing my own research I could finally concentrate on one single project only. During
this intense and exciting period (not free of setbacks, of course) I actually developed
most of the ideas that should lay the basis for this thesis. At this point I would like to
emphasize that it was always my supervisor, Prof. Augusto Visintin, who left me all
the freedom to explore these ideas while guiding me with his valuable advice and his
strong support in establishing scientific contacts and bonds. In particular, as a result
of this support I could join Prof. Giuseppe Geymonat and Prof. Françoise Krasucki
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in Montpellier – whom I am also very grateful to – and started working on interface
problems. This year or so of complete scientific freedom ended in October 2010 when
I chose to follow my desire to find out what mathematics is actually good for outside
the academic world, i.e. when I joined an industrial research and development depart-
ment. From then on I found myself again exposed to double workload, knowing that
there was still some mathematical research to do for the second thesis while leading the
challenging life of an industrial research scientist. This ‘double existence’ proved once
more to be both ambitious and exhausting (time-consuming as it was), and maybe even
cost me some of my hair. Moreover, sometimes I simply could not afford the time to
develop things and theorems until perfection like mathematicians usually do, but rather
showed the feasibility of ideas and concepts by means of illustrative examples. To con-
clude, in retrospect the years since 2007 and the research work I was able to conduct
taught me many aspects of life that go well beyond the beloved homogenization theory
and Γ-convergence: stress and pressure; patience, persistence and passion; confidence;
creativity; a feeling for misplaced alliterations and a particular sense of humor; a new
language. And last but not least friendships for life. For this I am deeply indebted to all
those who made this possible.

Acknowledgments.

Foremost I would like to thank my supervisors, Prof. Augusto Visintin (for the present
thesis) and Prof. Martin Brokate (for the thesis I defended at the Technische Universität
München) for their guidance, their support and their patience. I am also very grateful
to Prof. Micol Amar for reading and evaluating this thesis, and for being part of the
doctoral committee. (To all members of the committee I humbly ask forgiveness for
all the terribly long sentences found throughout the thesis. Their use is not bad intent,
it’s just that a leopard can’t change his spots.) Special thanks go to my collaborator
and former colleague Stefan Neukamm for having endured endless but enlighting dis-
cussions on homogenization and Γ-convergence, and for the article we wrote together.
Most notably however, for good and lasting friendship. Also, I would like to thank Prof.
Giuseppe ‘Pippo’ Geymonat and Prof. Françoise Krasucki for their seemingly endless
patience (I always finish what I began, even if it takes some time). I am also grateful to
Prof. Valli and the essential support I always received from both the doctoral school and
the university, as I am grateful to Miriam Stettermayer for her help with the bureaucracy
that confused me so often. And finally, thanks that go beyond words to my family and
my friends for their unconditional trust and support.

Philipp Emanuel Stelzig, April 2012.



Chapter 2

Methods for periodic
homogenization: Yet another
introduction

In this chapter I would like to give the reader yet another, but also a somewhat partic-
ular introduction into the contemporary theory of periodic homogenization. That is, an
introduction aimed at the needs of a graduate student who got attracted by the beauty of
the subject and would like to enter the field for his PhD, but who – for whatever reason –
cannot expect to be actively taught homogenization theory. Thus in effect has to learn it
from what he finds in the literature. The simple reason for this unusual kind of introduc-
tion is that I, having come into contact with the matter four and a half years ago, found
myself in exactly the same situation and had to realize that this is not an easy task at all.
Therefore, the introduction of this thesis shall – besides laying the foundations for the
mathematics to follow in Chapters 3 and 4 – ease the access to the mathematical theory
of periodic homogenization rather than being a concise or even complete treatment of
the current knowledge. In the mathematical literature there already exist a couple of
monographs and also a vast number of research articles on periodic homogenization
that are accessible for graduate students with a good knowledge of weak solutions for
partial differential equations and the basics of functional analysis. However, all of these
contributions share one common drawback that the reader is likely to have encountered
regularly in his own life as a mathematician. To my opinion, one could illustrate this
drawback as follows. Writing a PhD thesis is like crossing a desert: in order to succeed
it is essential to choose the right vehicle so one won’t get stuck in the sand. In this
situation, one would most probably turn to a well-sorted car dealer and ask for infor-
mation on the most promising vehicles for the journey. Though if the car dealer were
a mathematician, one would be given brochures appraising say ten different types of
vehicles, with every brochure being 300 pages thick, explaining chassis, suspension,
motor, gearbox etc. in every possible detail and maybe that the performance of the ve-
hicle becomes arbitrarily bad in the quick sand limit. Whereas no word will be lost on
how fast the vehicle goes, how much fuel it consumes or what it actually looks like. Of
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course, after having read and understood the entire brochure it is an easy task to infer all
those things, but by then global warming will have expanded the desert’s diameter by a
factor of two. This might sound exaggerated to the reader, but indeed mathematical lit-
erature is generally not good at giving quick but nonetheless comprehensive overviews
over certain topics and the methods involved. But since this is, at least to my opinion,
exactly what a student entering the field would want, the present introduction shall be an
attempt to provide such a comprehensive overview. The result is undoubtedly another
‘personalized introduction’ to homogenization, thus in principle not dissimilar to the
recent monograph Tartar [2009] (which is why I chose to use the first person, i.e. speak
for myself rather than using the more common ‘we’). Needless to say that it can by no
standards be compared to the both unusual and inspiring work of Luc Tartar whom one
might with good conscience call a grandmaster of homogenization. Here, I focus on the
italian and french schools of homogenization from the 1990s and 2000s, for the simple
reason that I am most familiar with these schools and moreover because the remainder
of the thesis will contribute to the concepts developed there.

To make a long story short, in this introduction I provide a selection of what I deem
the ‘most appealing’ methods and theorems in the field of periodic homogenization.
Besides sketching the basic intuition of the respective methods in terms of the ‘classi-
cal homogenization problem’, I also tried to include the major and to my opinion most
accessible literature references and some brief remarks on the scientific context as well.
Therefore, this introduction should be considered a first ‘fingerpost’ for students en-
tering the field of periodic homogenization and shall moreover familiarize with the by
now mostly standardized notation used in homogenization theory. Experts on the other
hand will find only little new insight in this chapter – besides some of my personal
experiences with the didactics of periodic homogenization, and some new ideas on the
generalization of a well-known homogenization method (see Subsection 2.5.2). How-
ever, much of the notation used in the upcoming parts of the thesis will be introduced
here.

Section 2.1 briefly illustrates the usefulness of mathematical analysis for multiscale
modeling in mathematical physics and indicates some recent interesting developments.
Particular attention is given to multiscale methods for problems in continuum physics
involving periodic microstructures, i.e. to the concept of periodic homogenization. In
the following sections I then present a selection of methods and theorems from dif-
ferent homogenization schools and show how each of these methods are used to solve
the by now ‘classical homogenization problem’. I chose to present these methods in
chronological order not only for reasons of ‘historical correctness’, but for the fact that
in this fashion one can step-by-step trace the ideas and intuition that led from the early
heuristics of the 1960s to today’s abstract formalisms in the theory of periodic homog-
enization. (Also because I strongly oppose today’s ‘definition-theorem-proof’-style di-
dactics in which mathematics is mainly taught to students, including myself.) The start
is marked by the basic modeling principles and methods of the late 1960s and 1970s.
I will only present the asymptotic expansion method and the Γ-convergence approach,
while Spagnolo’s G-convergence (cf. Spagnolo [1969]) and Tartar’s H-convergence
(cf. Tartar [1984]) are not subject of this introduction. A paragraph on the major results
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on periodic homogenization from the 1980s (i.e. the passage to nonconvex homoge-
nization) is then followed by a presentation of the 1990s’ fundamental contributions
to the topic (i.e. two-scale convergence and two-scale compactness). The introduction
concludes with the most recent insights and concepts developed in the course of the last
decade (periodic unfolding).

2.1 The many reasons for multiscale modeling and homoge-
nization

In physics (as is the case in chemistry, materials science, mechanical, electrical, civil
and other engineering disciplines) once a certain effect is observed for the first time,
scientists develop theories to explain the effect and employ mathematical models to de-
scribe and predict it quantitatively. It is the way of things that the pursuing research
on the effect requires the refinement of such theories or even calls for completely new
explanations as scientists gain more and more insight into the mechanisms behind the
effect. Often, an evolution of theories is triggered by the discovery of smaller, formerly
undetected length scales (or time scales) of a physical system. As a consequence, also
the corresponding mathematical models have to be adapted to capture the newly discov-
ered scales. While being closer to the actual physical nature, a mathematical model for
a physical system that resolves smaller scales is usually more complicated and some-
times even virtually impossible to solve. (The theory of solid mechanics illustrates this
evolutionary process very well. With the 18th century having seen the development
of continuum theories for structural mechanics, scientists of the 19th century turned
onto materials and established constitutive theories which were still continuous. Just to
discover in the late 19th and early 20th century that the supposedly continuous materi-
als are actually discrete on even smaller length scales – constituted by grains, crystals,
molecules, atoms, elementary particles or maybe even smaller things carrying mass.
Unfortunately, even the simplest mathematical models for solid materials that resolve
length scales on which the continuum hypothesis no longer holds true are useless for
practical purposes. This is imply due to the sheer number of particles and interactions
involved.) The resulting ‘tradeoff dilemma’ between accuracy and complexity leads to
a rather simple but nonetheless crucial question.

How to simplify a mathematical model that resolves small length scales in
a way that the simplification

is no more or little more complicated to solve than a coarse scale
model, but

still carries information about the small scale?

(For instance, from [Bakhvalov and Panasenko, 1989, p. xxxiii] I learned that already in
1929 Reuss [1929] tried to compute elasticity parameters for a multicrystalline material
by taking adequate ‘averages’ of the material’s small scales. More precisely, the single
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crystals’ stresses and deformations. Thus, Reuss could use classical mechanics to pre-
dict the multicrystalline material’s elastic response, while its single crystals would only
enter the calculation of the elasticity parameters.) In multiscale physics the existence
of mathematical models corresponding to different length scales also gives rise another
important issue, namely the question of consistency. Most mathematical models for
physical systems are checked by experiment, thus valid for at least the circumstances
under which the experiment was carried out. Suppose there were two experimentally
validated mathematical models that resolve different length scales of one and the same
physical system. In this case, one would have to make a choice. Therefore, the natural
question is:

How to relate mathematical models that describe the same physical system
but on different length scales?

(Again, solid mechanics proves to be a good ‘showcase’ for the issue. For instance,
in structural mechanics there are various theories explaining the mechanics of beams,
i.e. elastic continua of cylindrical shape with small cross-sectional diameter. Here, one
must name the classical Euler-Bernoulli theory, Timoshenko’s theory or the Cosserat
theory, each of which neglegts the small scales, i.e. the cross-sectional dimensions.
Instead, these theories consider a beam a one-dimensional body deforming in space;
see also [Antman, 2005, Chapter 8]. But if one treated a beam as a three-dimensional
continuous body by incorporating its small cross-sectional length scales, one could also
describe it by means of three-dimensional elasticity. The same reasoning also holds
for strings, arcs, membranes, plates and shells. Unfortunately, the equations of three-
dimensional elasticity are somewhat nasty partial differential equations (especially for
large deformations, see [Ciarlet, 1988, Chapter 2]) involving a time and three space
variables. Whereas beam theories result to partial differential equations with one time
and one space variable only, and in the static case even reduce to ordinary differential
equations. In other words, beam theories are often much simpler to solve. Still, even
three-dimensional elasticity is a simplification in that it does not take into account the
discrete nature of the material that constitutes the beam. Clearly, one could also model
a beam by viewing its slender three-dimensional shape as filled by atoms which interact
through certain force potentials. Yet, the sheer number of atoms involved would render
such a discrete model useless for actual computations.)

Of general interest, especially in the engineering disciplines, are microstructured
physical systems featuring two distinguished and continuous length scales. The so-
called ‘macroscale’ – in my personal ‘definition’ the length scale on which the system
interacts with its environment – and the ‘microscale’. The latter is defined by some re-
curring property where the distance of recurrence is much smaller than the dimensions
defining the macroscale. The resulting microscale pattern is referred to as the physi-
cal system’s microstructure. (Again solid mechanics provides numerous examples for
this type of physical systems. In materials science, many composite materials have a
distinguished ‘two-scale’ nature, most notably fibre-reinforced composites like glass-
reinforced plastic or carbon-fibre composites, but also laminates. Porous media like e.g.
soil or ceramics show this property as well. In structural mechanics one could name
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brick walls, multi-strand ropes and cables or perforated sheet metal. Also, woven struc-
tures have a distinguished two-scale nature where yarns are interlaced to form fabric or
clothes.) A major difficulty in establishing mathematical models for this type of phys-
ical systems is that experimental data is often available for macroscale quantities only,
but not for the microscale. The reason is that macroscopic quantities can be measured
more easily. Microscale quantities on the other hand are sometimes not even accessible
for measurements, at least not without ‘destroying’ the physical system, e.g. for material
samples. This is why early mathematical models for microstructured physical systems
are sometimes restricted to macroscale quantities whereas microscale parameters do
not explicitely enter the model. However, if microscale quantities are also accessible,
more elaborate mathematical models can be constructed that explicitely incorporate mi-
croscale parameters. (As an example one might think of e.g. the thermal conductivity
matrix for a fibre-reinforced composite. Obviously, one could perform a series of exper-
iments to identify its entries – which is most likely not going to be an easy task due to
the strong thermal anisotropy of many fibre-composites. On the other hand, the thermal
conductivity of the composite’s single constituents – often homogeneous – is far easier
to measure. Therefore, if it were known which parts of the composite are occupied by
which constituent, one could simply write the down the common heat equation with
the conductivity matrice’s entries varying according the constituents’ spatial distribu-
tion. Yet, how to find out about the exact spatial distribution of the constituents without
destroying the material for samples?) A special case of paramount importance among
microstructured physical systems is formed by those having a periodic microstructure.
At this point, many mathematicians tend to name fibre-reinforced composites as the
prototypical case (as did I just the line before) or leave it completely to the reader to
imagine a relevant example and then dive into mathematical analysis. Often, no word is
lost neither on the periodicity assumption itself, nor on its limitations. Of course, this
issue is quite difficult to deal with in general and therefore I will not even try; instead, I
would like to point out a personal comment on the periodicity assumption.

1. For continuous physical systems with periodic microstructure, ‘periodic’ often
implies ‘man made’ and even then periodicity is by no means perfect. Although
one might find a periodic reference configuration. Thus, one should only em-
ploy a periodicity assumption if there is good reason to support it and otherwise
indicate its limitations explicitely.

2. The main and maybe only reason for periodic media or structures is that they
are easy and cheap to mass produce: one can repeat the same production steps
over and over again. (Philosophically, one might say that the production process
translates periodicity in time into periodicity in space.)

3. Periodic media and structures (such as fibre-reinforced composites, perforated
sheet metal or fabric) often come in fairly simple, mostly thin geometries. Again
the reasons are rather practical: creating a periodic microstructure inside a bulky
geometry is delicate because one cannot mechanically reach into it. Whereas for
thin geometries the microstructure stays close to the surface. Another aspect is
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that periodic media and structures are in many cases delivered as semi-finished
materials, thus the final geometry is only decided afterwards. Also, the more
complicated a geometry, the bigger is its surface and the more often a periodic
microstructure would touch it. This however may be undesirable, in particular
for fibre-reinforced composites: due to their tiny bending stiffness, fibres are only
good under tension loads. Cutting the fibres of a fibre-reinforced composite, e.g.
when bringing it to its final shape, would greatly reduce the composite’s resistance
to tension.

Over the last four decades mathematicians have developed many strategies to an-
swer the crucial questions on how to relate mathematical models that resolve different
length scales of one and the same physical system . In principle, they all follow the
same idea. That is, for a physical system with two distinguished length scales one iden-
tifies the parameter 0 < ε � 1 describing the size of the small length scale relative
to the coarse scale, lets it tend to zero and studies the asymptotics of the mathematical
model. For obvious reasons, the quantitiy ε is called the (micro)scale parameter. (Of
course, the same methodology can be applied for mathematical models involving any
finite number of scales.) In case the mathematical model ‘converges’ to a limit in some
adequate topology, one would end up with a mathematical model for the physical sys-
tem that no longer shows the small scale but the coarse scale only. Although there is
a priori no guarantee that any information about the small scale is transferred into the
limit model, in this fashion one can at least ensure that the resulting coarse scale model
is asymptotically consistent with the original model resolving both the coarse and the
small scale. If there already were another coarse scale mathematical model, one could
now compare this and the coarse scale model obtained by the limit process. It is clear
that the asymptotics of the model resolving both scales might very well depend on a
specific ‘notion of convergence’, i.e. on the topology. (However, one could then pose
an inverse question: which topology would I have to choose for the asymptotics of the
mathematical model resolving both the coarse and the small scale, in order to obtain the
coarse scale model already known.)

This methodology has been applied to a wide variety of multiscale problems (espe-
cially in materials science, solid mechanics and structural mechanics). Most recently,
the approach was used to perform so-called discrete-to-continuous limits where one
starts with a set of discrete particles that are arranged in a regular, periodic lattice and
interact by some force potential. Identifying the microscale parameter ε as the distance
of neighboring particles, a number of works has shown that the sum of the particles’
interaction potentials converges in a certain sense to the stored energy of a continuous
elastic material occyping the same domain as the discrete particles. Hence, to some
extent mathematics managed to close the theoretical gap between competing discrete
and continuous models for elastic materials. See e.g. the works of Andrea Braides
and co-authors Braides [2000]; Braides and Gelli [2006], but also Friesecke and James
[2000] and more recently Schmidt [2006, 2008, 2009]. Another prominent field of
research where the passage from small scale models to coarse scale models has led
to fundamental insights is structural mechanics. More precisely, the theory of elastic,
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one- or two-dimensional continua deforming in space such as strings, rods, (curved)
beams or membranes, plates and shells. Starting with the equations of (linear or nonlin-
ear) static elasticity for the respective three-dimensional slender bodies, mathematicians
identify the cross-sectional diameter (for strings, rods, (curved) beams) or respectively
the thickness (membranes, plates, shells) as the small length scale. By letting the small
scale parameter tend to zero one can often show convergence, in an appropriate sense
of course, to models of one-dimensional or two-dimensional elastic structures. To my
knowledge, this approach was formally already employed in the late 1970s, see Cia-
rlet and Destuynder [1979]; Ciarlet [1997], but it was not until Acerbi et al. [1991]
and Le Dret and Raoult [1995] that such passage from three-dimensional slender elas-
tic bodies to low-dimensional theories could be made rigorous. The same strategy led
to most impressive results that were published in a series of scholarly articles by Gero
Friesecke, Richard D. James and Stefan Müller, see Friesecke et al. [2002, 2006] where
the authors managed to rigorously justify plate equations that are widely used in en-
gineering mechanics. For the same development in shell theories cf. Friesecke et al.
[2003]; Lewicka et al. [2010]. Similar results on beams and curved beams are mainly
due to Maria Giovanna Mora and Stefan Müller, see Mora and Müller [2003, 2004] but
also the interesting recent contribution Davoli [2011].

From now on this introduction shall be concerned with physical systems having two
continuous length scales where the small scale is defined by a recurring property of
spatial dimension ε, called the system’s microstructure. In this situation, passing to the
limit ε→ 0 in the associated mathematical model is referred to as homogenization. The
wording is more or less self-explaining: the limit model has no microstructure any more
since it was eliminated by letting its ‘size’ ε tend to zero. Thus, it describes a simpler,
homogeneous physical system. The scientific literature distinguishes between stochastic
and deterministic microstructures and therefore also between stochastic homogeniza-
tion and deterministic homogenization. (An example for stochastic microstructures is
once more given by a special class of fibre-reinforced composites where short fibres
are randomly embedded into a matrix material; for instance, a close look to modern
carbon fibre-reinforced ceramic brakes reveals this kind of microstructure. Also foams
have a stochastic microstructure.) Important references for stochastic homogenization
are e.g. Bensoussan et al. [1978] or Jikov et al. [1994]. Deterministic homogenization
on the other hand is mostly concerned with periodic homogenization (see the previous
examples for materials with microstructures). Nevertheless, there are research contri-
butions that study certain examples of non-periodic deterministic microstructures; see
most notably the works of Gabriel Nguetseng Nguetseng [2003, 2004b] and Nguetseng
[2004a], but also Braides et al. [2009]. In the mathematical literature, the homogeniza-
tion of physical systems with a periodic microstructure goes under the name of periodic
homogenization. In the remainder of this introduction I am going to focus on some
selected approaches and methods for periodic homogenization that I found either very
inspiring or helpful for the research I conducted. Before doing so however I would like
to state a remark on what I said so far.

Remark 2.1. It is my personal ‘definition’ to restrict homogenization to microstructured
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physical systems where both the macro- and the microscale are continuous. This is to
keep the field of homogenization well separated from others, in particular discrete-to-
continuous limits. Otherwise, also the limit of vanishing atom-to-atom distance ε in a
model for a crystalline solid where atoms are arranged periodically along the εZ3-grid
(like e.g. in Braides and Gelli [2006]) would be called homogenization – although this
situation is prototypical for discrete-to-continuous limits. In fact, several mathemati-
cians use the term homogenization also for problems in which the underlying physical
system has a discrete microscale, e.g. [Hornung, 1997, Section 1.2.2] or Braides and
Gelli [2005]. However, since this use of language appears somewhat inconsistent to
me, I prefer to apply the term homogenization exclusively to microstructured physical
systems with both continuous macroscale and continuous microscale. (An interesting
recent progress in discrete-to-continuous limits is Yeung et al. [2009] which shows that
one can very well pass from discrete crystalline systems to continuous solids without a
priori assuming the crystal’s atoms to be arranged in some kind of periodic microstruc-
ture. Hence, homogenization and discrete-to-continuous limits address in general dif-
ferent physical and mathematical models and should therefore not be confused.)

2.2 The beginnings: 60s and 70s

The first major steps in the mathematical analysis of physical systems with periodic
microstructure were done in the late 1960s (I prefer to avoid the term ‘periodic media’
used in the mathematical literature because it could lead to the misbelief that the meth-
ods involved apply to materials science only). Also, both the notation and the basic
modeling principles have not changed since then. In fact, like in many other branches
of mathematics there has evolved a kind of standard notation which I am going to use
throughout this thesis.

2.2.1 Basic modeling principles and notation

Assume that the microstructured physical system under consideration exists in N ∈ N
space dimensions, mostly N ∈ {2, 3}, and exhibits a periodic microstructure whose
length scale is quantified by a small parameter 0 < ε� 1. The modeling of a periodic
microstructure relies on the notion of a ‘periodicity cell’ of fixed size, usually denoted
Y . Here, one assumes that the microstructure can be viewed as the disjoint union of
translated ε-homotheties εY of the periodicity cell; see also Figure 2.1. To this end, one
has to ask that Y has the paving property, i.e. that one can indeed cover the whole space
RN with the disjoint union of translated copies of the periodicity cell Y . In symbols,
RN =

⋃
j∈N· (tj + Y ) for a family of RN -vectors { tj : j ∈ N }. The microstructure

is then tiled by the ε-homothety of this union, i.e. by
⋃
j∈N· ε(tj + Y ). Now, since also

the constitutive properties of the physical system’s microstructure repeat periodically, it
suffices to describe them on the periodicity cell by some constitutive function A : Y →
RM . Thanks to the paving property of Y , one may assume the functionA to be extended
to the entire RN by periodicity. For an arbitrary y ∈ RN there is a unique translated
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Ω

x ∈ εtj + εY

εtj

tj =:
⌊
x
ε

⌋
x
ε ∈ tj + Y

(
x
ε − tj

)︸ ︷︷ ︸ ∈ Y

Figure 2.1: Illustration of the periodicity cell concept

periodicity cell tj + Y containing y, hence one defines A(y) := A(y − tj). (For such a
microstructure tiling it is convenient to define the function b·c : RN → RN that maps
y ∈ RN to the unique translation vector tj such that y ∈ tj + Y . In other words, byc
tells in which translation of the periodicity cell the vector y ∈ RN lies.) The constitutive
properties in any material point x of the microstructure can then be easily determined
by evaluating Aε(x) := A

(
x
ε

)
(again see Figure 2.1). The choice of the periodicity cell

depends of course on the specific microstructure under consideration. In the literature,
the most commonly used periodicity cell is the unit cube [0, 1)N , which I am also going
to use in the remainder of this introduction.

Remark 2.2. There are good reasons for choosing the periodicity cell to be the unit
cube, probably the most relevant being simplicity. However, one can easily think of
periodic microstructures with periodicity cells different from the cube, e.g. honeycomb-
like microstructures where Y becomes a regular hexagon. Hexagonal periodicity cells
are most suitable to describe the microstructure in cross-sections of large wire ropes
that are made from wires of identical diameter (see Figure 2.2, left); here, each wire
cross-section can be viewed as the incricle of a regular hexagon, which then make up
the wire’s cross-section if arranged like in a honeycomb. Another situation where it
appears reasonable to take a periodicity cell different from the unit cube is when the
microstructure shows periodically recurring voids – the literature speaks of perforated
media – that would touch the periodicity cell’s boundary. However, in some cases on
might simply avoid this problem by chosing a suitable periodicity cell, like e.g. in
Figure 2.2 (right); cf. also the recent preprint Cioranescu et al. [2011].

Remark 2.3. Interestingly, the mathematical literature on homogenization methods is –
to my current knowledge – almost exclusively concerned with periodic microstructures
that are covered by translations of a periodicity cell (let me call them ‘translatory peri-
odic microstructures’ for the time being). But there are indeed materials with periodic
mictrostructure where the periodicity does not stem from translations, but e.g. from ro-
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Figure 2.2: Hexagonal periodicity cells in cross sections of wire rope

tations of a periodicity cell; see the functionally graded annular disk depicted in Figure
2.3. Some of these situations may be resolved by changing to an appropriate coordinate

Figure 2.3: A functionally graded annular disk

system where rotations result to translations of an angle variable. For the above exam-
ple polar coordinates would do the trick. More generally, one might think of materials
with a kind of ‘generalized periodic mictrostructure’, where periodicity is understood
in a sense that there is a coordinate transformation relating this generalized periodic
microstructure to a common translatory periodic microstructure. In the case of elas-
tic solids with this kind of microstructure, applying such a coordinate transformation –
which is nothing but an elastic deformation of the solid – would result in a reference



Methods for periodic homogenization: Yet another introduction 13

configuration with translatory periodic microstructure. However, this reference config-
uration would in general be no natural state, i.e. it would be pre-stressed (see [Ciarlet,
1988, Chapters 2, 3 and 4] for elasticity related terms). There is already some work on
prestressed microstructured materials, see Parnell [2007]. Nonetheless, to my opinion
there is still much work to do in this field; as concerns the example shown in Figure 2.3,
I will come back to it in Subsection 2.5.2 in a more abstract context.

In continuum physics, quantities u(x) ∈ RK that describe the physical state of
a system in some material point x (it would be better to say in a ‘volume element’
dx around x) are usually related to the constitutive properties in x (or better dx) by
partial differential equations. A both physically and mathematically intuitive example
is the static heat equation: in this case, the physical system reduces to a (for simplicity
solid) body occupying some bounded, smooth domain Ω ⊆ RN , N ∈ {2, 3}. The
constitutive properties, which in general vary within the body Ω, would be given by
a thermal conductivity matrix Â : Ω → RN×N . Assume furthermore to be given an
internal heat source f : Ω→ R (e.g. heat losses of some technical process) and constant
temperature on the body’s boundary (e.g. due to the body being imbedded in a much
larger body with far higher thermal conductivity; in appropriate units equal to 0). Then,
the equation for the equilibrium temperature u : Ω→ R becomes{

−div
(
Â(x)∇u(x)

)
= f(x) for all x ∈ Ω,

u(x) = 0 for all x ∈ ∂Ω.

Now, if the body had a periodic microstructure with cubic periodicity cell Y = [0, 1)N ,
a constitutive function A : Y → RN×N that tells us how the thermal conductivity
varies in the periodicity cell, and a microscale parameter 0 < ε � 1, then the thermal
conductivity in a material point x ∈ Ω is – according to what has been said before –
A
(
x
ε

)
. Thus, the heat equation for the resulting equilibrium temperature uε : Ω → R

reads {
−div

(
A
(
x
ε

)
∇uε(x)

)
= f(x) for all x ∈ Ω

uε = 0 for all x ∈ ∂Ω.
(CHP)

Here, it is reasonable to assume that

A(y) is a symmetric matrix for all y ∈ Y (A1)

and moreover 
A is strongly elliptic, i.e.

1

C
|v|2 ≤ A(y)v · v ≤ C|v|2

for all v ∈ RN , y ∈ Y and some constant C > 0.

(A2)

The problem (CHP) is a linear elliptic partial differential equation and if the domain Ω
were reasonably simple, then any decent finite element solver would produce a pretty
good approximation for the solution uε. Problem is that to capture the oscillations of
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the thermal conductivity A
(
x
ε

)
the underlying finite element mesh has to be at least as

fine as the linear size of the periodicity cell, i.e. ε. Hence, the number of mesh nodes
is of the same order as the number of periodicity cells in Ω, i.e. of order 1

εN
. Plainly

speaking, as ε becomes smaller computation times rise quite rapidly. On the other hand,
in applications it is desirable to regard a microstructured material like e.g. the solid body
Ω not as a complicated geometric arrangement of the microstructure’s constituents, but
as one homogeneous material only, maybe at the cost of strong material anisotropy.
The reason is that the behavior of single microstructure constituents is often completely
out of interest (sometimes they are not even accessible to measurements). It is the
macroscopic behavior that counts (see the explanations at the beginning of this section).
Hence, if I were an experimental materials scientist, I would ask my laboratory assistant
to take a material sample from the solid body Ω, lie to him about the microstructure but
make him belief that the body’s material is homogeneous and anisotropic, and then
simply wait until he comes back with the measured entries of the homogenized thermal
conductivity matrix AHom ∈ RN×N . Having still the same heat source f in the body Ω
and the same boundary conditions on ∂Ω, the resulting temperature distribution in the
solid body uHom : Ω→ R would certainly satisfy{

−div
(
AHom(x)∇uHom(x)

)
= f(x) for all x ∈ Ω

uHom(x) = 0 for all x ∈ ∂Ω.
(2.1)

Assuming that the laboratory assistant’s measurements are correct, one has to ask the
crucial question: How does this problem relate to the problem (CHP) which resolved the
actual microstructure? Is the solution uε of (CHP) ‘close’ to the homogenized solution
uHom of (2.1) for small enough microscale parameters ε? Can one compute the homog-
enized thermal conductivity matrix AHom from the thermal conductivity A

( ·
ε

)
of the

microstructured body Ω to avoid costly and time-consuming measurements? In fact,
homogenization theory gives positive answers to these questions. More precisely, it es-
tablishes convergence of the solutions uε of the problem with microstructure (CHP) to
the solution uHom of the homogenized problem (2.1), and also relates the homogenized
constitutive matrix AHom to the original constitutive function A defined on the period-
icity cell. Indeed, homogenization theory provides not only one but a whole variety of
different methods for this task which allow to study more general mathematical models
than the elementary heat equation (CHP). For instance, mathematical models for solid
mechanics, fluid mechanics, electromagnetism, biophysics, materials science,. . .

At this point I would like to make the reader aware of the paramount importance of
(CHP) for homogenization theory. In the mathematical literature, it is simply referred to
as the classical homogenization problem. In fact, (CHP) has evolved as a kind of ‘bench-
mark problem’ for new methods in periodic homogenization (although the mathematical
literature does not use this term explicitely, as far as I know). Which is interesting be-
cause bechmark problems are rather uncommon in mathematical analysis, other than in
numerical analysis or scientific computing. Whenever a new method for periodic ho-
mogenization emerges, one can judge its ‘performance’ by the ‘ease’ it allows to solve
the classical homogenization problem. Of course, this is far a less rigorous criterion
than say convergence rates or computation times for benchmark problems on standard
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hardware in scientific computing (unless someone invents a standardized graduate stu-
dent). Nonetheless, it allows researchers in the field to compare the ‘usability’ of certain
methods. For instance, the less problem-specific or homogenization-specific knowledge
is required for a certain method, the better; the stronger the topology in which conver-
gence to the homogenized solution is shown, the better; and so on... Therefore, all the
methods for periodic homogenization I chose to present in this introduction will address
the classical homogenization problem (CHP). Moreover, I will point out drawbacks and
advantages of certain methods of periodic homogenization when compared to others.

2.2.2 Asymptotic Expansions

The most traditional method in homogenization theory is the so-called method of asymp-
totic expansions which dates way back to the 1960s. Its basic feature is to postulate that
the solution uε to a problem with periodic microstructure – like (CHP) – is for every
microscale parameter ε a series of the form

uε(x) = u0(x) + εu1

(
x, xε

)
+ ε2u2

(
x, xε

)
+ . . . (2.2)

with functions u0 : Ω → R and ui : Ω × Y → R, i ∈ N, where the latter are Y -
periodic in their second arguments. This ansatz reflects the notion that uε stays close
to some macroscopic part u0 (likewise the solution of the homogenized problem, like
(2.1)) while the microstructure causes small ‘fluctuations’ εu1

(
·, ·ε
)

+ ε2u2

(
·, ·ε
)

+ . . .
around the homogeneous part. With the microstructure being ε-periodic, it is natural to
assume that the fluctuations are of the same length scale. As it is natural to assume that
these fluctuations vary over the whole domain Ω (e.g. due to external data that varies
over the domain, just like the heating f in (CHP)). Indeed, many mathematical mono-
graphs on homogenization theory outline the method of asymptotic expansions (like
Bensoussan et al. [1978]; Sánchez-Palencia [1980]; Cioranescu and Donato [1999] or
Bakhvalov and Panasenko [1989]), but often little emphasis is given to the motivation
of the ansatz (2.2) itself, which though is fundamental to the method. Here, the reader
might find [Sánchez-Palencia, 1980, Chapter 5] a very inspiring introduction to the
topic. (Generally, in homogenization theory one cannot speak of the method of asymp-
totic expansions without giving credit to Evariste Sanchez-Palencia and his numerous
important contributions to the topic.) The basic idea of the method of asymptotic expan-
sions is now to insert ansatz (2.2) into the equations (CHP) governing the problem with
microstructure and to formally apply the differential operator to every component of the
series. Sorting the result according to powers of the microscale parameter ε and equat-
ing the coefficients on both sides of the equation sign leads to a cascade of equations for
the functions u0 and u`, ` ∈ N. Finally, the homogenized problem (2.1) is obtained by
letting the microscale parameter ε tend to 0 in every single of the resulting sequence of
equations. (It should be noticed that the last step renders the use of asymptotic expan-
sions in homogenization theory far more delicate than say formal Taylor expansions or
Fourier series that are often used to analytically compute solutions to particular ordinary
or partial differential equations.)
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Before applying the method of asymptotic expansions to the classical homogeniza-
tion problem (CHP) and deriving the relations between (CHP) and the homogenized
problem (2.1) in a ‘personalized’ fashion, I would like to briefly state the method’s
principal advantages and drawbacks.

Due to being formal in nature, the method of asymptotic expansion is a simple
but universal method to approach various kinds of linear problems showing a periodic
microstructure. It can basically be applied without any knowledge about the actual so-
lution (existence, a priori estimates, compactness, regularity,. . . ) and therefore allows
to infer homogenization results more easily and also faster. In addition, the asymptotic
expansion method gives the user a good ‘feeling’ about how the single terms u`

(
·, ·ε
)

and their scaling ε`, ` ∈ N, contribute to the solution of the microstructured problem
uε. Whereas rigorously justifying an asymptotic expansion of a solution to a problem
with periodic microstructure is usually very hard and problem-specific (in contrast to
the universality of the method itself). This is why asymptotic expansions are rarely
used to obtain strict convergence of the microstructured problem to the homogenized
problem. Moreover, while no knowledge about specific properties of the solution to the
microstructured problem is required, the user often needs to have a deep understanding
of the problem itself in order to guess the correct form of the asymptotic expansion (e.g.
in case the microstructure shows more than two length scales). Another drawback is that
this method usually requires long and cumbersome formal calculations which makes the
method quite error-prone. Finally, the asymptotic expansion method is quite unsuitable
for problems involving nonlinear differential operators (but not necessarily for nonlin-
ear problems in general, see e.g. [Sánchez-Palencia, 1980, Chapter 6] or Chacha and
Sanchez-Palencia [1992]). Nevertheless, although more modern homogenization meth-
ods are available for problems with periodic microstructure (see the remainder of the
introduction), asymptotic expansion methods are still popular today, both in the math-
ematical literature (e.g. Geymonat et al. [2010]; Rohan and Lukeš [2010]) and the
engineering literature (e.g. Marigo and Pideri [2011]).

In the case of the classical homogenization problem (CHP) with solution uε ∈
W1,2

0 (Ω), the asymptotic expansion method with ansatz (2.2) for the solution is as fol-
lows. First, the gradient ∇uε(x) of the equilibrium temperature in the microstructured
body is formally given through

∇uε(x) = ∇u0(x) + ε
(
∇xu1

(
x, xε

)
+ 1

ε∇yu1

(
x, xε

) )
+ ε2

(
∇xu2

(
x, xε

)
+ 1

ε∇yu2

(
x, xε

) )
+ . . .

= ∇u0(x) +∇yu1

(
x, xε

)
+
∞∑
`=1

ε`
(
∇xu`

(
x, xε

)
+∇yu`+1

(
x, xε

) )
(2.3)

where∇xu` denotes the gradient of u` : Ω×Y → R w.r.t. the first argument and∇yu`
the gradient of u` w.r.t. the second argument. Here it should be noticed that it is in gen-
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eral not possible to formally apply the divergence operator in (CHP) to A
(
x
ε

)
∇uε(x),

for the simple reason that the constitutive function, i.e. the thermal conductivity ma-
trix A : Y → RN×N , is often not differentiable (but say piecewise constant, if the
microstructure of the body is made up from two different constituents). In this case I
prefer to resort to the weak form of the classical homogenization problem (CHP), i.e.

ˆ
Ω
A
(
x
ε

)
∇uε(x) · ∇ψ(x) dx =

ˆ
Ω
f(x)ψ(x) dx ∀ψ ∈ C∞c (Ω). (2.4)

At this point it is essential to notice the role of ψ ∈ C∞c (Ω) which has to act as a
testfunction for the solutions to all ε-problems. In particular, the testfunctions ψ have to
be such that they can capture (or ‘sample’) any fine properties of the solutions uε, most
notably their ε-oscillations. This is why it appears natural to choose testfunctions that
also oscillate ε-periodically, i.e.

ψ(x) := ϕ
(
x, xε

)
for ϕ ∈ C∞c (Ω; C∞per(Y )),

and therefore

∇ψ(x) = ∇xϕ
(
x, xε

)
+ 1

ε∇yϕ
(
x, xε

)
.

Here, C∞per(Y ) is the space of all smooth functions on the cubic periodicity cell Y =

[0, 1)N that have identical trace on opposite faces of Y . Then the weak form of (CHP)
reads as

ˆ
Ω
A
(
x
ε

)
∇uε(x) · ∇xϕ

(
x, xε

)
+ 1

εA
(
x
ε

)
∇uε(x) · ∇yϕ

(
x, xε

)
dx

=

ˆ
Ω
f(x)ϕ

(
x, xε

)
dx ∀ϕ ∈ C∞c (Ω; C∞per(Y )).

(2.5)
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Inserting (2.3) and sorting by powers of the microscale parameter ε yields

ε0

ˆ
Ω
f(x)ϕ

(
x, xε

)
dx

= ε−1

(ˆ
Ω
A
(
x
ε

) (
∇u0(x) +∇yu1

(
x, xε

))
· ∇yϕ

(
x, xε

)
dx

)

+ ε0

(ˆ
Ω
A
(
x
ε

) (
∇u0(x) +∇yu1

(
x, xε

))
· ∇xϕ

(
x, xε

)
+A

(
x
ε

) (
∇xu1

(
x, xε

)
+∇yu2

(
x, xε

))
· ∇yϕ

(
x, xε

)
dx

)

+ ε1

(ˆ
Ω
A
(
x
ε

) (
∇xu1

(
x, xε

)
+∇yu2

(
x, xε

))
· ∇xϕ

(
x, xε

)
+A

(
x
ε

) (
∇xu2

(
x, xε

)
+∇yu3

(
x, xε

))
· ∇yϕ

(
x, xε

)
dx

)

+ . . .

By equating powers of the microscale parameter ε on both sides of ‘=’ one obtains the
following cascade of equations: For the coefficient of ε−1 one has

0 =

ˆ
Ω
A
(
x
ε

) (
∇u0(x) +∇yu1

(
x, xε

))
· ∇yϕ

(
x, xε

)
dx, (2.6)

for the coefficient of ε0

ˆ
Ω
f(x)ϕ

(
x, xε

)
dx =

ˆ
Ω
A
(
x
ε

) (
∇u0(x) +∇yu1

(
x, xε

))
· ∇xϕ

(
x, xε

)
+A

(
x
ε

) (
∇xu1

(
x, xε

)
+∇yu2

(
x, xε

))
· ∇yϕ

(
x, xε

)
dx, (2.7)

and for the coefficient of ε`, ` ∈ N,

0 =

ˆ
Ω
A
(
x
ε

) (
∇xu`

(
x, xε

)
+∇yu`+1

(
x, xε

))
· ∇xϕ

(
x, xε

)
+A

(
x
ε

) (
∇xu`+1

(
x, xε

)
+∇yu`+2

(
x, xε

))
· ∇yϕ

(
x, xε

)
dx, (2.8)

where ϕ ∈ C∞c (Ω; C∞per(Y )). Now, since the value of the microscale parameter ε may
become arbitrarily small one might wonder whether the integrals in (2.6), (2.7) and (2.8)
converge. This is indeed the case and can be regarded as the fundamental lemma of
periodic homogenization. The version I state here is a simple corollary from [Visintin,
2006, Lemma 1.1]; another proof is e.g. [Cioranescu and Donato, 1999, Theorem 2.6].
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Lemma 2.1. Let Ω be an open and bounded subset ofRN satisfying 1Ω(·+ηk(·))→ 1Ω

pointwise a.e. in RN for every sequence (ηk)k in L∞(RN ) that vanishes uniformly.
Moreover, let Y be a bounded and measureable subset of RN that has the paving prop-
erty, and let { tj : j ∈ N } be a set of RN -vectors such that RN =

⋃
j∈N· (tj + Y ). Let

f : Ω × Y → R be bounded, continuous in its first variable and in its second variable
be extended to the whole RN by Y -periodicity, i.e. f(x, y) := f(x, y − byc). Herein,
b·c : RN → RN is the function that maps any y ∈ RN to the unique tj such that
y ∈ tj + Y . Then

(i) we have the identity
ˆ

Ω
f
(
x, xε

)
dx =

ˆ
RN

 
Y
1Ω

(
ε
⌊
x
ε

⌋
+ εy

)
f
(
ε
⌊
x
ε

⌋
+ εy, y

)
dy dx,

(ii) there holds the convergence
ˆ

Ω
f
(
x, xε

)
dx→

ˆ
Ω

 
Y
f(x, y) dy dx as ε→ 0.

Remark 2.4. For the common choice Y = [0, 1)N or any other periodicity cell of mass
1, the integral mean

ffl
Y · · · dy obviously conincides with the unnormalized integral´

Y · · · dy. However, since all of the thesis’ contents remain valid for other choices of
the periodicity cell Y , in particular such of mass different from 1, I always explicitely
write the integral mean.

Due the lemma’s fundamental role in periodic homogenization I will shortly repeat
its proof.

Proof. The basic idea behind the proof is to write the integral
´

Ω f
(
x, xε

)
dx as an inte-

gral over the whole space RN , then pave the RN with ε-homotheties of the periodicity
cell Y , i.e. RN =

⋃
j∈N· ε(tj + Y ), and sum up the integrals over the respective tiles

(see also Figure 2.1):
ˆ

Ω
f
(
x, xε

)
dx =

ˆ
RN

1Ω(x) f
(
x, xε

)
dx =

∑
j∈N

ˆ
ε(tj+Y )

1Ω(x) f
(
x, xε

)
dx

=
∑
j∈N

εN
ˆ
Y
1Ω(ε(tj + y)) f (ε(tj + y), tj + y) dy

=
∑
j∈N

εN
ˆ
Y
1Ω(εtj + εy) f (εtj + εy, y) dy (2.9)

where we performed the change of variables y :=
x−tj
ε for x ∈ ε(tj + Y ) and inferred

f (ε(tj + y), tj + y) = f (ε(tj + y), y) from the Y -periodicity of f in its second argu-
ment. Here it is crucial to notice that for all x ∈ ε(tj+Y ) one has the identity

⌊
x
ε

⌋
= tj .
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Moreover, it is εN = 1
volY

´
ε(tj+Y ) dy, thus

εN
ˆ
Y
1Ω(εtj + εy)f (εtj + εy, y) dx

=
1

volY

ˆ
ε(tj+Y )

ˆ
Y
1Ω (εtj + εy) f (εtj + εy, y) dy dx

=

ˆ
ε(tj+Y )

 
Y
1Ω

(
ε
⌊
x
ε

⌋
+ εy

)
f
(
ε
⌊
x
ε

⌋
+ εy, y

)
dy dx. (2.10)

Equations (2.9) and (2.10) finally yield the first assertion of the lemma. The second
assertion follows from the first one and Lebegue’s theorem of dominated convergence.
To this end, one realizes that for all x ∈ RN and y ∈ Y∣∣(ε ⌊xε ⌋+ εy

)
− x
∣∣ ≤ ε ∣∣⌊xε ⌋− x

ε

∣∣+ ε|y| ≤ ε 2 sup
ỹ∈Y
|ỹ|, (2.11)

hence 1Ω

(
ε
⌊
x
ε

⌋
+ εy

)
f
(
ε
⌊
x
ε

⌋
+ εy, y

)
→ 1Ω(x) f(x, y) for a.e. (x, y) ∈ RN × Y

by the assumptions on Ω and the continuity of f in its first argument.

Thus, with the help of Lemma 2.1, one can for small microscale parameter ε ap-
proximate (2.6) with

0 =

ˆ
Ω

 
Y
A(y)

(
∇u0(x) +∇yu1(x, y)

)
· ∇yϕ(x, y) dy dx, (2.12)

moreover (2.7) with

ˆ
Ω

 
Y
f(x)ϕ(x, y) dy dx =

ˆ
Ω

 
Y
A(y)

(
∇u0(x) +∇yu1(x, y)

)
· ∇xϕ(x, y)

+A(y)
(
∇xu1(x, y) +∇yu2(x, y)

)
· ∇yϕ(x, y) dy dx, (2.13)

and (2.8) with (` ∈ N)

0 =

ˆ
Ω

 
Y
A(y)

(
∇xu`(x, y) +∇yu`+1(x, y)

)
· ∇xϕ(x, y)

+A(y)
(
∇xu`+1(x, y) +∇yu`+2(x, y)

)
· ∇yϕ(x, y) dy dx, (2.14)

which are to be individudally satisfied by u0 : Ω → R, u` : Ω × Y → R, ` ∈ N, and
all ϕ ∈ C∞c (Ω; C∞per(Y )). The final challenge in applying the method of asymptotic
expansions is now to infer from the above limiting relations (2.12), (2.13) and (2.14) the
equations that the macroscopic part u0 of the ansatz for uε satisfies on the domain Ω.
In other words, the homogenized equations for the problem with microstructure (CHP).
Plainly speaking this comes down to choosing the right testfunctions and indeed this is
where experience with homogenization theory is most needed. First, if one chooses the
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testfunction ϕ ∈ C∞c (Ω; C∞per(Y )) in (2.13) as independent of the second argument, i.e.
with slight abuse of notation ϕ(x, y) = ϕ(x) in Ω× Y , then one would obtain
ˆ

Ω
f(x)ϕ(x) dx =

ˆ
Ω

 
Y
A(y)

(
∇u0(x) +∇yu1(x, y)

)
dy · ∇ϕ(x) dx

∀ϕ ∈ C∞c (Ω). (2.15)

This equation is already the weak form of an elliptic partial differential equation for u0

on the domain Ω, and still contains information about the actual microstructure through
the constitutive function A : Y → RN×N . Now, all that remains to do is to determine
the function u1; to this end, in (2.12) one takes the testfunction as ϕ(x, y) = ρ(x)ψ(y)
for ρ ∈ C∞c (Ω) and ψ ∈ C∞per(Y ). By the arbitrariness of ρ ∈ C∞c (Ω) this yields in a.e.
x ∈ Ω

0 =

 
Y
A(y)

(
∇u0(x) +∇yu1(x, y)

)
· ∇yψ(y) dy ∀ψ ∈ C∞per(Y ). (2.16)

Upon noticing the linearity of the solution to this equation in ∇u0(x), it is convenient
to define wi ∈W1,2

per(Y ), i = 1, . . . , N , as the unique solutions of

0 =

 
Y
A(y)

(
ei +∇ywi(y)

)
· ∇yψ(y) dy ∀ψ ∈ C∞per(Y ) (2.17)

(uniqueness up to an additive constant; existence by the assumptions (A1), (A2) and the
Lax-Milgram Lemma). Hence, the function u1 can be uniquely expressed as (again up
to an additive constant)

u1(x, y) = ∇u0(x) ·
N∑
i=1

wi(y) ei =

 w1(y)
...

wN (y)

 · ∇u0(x), (2.18)

thus in particular

∇yu1(x, y) =
[
∇yw1(y)

∣∣∣ · · · ∣∣∣∇ywN (y)
]
∇u0(x).

Inserting this into (2.15) leads to
ˆ

Ω
f(x)ϕ(x) dx

=

ˆ
Ω

( 
Y
A(y)

(
I +

[
∇yw1(y)

∣∣∣ · · · ∣∣∣∇ywN (y)
])

dy

)
∇u0(x) · ∇ϕ(x) dx

=

ˆ
Ω
AHom∇u0(x) · ∇ϕ(x) dx (2.19)

for all ϕ ∈ C∞c (Ω), where

AHom =

 
Y
A(y)

(
I +

[
∇yw1(y)

∣∣∣ · · · ∣∣∣∇ywN (y)
])

dy. (2.20)
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Obviously, (2.19) is the weak form of a linear elliptic partial differential equation for
the macroscopic part u0 of the ansatz (2.2). More precisely, it is the weak form of (2.1)
which I motivated earlier in this section by means of physical reasoning. Speaking once
more in terms of heat conduction, (2.19) is nothing but the equation for the equilibrium
temperature in the body Ω, whose microstructure is now so small that it can be regarded
as being made from one homogeneous material with constant thermal conductivity ma-
trixAHom. Moreover, the equilibrium temperature in the homogenized body Ω is indeed
the macroscopic part u0 in the assumed expansion of the solution uε to the problem with
microstructure. And thanks to (2.20) one now has a mathematical expression of how to
relate the homogenized thermal conductivity matrix AHom to the constitutive properties
of the body with microstructure given through A

( ·
ε

)
. Hence, there is no more need to

ask a laboratory assistent to determine AHom experimentally. Instead one can simply
compute its entries by means of (2.20) and solving (2.17) (e.g. numerically). In other
words, homogenization theory is a way to avoid solving one complicated problem with
microstructure (like (CHP)). Yet, it comes at the cost of solving two simpler problems.
One to compute the homogenized constitutive properties AHom (by (2.17) and (2.20))
which are inferred exclusively from the microstructure, i.e. the periodicity cell Y and
how the constitutive properties vary over the periodicity cell by A : Y → RN×N . And
another one to determine the solution uHom to the homogenized problem, i.e. (2.1) or
equivalently (2.19). Plainly speaking, the homogenization process leads – as expected
– to a separation of scales. Due to the importance of the above homogenization results
to the upcoming parts of the introduction and homogenization theory in general, at the
cost of some redundancy I will state it once again as a self-contained definition.

Definition 2.2. Let Y = [0, 1)N be the N -dimensional unit cube and the constitutive
function A : Y → RN×N be such that it satisfies the assumptions (A1) and (A2).
Moreover, let wi ∈ W1,2

per(Y ), i = 1, . . . , N be the (up to an additive constant) unique
solutions of

0 =

 
Y
A(y)

(
ei +∇ywi(y)

)
· ∇yψ(y) dy ∀ψ ∈ C∞per(Y ).

Then, the homogenized constitutive matrix AHom ∈ RN×N is defined through

AHom =

 
Y
A(y)

(
I +

[
∇yw1(y)

∣∣∣ · · · ∣∣∣∇ywN (y)
])

dy.

Still, although one now has a way to calculate the homogenized thermal conductivity
matrix AHom, it is a priori not clear whether it also has the natural properties of a
conductivity matrix. Or, more mathematically speaking, whetherAHom is ‘nice enough’
to ensure the existence of a solution to the homogenized problem (2.1). The answer is
found in the following statement.

Proposition 2.3. Let Y , A : Y → RN×N , AHom ∈ RN×N and wi ∈ W1,2
per(Y ) be

given as in Definition 2.2. Then



Methods for periodic homogenization: Yet another introduction 23

(i) AHom is symmetric and strongly elliptic, i.e.

1

C
|v|2 ≤ AHomv · v ≤ C|v|2

for some constant C > 0.

(ii) AHom can be written as

AHom,ij =

 
Y
A(y)

(
ej +∇ywj(y)

)
·
(
ei +∇ywi(y)

)
dy,

i, j ∈ {1, . . . , N}.

This is again one of the fundamental results of periodic homogenization, which
is why I chose to provide a proof (as found in e.g [Bensoussan et al., 1978, Chapter
1, Remark 2.6], [Sánchez-Palencia, 1980, Chapter 5, Section 3] or [Cioranescu and
Donato, 1999, Proposition 6.9]).

Proof. Obviously, the second assertion and the symmetry of A by (A1) imply the sym-
metry of AHom. To prove the second statement, one first writes for i, j ∈ {1, . . . , N}

 
Y
A(y)

(
ej +∇ywj(y)

)
·
(
ei +∇ywi(y)

)
dy

=

 
Y
A(y)ej · ei dy

+

 
Y
A(y)ej · ∇ywi(y) dy +

ˆ
Y
A(y)∇ywj(y) · ei dy

+

 
Y
A(y)∇ywj(y) · ∇ywi(y) dy.

However, testing the equation (2.17) defining wj with wi yields

0 =

 
Y
A(y)ej · ∇ywi(y) dy +

ˆ
Y
A(y)∇wj(y) · ∇ywi(y) dy,

thus  
Y
A(y)

(
ej +∇ywj(y)

)
·
(
ei +∇ywi(y)

)
dy

=

 
Y
A(y)ej · ei dy +

ˆ
Y
A(y)∇ywj(y) · ei dy

=

( 
Y
A(y)

(
I +

[
∇yw1(y)

∣∣∣ · · · ∣∣∣∇ywN (y)
])

dy ej

)
· ei

=AHom,ij

and the second assertion follows. It remains to prove the ellipticity of AHom. Since
AHom is a constant matrix, it is enough to show that AHom is positive definite, i.e.
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AHomv · v > 0 for all v ∈ RN \ {0}. For such v observe that by the second statement
of the proposition

AHomv · v =
N∑

i,j=1

viAHom,ij vj

=

 
Y
A(y)

 N∑
j=1

vj
(
ej +∇ywj(y)

) ·( N∑
i=1

vi
(
ei +∇ywi(y)

))
dy.

An easy calculation shows that
∑N

i=1 vi
(
ei +∇ywi

)
is nothing but the gradient of the

function ζv ∈ W1,2(Y ), ζv(y) :=
∑N

i=1 vi
(
yi + wi(y)

)
, and by the ellipticity (A2) of

A one infers

AHomv · v ≥
1

C

 
Y
|∇yζv(y)|2 dy.

If the right hand side were zero, then ζv would result as a constant function, hence
ζv ∈ W1,2

per(Y ). Since W1,2
per(Y ) is obviously a vector space, one would further obtain

Y 3 y 7→ v · y = ζv −
∑N

i=1 viwi ∈W1,2
per(Y ). This however is only possible if v = 0,

which contradicts the assumption v ∈ RN \ {0}. Thus AHom is positive definit and the
proof is finished.

With the ellipticity of AHom at hand, the Lax-Milgram Lemma immediately yields
the existence of a unique solution to the homogenized equation (2.1), more precisely to
its weak form (2.19). Thus, the problem defining the macroscopic part u0 of the ansatz
(2.2), i.e. the equilibrium temperature uHom in the homogenized body Ω, is well-posed.

Remark 2.5. I would like to advice the reader that homogenization does not always
conserve the mathematical ‘nature’ of a problem with microstructure, although this is
the case for the classical homogenization problem (CHP) and its homogenized counter-
part (2.1). In fact, the homogenization process may lead to ‘strange phenomena’ like
e.g. in [Cioranescu et al., 2011, Theorem 5.13], where the authors observe entirely new
boundary conditions in the homogenized equations caused by periodically recurring
microscopic quantities inside the microstructured domain.

Although the derivation of the homogenized equations (2.1) and the homogenized
constitutive properties (see Definition 2.2) has been completely formal, in the case of
the classical homogenization problem (CHP) one can indeed justify the ansatz (2.2).
For this one might turn to e.g. [Bensoussan et al., 1978, Chapter 1, Section 2.4] or
[Cioranescu and Donato, 1999, Section 7.2]. However, the justification heavily relies
on regularity theory for solutions of elliptic partial differential equations and therefore
requires additional smoothness assumptions on the domain and the data. In order to
obtain strict convergence of the solutions uε for the problem with microstructure (CHP)
to the solution uHom of the homogenized problem (2.1), other methods for periodic
homogenization appear to be more suitable (see the upcoming sections of this introduc-
tion).
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Before turning to other methods in the theory of periodic homogenization, I would
like to state a critical remark regarding the presence, or better, the absence of asymp-
totic expansions in lectures on periodic homogenization for students of mathematics.
In fact, many lecture notes or books on periodic homogenization I have come across
in the past four and a half years hardly teach the method of asymptotic expansions but
merely include it for seemingly historic reasons. An argument which is often heard
among mathematicians is that its formal nature would make it an engineer’s method
rather than a mathematician’s method and that homogenization theory is about proving
convergence to a homogenization limit. As concerns proving convergence of a problem
with microstructure to a homogenization limit, there are indeed more suitable methods
available than asymptotic expansions. However, I tend do disagree with the opinion
that homogenization theory is about proving convergence – it’s about deriving the ho-
mogenization limit, whereas proving convergence is about showing that the obtained
homogenization limit is correct. In fact, the steps leading to the identification of the
homogenization limit for the classical homogenization problem exposed in this section
are self-contained and cover little more than 5 pages. Whereas proving convergence
in a self-contained fashion would require considerably more efforts (even when using
a very generous definition of the term ‘self-contained’). While there is definitely a
need to prove convergence, to my opinion it is nonetheless very useful to employ a
fast and simple method beforehand to derive the homogenization limit, no matter how
formal or ‘quick and dirty’ the method may be. After all, this is why the asymptotic
expansion method is still popular today, even in the mathematical literature (see the
examples I gave previously). Another advantage of asymptotic expansions in periodic
homogenization is that it is constructive and allows for an explicit calculation of the
homogenization limit rather than producing abstract existence results (e.g. from com-
pactness arguments). To conclude, I would strongly advocate a more prominent role of
the asymptotic expansion method in courses on periodic homogenization for students
of mathematics, as well as examples of its use in contemporary research.

2.2.3 Γ-convergence

The late 1960s and 1970s have witnessed various approaches of paramount importance
to periodic homogenization. G-convergence and H-convergence, for instance, interpret
the classical homogenization problem (CHP) as a sequence of linear differential oper-
ators and exploit methods related to operator convergence in linear functional analysis
to pass to the homogenization limit. For detaled information on these two methods,
see the references Spagnolo [1969] or Dal Maso [1993] for G-convergence, as well
as Tartar [1984] and Tartar [2009] for H-convergence. However, it was not until Paolo
Marcellini and his seminal work Marcellini [1978] that advantage was taken from a par-
ticular property of the classical homogenization problem. More precisely, from the fact
that the classical homogenization problem is nothing but the Euler-Lagrange equation
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for the minimizer of a quadratic functional: by definition

uε ∈W1,2
0 (Ω) solves (CHP) ⇔ˆ

Ω
A
(
x
ε

)
∇uε(x) · ∇ψ(x) dx =

ˆ
Ω
f(x)ψ(x) dx ∀ψ ∈ C∞c (Ω)

and by density for all ψ ∈W1,2
0 (Ω). But this is indeed the Euler-Lagrange equation for

the unique minimizer uε of the functional

Eε : W1,2
0 (Ω)→ R,

Eε(v) := 1
2

ˆ
Ω
A
(
x
ε

)
∇v(x) · ∇v(x) dx−

ˆ
Ω
f(x)v(x) dx (2.21)

(uniqueness by the strong ellipticity (A1) of the constitutive function A). Physically
speaking, Eε can be interpreted as the dissipation potential (see e.g. [Lemaitre and
Chaboche, 1990, Chapter 2.5]) for the heat conduction in the microstructured body Ω,
and the minimizer of the dissipation potential is actually the body’s equilibrium tem-
perature uε. Hence, as Marcellini realized the classical homogenization problem (CHP)
can for varying values of the microscale paremter ε be viewed as sequence of function-
als (Eε)ε indexed by ε. More specifically, as a sequence of minimization problems or
variational problems. By physical intuition, as well as by e.g. the method of asymptotic
expansions one already knows that there is a homogeneous approximation (2.1) for the
classical homogenization problem (CHP) and that the corresponding solutions uε – i.e.
the minimizers of Eε – converge in a certain sense to the solution uHom of the homoge-
nized problem (2.1). However, the homogenized equation (2.1) is again nothing but the
Euler-Lagrange equation of the homogenized functional

EHom : W1,2
0 (Ω)→ R,

EHom(v) := 1
2

ˆ
Ω
AHom∇v(x) · ∇v(x) dx−

ˆ
Ω
f(x)v(x) dx (2.22)

where AHom is the homogenized constitutive matrix as given in Definition 2.2. In par-
ticular, uHom can therefore be viewed as the unique minimizer of EHom (uniqueness by
the ellipticity of AHom, see Proposition 2.3). Consequently, given convergence of the
solutions uε to (CHP) to the solution of uHom of the homogenized problem (2.1), one
can express this like

arg min
v∈W1,2

0 (Ω)

Eε(v) = uε −−−→
ε→0

uHom = arg min
v∈W1,2

0 (Ω)

EHom(v) (2.23)

Now, one may ask whether there is a notion of convergence for sequences of function-
als like (Eε)ε to some limit functional EHom that ensures convergence of the minimizers
(uε)ε to a minimizer of the limit functional, here denoted uHom. Indeed, this is what Γ-
convergence as introduced by Ennio De Giorgi in the 1970s is all about (see De Giorgi
and Franzoni [1975]). Roughly speaking, Γ-convergence defines a convergence for ‘en-
ergy functionals’ posed over a common topological vector space such that under suitable
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coercivity and compactness assumptions on the functionals and the underlying vector
space every cluster point of the corresponding sequence of minimizers is a minimizer
of the Γ-limit functional. Moreover, the associated sequence of minima also converges
to the minimum of the Γ-limit. (The term ‘energy functional’ is commonly used in the
context of Γ-convergence. In applications of Γ-convergence to continuum physics, the
functionals encountered often quantify the energy ‘stored’ in a certain configuration of
the underlying physical system. Compare e.g. Γ-convergence approaches to problems
of elasticity, like those in Friesecke et al. [2002] or Le Dret and Raoult [1995], where
suitable functionals capture the stored elastic energy of the underlying system.) This
is why Paolo Marcellini in Marcellini [1978] employed methods closely related to Γ-
convergence (although the term ‘Γ-convergence’ is never stated in that article). Yet, he
did not only derive the homogenized equations for the classical linear homogenization
problem, but for a far wider class of nonlinear homogenization problems. This was
due to the major advantage that Γ-convergence requires no or only minor assumptions
on the particular form of the functionals Eε. In principle, any homogenization problem
that can be viewed as a sequence of minimization problems, i.e. as a sequence func-
tionals index by the microscale parameter ε, can be approached with Γ-convergence
methods. Most notably, linearity or nonlinearity or even the existence of associated
Euler-Lagrange equations is of no importance to Γ-convergence. The other main inno-
vation in Marcellini’s contribution was the representation of the homogenized problem.
Previous approaches, like e.g. the asymptotic expansion method I exposed earlier, al-
ways described both the homogenization limit of the classical homogenization problem
(CHP) and the homogenized constitutive matrix AHom by means of – as I have to admit
– complicated and rather unintuitive partial differential equations (see Definition 2.2 and
Proposition 2.3). Instead, the Γ-convergence approach allows for a representation of the
homogenized problem completely in terms of minimization problems. In fact, not only
the homogenized equation (2.1) can be replaced by finding a minimizer to the functional
EHom as defined above, but also the equations leading to the homogenized constitutive
matrix AHom. A close look to the definition of the auxiliary functions w1, . . . , wN from
whichAHom is computed (see Definition 2.2) and the very same arguments that revealed
(CHP) and (2.1) to be Euler-Lagrange equations shows that

0 =

 
Y
A(y)

(
ei +∇ywi(y)

)
· ∇yψ(y) dy ∀ψ ∈ C∞per(Y ) ⇔

wi = arg min
v∈W1,2

per(Y )

( 
Y

1
2A(y)

(
ei +∇yv(y)

)
·
(
ei +∇yv(y)

)
dy

)
for all i = 1, . . . , N . More generally, for arbitrary F ∈ RN with wF :=

∑N
i=1 Fiwi ∈

W1,2
per(Y ) one identifies the following minimization problem

0 =

 
Y
A(y)

(
F +∇ywF (y)

)
· ∇yψ(y) dy ∀ψ ∈ C∞per(Y )⇔

wF = arg min
v∈W1,2

per(Y )

( 
Y

1
2A(y)

(
F +∇yv(y)

)
·
(
F +∇yv(y)

)
dy

)
.
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Simply evaluating the corresponding minimal value leads to

inf
v∈W1,2

per(Y )

{ 
Y

1
2A(y)

(
F +∇yv(y)

)
·
(
F +∇yv(y)

)
dy

}
(2.24)

=

 
Y

1
2A(y)

(
F +∇ywF (y)

)
·
(
F +∇ywF (y)

)
dy

=
N∑

i,j=1

 
Y

1
2A(y)

(
Fiei + Fi∇ywi(y)

)
·
(
Fjej + Fj ∇ywj(y)

)
dy

by the second statement of Proposition 2.3

=1
2

N∑
i,j=1

FiAHom,ij Fj = 1
2AHomF · F.

Not only is (2.24) a new characterization of the homogenized constitutive matrixAHom,
it is also an equivalent statement of the integral kernel (also called ‘energy density’) of
the homogenized functional EHom introduced earlier in this subsection. Another thor-
ough investigation of (2.24) reveals the integral kernel therein to be indeed the energy
density 1

2A
( ·
ε

)
F · F of the functional Eε describing the problem with microstructure.

By using a simpler notation

W : Y ×RN → R, W (y, F ) := 1
2A(y)F · F and (2.25)

WHom : RN → R, WHom(F ) := 1
2AHomF · F (2.26)

for the respective energy densities of the functionals Eε and EHom, one can now rewrite
the sequence of minimization problems (2.23) like

arg min
v∈W1,2

0 (Ω)

(ˆ
Ω
W
(
x
ε ,∇v(x)

)
dx−

ˆ
Ω
f(x)v(x) dx

)
= uε

−−−→
ε→0

uHom = arg min
v∈W1,2

0 (Ω)

(ˆ
Ω
WHom(∇v(x)) dx−

ˆ
Ω
f(x)v(x) dx

)
. (2.27)

Furthermore, from (2.24) one obtains the identity

WHom(F ) = inf

{ 
Y
W (y, F +∇yv(y)) dy : v ∈W1,2

per(Y )

}
. (2.28)

which nowadays is generally known as Marcellini’s cell formula. As the notation in
(2.27) suggests, Marcellini’s cell formula can be applied to much more complicated
situations than just the classical linear homogenization problem corresponding to a
quadratic energy density W

( ·
ε , F

)
= 1

2A
( ·
ε

)
F · F in the associated functional Eε. As

a matter of fact, all homogenization problems that can be described by means of mini-
mizing an energy functional like Eε with a convex, coercive energy density W

( ·
ε , F

)
of

quadratic growth converge in the sense of (2.23) (respecively (2.27)). Furthermore, the
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resulting energy density of the homogenized functional EHom obeys (2.28). More pre-
cisely, it was shown by Paolo Marcellini in Marcellini [1978] that (2.23) follows from
the Γ-convergence of (Eε)ε to EHom and the fundamental properties of Γ-convergence.

At this point I would again like to include some personalized views and comments
on homogenization by Γ-convergence before I actually provide the results from the
literature as motivated just before.

The major strength of Γ-convergence approaches to problems of periodic homog-
enization is that the general theory of Γ-convergence requires basically no a priori as-
sumptions on the sequence of functionals under investigation. In particular, it is by
no means restricted to linear problems – i.e. quadratic energy functionals. Also, Γ-
convergence methods apply to a wide range of problems in applied mathematics which
go well beyond periodic homogenization. For instance, dimension reduction problems
for thin domains like beams, plates or shells or the passage from discrete to continu-
ous material theories (see the references given in Section 2.1). This however makes
Γ-convergence particularly well-suited for situations in which multiple limit processes
are considered simultanously, such as homogenization and dimension reduction for pe-
riodically microstructured thin domains like interfaces (see e.g. Del Vecchio [1987];
Ansini [2004]; Ansini et al. [2007] and Chapter 3), thin films or plates (see e.g. Braides
et al. [2000]; Neukamm [2010]). Moreover, Γ-convergence methods are fairly ‘easy’
to deal with for sequences of convex functionals (like in the quadratic case) while se-
quences of nonconvex functionals often pose severe difficulties. See the following Sec-
tion 2.3 for the fundamental results on ‘nonconvex homogenization’ of Braides [1985]
and Müller [1987]. Nonetheless, Γ-convergence approaches for homogenization prob-
lems are sometimes blamed for being of limited interest to real-life problems of contin-
uum physics. Probably the most notable opponent is Luc Tartar who in Tartar [2009]
refers to (energy) minimization approaches to homogenization problems (or continuum
physics in general) as ‘fake mechanics’ [Tartar, 2009, p. 31], and even goes far enough
to call scientists employing such methods ‘experts in fake mechanics’ (see [Tartar, 2009,
p. 39]) pointing out that by the first principle of thermodynamics nature conserves en-
ergy rather than minimizing it. (Although one can name numerous applications in the
engineering disciplines such as static considerations in elasticity or heat transfer where
one is only interested in an equilibrium, steady state but not where the missing energy
between initial and steady state actually went. Indeed, this must sometimes be con-
sidered even more honest than enforcing conservation of energy, especially when one
cannot tell where and in which form energy is conserved. Also, one should recall that it
is very well possible to formulate also time-dependent problems of continuum physics
as minimization problems by the theory of optimal transportation, see Benamou and
Brenier [2000] and Li et al. [2010] for several applications to continuum physics.)

Since Γ-convergence will play a major role in the remainder of the thesis, I will
introduce it here in detail to avoid redundancy. The definitions and results that follow
below are taken from the standard reference on Γ-convergence Dal Maso [1993] which
is also a rich source for applications of Γ-convergence to homogenization problems
(cf. [Dal Maso, 1993, Chapters 24 and 25] and [Dal Maso, 1993, pp. 277 – 283]).
Further important and maybe more accessible references for Γ-convergence and its ap-
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plication to periodic homogenization are Braides and Defranceschi [1998] and Braides
[2000]. In its most abstract (topological) form, the definition of Γ-convergence reads
(cf. [Dal Maso, 1993, Definition 4.1]) as follows.

Definition 2.4. Let X be a topological space and let U(x) denote the set of all open
neighborhoods of x ∈ X . For any sequence of functions (Fk)k∈N where Fk : X →
[−∞,∞], the lower Γ-limit and the upper Γ-limit are the functions fromX into [−∞,∞]
respectively defined by(

Γ-lim inf
k→∞

Fk
)

(x) := sup
U∈U(x)

lim inf
k→∞

inf
y∈U
Fk(y),(

Γ-lim sup
k→∞

Fk
)

(x) := sup
U∈U(x)

lim sup
k→∞

inf
y∈U
Fk(y).

If there exists a function F∞ : X → [−∞,∞] such that Γ-lim infk Fk = F∞ =
Γ-lim supk Fk, one says that (Fk)k∈N Γ-converges to F∞. In this case one writes
Γ-limk Fk = F∞.

Since this definition is usually considered to be too unhandy in applications, the
so-called ‘sequential characterization’ of Γ-convergence is often used (which though
requires additional assumptions). For the following theorem I refer to [Dal Maso, 1993,
Proposition 8.16] and [Dal Maso, 1993, Proposition 8.1].

Theorem 2.5. For the space X and the sequence of functions (Fk)k∈N where Fk :
X → [−∞,∞] assume that one of the following assumptions is valid.

(i) (X, d) is a metric space,

(ii) X is a reflexive Banach space endowed with its weak topology and the sequence
(Fk)k∈N is equicoercive, i.e. there exists a lower semicontinuous function Ψ :
X → [−∞,∞] with Ψ(x) → ∞ as ‖x‖ → ∞, such that Fk ≥ Ψ on X for all
k ∈ N.

Then, for every x ∈ X the lower Γ-limit can be equivalently expressed like(
Γ-lim inf
k→∞

Fk
)

(x) := inf
{

lim inf
k→∞

Fk(xk) : (xk)k∈N in X s.t. xk → x
}

and there is a sequence (xk)k∈N converging to x that attains the infimum

and the upper Γ-limit like(
Γ-lim sup
k→∞

Fk
)

(x) := inf
{

lim sup
k→∞

Fk(xk) : (xk)k∈N in X s.t. xk → x
}

and there is a sequence (xk)k∈N converging to x that attains the infimum.

Herein, the convergence of sequences in X is understood in the metric d in the case of
(i) and as weak convergence in the case of (ii).
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Corollary 2.6. In the situation of Theorem 2.5, the sequence (Fk)k∈N Γ-converges to
a function F∞ : X → [−∞,∞] if and only if for all x ∈ X one has the

Γ-lim inf-inequality: for every sequence (xk)k∈N converging to x it is

F∞(x) ≤ lim inf
k→∞

Fk(xk),

and the

Existence of a recovery sequence: there exists a sequence (xk)k∈N converging to
x such that

F∞(x) = lim
k→∞

Fk(xk).

Any sequence (xk)k∈N with this property is called a ‘recovery sequence’ for x.

Like in Theorem 2.5, the convergences are understood in the metric or in the weak
topology of X , respectively.

Remark 2.6. The existence of a recovery sequence is often equivalently formulated as
the Γ-lim sup-inequality. In the situation of Corollary 2.6, the Γ-lim sup-inequality in
some x ∈ X states the existence of a recovery sequence (xk)k in X converging to x
such that F∞(x) ≥ lim supk Fk(xk).

As announced previously, Γ-convergence of a sequence of functions is closely re-
lated to convergence of the minimizers. The result below is taken from [Dal Maso,
1993, Corollary 7.17] and [Dal Maso, 1993, Corollary 7.20].

Theorem 2.7. Let X be a topological space and (Fk)k∈N be a sequence of functions
where Fk : X → [−∞,∞]. Suppose that for every k ∈ N there is a minimizer xk ∈ X
of Fk. Then

(i) If the sequence of minimizers (xk)k∈N converges to some x ∈ X , then x is a
minimizer to both Γ-lim infk Fk and Γ-lim supk Fk and there holds(

Γ-lim inf
k→∞

Fk
)

(x) = lim inf
k→∞

Fk(xk) and(
Γ-lim sup
k→∞

Fk
)

(x) = lim sup
k→∞

Fk(xk).

(ii) Assume (Fk)k∈N Γ-converges to some F∞ : X → [−∞,∞]. If x ∈ X is a
cluster point of the sequence of minimizers (xk)k∈N, then x is a minimizer of F∞
and there holds

F∞(x) = lim sup
k→∞

Fk(xk).

If (xk)k∈N converges to x ∈ X , then x is a minimizer of F∞ and

F∞(x) = lim
k→∞

Fk(xk).
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Finally, the general theory of Γ-convergence also provides a compactness result for
sequences of equi-coercive functions defined on a common separable metric space. In
fact, in this situation Γ-convergence can be equivalently expressed as convergence in an
appropriate metric space which is compact w.r.t. that metric. The result can be found in
[Dal Maso, 1993, Theorem 10.22].

Theorem 2.8. Let (X, d) be a separable metric space and Ψ : X → [−∞,∞] be a
lower semicontinuous function satisfying Ψ(x) → ∞ as ‖x‖ → ∞. Furthermore, SΨ

shall denote the set of all lower semicontinuous functions F : X → [−∞,∞] such that
F ≥ Ψ on X . Then there is a distance δ : SΨ × SΨ → [0,∞) on SΨ such that

(i) the metric space (SΨ, δ) is compact and

(ii) a sequence of functions (Fk)k∈N where Fk : X → [−∞,∞] Γ-converges to
F∞ : X → [−∞,∞] if and only if (Fk)k∈N converges to F∞ in the metric space
(SΨ, δ).

Remark 2.7. The distance δ in Theorem 2.8 can be constructed explicitely, cf. [Dal Maso,
1993, p. 123].

Now, in the language of Γ-convergence the result of Marcellini for problems of pe-
riodic homogenization which can be viewed as minimization problems is the following
(compare [Marcellini, 1978, Theorems 4.1 and 4.4], but the version here is [Dal Maso,
1993, Corollary 24.5]).

Theorem 2.9. Let Ω be an open and bounded subset of RN , Y = [0, 1)N be the unit
cube and W : Y × RN → R be Y -periodic in its first argument and assume that the
following three hypotheses hold:

for all F ∈ RN the map y 7→W (y, F ) is measurable and Y -periodic, (W1)

for a.e. y ∈ Y the map F 7→W (y, F ) is convex, (W2)
there exist positive constants c, C such that

c(|F |2 − 1) ≤W (y, F ) ≤ C(1 + |F |2)

for a.e. y ∈ Y and all F ∈ RN .

(W3)

Furthermore, for some positive ε and f ∈ L2(Ω) let the functionals Eε, EHom : W1,2
0 (Ω)→

R be given through

Eε(v) :=

ˆ
Ω
W
(
x
ε ,∇v(x)

)
dx−

ˆ
Ω
f(x) v(x) dx, (2.29)

EHom(v) :=

ˆ
Ω
WHom(∇v(x)) dx−

ˆ
Ω
f(x) v(x) dx (2.30)

where

WHom(F ) := inf

{ 
Y
W (y, F +∇yv(y)) dy : v ∈W1,2

per(Y )

}
.
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Finally, let Fε,FHom : L2(Ω)→ (−∞,∞] be the extensions of Eε and EHom to L2(Ω)
by∞. Then for every sequence (εk)k∈N of positive real numbers converging to 0 one
has

(i) (Fεk)k∈N Γ-converges to FHom w.r.t. the L2(Ω)-norm,

(ii) (Eεk)k∈N Γ-converges to EHom w.r.t. the weak topology in W1,2
0 (Ω).

The convergence analyis of the classical homogenization problem (CHP) and its
variational formulation (2.21) is now just a particular instance of this theorem.

Corollary 2.10. Let A : Y → RN×N satisfy the assumptions (A1) and (A2), and
suppose AHom to be given like in Definition 2.2. Then for every vanishing sequence
(εk)k∈N of positive real numbers the sequence of functionals (Eεk)k∈N defined through
(2.21) Γ-converges to w.r.t. the weak topology in W1,2

0 (Ω) to EHom as given in (2.22).
Furthermore, the minimizers uεk of Eεk converge to the minimizer uHom of EHom weakly
in W1,2

0 (Ω) and the minimal values converge also.

Proof. From the assumptions on the constitutive Matrix A it is easy to verify that
W : Y ×RN → R, W (y, F ) := 1

2A(y)F ·F satisfies the requirements of Theorem 2.9.
While the Γ-convergence of the sequence (Eεk)k∈N is inferred from the second state-
ment of Theorem 2.9, it follows from (2.24) and the definition of W that the Γ-limit is
indeed (2.22).

From the ellipticity of the constitutive function A : Y → RN×N by (A2) and
standard a priori estimates for minimizers of coercive functionals it is easily deduced
that the sequence of minimizers (uεk)k∈N is uniformly bounded in W1,2

0 (Ω). Hence,
any subsequence of (uεk)k∈N contains another weakly convergent subsequence, which
by the second statement of Theorem 2.7 and the Γ-convergence of (Eεk)k∈N to EHom

converges to a minimizer of EHom. Since EHom has a unique minimizer uHom (cf. the
ellipticity of AHom by Proposition 2.3), it follows that all subsequences of (uεk)k∈N
converge weakly in W1,2

0 (Ω) to the minimizer uHom of EHom. Thus, also the whole
sequence itself. The convergence of the minima is once more obtained from the second
statement of Theorem 2.7.

Although this first chapter is supposed to be a short introduction to those who are
new to methods of periodic homogenization, up to now I have only stated how to de-
termine the homogenized constitutive relations for (2.1) from those in the problem with
microstructure (CHP) (in Definition 2.2). Yet, no interpretation of the homogenization
results has been given so far. The reason is that the classical result on the homogenized
constitutive matrix in (2.1) as stated in Definition 2.2 comes as a set of partial differen-
tial equations, which are rather difficult to explain in the language of physics. Instead,
with Marcellini’s cell formula at hand the interpretation of the homogenized problem
becomes fairly simple. In the case of the homogenized heat equation (2.1), it suffices to
consider an infinitesimal, cubic volume element dx centered at x in the homogenized
body Ω. For a smooth temperature distribution u : Ω → R, the overall temperature
can be regarded as linear over dx, i.e. locally it behaves like y 7→ u(x) + ∇u(x) · y.
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Now the value of the homogenized dissipation potential (2.22) in the volume element
dx around x is by (2.24)

WHom(∇u(x))

= inf

{ 
Y

1
2A(y)

(
∇u(x) +∇yv(y)

)
·
(
∇u(x) +∇yv(y)

)
dy : v ∈W1,2

per(Y )

}
=

 
Y

1
2A(y)

(
∇u(x) +∇yu1(x, y)

)
·
(
∇u(x) +∇yu1(x, y)

)
dy

where u1(x, ·) ∈ W1,2
per(Y ) is the (up to an additive constant) unique minimizer that

attains the above infimum. (And for uε the solution to the homogenized problem (CHP)
u1 is nothing but the first order term in the formal asymptotic expansion (2.2). This
is easily seen by noticing that the Euler-Lagrange equation to the above minimization
problem is in fact (2.16).) Setting U1(x, y) :=

(
u(x) +∇u(x) · y

)
+ u1(x, y) one can

further simplify

WHom(∇u(x)) =

 
Y

1
2A(y)∇yU1(x, y) · ∇yU1(x, y) dy

= inf
{ 

Y

1
2A(y)∇yV (x, y) · ∇yV (x, y) dy :

V (x, ·) ∈
(
u(x) +∇u(x) · y

)
+ W1,2

per(Y )
}
. (2.31)

Thus, if one regards the periodicity cell Y as a ‘zoom’ on the cubic volume element
dx around x (see Figure 2.4), then WHom(∇u(x)) is the ‘minimum response’ of the
material in the microstructure’s periodicity cell to the (locally linear) temperature dis-
tribution of u in dx. To this end, note that the infimum in (2.31) is taken over

(
u(x) +

∇u(x) · y
)

+ W1,2
per(Y ), i.e. all periodic temperature distributions in Y that vary about

the local temperature profile y 7→
(
u(x) + ∇u(x) · y

)
of u. Hence, U1(x, ·) is the

resulting local equilibrium temperature distribution in the microstructure of the volume
element dx around x.

2.3 Passage to nonconvex homogenization: 80s

Up to now, in this introduction to the theory of periodic homogenization I have presented
two classical methods to compute the homogenized constitutive relations (2.2) for the
problem with microstructure (CHP). However, I have left unanswered a crucial question
on the fundamentals of periodic homogenization: how does the choice of the unit cell
affect the homogenization result? In fact, like illustrated in Figure 2.5, one can find
various unit cells paving the same periodic microstructure. For instance, in the case of
the classical homogenization problem (CHP) one could simply have chosen a bigger
tile kY = [0, k)N , k ∈ N, instead of the unit cube Y =

[
0, 1)N , but with the same

constitutive function A : Y → RN×N . (Recall that I always asked A to be extended
to the entire RN by Y -periodicity.) Then, when viewing the classical homogenization
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x ∈ ε
⌊
x
ε

⌋
+ εY

ε
⌊
x
ε

⌋
x+ dx

Figure 2.4: Interpretation of Marcellini’s cell formula – zoom on the local microstruc-
ture

problem (CHP) by means of the functional Eε in (2.29) with a quadratic energy density
(y, F ) 7→ W (y, F ) like in (2.25), Marcellini’s cell formula applied to the periodicity
cells Y and kY would yield two competing homogenized energy densities WHom,k and
WHom for one and the same problem with microstructure:

WHom,k(F ) = inf

{ 
kY
W (y, F +∇yv(y)) dy : v ∈W1,2

per(kY )

}
and

WHom(F ) = inf

{ 
Y
W (y, F +∇yv(y)) dy : v ∈W1,2

per(Y )

}
.

However, it is again due to Paolo Marcellini and his Theorem 2.1 in Marcellini [1978]
that these two quantities have been identified as equal all for convex energy densities
W . In particular, for the quadratic case of the classical homogenization problem. For
this result see also [Müller, 1987, Lemma 4.1].

Theorem 2.11. Let W : Y ×RN → R, Y := [0, 1)N , be convex and continuous in its
second argument and satisfy the assumptions stated in Theorem 2.9. Then, for all k ∈ N
the quantities WHom,k(F ) and WHom(F ) defined above are equal for all F ∈ RN .

On the other hand, what happens for nonconvex energy densities W ? This is a
crucial question, since e.g. in the theory of geometrically and constitutively nonlinear
elastostatics nonconvexity is not only common but even inevitable (cf. [Ciarlet, 1988,
Theorem 4.8-1]). In that case, functionals like (2.29) and (2.30) describe the free energy
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Figure 2.5: Various choices of the periodicity cell for one and the same microstructure

of hyperelastic materials with stored energy density W when exposed to volume loads
f and deformed by a (vector-valued) deformation v : Ω→ RN (see e.g. [Ciarlet, 1988,
Chapter 4] for the theory of hyperelastic materials). Unfortunately, a counterexample
due to Stefan Müller (in the very context of nonlinear elastostatics) shows that Mar-
cellini’s Theorem 2.11 in general no longer holds true for nonconvex energy densities,
cf. [Müller, 1987, Theorem 4.3].

Theorem 2.12. There is a nonconvex energy density W : Y × RN×N → R, Y :=
[0, 1)N , which is Y -periodic in its first argument and continuously differentiable and of
polynomial growth of order p > 2 in its second argument such that for some k ∈ N,
k > 1

inf

{ 
kY
W (y, F + Dyv(y)) dy : v ∈W1,p

per(kY ;RN )

}
< inf

{ 
Y
W (y, F + Dyv(y)) dy : v ∈W1,p

per(Y ;RN )

}
.

Remark 2.8. The energy density in W in Müller’s counterexample is constructed ex-
plicitely in [Müller, 1987, Section 4].

Knowing Stefan Müller’s counterexample, one would easily guess that the homog-
enization formula from the convex case in Theorem 2.9 no longer holds true for the
nonconvex case. For the simple reason that this would make the homogenization result
depend on the size of the actual periodicity cell chosen. Nonetheless, in the nonconvex
case there is a different homogenization formula, as it has been proved independently
by Andrea Braides in Braides [1985] and by Stefan Müller in Müller [1987]; the ver-
sion stated here can be found in [Müller, 1987, Theorem 1.3]. In fact, this result may be
regarded as the most important contribution to the theory of periodic homogenization in
the entire decade from 1980 to 1989.
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Theorem 2.13. Assume that Ω is a bounded Lipschitz domain, Y := [0, 1)N and that
W : Y ×RN×N → R satisfies

(i)
1

C
|F |2 ≤W (y, F ) ≤ C

(
1 + |F |2

)
,

(ii) |W (y, F )−W (y,M)| ≤ C
(
1 + |F |+ |M |

)
|F −M |

for all F,M ∈ RN×N , y ∈ Y and some constant C > 0, and moreover assume W to
be extended in its first argument by Y -periodicity. Then, for every vanishing sequence
of positive real numbers (εk)k∈N the functionals Eεk : W1,2(Ω;RN ) → R defined
through

Eεk(v) :=

ˆ
Ω
W
(
x
εk
,Dv(x)

)
dx

Γ-converge w.r.t. the weak topology in W1,2(Ω;RN ) to the functional
EHom : W1,2(Ω;RN )→ R,

EHom(v) :=

ˆ
Ω
W̄Hom(Dv(x)) dx

where W̄Hom : RN×N → R is given through

W̄Hom(F ) = inf
k∈N

inf

{ 
kY
W (y, F + Dyv(y)) dy : v ∈W1,2

per(kY ;RN )

}
.

Hence, for nonconvex problems one does not only have to consider the ‘minimum
reaction’ of the microstructure to local gradients in one periodicity cell, but in an ever
growing ensemble of periodicity cells. (Speaking in the language of structural mechan-
ics, a nonconvex energy density allows structures to ‘buckle’ under compression loads
whereas in the convex case they would only be compressed. Moreover, the larger a
structure is the more ‘buckling modes’ it can exhibit and thus the better it can minimize
its response to external loads. This is exactly the intuition that led Stefan Müller to his
by now famous counterexample, showing that a microstructure can minimize its stored
energy under an externally applied local gradient more efficiently over an esemble of
periodicity cells than just in a single periodicity cell.) Interestingly though, this is not
the case for scalar problems, i.e. where the functionals in Theorem 2.13 take values in
spaces of scalar functions. In fact, for scalar problems Marcellini’s theorem as formu-
lated in Theorem 2.9 remains valid even without any convexity conditions imposed on
the energy density W ; see [Müller, 1987, Section 4].

2.4 Formalization of homogenization theory: 90s

The late 1980s and the 1990s have witnessed most inspiring contributions and insights
into the theory of periodic homogenization that most notably led to a new, revolution-
ary notion of convergence in homogenization theory, namely the so-called two-scale
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convergence. In fact, the definitions and theorems on two-scale convergence provided
by Gabriel Nguetseng and Grégoire Allaire – both representatives of the modern french
school of homogenization – replaced by mathematical formalism much of the genius
and intuition that once restricted the field of homogenization to a very limited number
of specialists. As a consequence, homogenization theory became accessible for a far
broader audience in the applied analysis community, which in turn resulted in rapidly
growing number of contributions to the field. The start to this development was marked
by Gabriel Nguetseng’s seminar work Nguetseng [1989], which I guess might with good
faith be called as groundshaking and inspiring to periodic homogenization as was the
fall of the Berlin wall in 1989 to world history.

2.4.1 Two-scale convergence

Previously, mathematically rigorous approaches to periodic homogenization – in par-
ticular G-convergence, H-convergence and Γ-convergence – provided definitions and
compactness results always for the convergence of problems with periodic microstruc-
ture, that is of linear operators or functionals describing the periodic homogenization
problem. Convergence of the solutions to the solution of the homogenized problem (as
in the case of the classical homogenization problem (CHP)) was merely reduced to a
corollary of more abstract results on the convergence of the problems with microstru-
ture. This is the case for both G-convergence and H-convergence (see the references
given earlier) and also for Γ-convergence (cf. Corollary 2.10). In contrast to that, the
work of Gabriel Nguetseng focused exclusively on the convergence and compactness
properties of the solutions to a problem with microstructure. The homogenized prob-
lem on the other hand would only result as a mean to ‘describe’ or ‘characterize’ the
limit of the solutions. The key challenge in finding a satisfactory notion of convergence
for a sequence of solutions (uε)ε in say W1,2

0 (Ω) to a problem with microstructure is
that it should allow to derive the limit value of integrals like

ˆ
Ω
A
(
x
ε

)
∇uε(x) · ∇ψ(x) dx (2.32)

for vanishing microscale parameter ε and a testfunction ψ ∈ C∞c (Ω). Indeed, this type
of integral is essential to the theory of periodic homogenization; notice that it also ap-
pears in the weak form (2.4) of the classical homogenization problem (CHP). From the
standard assumptions (A1) and (A2) on the constitutive function A : Y → RN×N and
Poincaré’s inequality, one can a priori only state that the solutions (uε)ε to (CHP) are
bounded in W1,2

0 (Ω). Hence, in general only weak convergence in W1,2
0 (Ω) along a

suitable subsequence can be expected; in particular, the sequence of gradients (∇uε)ε
would converge weakly in L2(Ω;RN ). However, also the function A

( ·
ε

)
∇ψ(·) con-

verges merely weakly in L2(Ω;RN ) (according to Lemma 2.1). Since the product of
two weakly convergent sequences does in general not converge to the product of the
weak limits, it is clear that one cannot naively pass to the limit in (2.32). Neverthe-
less, by the heuristic reasoning of the asymptotic expansion method (cf. the arguments
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leading from the ansatz (2.2) and (2.4) to (2.15)), the limit of (2.32) is likely to be
ˆ

Ω
A
(
x
ε

)
∇uε(x) · ∇ψ(x) dx

−−−→
ε→0

ˆ
Ω

 
Y
A(y)

(
∇u0(x) +∇yu1(x, y)

)
dy · ∇ψ(x) dx. (2.33)

According to the ansatz (2.2) u0 should be the weak limit of (uε)ε in W1,2
0 (Ω) (pos-

sibly along a suitable subsequence of the vanishing microscale parameters ε) and u1 :
Ω × Y → R some a priori unknown function that is differentiable in its second ar-
gument. To conclude, at least in the case of the classical homogenization problem
(CHP) weak convergence in W1,2

0 (Ω) (respectively in L2(Ω;RN )) of the solutions (uε)ε
(respectively their gradients (∇uε)ε) is not sufficient to recover a limit behavior like
(2.33). Yet, in his investigations on the convergence properties of integrals like (2.32),
Gabriel Nguetseng showed in [Nguetseng, 1989, Theorem 3] that for any vanishing se-
quence of microscale parameters (εk)k and any bounded sequence (uε)ε indexed by
ε = (εk)k in W1,2(Ω) there is a subsequence (εk`)` along which (2.33) holds true for
all ψ ∈ C∞c (Ω). Therein, u0 is the weak limit of (uεk` )` in W1,2(Ω) and u1 some func-

tion in L2(Ω; W1,2
per(Y )). More generally, Nguetseng established that, given a vanishing

sequence of microscale parameters ε = (εk)k, every bounded sequence (vε)ε in L2(Ω)
admits a subsequence (εk`)` and a function v0 ∈ L2(Ω× Y ) such that

ˆ
Ω
vε(x)ψ

(
x, xε

)
dx −−−→

ε→0

ˆ
Ω

 
Y
v0(x, y)ψ(x, y) dy dx, (2.34)

along the subsequence (εk`)`, where ψ is an arbitrary funtion in C∞c (Ω; C∞per(Y )) (again
assumed to be extended by Y -periodicity in its second argument). Sequences of func-
tions (vε)ε in L2(Ω) having property (2.34) were later on called ‘two-scale convergent’
by Grégoire Allaire, and v0 the ‘two-scale limit’ of the sequence (vε)ε. Moreover, Al-
laire showed in his celebrated paper [Allaire, 1992, Theorem 1.8] that under the assump-
tion ‖vε‖L2(Ω) → ‖v0‖L2(Ω×Y ) and some additional regularity v0 ∈ L2(Ω; Cper(Y ))
one has moreover the ‘corrector-result’∥∥vε(x)− v0

(
x, xε

)∥∥
L2(Ω)

−−−→
ε→0

0. (2.35)

In fact, as explained in [Allaire, 1992, Theorem 2.6] this yields another fundamen-
tal insight. If for the sequence of solutions to the classical homogenization prob-
lem (CHP), (uε)ε, and the two-scale limit of the sequence of gradients (∇uε)ε which
takes the form ∇u0 + ∇yu1 (as it may be anticipated from (2.33)) one could show∥∥∇yu1

(
·, ·ε
)∥∥

L2(Ω;RN )
→ ‖∇yu1‖L2(Ω×Y ;RN ) (and the same for u1 and ∇xu1 instead

of ∇yu1), then one would have∥∥uε(x)−
(
u0(x) + εu1

(
x, xε

))∥∥
W1,2

0 (Ω)
−−−→
ε→0

0.

In other words, a mathematically rigorous justification for the (first term in the) heuristic
asymptotic expansion (2.2) of the solution uε to the classical homogenization problem
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(CHP). Eventually, with Nguetseng’s and Allaire’s notion of two-scale convergence at
hand, just like with the method of asymptotic expansions it is just a matter of choosing
the right testfunctions to derive the homogenization limit of classical homogenization
problem (CHP). The same goes for the equations defining the homogenized constitutive
relations given in Definition 2.2. Prior to demonstrating this again for the example of
the classical homogenization problem, I once more add some comments on two-scale
convergence.

As I already said before, the notion of two-scale convergence due to Gabriel Nguet-
seng and Grégoire Allaire marked a milestone in the theory of periodic homogenization.
While previous approaches were originally defined only for certain problem classes (el-
liptic problems in the case of G-convergence and H-convergence, minimization prob-
lems for Γ-convergence), two-scale convergence now allowed to pass to the limit in
all sorts of integrals featuring periodically oscillating testfunctions like ψ

(
·, ·ε
)

where
ψ ∈ C∞c (Ω; C∞per(Y )) (or more generally in L2(Ω; Cper(Y ))), no matter which prob-
lem the integrals actually came from. As a matter of fact, integrals with periodically
oscillating coefficients can be found basically in all weak forms of partial differential
equations modeling periodic microstructures. In addition, two-scale convergence pro-
vides a mathematically rigorous and universal justification of the heuristic method of
asymptotic expansions. Other than previous justifications which could only show the
validity of asymptotic expansions for solutions to particular partial differential equa-
tions like (CHP); cf. e.g. [Cioranescu and Donato, 1999, Section 7.2]. Most impor-
tant however, the defnition of two-scale convergence together with the compactness
and corrector results of Gabriel Nguetseng and Grégoire Allaire introduced a problem-
independent formalism of how to pass to the limit of vanishing microscale parameter
in problems featuring periodic microstructure. Thus, two-scale convergence rendered
cumbersome and complicated calculations to actually identify the homogenization limit
obsolete, in contrast to asymptotic expansions and G-convergence and H-convergence
alike (not however the Γ-convergence approach). In the applied analysis community the
development of two-scale convergence led to a ‘wave’ of new results for all kinds of ho-
mogenization problems. However, in recent years Doina Cioranescu, Alain Damlamian,
George Griso and many other co-workers developed a new method for describing the
limit behavior of integrals like (2.32), namely the so-called method of periodic unfold-
ing (see the upcoming Section 2.5). Yet, since periodic unfolding may be regarded as
an ‘evolution’ or ‘generalization’ of two-scale convergence, I would strongly suggest
anyone who is about to study periodic homogenization more in detail to turn to periodic
unfolding first. Mostly because two-scale convergence – which in its definition appears
to be different from known concepts of functional analysis like weak convergence in
L2(Ω) – can by the method of periodic unfolding and quite simple calculations actually
be identified as an ‘ordinary’ weak L2-convergence (however in a larger L2-space than
L2(Ω)). Indeed, the periodic unfolding vista on two-scale convergence revealed many
delicate results from two-scale convergence to be rather obvious corollaries from linear
functional analysis. Still, two-scale convergence is a topic of its own interest in the
field of periodic homogenization. Therefore and also because the fundamental contri-
butions of Gabriel Nguetseng and Grégoire Allaire belong (at least in my opinion) to the
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best ever written on periodic homogenization, I strongly recommend starters in periodic
homogenization also to study Lukkassen et al. [2002], Allaire [1992] and Nguetseng
[1989] (in this order); although there is no monograph dedicated to two-scale conver-
gence, [Cioranescu and Donato, 1999, Chapter 9] and [Hornung, 1997, Appendix A]
are a good sources of information on the topic (with the latter also including a very
brief exposition of G-convergence, H-convergence and Γ-convergence).

Just like Γ-convergence, also two-scale convergence will be of great importance to
the remainder of the thesis (most notably in Chapter 4), which is why I will expose
two-scale convergence in detail. Since I already roughly stated the main motivation
for two-scale convergence, I may immediately start with the definition of two-scale
convergence (cf. [Allaire, 1992, Definition 1.1] and [Lukkassen et al., 2002, Definition
6]).

Definition 2.14. Let Ω be an open subset of RN , Y = [0, 1)N be the unit cube and
(εk)k∈N a sequence of positive real numbers converging to 0. A sequence (vεk)k in
L2(Ω) is said to (weakly) two-scale converge in L2(Ω× Y ) to a limit v0 ∈ L2(Ω× Y ),
if

lim
k→∞

ˆ
Ω
vεk(x)ψ

(
x, xεk

)
dx =

ˆ
Ω

 
Y
v0(x, y)ψ(x, y) dy dx (2.36)

holds for all ψ ∈ L2(Ω; Cper(Y )). In this case one writes

vεk
2−⇀ v0 in L2(Ω× Y ).

If in addition (vεk)k satisfies limk ‖vεk‖L2(Ω) = ‖v0‖L2(Ω×Y ), then the sequence is said
to be strongly two-scale convergent in L2(Ω× Y ) to v0 and one writes

vεk
2−→ v0 in L2(Ω× Y ).

Plainly speaking, in the definition of two-scale convergence sequences (vε)ε are
‘sampled’ for oscillations of length ε through the testfunctions x 7→ ψ(x, x/ε), ψ ∈
L2(Ω; Cper(Y )). Hence, the two-scale limit v0(x, y) keeps track of these fine oscilla-
tions in the limit of ε → 0 by means of its second variable as it returns asymptotically
the same value when being ‘sampled’ with (x, y) 7→ ψ(x, y).

Example 2.1. Among the most important examples for two-scale convergence is the
insight that for smooth functions ψ ∈ C∞c (Ω; C∞per(Y )) extending Y -periodically in the

second argument one observes strong two-scale convergence ψ(x, x/εk)
2−→ ψ(x, y) in

L2(Ω×Y ) for every sequence (εk)k∈N of positive real numbers that converges to zero.
In fact, this is an easy corollary of Lemma 2.1 which implies ψ(x, x/εk)

2−⇀ ψ(x, y)
in L2(Ω × Y ) and

´
Ω ψ(x, x/ε)2 dx →

´
Ω

ffl
Y ψ(x, y)2 dy dx. For example, in one

space dimension (Y = [0, 1)) one has umacro(x) sin(2πx/ε)
2−→ umacro(x) sin(2πy)

in L2((0, 1)× Y ) for every umacro ∈ C((0, 1)).

Obviously, by choosing testfunctions ψ ∈ L2(Ω) independent of the second ar-
gument the above definition of two-scale convergence in L2(Ω × Y ) reduces to the
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definition of weak L2(Ω)-convergence. Thus, one might wonder whether one can relate
weak two-scale limits in L2(Ω×Y ) and ‘ordinary’ weak or strong limits in L2(Ω). The
answer to this question is stated in the result below, for which I refer to [Lukkassen
et al., 2002, Theorems 9, 10 and 17] and [Allaire, 1992, Proposition 1.6].

Proposition 2.15. Again let Ω be an open subset ofRN , Y = [0, 1)N and (εk)k∈N be a
sequence of positive real numbers converging to 0. Moreover, let (vεk)k be a sequence
in L2(Ω) and v0 ∈ L2(Ω× Y ).

(i) One has the implications

vεk
2−→ v0 in L2(Ω× Y ) ⇒ vεk

2−⇀ v0 in L2(Ω× Y ),

vεk
2−⇀ v0 in L2(Ω× Y ) ⇒ vεk ⇀

 
Y
v0(·, y) dy in L2(Ω).

In particular, sequences that weakly two-scale converge in L2(Ω×Y ) are bounded
in L2(Ω).

(ii) If (x, y) 7→ v0(x, y) is independent of its second argument y, i.e. v0 ∈ L2(Ω),
then

vεk → v0 in L2(Ω) ⇔ vεk
2−→ v0 in L2(Ω× Y ).

(iii) In the case of weak two-scale convergence vεk
2−⇀ v0 in L2(Ω × Y ) there holds

the estimate

‖v̄0‖L2(Ω) ≤ ‖v0‖L2(Ω×Y ) ≤ lim inf
k→∞

‖vεk‖L2(Ω)

where v̄0 =
ffl
Y v0(·, y) dy is the L2(Ω)-weak limit of the sequence (vεk)k.

Hence, the weak limit x 7→ v̄0(x) of a sequence (vε)ε in L2(Ω) is just the average
v̄0(x) =

ffl
Y v0(x, y) dy over the small-scale oscillations of the sequence as they are

captured in the weak two-scale limit (x, y) 7→ v0(x, y).

Remark 2.9. Interestingly, the original definition of two-scale convergence given in Al-
laire [1992] is somewhat ‘defective’ in that it takes testfunctions only from
C∞c (Ω; C∞per(Y )). In this case however, weak two-scale convergence of a sequence
(vε)ε in L2(Ω) would not imply neither weak convergence nor boundedness in L2(Ω)
as it is shown by elementary counterexamples in [Lukkassen et al., 2002, Examples
11 and 12]. These examples exploit the fact that testfunctions in C∞c (Ω; C∞per(Y )), i.e.
having compact support in Ω, ignore any concentration of mass of the sequence (vε)ε
near the boundary. If however one a priori asks for boundedness of the sequence (vε)ε
in L2(Ω), then it would again be sufficient to test for weak two-scale convergence with
funtions from C∞c (Ω; C∞per(Y )) only (see [Lukkassen et al., 2002, Proposition 13]). It is
actually funny to see that also the first definitions of periodic unfolding were ‘defective’
as they also ignored effects near the boundary of the domain Ω (see the next subsection
or [Mielke and Timofte, 2008, Chapter 2]).
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As one might expect from any meaningful definition of convergence, two-scale lim-
its are unique (if necessary, see [Lukkassen et al., 2002, Chpater 3]). However, one
should be aware of the fact that two-scale convergence and therefore also the two-scale
limits strongly depend on the particular sequence of mircoscale parameters (εk)k. In-
tuitively, this can already be seen from the definition of weak two-scale convergence:
a testfunction x 7→ ψ(x, x/ε) (for say ψ ∈ C∞c (Ω; C∞per(Y ))) itself exhibits oscilla-
tions of length ε. Thus by evaluating the integral

´
Ω vε(x)ψ(x, x/ε) dx it ‘samples’

vε ∈ L2(Ω) for oscillations of length ε. This should be compared with the definition of
Fourier coefficients, wherein one samples a function for a certain frequency expressed
by means of a sinusoidal testfunction of that very frequency. Consequently, it is obvi-
ous that e.g. oscillations of a function vε of length far smaller than the ‘sampling wave
length’ ε cannot be captured by a testfunction x 7→ ψ(x, x/ε). In essence, this insight is
explained best by the following example which may be found in [Visintin, 2006, Section
1].

Example 2.2. Let both Ω := (0, 1) and the periodicity cell Y := [0, 1) be copies of
the one-dimensional unit cube, and (εk)k be the special sequence εk := 1

k . Then, by
Lemma 2.1 it is easy to see thatˆ

Ω
sin
(

2πx
εk

)
ψ
(
x, xεk

)
dx −−−→

k→∞

ˆ
Ω

 
Y

sin(2πy)ψ(x, y) dx

for every ψ ∈ C∞c (Ω; C∞per(Y )). Hence, since x 7→ sin(2πx/εk) is bounded in L∞(Ω)
one has

sin
(

2πx
εk

)
2−⇀ sin(2πy) in L2(Ω× Y ) w.r.t. (εk)k.

But for the sequence of functions x 7→ sin(2πx/ε2
k) things are quite different. From

the much faster oscillations of these functions compared to the two-scale testfunctions
x 7→ ψ(x, x/ε) one might already anticipate compensation effects in´

Ω sin(2πx/ε2
k)ψ(x, x/εk) dx, just like in the Riemann-Lebesgue Lemma on Fourier

coefficients. Indeed, by using the very same arguments of the Riemann-Lebesgue
Lemma one can prove thatˆ

Ω
sin
(

2πx
ε2k

)
ψ
(
x, xεk

)
dx −−−→

k→∞
0

for every ψ ∈ C∞c (Ω; C∞per(Y )) and therefore

sin
(

2πx
ε2k

)
2−⇀ 0 in L2(Ω× Y ) w.r.t. (εk)k.

To this end, let ψ ∈ L∞(Ω × Y ) be such that is extended by Y -periodicity in its sec-
ond argument and moreover piecewise constant on the tiles εk

(
(p, q) + (Ω × Y )

)
,

p, q ∈ N. Then, by the particular choice εk := 1
k it is an elementary calculation

to show that
´

Ω sin(2πx/ε2
k)ψ(x, x/εk) dx = 0 for every k ∈ N. For arbitrary

ψ ∈ C∞c (Ω; C∞per(Y )) the result follows by an approximation argument, i.e. choos-
ing a piecewise constant function ψk like above such that ‖ψ − ψεk‖L∞(Ω×Y ) ≤ Cεk
for some positive constant C.
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In the definition of two-scale convergence Grégoire Allaire distinguished between
weak and strong two-scale convergence for a good reason. In fact, according to these
definitions – just like in ‘ordinary’ linear functional analysis – products of weakly and
strongly two-scale convergent sequences converge to the product of the two-scale limits.
Also, (strong) two-scale convergence does not only relate a sequence of functions (vε)ε
and its two-scale limit v0 by the convergence of oscillating integrals (2.36) and the
norm convergence ‖vε‖L2(Ω) → ‖v0‖L2(Ω×Y ), but even by a particular L2(Ω)-strong
convergence (for both results see [Allaire, 1992, Theorem 1.8] or [Lukkassen et al.,
2002, Theorem 18]).

Theorem 2.16. Let Ω be an open subset of RN , Y = [0, 1)N be the unit cube and
(εk)k∈N a sequence of positive real numbers converging to 0. Moreover, let (vεk)k and

(wεk)k be in sequences in L2(Ω) such that vεk
2−⇀ v0 in L2(Ω× Y ) and wεk

2−→ w0 in
L2(Ω× Y ).

(i) For every ψ ∈ C∞c (Ω) it is

lim
k→∞

ˆ
Ω
vεk(x)wεk(x)ψ(x) dx

=

ˆ
Ω

( 
Y
v0(x, y)w0(x, y) dy

)
ψ(x) dx.

(ii) If w0 is an element of L2(Ω; Cper(Y )), then

lim
k→∞

∥∥wεk(x)− w0

(
x, xε

)∥∥
L2(Ω)

= 0.

The second statement of the above theorem is referred to as ‘Allaire’s corrector
result’. Whereas Gabriel Nguetseng’s two-scale compactness result for bounded se-
quences in L2(Ω) is the following (see [Nguetseng, 1989, Theorem 1] or [Allaire, 1992,
Theorem 1.2]).

Theorem 2.17. Let Ω be an open subset of RN , Y = [0, 1)N be the unit cube and
(εk)k∈N a sequence of positive real numbers converging to 0. Then for every bounded
sequence (vεk)k in L2(Ω) there exists a subsequence (vεk` )` and a function v0 ∈ L2(Ω×
Y ) such that

vεk`
2−⇀ v0 in L2(Ω× Y ).

Of particular interest is the case of two-scale convergence for L2(Ω)-bounded se-
quences of gradients (vε)ε = (∇uε)ε. Given a sequence (uε)ε that is bounded in
W1,2(Ω), the weak two-scale limit of the sequence of gradients (∇uε)ε takes a par-
ticular form (see [Nguetseng, 1989, Theorem 3]) and [Allaire, 1992, Proposition 1.14].
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Theorem 2.18. Let Ω be an open subset of RN , Y = [0, 1)N be the unit cube and
(εk)k∈N a sequence of positive real numbers converging to 0. Then for every bounded
sequence (uεk)k in W1,2(Ω) there is a subsequence (uεk` )` and functions u0 ∈W1,2(Ω)

and u1 ∈ L2(Ω; W1,2
per(Y )) such that

uεk` ⇀ u0 in W1,2(Ω) and

∇uεk`
2−⇀ ∇u0 +∇yu1 in L2(Ω× Y ;RN ).

Herein,∇yu1 denotes the weak derivative of u1 w.r.t. its second argument.

Having this theorem at hand, it would no longer be difficult to pass to the limit in
the classical homogenization problem (CHP), more precisely in its weak form (2.4).
Consider an arbitrary sequence of microscale parameters (εk)k. Then, boundedness
of the sequence of solutions (uεk)k to the classical homogenization problem (CHP)
in W1,2

0 (Ω) is again easily inferred from the assumptions (A1) and (A2) on the con-
stitutive function A : Y → RN×N and Poincaré’s inequality. Thus, in the spirit of
the preceding Thereom 2.18 a weakly two-scale convergent subsequence of the gradi-
ents, say ∇uεk`

2−⇀ ∇u0 +∇yu1 in L2(Ω × Y ;RN ), may be chosen for u0 the weak

W1,2
0 (Ω)-limit of (uεk` )` and u1 ∈ L2(Ω; W1,2

per(Y )). However, even for a smooth test-
function ψ ∈ C∞c (Ω) in the weak form (2.4) the mapping x 7→ A(x/εk)∇ψ(x) is in
general not an element of L2(Ω; Cper(Y )), hence no valid testfunction for two-scale
convergence in the sense of Definition 2.14. This problem would most notably occur
for a microstructure made from two homogeneous materials, resulting in a piecewise
constant constitutive function A. Fortunately, two-scale convergence allows to pass to
the limit with even more general oscillating testfunctions, as it is revealed by the next
theorem (see [Lukkassen et al., 2002, Theorems 15 and 16]).

Theorem 2.19. Let Ω be an open and bounded subset of RN , Y = [0, 1)N be the
unit cube and (εk)k∈N a sequence of positive real numbers converging to 0. Moreover,
(vεk)k shall be a sequence in L2(Ω) that weakly two-scale converges to v0 ∈ L2(Ω×Y ).
Let ψ : Ω × Y → R be a function which is extended by Y -periodicity in its second
argument and assume that one of the following assumptions holds:

(i) ψ can be identified with an element from L2
per(Y ; C(Ω)),

(ii) there are functions ψ1 ∈ L2s(Ω) and ψ2 ∈ L2t
per(Y ), 1 ≤ s, t ≤ ∞ and 1

s+ 1
t = 1,

such that ψ(x, y) = ψ1(x)ψ2(y).

Then there holds again

lim
k→∞

ˆ
Ω
vεk(x)ψ

(
x, xεk

)
dx =

ˆ
Ω

 
Y
v0(x, y)ψ(x, y) dy dx.



46 Formalization of homogenization theory: 90s

Eventually, as already explained in Subsection 2.2.2, in order to derive the homog-
enization limit it is essential to choose a testfunction ψ in the weak form (2.4) of the
classical homogenization problem (CHP) that ‘samples’ the fine properties of the solu-
tions (uεk)k for all εk-problems. If the weak two-scale limit u1 of the subsequence of
gradients (∇uεk` )` were smooth, then by Allaire’s corrector result Theorem 2.16 and

the weak W1,2
0 (Ω)-convergence of (uεk` )` to u0 one would obtain

∥∥∥uεk` (x)−
(
u0(x) + εk`u1

(
x, x

εk`

))∥∥∥2

W1,2
0 (Ω)

(2.37)

≤ 2

(∥∥∥uεk` (x)− u0(x)
∥∥∥2

L2(Ω)

+
∥∥∥∇uεk` (x)−

(
∇u0(x) +∇yu1

(
x, x

εk`

))∥∥∥2

L2(Ω;RN )

)

+ 2εk`

(∥∥∥u1

(
x, x

εk`

)∥∥∥2

L2(Ω)
+
∥∥∥∇xu1

(
x, x

εk`

)∥∥∥2

L2(Ω;RN )

)
−−−→
`→∞

0.

Therefore, testfunctions for solutions of (CHP) must at least capture the limit behavior
(2.37), which is why one should choose testfunctions of the form ψ(x) := ϕ(x) +
εkϕ1(x, x/εk) for smooth functions ϕ ∈ C∞c (Ω) and ϕ1 ∈ C∞c (Ω; C∞per(Y )). With the
strong two-scale convergence

∇ϕ(x) + εk∇xϕ1

(
x, x

εk`

)
+∇yϕ1

(
x, x

εk`

)
2−→ ∇ϕ(x) +∇yϕ1(x, y) in L2(Ω× Y ;RN )

by Example 2.1 and the weak two-scale convergence∇uεk`
2−⇀ ∇u0+∇yu1 in L2(Ω×

Y ;RN ) it is easy to infer that the limit of the corresponding weak form of (CHP)

ˆ
Ω
A
(

x
εk`

)
∇uεk` (x) · ∇

(
ϕ(x) + εk`ϕ1

(
x, x

εk`

))
dx

=

ˆ
Ω
f(x)

(
ϕ(x) + εk`ϕ1

(
x, x

εk`

))
dx

is according to Theorems 2.16 and 2.19

ˆ
Ω

 
Y
A(y)

(
∇u0(x) +∇yu1(x, y)

)
·
(
∇ϕ(x) +∇yϕ1(x, y)

)
dy dx

=

ˆ
Ω
f(x)ϕ(x) dx. (2.38)
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Now, just like in Subsection 2.2.2 choosing ϕ1 ≡ 0 yields

ˆ
Ω

 
Y
A(y)

(
∇u0(x) +∇yu1(x, y)

)
dy · ∇ϕ(x) dx =

ˆ
Ω
f(x)ϕ(x) dx

∀ϕ ∈ C∞c (Ω)

which is nothing but (2.15). While the choice ϕ ≡ 0 and ϕ1(x, y) = ρ(x)ψ(y) for
ρ ∈ C∞c (Ω) and ψ ∈ C∞per(Y ) results by the arbitrariness of ρ in

 
Y
A(y)

(
∇u0(x) +∇yu1(x, y)

)
· ∇yψ(x) dy = 0 ∀ψ ∈ C∞per(Y )

for a.e. x ∈ Ω, which is (2.16). In other words, by the very same arguments as
employed in Subsection 2.2.2 for the asypmtotic expansion method one can identify
u1 ∈ L2(Ω; W1,2

per(Y )) to be given as in (2.18), i.e.

u1(x, y) = ∇u0(x) ·
N∑
i=1

wi(y) ei =

 w1(y)
...

wN (y)

 · ∇u0(x),

where the (up to an additive constant) unique w1, . . . , wN ∈ W1,2
per(Y ) are stated in

Definition 2.2. Similarly, the W1,2
0 (Ω)-weak limit u0 of the subsequence (uεk` )` of

solutions to (CHP) is again nothing but the unique solution to the homogenization limit
(2.1), i.e.

ˆ
Ω
f(x)ϕ(x) dx =

ˆ
Ω
AHom∇u0(x) · ∇ϕ(x) dx ∀ϕ ∈ C∞c (Ω)

where the homogenized constitutive matrix AHom is as in Definition 2.2, that is

AHom =

 
Y
A(y)

(
I +

[
∇yw1(y)

∣∣∣ · · · ∣∣∣∇ywN (y)
])

dy.

In particular, neither the W1,2
0 (Ω)-weak limit of (uεk` )` nor the weak two-scale limit

∇u0 + ∇yu1 of (∇uεk` )` depend on the particular (sub-)sequence of the microscale
parameters (εk)k. Thus, for any vanishing sequence of microscale parameters (εk)k
there hold both the W1,2

0 (Ω)-weak convergence of the solutions (uεk)k to (CHP), as
well as the weak two-scale convergence of the sequence of gradients (∇uεk)k along the
entire sequence of microscale parameters.

Eventually, compressed in the form of a theorem Nguetseng’s and Allaire’s notion
of two-scale convergence provides the following result on the classical homogenization
problem (cf. [Nguetseng, 1989, Section 6] and [Allaire, 1992, Theorem 2.3]; see also
[Cioranescu and Donato, 1999, Section 9.3]).

Theorem 2.20. Let Ω be an open and bounded subset of RN , Y = [0, 1)N be the
unit cube and let A : Y → RN×N satisfy the assumptions (A1) and (A2). Suppose
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w1, . . . , wN and AHom to be given like in Definition 2.2. Then, for every vanishing
sequence of positive real numbers (εk)k and (uεk)k the sequence of weak solutions in
W1,2

0 (Ω) to (CHP) one has

uεk ⇀ u0 in W1,2
0 (Ω),

∇uεk
2−⇀ ∇u0 +∇yu1 in L2(Ω× Y ;RN )

and u0 and u1 ∈ L2(Ω; W1,2
per(Y )) and are uniquely defined through

ˆ
Ω
f(x)ϕ(x) dx =

ˆ
Ω
AHom∇u0(x) · ∇ϕ(x) dx ∀ϕ ∈ C∞c (Ω),

u1(x, y) = ∇u0(x) ·
N∑
i=1

wi(y) ei =

 w1(y)
...

wN (y)

 · ∇u0(x).

From this theorem one can easily see that while two-scale convergence itself may
very well depend on the specific sequence of microscale parameters (εk)k chosen (see
Example 2.2), the homogenization result usually does or better should not. There are
indeed specific situations in which also the homogenization result varies with the spe-
cific sequence of microscale parameters. An example are the results obtained by Stefan
Neukamm and myself in [Neukamm and Stelzig, 2011, Section 4]; see also the last
Chapter 4 of this thesis, more precisely Section 4.3.

2.5 State of the Art: 21st century

Just like all preceding decades since the 1960s also the first decade of the 21st cen-
tury has witnessed crucial contributions to the theory of periodic homogenization. Most
notably it has seen a further formalization of what has been achieved by Gabriel Nguet-
seng and Grégoire Allaire in the 1990s through the notion of two-scale convergence.
That is, starting in 2002 with the fundamental publication Cioranescu et al. [2002]
another (mainly) french homogenization school – around such names as Doina Cio-
ranescu, Alain Damlamian, Georges Griso, Riccardo DeArcangelis and Patrizia Donato,
as well as my supervisor Augusto Visintin – has formed and created what is now called
the periodic unfolding method. Plainly speaking, the periodic unfolding theory can be
interpreted as the identification of two-scale convergence in the framework of classical
functional analysis; more precisely, its identification as classical weak (or strong) con-
vergence in an appropriate (larger) space. As a consequence, nowadays the theory of
(convex) periodic homogenization can be regarded as a mature branch of applied anal-
ysis that – if taught appropriately – is accessible for anyone with a good knowledge of
the classical weak convergence methods in functional analysis and the theory of partial
differential equations. In other words, having a powerful but universal methodology
for periodic homogenization problems at hand, more emphasis can finally be spent on
the application of analysis to interesting problems coming from mathematical physics,
rather than on analysis itself.
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2.5.1 The periodic unfolding method

The periodic unfolding idea as well as its nomenclature goes back to Cioranescu et al.
[2002] wherein the authors exploit a natural, although purely mathematical intuition.
In fact, the following heuristic arguments are in substance unrelated to the classical ho-
mogenization problem (CHP) for the heat conduction in the microstructured body Ω that
I used as a ‘showcase’ for the previously described methods of periodic homogeniza-
tion. Let there be given a sequence of functions (vε)ε in L2(Ω) that weakly two-scale
converges to some v0 ∈ L2(Ω×Y ) as ε vanishes (where the periodicity cell Y shall for
simplicity again be the unit cube [0, 1)N ). Thus, by Definition 2.14

lim
ε→0

ˆ
Ω
vε(x)ψ

(
x, xε

)
dx =

ˆ
Ω

 
Y
v0(x, y)ψ(x, y) dy dx

for all ψ ∈ L2(Ω; Cper(Y )). As explained in the previous Subsection 2.4.1, the integral
on the left hand side ‘samples’ the function vε for oscillations of length ε over the
periodicity cells εY tiling the domain Ω (recall that x 7→ ψ(x, x/ε) is εY -periodic
by the Y -periodicity of ψ in its second argument). Whereas in the two-scale limit
v0(x, y) it is the second variable that keeps track of these oscillations in the limit ε →
0, telling how the function y 7→ v0(x, y) oscillates over the ‘infinitesimal periodicity
cells x + dY tiling Ω (x ∈ Ω)’. In view of the above convergence one might wonder
whether one could already describe the oscillations of vε over the ‘finite periodicity
cells εa + εY tiling Ω (a ∈ ZN ) ’ in an analogous fashion by a two-variable function
(x, y) 7→ ṽε(x, y). In the two-scale limit v0(x, y) the first variable x ∈ Ω indicates the
location of the infinitesimal tile x + dY it belongs to. Yet, in the case of finite tiles
εa+ εY only finitely many contribute to the tiling of the bounded domain Ω and many
x ∈ Ω share one tile. Therefore, the first variable of such a function ṽε(x, y) would for
all x belonging to the tile εa+ εY have to indicate the same location of the tile, namely
εa = ε

⌊
x
ε

⌋
. Here, b·c : RN → ZN returns once more the integer part of its argument.

Under heavy abuse of notation, for x ∈ Ω and y ∈ Y this would then read as

ṽε(x, y) = ṽε
(
ε
⌊
x
ε

⌋
, y
)
.

Now, in order to capture the oscillations of vε over the tile εa + εY 3 x one could
simply restrict vε to this tile and describe its behavior on this tile by a variable coming
from the periodicity cell Y . In symbols, for x ∈ Ω and y ∈ Y

ṽε(x, y) :=
(
vε
∣∣
εa+εY

)
(εa+ εy) = vε

(
ε
⌊
x
ε

⌋
+ εy

)
.

Indeed, this is exactly the idea of the periodic unfolding operator from Cioranescu et al.
[2002] which is defined as

Tεvε : RN × Y → R,
(
Tεvε

)
(x, y) :=

{
vε
(
ε
⌊
x
ε

⌋
+ εy

)
if ε
⌊
x
ε

⌋
+ εy ∈ Ω,

0 else.

Just like a two-scale limit, by construction the first argument x of the unfolded func-
tion

(
Tεvε

)
(x, y) indicates the finite periodicity cell ε

⌊
x
ε

⌋
+ εY it belongs to, while the
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second argument y captures the function’s behavior over this tile. Besides this qualitia-
tive behavior, the most important property of the unfolding operator Tε is its isometry
property, in that it satisfiesˆ

RN

 
Y

(
Tεv
)
(x, y) dy dx =

ˆ
Ω
v(x) dx

for every v ∈ L1(Ω) (compare Lemma 2.1). In particular, ‖Tεv‖L2(RN×Y ) = ‖v‖L2(Ω)

for all v ∈ L2(Ω). On the other hand, in view of the isometry property of the unfolding
operator Tε and the boundedness of the sequence (vε)ε in L2(Ω) by Proposition 2.15,
the unfolded sequence

(
Tεvε

)
ε

remains bounded in L2(RN × Y ). Hence, from the
unfolded sequence one might extract a weakly convergent subsequence – for simplicity
not relabeled – and some ṽ0 ∈ L2(RN × Y ) such that Tεvε ⇀ ṽ0 in L2(RN × Y ).
In other words, the bounded sequence (vε)ε in L2(Ω) exhibits two competing limits:
its weak two-scale limit v0 ∈ L2(Ω × Y ) and the weak L2(RN × Y )-limit ṽ0 of the
unfoldings (Tεvε)ε. Now, the crucial insight of the periodic unfolding method is that
these two limits are equal, in that (for domains Ω whose boundary has zero Lebesgue-
measure)

supp ṽ0 ⊆ Ω× Y and ṽ0(x, y) = 1Ω(x)v0(x, y)

for a.e. x ∈ RN and y ∈ Y (see e.g. [Cioranescu et al., 2002, Proposition 1]). Surpris-
ingly, this is not difficult to verify. For every ε the support of Tεvε is obviously contained
in {x : dist(x,Ω) ≤ ε 2diam(Y )} × Y , cf. (2.11). Thus, as ε becomes smaller and
smaller the supports of (Tεvε)ε shrink down to supp ṽ0 ⊆ Ω × Y . Moreover, for all
ψ ∈ C∞c (Ω; C∞per(Y )) it is by the isometry property of the unfolding operator Tεˆ

Ω
vε(x)ψ

(
x, xε

)
dx

=

ˆ
RN

 
Y
Tε
(
vε ψ

(
·, ·ε
))

(x, y) dy dx

=

ˆ
RN

 
Y

(
Tεvε

)
(x, y)ψ(x, y) dy dx

+

ˆ
RN

 
Y

(
Tεvε

)
(x, y)

(
ψ(x, y)− Tε

(
ψ
(
·, ·ε
))

(x, y)
)

dy dx. (2.39)

While the first integral obviously converges to
´
RN

´
Y ṽ0(x, y)ψ(x, y) dy dx, a simple

calculation shows that by definition and the assumed Y -periodicity of ψ in its second
argument

ψ(x, y)− Tε
(
ψ
(
·, ·ε
))

(x, y) = ψ(x, y)− ψ
(
ε
⌊
x
ε

⌋
+ εy, y

)
.

The test function ψ being smooth, this term vanishes uniformly. Passing to the limit
ε→ 0 in (2.39) and recalling the weak two-scale convergence vε

2−⇀ v0 in L2(Ω× Y )
then impliesˆ

Ω

 
Y
v0(x, y)ψ(x, y) dy dx =

ˆ
RN

 
Y
ṽ0(x, y)ψ(x, y) dy dx
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and from supp ṽ0 ⊆ Ω × Y and vol ∂Ω = 0 it follows by the density of
C∞c (Ω; C∞per(Y )) 3 ψ in L2(Ω× Y ) that ṽ0(x, y) = 1Ω(x)v0(x, y) a.e. in RN × Y .

This short proof of the equivalence between weak two-scale convergence and ‘or-
dinary’ weak convergence of the unfolded sequence prototypically demonstrates the
major strength of the periodic unfolding method. In just a view lines of elementary in-
tegral calculus and basic concepts from linear functional analysis (even if one includes
the isometry property of the unfolding operator, cf. the proof of Lemma 2.1) one can
completely reproduce Nguetseng’s celebrated compactness result Theorem 2.17. More-
over, the equivalence of weak two-scale convergence vεk

2−⇀ v0 in L2(Ω × Y ) and
the L2(RN × Y )-weak convergence of the unfolded sequence (Tεvε)ε allows to de-
fine two-scale convergence by means of classical functional analysis methods. In fact,
periodic unfolding can be understood as the explanation for two-scale convergence,
which formerly was already known to have many similarities to classical weak conver-
gence (definition via L2-scalar products with test functions, weak two-scale compact-
ness, convergence of products of weakly and strongly two-scale convergent sequences),
but could somehow not be aligned with known functional analysis. Whereas now, the
embedding of two-scale convergence into a functional analysis context by means of the
periodic unfolding method allows to derive two-scale analoga for many well-known re-
sults from functional analysis – by simply applying them to the unfolded sequence. This
strength is exploited e.g. in Visintin [2006] and Visintin [2007] (for two-scale versions
of compactness theorems, embeddings, inequalities,. . . ). Another advantage of peri-
odic unfolding is that basically the entire intuition and the convergence proofs based on
Nguetseng’s and Allaire’s two-scale convergence can be reused in a periodic unfolding
setting; often, it is only the two-scale argument that has to be replaced by a correspond-
ing periodic unfolding statement. See e.g. the application of periodic unfolding to the
classical homogenization problem (CHP) at the end of the present subsection. Even-
tually, the periodic unfolding idea can in principle be adapted to all sorts of periodic
microstructures. For instance, periodically perforated domains (see Cioranescu et al.
[2006b] and Cioranescu et al. [2011]), thin domains (see Neukamm [2010]), perforated
thin domains or interfaces (see e.g. Cioranescu et al. [2008b] or the following Chap-
ter 3) and many other situations. Yet, there are various different definitions of periodic
unfolding operators available in the literature (cf. Cioranescu et al. [2008a]; Visintin
[2006]; Mielke and Timofte [2008]); all are similar in spirit, but sometimes very differ-
ent in substance due to seemingly negligible differences. This is nicely demonstrated by
what one might call the ‘curse of the boundary’ in periodic homogenization (cf. Remark
2.9 and in particular [Mielke and Timofte, 2008, Chapter 2]).

Again, before stating the most important results on the periodic unfolding method
and applying it to the ‘showcase’ of the classical homogenization problem (CHP), I
would like to recall some personal experiences with the topic. In fact, the periodic un-
folding method reduces many convex homogenization problems to a mere construction
of an appropriate periodic unfolded operator. Whereas the actual convergence analysis
becomes a corollary of classical weak convergence methods known from linear func-
tional analysis. Hence, as already pointed out at the beginning of this section, more
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emphasis can be spent on the homogenization problem itself rather than on the con-
vergence analysis of the problem as the microscale parameter vanishes. The periodic
unfolding method has also been applied to nonconvex homogenization problems as they
were outlined in Section 2.3 (see Cioranescu et al. [2006a]), although in that context it
did not prove to be handier than e.g. the methods used in Müller [1987]. Nevertheless,
the periodic unfolding method has evolved as the main workhorse for convex homoge-
nization problems and has in this function mostly displaced its ‘predecessor’ two-scale
convergence (in its original definition). Also, due to its elementary and intuitive nature
it is most suitable for teaching, since it does not require other than basic knowledge
in Lebesgue- and Sobolev-spaces as well as linear functional analysis. In other words,
requirements that every good undergraduate student should fulfill. Unfortunately, to my
current knowledge there is no textbook available on periodic homogenization yet that
introduces the periodic unfolding method. However, with the standard reference on pe-
riodic homogenization Cioranescu and Donato [1999] being written by two of the main
drivers of the periodic unfolding method one might hope for a second extended edition
of that volume. For the time being, the most suitable references for anyone who is new
to periodic unfolding are to my humble opinion Cioranescu et al. [2002], Cioranescu
et al. [2008a] and Visintin [2006], the most precise exposition of the topic being Mielke
and Timofte [2008]. Yet, the periodic unfolding method is not free of ‘flaws’ – most
notably, just like the asymptotic expansion method it shows a tendency of becoming
‘unreadable’ once a certain degree of complexity has been reached. For instance, Cio-
ranescu et al. [2008b] studies a situation of periodically recurring voids in a domain,
where the scale of the void diameter is different from the mutual distance of the voids
(smaller), and moreover the voids concentrate near a hyperplane. Unfortunately then,
although being very well-written and of interesting content, the paper becomes very
hard to read due to the sheer notational effort that is needed to cope with the various
different microscales involved.

Due to the importance of the periodic unfolding method for the remainder of the
thesis I will introduce the most relevant definitions and theorems in a similar level of
detail as I did for Γ-convergence and two-scale convergence. The start is marked by the
definition of the periodic unfolding operator like found in Mielke and Timofte [2008]
(also the notation used here leans to that work).

Definition 2.21. Let Ω be an open subset of RN , Y = [0, 1)N be the unit cube and
ε > 0 be some positive real number. Then the periodic unfolding operator Tε : L2(Ω)→
L2(RN × Y ) is defined as

(
Tεv
)
(x, y) :=

{
v
(
ε
⌊
x
ε

⌋
+ εy

)
if ε
⌊
x
ε

⌋
+ εy ∈ Ω,

0 else.

= vExt
(
ε
⌊
x
ε

⌋
+ εy

)
,

where (·)Ext : L2(Ω)→ L2(RN ), vExt := 1Ω v denotes the extension of v to RN by 0.

As indicated previously, the most essential feature of the periodic unfolding operator
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is its isometry property (cf. [Cioranescu et al., 2002, Proposition 1], [Visintin, 2006,
Lemma 1.1] and [Mielke and Timofte, 2008, Proposition 2.1]).

Proposition 2.22. Again let Ω be an open subset of RN , Y = [0, 1)N be the unit cube
and ε > 0 be some positive real number. Then, for the periodic unfolding operator
Tε : L2(Ω)→ L2(RN × Y ) of Definition 2.21 there holds

ˆ
RN

 
Y

(
Tεv
)
(x, y) dy dx =

ˆ
Ω
v(x) dx,

and Tε is an isometry.

In view of the above isometry property and the usual weak compactness of bounded
sequences in Hilbert-spaces, it is basically trivial to infer the following statement. (Re-
call the origin of the regularity assumption on the domain boundary having zero Lebesgue
measure as explained in the motivation of the periodic unfolding method.)

Proposition 2.23. Let there be given Ω an open and bounded subset of RN such that
∂Ω has zero Lebesgue measure, Y = [0, 1)N the unit cube and (εk)k∈N a vanishing
sequence of positive real numbers, and for every εk the periodic unfolding operator
Tεk : L2(Ω) → L2(RN × Y ) from Definition 2.21. Then, for every bounded sequence
(vεk)k∈N in L2(Ω) there is a subsequence (εk`)`∈N and a function v0 ∈ L2(Ω × Y )
such that

Tεk`vεk` ⇀ Ev0 in L2(RN × Y ).

where E : L2(Ω × Y ) → L2(RN × Y ) is the 0-extension defined as (Ev)(x, y) :=
1Ω(x)v(x, y) =

(
vExt(·, y)

)
(x).

Now, in view of the weak two-scale compactness in L2(Ω× Y ) of L2(Ω)-bounded
sequences and the weak compactness of their unfoldings in L2(RN × Y ), the natural
question on the relation between these two concepts of convergence is answered by the
next proposition.

Proposition 2.24. Once more assume to be given Ω an open and bounded subset of
RN such that ∂Ω has zero Lebesgue measure, Y = [0, 1)N the unit cube and (εk)k∈N
a vanishing sequence of positive real numbers, and for every εk the periodic unfolding
operator Tεk : L2(Ω)→ L2(RN × Y ) from Definition 2.21. Moreover, let (vεk)k∈N be
some sequence in L2(Ω) and v0 ∈ L2(Ω× Y ). Then one has the relations

vεk
2−⇀ v0 in L2(Ω× Y ) ⇔ Tεkvεk ⇀ Ev0 in L2(RN × Y )

and

vεk
2−→ v0 in L2(Ω× Y ) ⇔ Tεkvεk → Ev0 in L2(RN × Y ).

Here, Ev0 is the 0-extension of v0 defined in Proposition 2.23.
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Proof. The first statement may be proved as outlined at the beginning of this subsection,
using the basic properties of two-scale convergence stated in Subsection 2.4.1. Alter-
natively, one can turn to [Visintin, 2006, Proposition 2.5]. The second statement is an
easy corollary of the first assertion and the isometry property of the unfolding operator,
upon taking into account the fact that strong convergence in Hilbert spaces is equivalent
to weak convergence and convergence of the norm.

Given the equivalence in the proposition above, the relations of traditional two-
scale convergence with ordinary weak and strong convergence in L2(Ω) – like stated in
Proposition 2.15 – should also hold in a periodic unfolding setting.

Proposition 2.25. Let Ω be an open subset of RN such that ∂Ω has zero Lebesgue
measure, Y = [0, 1)N be the unit cube and (εk)k∈N a vanishing sequence of positive
real numbers. Moreover, let (vεk)k be a sequence in L2(Ω) and v0 ∈ L2(Ω× Y ).

(i) One has the implications

Tεkvεk → Ev0 in L2(RN × Y ) ⇒ Tεkvεk ⇀ Ev0 in L2(RN × Y ),

Tεkvεk ⇀ Ev0 in L2(RN × Y ) ⇒ vεk ⇀

 
Y
v0(·, y) dy in L2(Ω).

(ii) If (x, y) 7→ v0(x, y) is independent of its second argument y, i.e. v0 ∈ L2(Ω),
then

vεk → v0 in L2(Ω) ⇔ Tεkvεk → Ev0 in L2(RN × Y ).

(iii) In the case of weak convergence Tεkvεk ⇀ Ev0 in L2(RN × Y ) there holds the
estimate

‖v̄0‖L2(Ω) ≤ ‖v0‖L2(Ω×Y ) ≤ lim inf
k→∞

‖vεk‖L2(Ω)

where v̄0 =
ffl
Y v0(·, y) dy is the L2(Ω)-weak limit of the sequence (vεk)k.

Although one might turn to [Visintin, 2006, Theorem 1.3], it should be noticed that
these results are basically trivial to prove in view of the definition of the unfolding
operator Tε, its isometry property and standard results from linear functional analysis.
Actually, in this fashion one can prove numerous results for two-scale convergence,
the core idea being always the same: unfold sequences from L2(Ω) into the larger space
L2(RN×Y ) and then apply well-known results from funcional analysis to the unfolded
sequence. Although being in practice often far more delicate than such trivial corollaries
like Proposition 2.25, this procedure is e.g. applied in Visintin [2006] where numerous
powerful two-scale versions of compactness theorems, convergence theorems from the
Lebesgue-calculus and embedding theorems are derived.

Another major advantage of periodic unfolding is the treatment of periodically per-
forated domains. That is, for Ω a smoothly bounded subset of RN , V some void con-
tained in Y = [0, 1)N and ε a microscale parameter, the periodically perforated domain
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Ωε is defined as Ω \
⋃
a∈ZN ε(a+ V ). In other words, the domain Ω from which small

voids εV arranged along the periodic ZN -grid have been removed. Equivalently, upon
defining the perforated periodicity cell Y ∗ := Y \ V , the indicator function of the pe-
riodically perforated domain Ωε can be expressed like 1Ωε(x) = 1Ω(x)1Y ∗

(
x
ε

)
where

1Y ∗ is supossed repeated over the entireRN by Y -periodicity. By applying the periodic
unfolding operator Tε to the 0-extension of a function v ∈ L2(Ωε) toRN (again denoted
vExt = 1Ωε v), it is easily seen that(

TεvExt
)
(x, y) = Tε

(
1Y ∗

( ·
ε

)
vExt

)
(x, y)

= 1Y ∗(y) vExt
(
ε
⌊
x
ε

⌋
+ εy

)
.

Hence, the right hand side can be identified with a function in L2(RN × Y ∗) (i.e. the
second argument is taken from the perforated periodicity cell Y ∗ only). By the isometry
property of the unfolding operator Tε one can further write
ˆ

Ωε

v(x) dx =

ˆ
RN

vExt(x) dx

=

ˆ
RN

ˆ
Y

(
TεvExt

)
(x, y) =

ˆ
RN

ˆ
Y ∗
vExt

(
ε
⌊
x
ε

⌋
+ εy

)
.

In other words, by restricting the periodic unfolding operator Tε to L2(RN × Y ∗) one
obtains an operator T ∗ε : L2(Ωε) → L2(RN × Y ∗) which is again isometric and un-
folds any function over the ε-dependent, periodically perforated domain Ωε to the ε-
independent domain RN × Y ∗. In particular, a sequence (vε)ε whose elements are
respectively taken from the sequence of spaces (L2(Ωε))ε is unfolded into one com-
mon space L2(RN × Y ∗). Consequently, classical properties of this common space
L2(RN × Y ∗) (like e.g. weak compactness) immediately apply to the sequence of un-
foldings. This essential feature of the periodic unfolding method is outlined in detail in
Cioranescu et al. [2006b] and Cioranescu et al. [2011], but also used in the following
Chapter 3.

The periodic unfolding idea also simplifies the two-scale analysis of sequences of
L2(Ω)-bounded gradients (cf. Theorem 2.18). That is, if vε = ∇uε for some uε ∈
W1,2(Ω), the definition of the periodic unfolding operator(

Tεuε
)
(x, y) = uExt

ε

(
ε
⌊
x
ε

⌋
+ εy

)
∈ L2(RN × Y )

yields for a.e. x ∈ RN such that ε
⌊
x
ε

⌋
+ εY ⊆ Ω a function(

Tεuε
)
(x, ·) ∈W1,2(Y ) with

∇y
(
Tεuε

)
(x, y) = ε∇uε

(
ε
⌊
x
ε

⌋
+ εy

)
= εTε (∇uε) (x, y).

Now, as expected from the analogy of weak convergence of the unfoldings and weak
two-scale converge by Proposition 2.24, also the unfoldings of gradients of W1,2(Ω)-
bounded sequences obey a weak compactness property (see e.g. [Cioranescu et al.,
2002, Theorem 1], [Cioranescu et al., 2008a, Theorem 3.5] or [Mielke and Timofte,
2008, Theorem 2.8]).
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Theorem 2.26. Let Ω be an open subset of RN such that ∂Ω has zero Lebesgue mea-
sure, Y = [0, 1)N be the unit cube and (εk)k∈N a sequence of positive real numbers
converging to 0. Then for every bounded sequence (uεk)k in W1,2(Ω) there is a subse-
quence (uεk` )` and functions u0 ∈W1,2(Ω) and u1 ∈ L2(Ω; W1,2

per(Y )) such that

uεk` ⇀ u0 in W1,2(Ω) and

Tεk` (∇uεk` ) ⇀ E(∇u0) + E(∇yu1) in L2(RN × Y ;RN ).

Herein, E(∇u0) and E(∇yu1) shall be the (componentwise) 0-extensions of ∇u0 and
∇yu1 to RN × Y like in Proposition 2.23, and∇yu1 denotes the weak derivative of u1

w.r.t. its second argument.

Remark 2.10. Due to the notational confusion caused by the (·)Ext superscript (cf. Def-
inition 2.21) and the 0-extension E (cf. Proposition 2.23), I will omit these symbols
whenever possible and appropriate. Mostly, this will lead to a clearer exposition rather
than causing additional confusion.

Having seen how the periodic unfolding method simplifies the theory of two-scale
convergence, an application to the ‘showcase’ of this introduction, i.e. the classical
homogenization problem (CHP) will also show its impact on applications to actual ho-
mogenization problems. That is, suppose once more to be given an arbitrary sequence
of microscale parameters (εk)k and let (uεk)k be the sequence of solutions in W1,2

0 (Ω)

to the weak form (2.4) of (CHP). Again, the boundedness of this sequence in W1,2
0 (Ω)

is again easily inferred from the assumptions (A1) and (A2) on the constitutive function
A : Y → RN×N and Poincaré’s inequality. Then, by Theorem 2.26 there is a sub-
sequence (εk`)`, a function u0 ∈ W1,2(Ω) and some u1 ∈ L2(Ω; W1,2

per(Y )) such that
Tεk` (∇uεk` ) ⇀ E(∇u0) + E(∇yu1) in L2(RN × Y ;RN ). Turning to the weak form
(2.4) of the classical homogenization problem, an application of the isometry property
of the unfolding operator yields

ˆ
RN

 
Y

(Tεk`∇uεk`
)
(x, y) · Tεk`

(
A
(
·
εk`

)
∇ψ
)

(x, y) dy dx

=

ˆ
RN

 
Y

(
Tεk`f

)
(x, y)

(
Tεk`ψ

)
(x, y) dy dx (2.40)

for all ψ ∈ C∞c (Ω). Given the equivalence of two-scale convergence and convergence
of the unfoldings, it apparently makes sense to choose the same testfunctions ψ(x) :=
ϕ(x) + εkϕ1(x, x/εk) for smooth functions ϕ ∈ C∞c (Ω) and ϕ1 ∈ C∞c (Ω; C∞per(Y )).
Indeed, by exploiting the definition of the periodic unfolding operator Tεk` and the
smoothness of ϕ and ϕ1, some elementary calculations reveal that for this choice of
the testfunction ψ(

Tεk`ψ
)
(x, y) =

(
Tεk`ϕ

)
(x, y) + εk`ϕ1

(
ε
⌊
x
ε

⌋
+ εy, y

)
→ ϕ(x) in L2(RN × Y )



Methods for periodic homogenization: Yet another introduction 57

and (
Tεk`∇ψ

)
(x, y) =

(
Tεk`∇ϕ

)
(x, y)

+ εk`∇xϕ1

(
ε
⌊
x
ε

⌋
+ εy, y

)
+∇yϕ1

(
ε
⌊
x
ε

⌋
+ εy, y

)
→ ∇ϕ(x) +∇yϕ1(x, y) in L2(RN × Y ).

Another simple calculation for the left hand side of (2.40) shows

Tεk`
(
A
(
·
εk`

)
∇ψ
)

(x, y) = A(y)
(
Tεk`∇ψ

)
(x, y)

→ A(y)
(
∇ϕ(x) +∇yϕ1(x, y)

)
in L2(RN × Y ).

These two strong convergences in L2(RN × Y ) together with the L2(RN × Y )-weak
convergence of Tεk` (∇uεk` ) ⇀ E(∇u0) + E(∇yu1) allows to pass to the limit of
vanishing microscale parameter εk` in the unfolded classical homogenization problem
(2.40). The resulting limiting equation reads
ˆ
RN

 
Y

(
E(∇u0(x)) + E(∇yu1(x, y))

)
·A(y)

(
∇ϕ(x) +∇yϕ1(x, y)

)
dy dx

=

ˆ
RN

 
Y

(Ef)(x)ϕ(x) dy dx

which can further be simplified to
ˆ

Ω

 
Y
A(y) (∇u0(x) +∇yu1(x, y)) ·

(
∇ϕ(x) +∇yϕ1(x, y)

)
dy dx

=

ˆ
Ω
f(x)ϕ(x) dx

for all ϕ ∈ C∞c (Ω) and all ϕ1 ∈ C∞c (Ω; C∞per(Y )). Recalling (2.38) from Subsection
2.4.1 one can by the same arguments employed there identify u1 ∈ L2(Ω; W1,2

per(Y )) as

u1(x, y) = ∇u0(x) ·
N∑
i=1

wi(y) ei =

 w1(y)
...

wN (y)

 · ∇u0(x),

where the (up to an additive constant) unique w1, . . . , wN ∈ W1,2
per(Y ) are stated in

Definition 2.2. Furthermore, the W1,2
0 (Ω)-weak limit u0 of the subsequence (uεk` )`

of solutions to (CHP) is again revealed to be the unique solution of the homogenization
limit (2.1) withAHom being given as in Definition 2.2. Since these arguments – repeated
for any arbitrary subsequence of the vanishing sequence (εk)k – yield always the same
limit behavior, one can furthermore infer that the above convergences hold along the en-
tire sequence (εk)k. To conclude, the periodic unfolding method applied to the classical
homogenization problem (CHP) reveals the following convergence result (with rather
elementary methods compared to the asymptotic expansion method, the Γ-convergence
approach or a two-scale analysis).
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Theorem 2.27. Let Ω be an open and bounded subset of RN such that ∂Ω has zero
Lebesgue measure, Y = [0, 1)N be the unit cube and let A : Y → RN×N satisfy
the assumptions (A1) and (A2). Suppose w1, . . . , wN and AHom to be given like in
Definition 2.2. Then, for every vanishing sequence of positive real numbers (εk)k and
(uεk)k the sequence of weak solutions in W1,2

0 (Ω) to (CHP) one has

uεk ⇀ u0 in W1,2
0 (Ω),

Tεk(∇uεk) ⇀ E(∇u0) + E(∇yu1) in L2(RN × Y ;RN )

and u0 and u1 ∈ L2(Ω; W1,2
per(Y )) and are respectively uniquely defined through

ˆ
Ω
f(x)ϕ(x) dx =

ˆ
Ω
AHom∇u0(x) · ∇ϕ(x) dx ∀ϕ ∈ C∞c (Ω),

u1(x, y) = ∇u0(x) ·
N∑
i=1

wi(y) ei =

 w1(y)
...

wN (y)

 · ∇u0(x).

Again, E(∇u0) and E(∇yu1) denote the (componentwise) 0-extensions of ∇u0 and
∇yu1 to RN × Y like in Proposition 2.23.

2.5.2 Periodic unfolding for non-translatory microstructures

As explained in Remark 2.3 and illustrated in Figure 2.3 there are relevant examples
for periodic microstructures whose fine scale does not stem from pure translations of a
common periodicity cell, but also involves rotations – or maybe even more general trans-
formations. The periodic nature of such microstructures can in general not be obtained
by rescaling a suitable tiling of the entire space like it is done in the case of translatory
microstructures (see the basic modeling principles for periodic microstructures outlined
in Subsection 2.2.1). For instance, in euclidean coordinates the constitutive properties
of some point x in the funcionally graded annular disk shown in Figure 2.3 cannot be
expressed through a term A

(
x
ε

)
like in the classical homogenization problem (CHP),

where A : RN → RN and a ε is an arbitrary positive microscale parameter. (Yet, one
could switch to polar coordinates, where rotational periodicity in euclidean coordinates
would result as translational periodicity in the angle variable.) In particular, for such sit-
uations neither the method of asymptotic expansions nor two-scale convergence could
be applied without having performed a suitable change of variables beforehand.

Despite this ‘shortcoming’ of the traditional methods, the idea of the periodic un-
folding can be adapted to this new situation. In fact, the intuition behind the periodic
unfolding method does not require any periodicity assumption, in particular no trans-
latory periodicity. In fact, the previously explained periodic unfolding idea can in a
natural fashion be generalized to bodies Ω ⊆ RN whose microstructure is merely given
as the pairwise disjoint union of ‘copies’ {T`(Y )) : ` ∈ N} =: P of a reference tile
Y ⊆ RN such that volY <∞. Here, the T` : Y → RN shall be sufficiently regular and
bijective transformations of the reference tile Y . In analogy to the periodic unfolding
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idea of Cioranescu et al. [2002] outlined in the previous subsection, to describe a func-
tion v ∈ L2(Ω) over a particular tile of the microstructure P I would use two operators.
A first operator, which I call the macrolocalization operator NP : Ω → N, indicates
the tile T`(Y ) a point x ∈ Ω is located in. While a second operator RP : Ω → Y de-
fined as RP(x) := T−1

` (x), with ` = NP(x), indicates the relative position of a point
x ∈ Ω in its respective tile. This operator I will henceforth call the microlocalization
operator. Then, just like in the traditional periodic unfolding method from Cioranescu
et al. [2002], the behavior of the function v in a tile of the microstructure P containing
x ∈ Ω is captured by

Y 3 y 7→
(
v
∣∣
TNP (x)(Y )

) (
TNP (x)(y)

)
= v (SP(x, y))

where

SP : Ω× Y → Ω, SP(x, y) := TNP (x)(y).

The map SP shall be called the composition map associated with the microstructure P .

Remark 2.11. At this point I would like to emphasize that the notation of the present
subsection heavily leans to Visintin [2006], while the term composition map is inspired
by Mielke and Timofte [2008].

Assuming the maps T` : Y → RN , ` ∈ N, to be sufficiently regular and the
microstructure P = {T`(Y )) : ` ∈ N} of Ω to be such that vol (Ω \

⋃
{P}) = 0 one

can state ˆ
Ω
v(x) dx =

∑
`∈N

ˆ
T`(Y )

v(x) dx =

=
∑
`∈N

ˆ
Y
v
(
T`(y)

) ∣∣ detT`(y)
∣∣dy

=
∑
`∈N

ˆ
T`(Y )

 
Y
v
(
T`(y)

) ∣∣ detT`(y)
∣∣ volY

volT`(Y ) dy dx

=
∑
`∈N

ˆ
T`(Y )

 
Y
v
(
SP(x, y)

) ∣∣ detT`(y)
∣∣ volY

volT`(Y ) dy dx.

Upon defining

DP : Ω× Y → R, DP(x, y) :=
∣∣detT`(y)

∣∣ volY

volT`(Y )

for ` ∈ N such that x ∈ T`(Y )

=
∣∣ detTNP (x)(y)

∣∣ volY

volTNP (x)(Y )
,

it follows that ˆ
Ω
v(x) dx =

ˆ
Ω

 
Y
v
(
SP(x, y)

)
DP(x, y) dy dx,
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which looks very much like the well-known isometry property of the periodic unfolding
operator, cf. Proposition 2.22. Recalling from the previous Subsection 2.5.1 that it is
the isometry property and the resulting isometric embedding into a larger L2-space that
allows to derive many powerful statements on unfolded sequences, one may hope that
the same strategies apply to the present adaption of the unfolding method.

Expressed in the form of a precise definition, the just described concepts and oper-
ators read as follows.

Definition 2.28. Let Ω and Y be open subsets ofRN and assume volY <∞. An essen-
tial partitionP of Ω, i.e. a set of measureable subsets of Ω such that vol (Ω\

⋃
{P}) = 0,

is called a generalized tiling of Ω with reference tile Y and pattern (T`)`∈N, if the fol-
lowing assumptions hold.

(i) For every ` ∈ N the map T` : Y → RN is a Lipschitz diffeomorphism.

(ii) P =
{
T`(Y ) : ` ∈ N

}
.

This definition is most intuitively illustrated by the following Figure 2.6.

Figure 2.6: A triangulation of an annular disk and a reference triangle (tile). The mesh
has been generated with code from Persson and Strang [2004]

Definition 2.29. Let Ω and Y be open subsets of RN , volY < ∞, and let P be a
generalized tiling of Ω with reference tile Y and pattern (T`)`∈N. Then

(i) the macrolocalization operator associated with the generalized tiling P is defined
as

NP : Ω→ N, NP(x) := ` such that x ∈ T`(Y ),
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(ii) the microlocalization operator associated with the generalized tiling P is the map

RP : Ω→ Y, RP(x) := T−1
NP (x)(x),

(iii) the composition map associated with the generalized tiling P is

SP : Ω× Y → Ω, SP(x, y) := TNP (x)(y)

(iv) the micro-mass density operator associated with the generalized tiling P is given
through

DP : Ω× Y → R, DP(x, y) :=
∣∣detTNP (x)(y)

∣∣ volY

volTNP (x)(Y )

(v) the unfolding operator for generalized tilings associated with the generalized
tiling P shall for measureable v : Ω→ R be defined as

TP : Ω× Y → R,
(
TPv

)
(x, y) := v

(
SP(x, y)

)
.

Remark 2.12. The seemingly awkward name ‘micro-mass density operator’DP associ-
ated with a generalized tiling P is justified by the following heuristic. For some x ∈ Ω
such that x results as an element of the tile T`(Y ), one can write

DP(x, y) =
∣∣detT`(y)

∣∣ volY

volT`(Y )
=

volT`( dy)
vol dy

volT`(Y )
volY

.

In other words, in a transformed tile T`(Y ) the micro-mass density operator measures
the local change of the mass density induced by the transformation T` inside the tile,
relative to the change in the mass density over the entire transformed tile T`(Y ).

As the following statements shall play no further role in the remainder of this thesis,
I will only state some properties of the just introduced unfolding operator for general-
ized tilings. Proofs will not be included, but may be subject of a follow-up work. An
exception is the following statement, whose proof idea has been given previously in the
motivation of the unfolding operator for generalized tilings.

Proposition 2.30. Let Ω and Y be open subsets of RN , volY < ∞, and let P be a
generalized tiling of Ω with reference tile Y and pattern (T`)`∈N. Then

(i) for every f ∈ L1(Ω; L∞(Y )) it is
ˆ

Ω
f(x,RP(x)) dx =

ˆ
Ω

 
Y
f
(
SP(x, y), y

)
DP(x, y) dy dx.

In particular, for v ∈ L2(Ω) one has
ˆ

Ω
v(x) dx =

ˆ
Ω

 
Y

(
TPv

)
(x, y)DP(x, y) dy dx.
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(ii) assume that for the micro-mass density operator it holds ‖ 1
DP ‖L∞(Ω×Y ) < ∞.

Then, the unfolding operator TP associated with the generalized tilingP is linear,

TP : L2(Ω)→ L2(Ω× Y )

and moreover

‖TPv‖L2(Ω×Y ) ≤
(

volY
∥∥∥ 1
DP

∥∥∥
L∞(Ω×Y )

)1
2
‖v‖L2(Ω) .

Now, one may consider sequences of generalized tilings (Pk)k sharing one common
reference tile Y . Just like in the case of homogenization problems this is to describe the
microstructure of a body Ω whose characterisitic size (in the classical periodic case
quantified by the microscale parameter) becomes finer and finer. Given the unfolding
operator for generalized tilings and knowing about the equivalence between periodic
unfolding and two-scale convergence, one can naturally define two-scale convergence
also in the setting of generalized tilings.

Definition 2.31. Assume to be given open subsets Ω and Y of RN , volY < ∞, and
let (Pk)k∈N be a sequence of generalized tilings of Ω with common reference tile
Y , whereas for every k ∈ N the pattern of an individual tiling Pk shall be denoted
(Tk,`)`∈N. Let (vk)k∈N be a sequence in L2(Ω) and v0 ∈ L2(Ω × Y ). Then (vk)k∈N
shall be called weakly two-scale convergent to v0 in L2(Ω × Y ) w.r.t. (Pk)k∈N, in
symbols vk

2−⇀
(Pk)k

v0 in L2(Ω× Y ), if

TPk
vk ⇀ v0 in L2(Ω× Y ).

Similarly, (vk)k∈N is said to strongly two-scale converge to v0 in L2(Ω × Y ) w.r.t.
(Pk)k∈N, in symbols vk

2−→
(Pk)k

v0 in L2(Ω× Y ), if

TPk
vk → v0 in L2(Ω× Y ).

In fact, also for this adaption of the unfolding idea to sequences of generalized
tilings sharing a common reference tile one can prove analogous results to those cited
in Propositions 2.23 and 2.25 for periodic unfolding in the sense of Cioranescu et al.
[2002].

Proposition 2.32. Let Ω and Y be open subsets of RN , volY < ∞, and let (Pk)k∈N
be a sequence of generalized tilings of Ω with common tile Y , and let the pattern
corresponding to an individual tiling Pk, k ∈ N, be denoted (Tk,`)`∈N. Moreover,
(vk)k∈N shall be a sequence in L2(Ω) and v0 ∈ L2(Ω× Y ). For the generalized tilings
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(Pk)k∈N the assumptions (P1),. . . ,(P4) below shall be defined. For some positive con-
stant C > 0{

sup
(x,y)∈Ω×Y

|SPk
(x, y)− x| ≤ C for all k ∈ N,

and SPk
(x, y)→ x pointwise a.e. in Ω× Y

, (P1)

DPk
(x, y) ≥ 1

C for a.e. (x, y) ∈ Ω× Y, (P2)

DPk
(x, y) ≤ C for a.e. (x, y) ∈ Ω× Y, (P3)

DPk
(x, y)→ D pointwise a.e. in Ω× Y for some D : Ω× Y → R. (P4)

Then one can prove the following statements.

(i) If (P2) holds and (vk)k∈N is bounded in L2(Ω), then the unfolded sequence
(TPk

vk)k∈N is bounded in L2(Ω × Y ), and in particular sequentially weakly
compact. Hence, one can extract a subsequence of (vk)k∈N that is weakly two-
scale convergent in L2(Ω× Y ) w.r.t. (Pk)k∈N.

(ii) If (P1), (P2) and (P3) hold, then

vk → v0 in L2(Ω) ⇒ vk
2−→

(Pk)k
v0 in L2(Ω× Y ).

(iii) If (P1) and (P3) hold, then

vk
2−→

(Pk)k
v0 in L2(Ω× Y )

and v0 is independent of y

 ⇒ vk → v0 in L2(Ω).

(iv) If (P1), (P3) and (P4) hold, then

vk
2−⇀

(Pk)k
v0 in L2(Ω× Y ) ⇒ vk ⇀

 
Y
v0(·, y)D(·, y) dy in L2(Ω).

Remark 2.13. A question I could not fully answer yet is the case of sequences of
gradients (vk)k = (∇uk)k in L2(Ω;RN ) for (uk)k a bounded sequence in W1,2(Ω).
However, even if one could prove a compactness result like Theorem 2.26 for se-
quences of generalized tilings (Pk)k, i.e. the existence of a subsequence and some
U0 ∈ L2(Ω; W1,2(Y )) such that

∇ukm
2−⇀

(Pk)k
∇u0 +∇yU0 in L2(Ω× Y ;RN ),

then one could still not expect something like periodicity of U0 in its second argument.
This is due to the fact that for some general reference tile (already for a triangle, see Fig-
ure 2.6) the traditional periodicity concept of cubic tiles does not apply. Unfortunately
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then, the mapping x 7→ U0(x,RPk
(x)) results no longer as an element of W1,2(Ω)

(like in the case of cubic periodicity cells, see Example 2.1), but merely as a piecewise
smooth function over the tiles (Tk,`)`. However, a possible option to obtain from U0 a
W1,2-function over the entire domain Ω would be interpolation which is often applied
in the theory of periodic unfolding (see e.g. Cioranescu et al. [2006b] or Section 3.4
of this thesis). This idea came to my mind only recently, but looks rather promising in
particular for triangular tilings (also because one could exploit the finite element theory
on interpolations over triangular meshes).



Chapter 3

Homogenization in perforated thin
domains and applications to
interface problems

In this chapter I give a contribution to a class of problems from continuum physics
that has in recent years caught once more the attention of the applied analysis com-
munity. That is, the simplified description of interfaces of finite thickness connecting
two adjacent media by means of asymptotically equivalent boundary conditions, but in
the presence of periodically recurring voids enclosed in the interface. (Here, ‘finite’
is to be understood in the language of physicists, i.e. the antonym of ‘infinitesimal’.)
This special type of interface problems is particularly interesting for the engineering
disciplines. Therein, one often seeks to manipulate the constitutive properties of thin
interface layers connecting the adjacent media, thus the way the media interact, by in-
troducing microstructures into the interface layer. Important examples for microstruc-
tured interfaces are such featuring periodically recurring voids like pores or channels,
or interfaces that merely consist of a set of periodically arranged ‘spots’ of interface
material. The mathematical challenge here is finding an asymptotically equivalent de-
scription that tells the engineer how the interface makes the adjacent media interact over
their common boundary. In particular, how the microstructure in the interface affects
this interaction. From the viewpoint of analysis this means combining reducing a thin
domain (the interface) to a condition imposed on the media’s common boundary and,
simultaneously, homogenizing the microstructure in the interface in order to obtain a
homogeneous constitutive relation for the interaction over the common boundary. Over
the past five years, the asymptotic analysis of microstructured interfaces of finite think-
ness has become more accessible with the development of new mathematical methods
both in dimension reduction (starting with the seminal work Friesecke et al. [2002]),
the adaption of two-scale convergence and periodic unfolding for in-plane oscillations
in thin domains due to Stefan Neukamm (see [Neukamm, 2010, Chapter 6]) and the
combination of both in the context of finite elasticity, again a work of Stefan Neukamm
(cf. [Neukamm, 2010, Chapter 7]). One should notice in the context of thin microstruc-
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tured interfaces the presence of three different scales, which would be the two small
scales of the interface (thickness and microstructure size) and the macrosopic scale of
the adjacent media connected by the interface.

To be more specific, in this chapter I present the asymptotic analysis for two par-
ticular types of interfaces which transmit heat between two adjacent bodies while being
made from material with relatively high thermal conductivity. Here, the one interface
type encloses tubular voids reaching over the entire interface, which is to mimick chan-
nels for heating wires embedded in the interface. This way, the heat flow between the
two connected bodies may be manipulated by providing external heat to specific parts of
the bodies’ common boundary via the interface layer; due to the high conductivity of the
interface material, this would be done in a smooth fashion. Actually, this configuration
is similar to a real-life optical device; details are given in the following subsection. The
second interface type features the same constitutive properties like the first, whereas the
interface now includes pore-like voids arranged in a periodic fashion. The main differ-
ence between the two types of interfaces, besides the fact that the pore-type follows no
specific technical application, lies in the mathematical concepts involved in the asymp-
totic analysis. In the case of the interface with periodically recurring pore-like voids I
employ a version of two-scale convergence due to Stefan Neukamm and extension the-
orems like found in Oleı̆nik et al. [1992] to extend the temperature fields in the interface
over the pores, while classical Γ-convergence arguments then allow me to pass to the
limit of vanishing interface thickness. In the case of tubular voids however, i.e. voids
crossing the cubic periodicity cell and piercing two opposite faces, the use of extension
theorems turns out to be of little help. Instead, I adapt the notion of periodic unfolding
as it was outlined in Subsection 2.5.1 to thin and perforated domains, where the perfo-
ration may touch the periodicity cell’s boundaries. At this point I would like to advice
the reader that the main ideas behind the periodic unfolding operator for perforated do-
mains are due to Patrizia Donato and her collaborators (see Cioranescu et al. [2006b]
and the recent preprint Cioranescu et al. [2011]).

3.1 Introduction and outline

In the engineering disciplines, the general interest in interfaces and their mathematical
description may be explained as follows. Interfaces, in particular engineered interfaces
change the way in which two media interact. Joining of two materials is often achieved
by inserting a thin layer of glue in between the materials which increases the adhesion.
While in other situations a thin layer is inserted between two materials to decrease ad-
hesion, as it is the case in the seemingly trivial example of bakery paper. Interfaces are
often also used for damping purposes or vibration reduction. Therein, vibrations are
generated in one medium and reach the other only after having been damped while trav-
eling through a dissipative interface connecting both media (often made from rubber).
Another important application where interfaces between adjacent media play a crucial
role is filtering. Therein, a thin filter slows down or even prevents the transportation
of mass between the media; examples include sieves or water filters made from fab-
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ric. Interfaces are also a widespread mean to manipulate diffusion processes between
adjacent media. For example, in cooling devices thin interfaces of highly conductive
material can be employed to trasmit heat smoothly between two media in order to avoid
local temperature peaks (which is why thermal grease is usually inserted between CPUs
and the heat sink on top). Whereas interfaces can also be used as barriers to diffusion,
say ceramic coatings as they cover the surfaces of certain components of combustion
engines.

Here, the natural question an engineer would ask is what are the principal means
in the design of interfaces in order to achieve a particular interaction of two media
connected by a layer of interface material? In fact, there are various parameters that
influence the nature of interfaces. Of course, there is the geometry of the interface
(most importantly its thickness) but also the interface’s constitutive properties. The
latter can obviously be modified by choosing different interface materials, but also by a
using a mixture of different materials or introducing a geometric microstructure in the
interface. Finally, another way would be the active control of the interface’s constitutive
properties, e.g. through external control of a microstructure in the interface.

In this contribution I focus on interfaces whose constitutive properties are modified
by the introduction of periodic geometric microstructures. In fact, periodic geometric
microstructures are a common mean to manipulate an interface’s constitutive properties.
Coming back to the previously given examples for the use of interfaces in engineering,
joining interfaces sometimes exhibit a periodic geometry whenever the adhesive is too
expensive to cover the entire joining surfaces of the adherends. Instead, the adhesive
may be applied in small quantities over periodically recurring patterns. Another rea-
son is that by appropriately choosing the periodic pattern the interface can easily be
made anisotropic, although the adhesive itself may very well be isotropic. Another nice
example for interfaces with periodic geometric microstructure is again modern bakery
paper, which features not only non-stick surface coatings, but also a periodically os-
cillating cross-section to reduce the actual contact area between to media it connects.
One might name the use of interfaces made from perforated rubber to damp the relative
movement of two bodies that are in contact along a common surface. In this case, peri-
odically recurring voids in the rubber interface render the interface compressible, while
rubber itself is technically speaking incompressible. Thus, an interface made from per-
forated rubber can be deformed more easily and consequently can be expected to be
more effective in damping vibrations traveling through the interface. Sieves and other
metallic filters are mostly nothing but periodically perforated interfaces that manipulate
the flow of mass between the media they connect. Also in diffusion processes inter-
faces with periodic microstructures can be found. For instance, interfaces that are to
deliver or subtract heat from the surrounding media sometimes shows periodically re-
curring channels for heating or cooling fluid, or for heating wires. Moreover, similarly
to interfaces of adhesive where one can employ periodic microstructures to achieve a
speficially anisotropic transmission of stresses between the adherends across the inter-
face, one could distribute a thin periodic layer of thermal grease on the joint surfaces
of two contacting bodies in order to obtain a specific anisotropic flow of heat from one
body into the other.
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From the mathematical point of view, the main challenge in the theory of inter-
faces with periodic microstructures is to eliminate the small scales involved. More
precisely, the small thickness of the interface and the small size of the periodically
recurring pattern quantified by the microscale parameter. The reason is again that other-
wise in numerical computations one would have to use a very fine discretization in the
interface, with the mesh size being of size smaller than both the interface thickness and
the microscale parameter. A particular problem in the discretization of microstructured
interfaces, compared to microstructured thin films or plates, is that the discretization
has to be similarly fine also near the interface, i.e. in the adjacent media. This is be-
cause in the case of interfaces of finite thickness only the constitutive properties change
between the adjacent media and the interface, whereas the physical and mathematical
model (e.g. the heat equation) is the same. Thus, for finite thickness the solution ex-
tends smoothly into the interface which is why any meaningful discretization must (at
least asymptotically) allow for discrete solutions that also extend continuously from the
adjacent media into the interface layer. Plainly speaking in terms of triangular finite
element discretizations, the triangulaztion of the entire domain, i.e. adjacent media and
thin interface layer, must be regular (see e.g. Brenner and Carstensen [2004]). A way
to get rid of both the small scales in interface problems with periodic microstructure is
to find conditions on the boundaries of the adjacent media to the interface that describe
an asymptotically equivalent but homogeneous constitutive behavior. In other words,
these conditions should be such that in the limit of small interface thickness and small
microscale parameter they ensure the same interaction between the adjacent media like
the microstructured interface with finite thickness. In this case, any discretization of the
adjacent media would neither have to respect the interface thickness nor the size of the
microstructure, thus can be far more coarse and therefore less degrees of freedom would
be required.

Reducing a microstructured interface of finite thickness to homogeneous boundary
conditions is known to the applied analysis community since the early 1980s, the first
contribution being the work of Evariste Sanchez-Palencia on the stationary flow through
a periodic sieve, cf. Sanchez-Palencia [1982]. Similar situations have been studied in
Murat [1985], Damlamian [1985] and Picard [1987]. However, all these contributions
considered periodic sieves of zero thickness, thus had to eliminate only the small scale of
the periodic microstructure. Mathematical models of this type are nowadays designated
as ‘thin Neumann sieves’. A first study on the stationary flow through a sieve of finite
thickness was carried out by Teresa del Vecchio in Del Vecchio [1987], who studied
also different ratios of sieve thickness and microscale parameter. At this point, the
reader should notice well that in the case of a flow through a sieve, the flow extends
only into the holes of the sieve. Other than say in the case of heat, which would flow
through the sieve’s material but around the (empty) holes of the sieve.

Generally speaking, eliminating both the small scales of periodic interfaces with fi-
nite thickness requires on the one hand the asymptotic analysis of mathematical models
over thin domains, and on the other hand methods from periodic homogenization. Over
the last ten to fifteen years there has been significant progress in both fields, most no-
tably through Γ-convergence methods applied to thin films and plates (see the references
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in Section 2.1) and the concept of periodic unfolding in periodic homogenization (see
Subsection 2.5.1). These two developments might explain why the asymptotic anal-
ysis of periodic interfaces has recently once more caught the attention of the applied
mathematics community (see the upcoming literature review).

3.1.1 A short literature review on interface problems

In this subsection I state a brief review of the applied analysis community’s contribu-
tions to the description of interfaces of finite thickness by means of boundary conditions
which ensure – in the limit of zero interface thickness – the same interaction between
the media adjacent to the interface. This problem class was in the case of homoge-
neous interfaces extensively studied by Giuseppe Geymonat and his many collabora-
tors. Whereas the analysis of periodic interfaces is a recent development where most
of the contributions – at least to my knowledge – have been published over the last five
years.

Homogeneous interfaces can be classified into three different categories. In the first
category, the interface material has constitutive properties of the same order as the me-
dia the interface connects. This situation was studied in the context of linear elasticity
in Lebon and Rizzoni [2010]. Therein, the authors showed that up to zero order an in-
terface of similar elastic properties like the two adjacent bodies makes them behave as
if they simply were one body made from the two materials in the corresponding subdo-
mains defined by the now flattened, two-dimensional interface. Yet, studying first order
effects near the interface, Lebon and Rizzoni could again describe the influence of the
interface’s constitutive relations on the interaction of the two bodies over the flattened
interface. In short words, for interfaces of similar elastic properties both the displace-
ments and the stresses are continuous over the flattened interface, while the boundary
conditions on the flattened interface only affect the derivatives of the stresses (more
precisely their jumps) over the interface. The second category contains those situations
in which the interface material is much ‘stronger’ than the surrounding material. This
means that variations of the physical quantities under consideration are energetically
much more unfavorable in the interface material than in the surrounding media. Again
in the context of linear elasticity, corresponding to interface material of far higher elastic
modulus, this interface type was extensively studied by Françoise Krasucki and Anne-
Laure Bessoud in collaboration with others, see Bessoud et al. [2009] and Bessoud
[2009], but also Bessoud et al. [2010, 2011]. They found that in the limit of zero thick-
ness the interface may be replaced by boundary conditions on the flattened interface,
across which the displacements are continuous while the stresses are subject to newly
found boundary conditions of the Ventcel type. In the last category the interface mate-
rial is much ‘weaker’ than the material in the surrounding media. In analogy to the case
of a strong interface, this is equivalent to saying that variations of the physical quan-
tities under consideration can be maintained in the interface with much less external
work than in the surrounding media. For this situation I refer again in the context of
linear elasticity to Geymonat et al. [1999] (and to Krasucki et al. [2004] for nonlinear
elasticity), where the authors proved that in the zero thickness limit the interface can be
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equivalently expressed by a boundary condition on the flattened interface which allows
for jumps in the displacement, but enforces continuity of the stresses. Phenomeno-
logically, this model was proposed already in 1944 in Goland and Reissner [1944] who
modelled a weak elastic interface as an array of infinitesimal springs connecting the sur-
faces of the adjacent bodies. I would also like to make the reader aware of an interesting
approach performed in Åslund [2005] where the author studies the elastic behavior of
two thin plates connected by an even thinner film of adhesive and derives a limit plate
theory for the entire bonded structure.

Figure 3.1: Pore-type (left; cutaway drawing) and spot-type periodic interfaces (right)

Interfaces of finite thickness that have a periodic microstructure have been stud-
ied mostly in recent years. The available literature, as it is known to me today, treats
the following categories of periodically microstructured interfaces. Interfaces of finite
thickness with periodically varying constitutive properties that completely fill space be-
tween the adjacent media (i.e. there are no voids in the interface layer) are studied in
Donato and Piatnitski [2010]. Therein, two bodies are joined along a rough, sawtooth-
like periodic surface and interact through a Fourier-like law over the zig-zagged contact
surface (i.e. the (heat) flux is proportional to the jump (in the temperature) across the
surface). Depending on the surface roughness, the authors find different asymptotically
equivalent boundary conditions on the flattened smooth interface to describe the inter-
action between the bodies. In the most interesting case of moderate surface roughness
they observe that the Fourier-like behavior between the bodies is conserved. Only in
February 2012 it has come to my attention that in Moussa and Zlaı̈ji [2012] the authors
analyzed in the context of nonlinear elasticity the problem of an interface with finite
thickness that completely fills space between the adjacent media and shows a periodic
microstructure. Depending on the ratio between interface thickness and interface rigid-
ity, the authors identify different limit problems. The most interesting corresponds to
rigidity and thickness being of the same order, which can be viewed as the homogenized
and nonlinear analogon of the results in Bessoud et al. [2009].

The case of interfaces of finite thickness with periodically recurring voids has at-
tracted more attention in the applied analysis community. Here, one has to distinguish
between voids which leave a connected interface layer, what I am going to call ‘pore-
type’ periodic interfaces (see Figure 3.1 (left)), and such in which the interface is consti-
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tuted through periodically recurring, isolated spots of interface material, in the remain-
der of this section called ‘spot-type’ periodic interfaces (see Figure 3.1 (right)). A pore-
type periodic interface of finite thickness is studied in Rohan and Lukeš [2010], more
precisely the traveling of acoustic waves in two adjacent media through a connecting
periodically perforated interface layer. For this problem the authors derive asymptoti-
cally equivalent boundary conditions on the flattened interface, which relate the normal
derivatives of the pressure on opposite sides of the flattened interface to a fictitious
acoustic transverse velocity in the interface. Pore-type situations, now in the context of
linear elasticity, are studied in Marigo and Pideri [2011] and Geymonat et al. [2010]. In
both articles it is assumed that in an elastic body a periodic array of holes concentrates
near a hyperplane, thus creating a perforated interface layer between the solid parts of
the elastic body. Since the authors of both articles assumed neither a weak nor a strong
interface, like in the homogeneous case Lebon and Rizzoni [2010], higher order terms
have to be incorporated in order to derive the correct asymptotically equivalent bound-
ary conditions on the flattened interface. In both cases it is revealed that the first order
terms of displacement and stress jump across the flattened interface.

However, many contributions focus on the analysis of spot-type periodic interfaces,
the most prominent example of which is the flow through a sieve (Neumann’s sieve).
In the case of finite interface thickness, the start was marked by Del Vecchio [1987]
who studied a model related to a stationary, potential flow between two media through
a sieve of finite thickness where the constitutive properties are identical in the adjacent
media and the sieve’s holes. Depending on the ratio of the sieve’s thickness and the
diameter of the sieve’s cylindrical holes different boundary conditions on the flattened
sieve are recovered. That is, either no flow restriction at all, a perfect barrier to the
flow or once more a Fourier-type boundary condition, which states a linear relation
between the flow through the sieve and the jump of the flow potential over the flattened
sieve. Similar results have been obtained in a series of articles by Daniel Onofrei,
Doina Cioranescu and their collaborators, see Onofrei [2006, 2007] and Cioranescu
et al. [2008b]. While not going into the details of the countless situations considered in
these papers, the reader might notice that the authors employed the method of periodic
unfolding as the main workhorse and adapted it to the study of spot-type (sieve-like)
periodic interfaces of finite thickness, again for different ratios of the diameter of the
spots (the sieve’s holes) and their mutual distance. The authors also analyze the case of
zero thickness, again with the help of the periodic unfolding method, where analogous
results to the case of finite thickness are proved. Another example for the reduction of
spot-like interfaces to asymptotically equivalent boundary conditions is Ansini [2004].
Also in this paper the author studies a model inspired by stationary, potential flows
through a sieve, but for the case of zero interface thickness and general non-quadratic
flow potentials. Finally, the case of spot-type interfaces of finite thickness made from
material of extremal strength (weak or strong) compared to the media adjacent to the
interface will in the context of elasticity be analyzed in a forthcoming work by Françoise
Krasucki, Giuseppe Geymonat and myself Geymonat et al. [2012].
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3.1.2 On two problems arising in continuum mechanics

Although the two specific problems of pore-type periodic interfaces I study in this chap-
ter are essentially the product of my imagination, they are in principle very similar and
are in fact loosely inspired by an actual application in optomechanics. More precisely,
by a product innovation of Leica Geosystems that allows to compensate for thermome-
chanical deformations of lenses through controlled external heat supply via an interface
layer between the lense’s mounting and the lense itself. For details on the technical
implementation of this concept I refer to the presentation of Aebischer and Braunecker
[2004]. The heat supply itself can be realized by embedding heating wires into the
interface material, leading to a thin interface layer of the pore-type with periodically
recurring tubular voids; cf. Figure 3.2.

"
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"
"
"
""

Lense mounting
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"
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Figure 3.2: Schematic configuration of a lense with external heat suppy

The motivation behind this kind of application is that many technical devices are
operated under thermally varying conditions, leading to thermally induced residual
stresses and deformations and, as a consequence, often to a decrease in precision and
performance. The geoemtry of a deformed lense yields different refraction of light than
in the undeformed state, and may therefore lead to unsatisfactory image quality. Simi-
larly, devices conducting hot fluid or gas exhibit strong temperature gradients and ther-
mally induced residual deformations, which in turn may lead to moving parts getting
jammed, leakages occuring at joints, and other problems. Here, thermal management,
i.e. the controlled supply of external heat opens up a possibility to control the tem-
perature distribution in a device and consequently the thermally induced stresses and
deformations. A natural way to deliver heat rapidly and in a controlled fashion is to dis-
sipate electric energy in electrical resistors, e.g. heating wires attached to the device’s
surface or embedded into an interface layer connecting two bodies.

To this end, the remainder of this chapter focuses on heat conduction problems
where external heat is supplied to two adjacent homogeneous bodies over a pore-type
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Figure 3.3: Highly conductive interfaces of the pore-type with spherical voids (left) and
tubular voids (right)

periodic interface of finite thickness. In what follows, the interface material is assumed
to have far higher thermal conductivity than the material occupying the bodies adjacent
to the interface. This assumption is due to the fact that thermal management measures
should reduce thermally induced stresses in the adjacent bodies through external heat
supplied via the interface. In particular, the temperature distribution in the interface
itself should vary only smoothly, which is most likely to be guaranteed if the interface
conducts heat well between its embedded heat sources. More precisely, the thermal
conductivity will be assumed to scale like the inverse of the interface thickness. A sim-
plification to the application in optomechanics described above is that I will assume the
bodies connected by the interface to have flat contacting surfaces and therefore assume
a translatory periodic microstructure of the pore-type in the interface. In a first toy
problem in Section 3.3 (see also Figure 3.3 (left)) I will analyze the problem of a highly
conductive interface with periodically recurring voids that are compactly contained in
a cubic periodicity cell, i.e. the voids do not touch the periodicity cell’s boundary.
Whereas in a second, more realistic setting in Section 3.4 I will consider a situation in
which the interface is perforated by long tubular voids reaching over the whole inter-
face (see Figure 3.3 (right)). These are to mimick the presence of heating wires, with
Fourier type boundary conditions for the heat flow into the interface imposed on the
voids’ boundaries. Mathematically speaking, the first case can be solved by using a
combination of classical methods like extension operators for periodically perforated
domains and Γ-convergence approaches for dimension reduction, together with a recent
version of two-scale convergence due to Stefan Neukamm (the so-called ‘two-scale con-
vergence for in-plane oscillations’ see [Neukamm, 2010, Chapter 6]). Whereas the sec-
ond case requires a different approach, since extension theorems for voids that extend
over the whole interface turn out to be of little help. Yet, this problem can be overcome
by suitably adapting the periodic unfolding method to perforated thin domains. This
together with a Γ-convergence argument is the key to reducing the highly conductive
interface with periodically recurring tubular voids to a boundary condition imposed on
the boundaries of the bodies separated by the interface. Here, I would like to advice
the reader that the Γ-convergence approach to strong homogeneous interfaces of finite
thickness is due to Bessoud et al. [2009].
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The basic notation and preliminary assumptions used throughout this chapter will
be outlined in the upcoming Section 3.2. To conclude the introduction of this chapter I
would like to state some remarks.

Remark 3.1. 1. The interface problem for the heating of lenses is a prototypical ex-
ample for a non-translatory microstructure (cf. the illustration in Figure 3.2).
Again the periodic unfolding method appears most suitable to cope with both
the non-translatory microstructure (see Subsection 2.5.2) and the voids that reach
over the entire interface. When preparing a research article on this topic I in-
tend to extend the methodology presented here (in particular in Section 3.4) from
translatory microstructures to the special non-translatory microstructure depicted
in Figure 3.2. Due to limited time it was not possible to analyze this problem in
the context of the present thesis.

2. Although the heating of lenses has been analyzed mathematically by experts of
Leica Geosystems, cf. Aebischer [2007], the main focus of their analysis was
to find an explicit solution for the heat equation in the lense-interface-mounting
assembly. This was mainly possbile by making simplifying but reasonable as-
sumptions on the geometry (radial symmetry), thus effectively reducing the prob-
lem to one space dimension. Yet, the small scales involved were not eliminated,
thus convergence of the problem for vanishing small scales was not studied in
Aebischer [2007].

3. The mathematical setting of the interface problem studied in this chapter may be
compared to the one in Moussa and Zlaı̈ji [2012]. Therein, the authors consider a
microstructured interface of finite thickness in the context of nonlinear elasticity
(more precisely, in the quasiconvex setting of Braides [1985] and Müller [1987],
which includes many problems of nonlinear elasticity). However, the microstruc-
ture they study is of purely constitutive nature and fills the entire space between
the bodies adjacent to the interface. Other than in my situation, where the mi-
crostructure stems from periodically recurring voids in the interface layer while
the interface material is the same everywhere in the interface. Another crucial
difference is that the homogenization results in Moussa and Zlaı̈ji [2012] rely
on classical methods of the Italian school of calculus of variations (the so-called
‘Blow-up’ technique), whereas in this thesis methods from french homogeniza-
tion schools like two-scale convergence and an adaption of the periodic unfolding
method to perforated thin domains are used.

3.2 Notation and preliminaries

This section contains all the main definitions and notation used for the geometry of the
two interface problems studied in this chapter. Furthermore, also the constitutive as-
sumptions on the materials involved are specified here, as well as some function spaces
that will be used later on in this chapter.
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3.2.1 Geometry and periodicity cell

The notation I use here in this chapter is similar to that found in many contributions to
interface problems; more precisely, I lean to the nomenclature of Bessoud et al. [2009].
In the remainder of this chapter Ω shall denote a three-dimensional Lipschitz domain
such that the intersection Ω ∩ {x : x3 = 0} has nonempty relative interior and the
domains Ω± := Ω ∩ {x : ±x3 > 0} are again Lipschitz. Moreover, ω ⊆ R2 shall be
such that ω × {0} = Ω ∩ {x : x3 = 0}. Generally, in what follows the coordinates of
an arbitrary point x ∈ R3 are split like x = (x̂, x3). To further simplify the notation let
Ω±tr := ±1

2e3 + Ω± and Γ±tr := ±1
2e3 + Γ±.

Furthermore, geometric interface quantities are referred to by the letter B (which
as in Bessoud et al. [2009] stands for ‘bond’). It turns out useful to define B := ω ×[
−1

2 ,
1
2

]
and the interface of thickness ε without voids Bε = ω ×

[
− ε

2 ,
ε
2

]
. The interior

of the latter shall be referred to like B◦ and B◦ε .

Figure 3.4: Perforated periodicity cells for voids compactly contained in the periodicity
cell (left) and tubular voids touching the boundary (right)

To simplify the notation, the unit cube Y shall in the remainder of this chapter be
shifted along the axis of the third component to Y := [0, 1)2×

[
−1

2 ,
1
2

]
= Ŷ ×

[
−1

2 ,
1
2

]
,

where Ŷ = [0, 1)2 is the standard two-dimensional unit cube. The (open) void in the unit
cube shall be denoted V ⊆ Y , and finally the perforated periodicity cell by Y ∗ := Y \V .
For both the situations of a void that is compactly contained in the periodicity cell and
where V is a tubular void touching the periodicity cell’s lateral boundaries I refer to
Figure 3.4.

Assuming the interface thickness and the size of voids enclosed in the interface to
be of the same size ε, the pore-type periodic interface Bε-perf

ε is defined as

Bε-perf
ε := Bε ∩

⋃
â∈Z2

ε
(
[â, 0]T + Y ∗

)
= Bε \

⋃
â∈Z2

ε
(
[â, 0]T + V

)
.

Here, the subscript index of Bε-perf
ε refers to the height of the interface layer ε, while
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the superscript ε-perf refers to the voids recurring in periods of ε in interface direction.
A simplification to avoid both unnecessary and annoying technicalities caused by im-
perfections of the microstructure at the lateral boundaries of the interface layer Bε-perf

ε

is that I will henceforth assume that that the microstructure always fits the interface
layer Bε. That is, the intersection ω of Ω with the hyperplane {x : x3 = 0} and the
microscale parameter ε shall always be such that

ω =
⋃
â∈Zε

ε
(
â+ Ŷ

)
for some finite Zε ⊆ Z2. (ε-Tiling)

This yields in particular Bε-perf
ε =

⋃
â∈Zε

ε
(
[â, 0]T + Y ∗

)
. Assumption (ε-Tiling)

is undoubtedly a strong restriction and could be relaxed (likely without changing the
results for sufficiently smooth lateral boundary ∂ω×

[
−1

2 ,
1
2

]
). However, in this fashion

the exposition of the analysis becomes clearer. Also, for the application of heating wires
being embedded into the tubular voids in the interface this assumption makes sense as
one would not want to cut the wires over an oscillating boundary.

Then, the whole assembly composed of the two bodies Ω±ε := ± ε
2e3 + Ω± and the

perforated interface Bε-perf
ε becomes

Ωε := Ω+
ε ∪ Bε-perf

ε ∪ Ω−ε .

Finally, Γ± shall be relatively open subsets of the boundaries ∂Ω∩{x : ±x3 > 0},
such that on Γ±ε := ± ε

2e3 + Γ± homogeneous Dirichlet boundary conditions for the
heat flow in the assembly Ωε will be described.

All the above notation is once more illustrated in 3.5 below.

3.2.2 Constitutive assumptions

The bodies Ω±ε are assumed to be occupied by materials of similar constitive behavior,
each of which shall be described by means of a conductivity matrix A± ∈ R3×3 that
satisfies the requirements of symmetry and positive definiteness. Qualitatively, the same
assumptions shall hold for the conductivity of the material occupying the perforated in-
terface layer Bε-perf

ε in between Ω+
ε and Ω−ε . However, as explained in the previous

section the interface material shall conduct heat considerably better than the adjacent
bodies in order to obtain a smooth temperature profile in the thin interface layer. That
is, in the sequel it will be assumed that the thermal conductivity of the interface material
scales with the inverse thickness ε of the interface layer, leading to a thermal conduc-
tivity matrix 1

εA
interf , where Ainterf ∈ R3×3 is again symmetric and positive definite.

Since the asymptotic analysis of the two interface problems sketched in the pre-
vious section will be carried out with the help of Γ-convergence arguments, one has
to work with dissipation potentials instead of the static heat equation in the interface
assembly Ωε (cf. Subsection 2.2.3). That is, instead of describing the constitutive prop-
erties of the bodies Ω±ε or the interface material Bε-perf

ε by means of their conductivity
matrices A± and 1

εA
interf , one has to work with the densities F 7→ 1

2A
±F · F and

F 7→ 1
2εA

interfF · F , F ∈ R3, of the corresponding dissipation potentials. But for
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Ωε

Y = Ŷ ×
[
−1

2 ,
1
2

]
PP

PPP

V ⊆ Y
Y ∗ = Y \ V

Ω+
ε

Ω−ε

Bε-perf
ε

Figure 3.5: The notation used for the interface structure Ωε

the sake of a simple notation it turns out useful to replace these quadratic energy den-
sities by generic densities F 7→ W±(F ) and F 7→ 1

εW
interf(F ), being convex and of

quadratic growth from below and above. In other words, W±, W interf : R3 → R must
satisfy (W2) and (W3), i.e.

the maps F 7→W±(F ), W interf(F ) are convex,
there exist positive constants c, C such that

c(|F |2 − 1) ≤W±(F ), W interf(F ) ≤ C(1 + |F |2)

for all F ∈ R3.

3.2.3 Some function spaces

For some open and bounded subset U ofRN with Lipschitz boundary ∂U and Γ ⊂ ∂U ,
the set W1,2

Γ (U) contains all elements of W1,2(U) whose trace on Γ vanishes. In this
fashion one has to understand the notation W1,2

Γ+
ε ∪Γ−ε

(Ωε) or W1,2
Γ+∪Γ−(Ω+ ∪B ∪ Ω−).

While W1,2
per(Y ) is as before defined to be the space of all W1,2(Y )-functions having

identical trace on opposite faces of the unit cube Y , the space W1,2

Ŷ -per
(Y ) contains all

those functions in W1,2(Y ) that are only asked to have identical trace on opposite faces
of the lateral boundary of the unit cube Y . Mathematically, u ∈W1,2

Ŷ -per
(Y ) if and only
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if u ∈W1,2(Y ) and u(y+ eα) = u(y) for all y ∈ ∂Y with yα = 0, α ∈ 1, 2. Similarly,
the space W1,2

Ŷ -per
(Y ∗) shall contain all those elements in W1,2(Y ∗) that have identical

trace on the intersection of opposite faces of the lateral boundary of Y ∗. This is because
in a perforated periodicity cell Y ∗ = Y \ V a void V may leave ‘holes’ in the lateral
boundary of Y that do not coincide on opposite faces. In mathematical notation then,
W1,2

Ŷ -per
(Y ∗) contains all those u ∈W1,2(Y ∗) such that for all y ∈ ∂Y ∗∩{y : yα = 0}

satisfying y + eα ∈ ∂Y ∗, α = 1, 2, one has u(y + eα) = u(y).
Because of its importance for what follows, I shall define the vector space

V(Ω+,Ω−, B) :=
{
u : u ∈W1,2(Ω+

tr ∪B ∪ Ω−tr) and ∂3u = 0 in B
}
.

and VΓ+,Γ−(Ω+,Ω−, B) as those functions in V(Ω+,Ω−, B) that vanish on Γ±tr. In
fact, these spaces are frequently encountered in the analysis of interface problems if the
interface is made from much ‘stronger’ material than the surrounding media (see e.g.
Bessoud et al. [2009]; Bessoud [2009] or Moussa and Zlaı̈ji [2012]). One should notice
that V(Ω+,Ω−, B) can be identified with

V(Ω+,Ω−, ω) :=
{
u : u ∈W1,2(Ω), u

∣∣
ω
∈W1,2(ω)

}
,

i.e. those functions in W1,2(Ω) whose inner trace on the hyperplane ω×{0} = Ω∩{x :
x3 = 0} is weakly differentiable and has square integrable derivatives on ω. Similarly,
VΓ+,Γ−(Ω+,Ω−, B) can be identified with the space VΓ+,Γ−(Ω+,Ω−, ω) containing all
functions in V(Ω+,Ω−, ω) that vanish on Γ+ and on Γ−.

3.3 Voids compactly contained in the periodicity cell

The current section considers the case of the void V being compactly contained in the
unit cell Y , in symbols V b Y . Furthermore, we assume that the void V has a suf-
ficiently smooth boundary, say Lipschitz-regular. That is, the interface Bε-perf

ε in the
assembly Ωε is perforated by periodically recurring, isolated voids with diameter of
order ε. For a graphical representation of this configuration see Figure 3.3 (left).

On the boundaries Γ+
ε and Γ−ε of Ωε there shall for simplicity hold homogeneous

Dirichlet boundary conditions for the heat flow in the assembly Ωε. On the remaining
boundaries ∂Ωε\(Γ+

ε ∪Γ−ε ) I will assume homogeneous Neumann boundary conditions,
in particular on the boundaries of the voids enclosed in the interfaceBε-perf

ε . The reason
for this is more of practical than of mathematical nature: since the voids in the interface
are isolated from each other, one cannot reach into the voids (and not even see them from
the outside when looking at the assembly Ωε). Thus, it makes little sense to impose
boundary conditions other than homogeneous Neumann boundary conditions. Here I
assumed implicitely that the heat flow from the interface into the void is negligible
compared to the heat flow inside the interface (which is again a reasonable assumption
due to the high conductivity of the interface material).
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Given the constitutive assumptions from the previous Subsection 3.2.2, the dissipa-
tion potential Eε for the assembly Ωε reads as

Eε : W1,2

Γ+
ε ∪Γ−ε

(Ωε)→ R

with

Eε(u) :=

ˆ
Ω+

ε

W+(∇u(x)) dx +

ˆ
Ω−ε

W−(∇u(x)) dx

+

ˆ
Bε-perf

ε

1
εW

interf(∇u(x)) dx. (3.1)

Remark 3.2. In the formulation of the heat flow in the assembly Ωε by means of the
above dissipation potential Eε, bulk and surface heat source terms in the bodies Ω+

ε

and Ω−ε (respectively on their outer surfaces Ω±ε ∩ {x : ±x3 > ε/2}) are neglected,
assuming that they would be independent of the interface thickness and void diameter
ε. The reason is that otherwise the dissipation potential Eε would simply be added
terms like

´
Ω±ε

f±(x̂, x3∓ ε
2e3)u(x) dx or

´
ΓNeu,±
ε

g±(x̂, x3∓ ε
2e3)u(x) da(x), for some

f ∈ L2(Ω±) and g ∈ L2(ΓNeu,±). Herein, ΓNeu,± ⊆ (∂Ω \ Γ±) ∩ {x : ±x3 > 0} and
ΓNeu,±
ε := ± ε

2 e3 + ΓNeu,±. However, this would certainly not affect the limit behavior
of the dissipation potential Eε.

Clearly, just like already said in Subsection 2.2.3, the equilibrium temperature dis-
tribution in the assembly Ωε is nothing but the minimizer of the dissipation potential
Eε.

Heuristically, one might anticipate the limit behavior of the functional Eε as the
interface thickness and the microstructure, both quantified by ε, become smaller and
smaller. More precisely, by some intuition one can qualitatively describe a dissipation
potential for the situation where the perforated interface Bε-perf

ε connecting the two
bodies Ω+

ε and Ω−ε is replaced by an asymptotically equivalent boundary condition for
the heat flow between Ω+ and Ω− over the flattened interface ω. In fact, since the
conductive behavior in the bodies adjacent to the interface is not affected by the in-
terface Bε-perf

ε – the material properties Ω+ and Ω− remain the same for all ε – the
bulk terms

´
Ω±W

±(∇u(x)) dx are likely to enter the limit dissipation potential un-
changed. Similar arguments tell that also the homogeneous Dirichlet boundary condi-
tions for the heat flow on Γ±ε are likely to transfer into the limit as homogeneous Dirich-
let boundary conditions on Γ±. Things are quite different when it comes to the term´
Bε-perf

ε

1
εW

interf(∇u(x)) dx describing the highly conductive interface layer. First,
due to the assumption of high conductivity it is unlikely that heat accumulates at the
interface. Thus, the temperature will not jump over the flattened interface ω. Further-
more, the high conductivity will cause the temperature in the interface to vary smoothly
in interface direction ω as sharp temperature gradients would dissipate rapidly in the
interface. Moreover, the presence of periodically recurring voids in the interface will
most probably not affect the just described behavior as long as they are not too large
compared to the area of the interface layer ω. At least not qualitatively. Whereas quan-
titatively the voids will for sure reduce the conductivity in interface direction as the heat
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has to pass by the voids when flowing through the interface: the bigger the voids the less
the amount of heat conducting material in the interface. In short words, it seems rea-
sonable that the integral over the interface layer Bε-perf

ε behaves for vanishing interface
thickness and void diameter ε asymptotically like an integral over the flattened inter-
face ω that penalizes sharp temperature gradients in interface direction. A first guess
for the limit integral describing the interface would be

´
ω Ŵ

interf(∇̂u(x̂, 0)) da(x̂) for
a smooth temperature distribution u : Ω → R and some homogenized interfacial en-
ergy density Ŵ interf : R2 → R, presumably also of quadratic growth. Note, that
∇̂(·) = [∂1(·), ∂2(·)]T is only the gradient in interface direction ω. Naturally, the size
and geometry of the voids will enter the homogenized interfacial energy density Ŵ interf .
To conclude, one might expect that in the limit of small interface thickness and void di-
ameter ε the dissipation potential Eε behaves like

EHom : VΓ+,Γ−(Ω+,Ω−, ω)→ R

where

EHom(u) :=

ˆ
Ω+

W+(∇u(x)) dx +

ˆ
Ω−

W−(∇u(x)) dx

+

ˆ
ω
Ŵ interf(∇̂u(x̂, 0)) da(x̂). (3.2)

In the next subsection the above functional EHom will indeed be revealed as a suit-
able Γ-limit of the dissipation potentials Eε describing to the heat flow in the assembly
Ωε with the highly conductive interface layer Bε-perf

ε .

3.3.1 Statement of the limit problem and outline of the proof

Regarding the formulation of the static heat flow in the assembly Ωε by means of the
dissipation potential Eε, i.e. by means of a minimization problem, the natural way to
study the asymptotics of Eε for vanishing interface thickness and void diameter ε is Γ-
convergence (see Subsection 2.2.3). However, studying Γ-convergence of a sequence
of functionals requires a common topological space over which all elements of the se-
quence are defined. Here however, the domain of the functional Eε, i.e. W1,2

Γ+
ε ∪Γ−ε

(Ωε),
varies with the geometry of the assembly Ωε, i.e. with both the thickness and the voids
of the interface layer Bε-perf

ε . In order to eliminate the dependency on the varying inter-
face thickness, the commonly used technique – originally due to Ciarlet and Destuynder
[1979], see also Ciarlet [1997] – is to perform a rescaling of the interface layer to fixed
thickness. That is, one performs the change of variables

Rε : Ω+
tr ∪B ∪ Ω−tr → Ω+

ε ∪Bε ∪ Ω−ε ,

Rε(x̂, x3) :=


(
x̂, x3 +

(
−1

2 + ε
2

)
e3

)
if x ∈ Ω+

tr,
(x̂, εx3) if x ∈ B,(
x̂, x3 +

(
1
2 −

ε
2

)
e3

)
if x ∈ Ω−tr.

(3.3)
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Given a function u ∈ W1,2

Γ+
ε ∪Γ−ε

(Ωε), consider v(x) := u(Rε(x)) for x ∈ R−1
ε (Ωε) =

Ω+
tr ∪Bε-perf ∪Ω−tr, with Bε-perf = R−1

ε (Bε-perf
ε ). Thus, v ∈W1,2

Γ+
tr∪Γ−tr

(Ω+
tr ∪Bε-perf ∪

Ω−tr). Note that due to the rescaling of Bε-perf
ε the voids in Bε-perf are found to be

extremely stretched in the x3-direction, cf. Figure 3.6 below. With a slight abuse of

Bε-perf

MεY
∗

Figure 3.6: Extremely streched voids in the rescaled interface layer Bε-perf (partial
cutaway drawing) and a rescaled perforated periodicity cell MεY

∗ (enlarged view)

notation, I denote by ∇v the gradient of v w.r.t. the rescaled coordinates in Ω+
ε ∪

Bε-perf ∪ Ω−tr and by ∇u = [∇̂u, ∂3u]T the gradient of u w.r.t. the original coordinates
in Ωε. Then, there holds

∇v(x) =


∇u(Rε(x)) if x ∈ Ω+

tr,[
∇̂u, ε∂3u

]
(Rε(x)) = diag(1, 1, ε)∇u(Rε(x)) if x ∈ Bε-perf ,

∇u(Rε(x)) if x ∈ Ω−tr.

(3.4)
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Applying this rescaling to the argument of the dissipation potential Eε leads to

Eε(u) =

ˆ
Ω+

tr

W+(∇u(Rε(x))) dx +

ˆ
Ω−tr

W−(∇u(Rε(x))) dx

+

ˆ
Bε-perf

1
εW

interf(∇u(Rε(x))) ε dx

=

ˆ
Ω+

tr

W+(∇v(x)) dx +

ˆ
Ω−tr

W−(∇v(x)) dx

+

ˆ
Bε-perf

W interf
(

diag(1, 1, 1
ε )∇v(x)

)
dx

=

ˆ
Ω+

tr

W+(∇v(x)) dx +

ˆ
Ω−tr

W−(∇v(x)) dx

+

ˆ
Bε-perf

W interf
(
∇̂v(x), 1

ε∂3v(x)
)

dx

=: Fε(v).

Yet, the arguments v ofFε are still taken from a space, namely W1,2

Γ+
tr∪Γ−tr

(Ω+
tr∪Bε-perf∪

Ω−tr), that varies with the mutual distance ε of the voids in the rescaled interface layer
Bε-perf . At this point, it turns out useful to simply extend the rescaled dissipation poten-
tial Fε by∞ to the larger space L2(Ω+

tr∪B∪Ω−tr) equipped with the usual L2-distance.
Mathematically, the extended and rescaled dissipation potential

Fε : L2(Ω+
tr ∪B ∪ Ω−tr)→ (−∞,∞]

is now defined as

Fε(v) :=



ˆ
Ω+

tr

W+(∇v(x)) dx +

ˆ
Ω−tr

W−(∇v(x)) dx

+

ˆ
Bε-perf

W interf
(
∇̂v(x), 1

ε∂3v(x)
)

dx

if v ∈W1,2

Γ+
tr∪Γ−tr

(Ω+
tr ∪Bε-perf ∪ Ω−tr),

∞ else.

(3.5)

While being – up to the rescaling argument – equivalent to the original dissipation
potential Eε for the assemply Ωε, the rescaled and extended dissipation potential Fε is
immediately accessible for a Γ-convergence analysis as ε, i.e. the thickness and void
diameter of the interface layer Bε-perf

ε in Ωε, vanishes. In fact, the previous heuristic
reasoning, stating that the dissipation potential Eε behaves for small interface thickness
and void diameter ε like EHom (see (3.1)), is confirmed by the following convergence
result.

Theorem 3.1. Let there be given the notation and the assumptions from Section 3.2,
and suppose (εk)k to be a vanishing sequence of positive real numbers whose elements



Homogenization in perforated thin domains 83

such that εk and ω are compatible with (ε-Tiling). Moreover, let the void V b Y be
compactly contained in the cubic periodicity cell Y and have a smooth boundary. Then,
the rescaled dissipation potentials (Fεk)k defined in (3.5) Γ-converge with respect to
the L2(Ω+

tr ∪B ∪ Ω−tr)-norm, in symbols

Γ-lim
k→∞

Fεk = FHom

where FHom : L2(Ω+
tr ∪B ∪ Ω−tr)→ (−∞,∞] obeys

FHom(v) =



ˆ
Ω+

tr

W+(∇v(x)) dx +

ˆ
Ω−tr

W−(∇v(x)) dx

+

ˆ
ω
Ŵ interf

(
∇̂v(x̂, 0)

)
da(x̂)

if v ∈ VΓ+,Γ−(Ω+,Ω−, B),

∞ else.

(3.6)

Therein, Ŵ interf : R2 → R is defined through

Ŵ interf(F̂ ) =

inf

{ˆ
Y ∗
W interf

(
[F̂ , 0]T +∇yw(y)

)
dy : w ∈W1,2

Ŷ -per
(Y ∗)

}
. (3.7)

Remembering that the space VΓ+,Γ−(Ω+,Ω−, B) can be identified with

VΓ+,Γ−(Ω+,Ω−, ω) =
{
u : u ∈W1,2(Ω),

u
∣∣
ω
∈W1,2(ω) and u = 0 on Γ+ ∪ Γ−

}
,

the Γ-limit FHom in the above theorem is indeed nothing but the heuristically motivated
dissipation potential EHom from (3.2). As expected, the highly conductive perforated
interface layerBε-perf

ε in the assembly Ωε can – in the limit of vanishing interface thick-
ness and void diameter ε – be equivalently expressed through a boundary condition on
the flattened interface ω. That is, through the interfacial energy density Ŵ interf that
penalizes temperature gradients within the flattened interface. Moreover, the interfacial
energy density can be computed from a cell problem similar to the one of Marcellini
(cf. (2.28)). However, the above cell formula (3.7) is different in that the infimum is
taken over a bigger set of microscopic temperature distributions, namely those having
periodic boundary conditions only on the lateral faces of the perforated periodicity cell
Y ∗.

As another simple but important remark I would like to emphasize that the interfa-
cial energy density Ŵ interf can also be written as

Ŵ interf(F̂ ) =

inf

{ˆ
Y
1Y ∗(y)W interf

(
[F̂ , 0]T +∇yw(y)

)
dy : w ∈W1,2

Ŷ -per
(Y )

}
. (3.8)
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This can be easily verified since by the assumend smoothness of the void’s boundary
∂V every element of W1,2

Ŷ -per
(Y ∗) can be extended to an element of W1,2

Ŷ -per
(Y ) (see

also Theorem 3.2 in the upcoming subsection).
The proof of Theorem 3.1 mainly relies on two ingredients. One is the use of

classical extension operators to extend functions defined over the rescaled perforated
interface Bε-perf to the whole of B. Yet, since the voids in Bε-perf are strongly dis-
torted due to the rescaling in interface thickness direction, extension operators have
to be used with care. Also, extension operators for functions over the rescaled perfo-
rated interface Bε-perf call for suitable a priori-estimates that have to be established.
This will be done in the following Subsection 3.3.2. The other main ingredient is a
recent concept for two-scale convergence developed by Stefan Neukamm and intro-
duced in his PhD thesis Neukamm [2010] that is specifically designed for capturing
oscillations of functions defined over thin domains or, more precisely, over rescaled
thin domains. By combining the two concepts one obtains a method to capture the fine
oscillations of the rescaled temperature gradients within the rescaled interface Bε-perf

(see (3.5)) caused by the periodically recurring voids. When proving Γ-convergence for
the sequence of rescaled dissipation potentials (Fεk)k like stated in Theorem 3.1, the
Γ-lim inf-inequality along a sequence of temperature distributions (vεk)k respectively
taken from the spaces W1,2

Γ+
tr∪Γ−tr

(Ω+
tr ∪Bε-perf ∪Ω−tr) can be inferred from the two-scale

convergence properties of
([
∇̂vεk , 1

εk
∂3vεk

])
k

and standard lower semicontinuity ar-
guments. As concerns the Γ-lim sup-inequality, some minor technicalities have to be
overcome. That is, one has to adapt standard techniques for the construction of re-
covery sequences in the context of periodic homogenization (see e.g. Allaire [1992];
Visintin [2007] or Section 4.3) to the present situation, where the recovery sequence ex-
tends over a microstructured (the rescaled interface layer Bε-perf ) and a homogeneous
domain (the bodies Ω±tr adjacent to the rescaled interface layer).

While the following Subsection 3.3.2 is dedicated to a collection of auxiliary results
for the proof (extension operators, a priori-estimates and Stefan Neukamm’s adaption
of two-scale convergence for in-plane oscillations in rescaled thin domains), the proof
of Theorem 3.1 is stated in Subsection 3.3.3.

Remark 3.3. Here and also in the upcoming Section 3.4 I will slightly abuse the notation
in that I will omit the index of εk in the symbols Bε-perf

ε and Bε-perf . For instance, the
expression

uεk ∈W1,2(Bε-perf
ε ) actually means uεk ∈W1,2(Bεk-perf

εk
),

and similarly

uεk ∈W1,2(Bε-perf) actually means vεk ∈W1,2(Bεk-perf).

This is to make the notation somewhat easier, as expressions like vεk ∈W1,2(Bεk-perf)
or even ‖vεk‖W1,2(Bεk -perf) are very difficult to read. In other words, in what follows the
indexing of a function shall already indicate its domain.
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3.3.2 Extension operators, a priori-estimates and two-scale convergence
in thin domains

The construction of an extension operator extending functions from the rescaled inter-
face with periodically recurring voids, Bε-perf , to the entire rescaled interface B, i.e.
from W1,2(Bε-perf) to W1,2(B), relies on the following classical result from [Oleı̆nik
et al., 1992, Lemma 4.1].

Proposition 3.2. In the situation of Theorem 3.1, there exists an extension operator
P : W1,2(Y ∗)→W1,2(Y ) such that for all v ∈W1,2(Y ∗)

‖Pv‖W1,2(Y ) ≤ C(V ) ‖v‖W1,2(Y ∗) ,

‖∇(Pv)‖L2(Y ;R3) ≤ C(V ) ‖∇v‖L2(Y ∗;R3) .

The constantC(V ) depends on the void V in the perforated periodicity cell Y ∗ = Y \V
only.

With this extension operator at hand, it is no longer difficult to define the desired ex-
tension operator Pε : W1,2(Bε-perf) → W1,2(B). According to assumption (ε-Tiling),
the perforated interface layer becomes Bε-perf

ε =
⋃
â∈Zε

ε
(
[â, 0]T + Y ∗

)
for some fi-

nite subset Zε ⊆ Z2. After performing the rescaling in interface thickness direction,
one can still write

Bε-perf =
⋃
â∈Zε

Mε

(
[â, 0]T + Y ∗

)
where

Mε =

 ε 0 0
0 ε 0
0 0 1

 . (3.9)

Now, for â ∈ Zε it turns out useful to introduce the mapping

Tâ,ε : Mε

(
[â, 0]T + Y

)
→ Y, Tâ,ε(y) := M−1

ε y −
[
â
0

]
=

[
1
ε ŷ − â
y3

]
which obvioulsy ensures Tâ,ε

(
Mε

(
[â, 0]T + Y ∗

))
= Y ∗. The extension operator Pε :

W1,2(Bε-perf) → W1,2(B) can now be defined as follows. Let v ∈ W1,2(Bε-perf) and
x ∈ B be arbitrary, and let â ∈ Zε be such that x ∈Mε

(
[â, 0]T + Y

)
. Then(

Pεv
)
(x) := P

(
v ◦ T−1

â,ε

)
(Tâ,ε(x)) (3.10)

and, obviously, since P
(
v◦T−1

â,ε

)
∈W1,2(Y ) and P is an extension operator one obtains

both (
Pεv
)∣∣
Bε-perf = v and Pεv ∈W1,2(B).
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While the definition of Pε is indeed rather natural, it requires some effort to show that
Pε has suitable continuity properties. To this end, one should notice that given a tem-
perature distribution in the rescaled interface layer Bε-perf , say v ∈ W1,2(Bε-perf), the
interface term in the dissipation potential Fε (see (3.5)) allows by the coercivity (W3)
of W interf to estimate
ˆ
Bε-perf

W interf
(
∇̂v(x), 1

ε∂3v(x)
)

dx

≥ c
(
‖∇̂v‖2L2(Bε-perf ;R2) +

∥∥1
ε∂3v

∥∥2

L2(Bε-perf)
− volB

)
.

It would therefore be desirable if the extension Pεv of v allowed for a similar estimate
by means of the interface term in the dissipation potential. This is in fact the case as
revealed by the following proposition.

Proposition 3.3. Let there be given the notation and assumptions stated in Theorem
3.1, a small positive real number ε such that ε and ω are compatible with assumption
(ε-Tiling). Moreover, let there be given the extension operators P from Proposition 3.2
and Pε as defined in (3.10). Then for every v ∈ W1,2(Bε-perf) and sufficiently small ε
there hold the estimates

‖Pεv‖2L2(B) ≤ C(V )
(
‖v‖2L2(Bε-perf) + ‖ε∇̂v‖2L2(Bε-perf ;R2) + ‖∂3v‖2L2(Bε-perf)

)
and

‖∇̂
(
Pεv
)
‖2L2(B;R2) +

∥∥1
ε∂3

(
Pεv
)∥∥2

L2(B)

≤ C(V )
(
‖∇̂v‖2L2(Bε-perf ;R2) +

∥∥1
ε∂3v

∥∥2

L2(Bε-perf)

)
.

Here, C(V ) is a positive constant depending on the void V in the perforated periodicity
cell Y ∗ = Y \ V only.

Proof. The proof of Proposition 3.3 splits into three parts. In a first step I will show that
one has∥∥∇(Pεv)∥∥2

L2(B;R2)
+
∥∥∂3

(
Pεv
)∥∥2

L2(B)

≤ C(V )
(
‖∇̂v‖2L2(Bε-perf ;R2) +

∥∥1
ε∂3v

∥∥2

L2(Bε-perf)

)
, (3.11)

while the second step reveals that∥∥∂3

(
Pεv
)∥∥2

L2(B)
≤ C(V )

(
‖ε∇̂v‖2L2(Bε-perf ;R2) + ‖∂3v‖2L2(Bε-perf)

)
. (3.12)

As it is easily seen, adding (3.11) and (3.12) (multiplied by 1
ε2

) yields the second esti-
mate of the proposition. The third and last step is to prove the first inequality stated in
the proposition.
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Step 1. To prove (3.11) one starts with

ˆ
B

∣∣∇(Pεv)(x)
∣∣2 dx =

∑
â∈Zε

ˆ
T−1
â,ε

(Y )

∣∣∣M−1
ε ∇

(
P
(
v ◦ T−1

â,ε

))
(Tâ,ε(x))

∣∣∣2 dx

=
∑
â∈Zε

ˆ
Y

∣∣∣M−1
ε ∇

(
P
(
v ◦ T−1

â,ε

))
(y)
∣∣∣2 ε2 dy

=
∑
â∈Zε

ε2

ˆ
Y

∣∣∣1ε∇̂(P (v ◦ T−1
â,ε

))
(y)
∣∣∣2 +

∣∣∣∂3

(
P
(
v ◦ T−1

â,ε

))
(y)
∣∣∣2 dy,

where the first equality is due to the assumption (ε-Tiling). Now, since ε � 1 one can
‘brutally’ estimate

ˆ
B

∣∣∇(Pεv)(x)
∣∣2 dx

≤
∑
â∈Zε

ε2

ˆ
Y

∣∣∣1ε∇̂(P (v ◦ T−1
â,ε

))
(y)
∣∣∣2 +

∣∣∣1ε∂3

(
P
(
v ◦ T−1

â,ε

))
(y)
∣∣∣2 dy

=
∑
â∈Zε

ˆ
Y

∣∣∣∇(P (v ◦ T−1
â,ε

))
(y)
∣∣∣2 dy.

By the continuity properties of the extension operator P stated in Proposition 3.2 one
further infers

ˆ
B

∣∣∇(Pεv)(x)
∣∣2 dx

≤
∑
â∈Zε

C(V )

ˆ
Y ∗

∣∣∣∇(v ◦ T−1
â,ε

)
(y)
∣∣∣2 dy

=C(V )
∑
â∈Zε

ˆ
T−1
â,ε

(Y ∗)

∣∣∣∇(v ◦ T−1
â,ε

)
(Tâ,ε(x))

∣∣∣2 1
ε2

dx

=C(V )
∑
â∈Zε

ˆ
T−1
â,ε

(Y ∗)

∣∣1
εMε∇v(x)

∣∣2 dx

=C(V )
∑
â∈Zε

ˆ
T−1
â,ε

(Y ∗)

∣∣∣∣∣∣
 1

1
1
ε

∇v(x)

∣∣∣∣∣∣
2

dx

=C(V )

ˆ
Bε-perf

|∇̂v(x)|2 +
∣∣1
ε∂3v(x)

∣∣2 dx

and (3.11) is proved.
Step 2. By using similar arguments like in the previous step, one first transforms the
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left hand side of (3.12) as follows:

ˆ
B

∣∣∂3

(
Pεv
)
(x)
∣∣2 dx

=
∑
â∈Zε

ˆ
T−1
â,ε

(Y )

∣∣∣∇(P (v ◦ T−1
â,ε

))
(Tâ,ε(x)) · ∂3Tâ,ε(x)

∣∣∣2 dx

=
∑
â∈Zε

ˆ
T−1
â,ε

(Y )

∣∣∣∇(P (v ◦ T−1
â,ε

))
(Tâ,ε(x)) · e3

∣∣∣2 dx

=
∑
â∈Zε

ˆ
Y

∣∣∣∂3

(
P
(
v ◦ T−1

â,ε

))
(y)
∣∣∣2 ε2 dy.

Another ‘brutal’ estimation gives

ˆ
B

∣∣∂3

(
Pεv
)
(x)
∣∣2 dx ≤

∑
â∈Zε

ε2

ˆ
Y

∣∣∣∇(P (v ◦ T−1
â,ε

))
(y)
∣∣∣2 dy

and applying Proposition 3.2 once more results in

ˆ
B

∣∣∂3

(
Pεv
)
(x)
∣∣2 dx ≤

∑
â∈Zε

ε2C(V )

ˆ
Y ∗

∣∣∣∇(v ◦ T−1
â,ε

)
(y)
∣∣∣2 dy

=C(V )
∑
â∈Zε

ˆ
Y ∗

∣∣∣Mε∇v(T−1
â,ε (y))

∣∣∣2 ε2 dy

=C(V )
∑
â∈Zε

ˆ
T−1
â,ε

(Y ∗)

∣∣Mε∇v(x)
∣∣2 dx

=C(V )
∑
â∈Zε

ˆ
T−1
â,ε

(Y ∗)
ε2
∣∣∇̂v(x)

∣∣2 + |∂3v(x)|2 dx

=C(V )

ˆ
Bε-perf

∣∣ε∇̂v(x)
∣∣2 + |∂3v(x)|2 dx.

Hence, also (3.12) is correct, which completes the proof of the second inequality stated
in the proposition.

Step 3. Just like in the previous steps one can easily show that

ˆ
B

∣∣(Pεv)(x)
∣∣2 dx =

∑
â∈Zε

ε2

ˆ
Y

∣∣∣P (v ◦ T−1
â,ε

)
(y)
∣∣∣2 dy.
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Then, Proposition 3.2 allows to further estimate
ˆ
B

∣∣(Pεv)(x)
∣∣2 dx

≤
∑
â∈Zε

ε2C(V )

(ˆ
Y ∗

∣∣∣(v ◦ T−1
â,ε

)
(y)
∣∣∣2 dy +

ˆ
Y ∗

∣∣∣∇(v ◦ T−1
â,ε

)
(y)
∣∣∣2 dy

)

=C(V )
∑
â∈Zε

(ˆ
T−1
â,ε

(Y ∗)
|v(x)|2 dx+

ˆ
T−1
â,ε

(Y ∗)
|Mε∇v(x)|2 dx

)

=C(V )

(ˆ
Bε-perf

|v(x)|2 dx+

ˆ
Bε-perf

|ε∇̂v(x)|2 + |∂3v(x)|2 dx

)
where the last equality can be verified by performing the same integral transformations
as before. This is concludes the proof of the proposition.

As announced before, the second tool that is essential to the proof of Theorem 3.1 is
an adaption of two-scale convergene in rescaled thin domains like B, called ‘two-scale
convergence for in-plane oscillations’. The definitions and results stated here are due
to Stefan Neukamm and taken from his thesis Neukamm [2010]. However, to ease the
presentation I chose not to cite them in all detail, but rather in form that is tailored to
the present context and notation. The core definition for Stefan Neukamm’s adaption of
two-scale convergene for in-plane oscillations is the following unfolding operator (see
[Neukamm, 2010, Definition 6.2.1]).

Definition 3.4. Let U be some open and bounded subset of R3 and Ŷ = [0, 1)2 be
defined like in Subsection 3.2.1, and let ε be a small positive real number. For any
v ∈ L2(U) the periodic unfolding operator for in-plane oscillations T̂εv ∈ L2(R3 × Ŷ )
is defined as

(
T̂εv
)
(x, ŷ) :=

{
v
(
εb x̂ε c+ εŷ, x3

)
if
(
εb x̂ε c+ εŷ, x3

)
∈ U,

0 else.

Here, b · c : R2 → Z2 returns the integer part of its argument.

Remark 3.4. The designation ‘in-plane oscillations’ stems from the insight that in the
case of U being a rescaled thin domain like B = ω ×

[
−1

2 ,
1
2

]
with a microstructure

extending in in-plane direction, oscillations of functions caused by this microstructure
must foremost be expected in the in-plane direction of the rescaled thin domain. For
instance, oscillations in interface direction of the rescaled temperature distribution in
Bε-perf that are caused by the presence of periodically recurring voids (see in Figure
3.6). Two-scale convergence for in-plane oscillations has specifically been designed to
capture such in-plane oscillations.

This periodic unfolding operator yields the following notion of two-scale conver-
gence (cf. [Neukamm, 2010, Definition 6.2.3]).
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Definition 3.5. Assume once more U to be some open and bounded subset of R3 and
Ŷ = [0, 1)2 to be defined like in Subsection 3.2.1. Let (εk)k be an arbitrary sequence
of positive real numbers converging to zero. A sequence (vεk)k in L2(U) is said to
weakly (respectively strongly) two-scale converge w.r.t. in-plane oscillations to some
v0 ∈ L2(U×Ŷ ), if T̂εkvεk weakly (respectively strongly) converges to v0 in L2(R3×Ŷ )
(where v0 is supposed to be extended to R3 × Y by 0 in its first argument). In symbols
weak two-scale convergence w.r.t. in-plane oscillations is denoted

vεk
2−⇀
Ŷ

v0 in L2(U × Ŷ ),

and strong two-scale convergence w.r.t. in-plane oscillations

vεk
2−→
Ŷ

v0 in L2(U × Ŷ ).

Just like usual two-scale convergence and periodic unfolding, also the above adap-
tion to in-plane oscillations in rescaled thin domains possesses the usual isometry (see
Proposition 2.22) and compactness properties (see Theorem 2.17 and Proposition 2.23).
This is revealed by the next proposition (again see [Neukamm, 2010, Lemma 6.2.2]).

Proposition 3.6. SupposeU to be some open and bounded subset ofR3 and Ŷ = [0, 1)2

to be defined like in Subsection 3.2.1. Then

(i) for every positive real number ε the periodic unfolding operator for in-plane os-
cillations T̂ε : L2(U)→ L2(R3 × Ŷ ) satisfies

ˆ
U
v(x) dx =

ˆ
R3

ˆ
Ŷ

(
T̂εv
)
(x, ŷ) dŷ dx for all v ∈ L2(U).

In particular, T̂ε is an isometry.

(ii) given an arbitrary vanishing sequence of positive real numbers (εk)k, every boun-
ded sequence in L2(U) contains a weakly two-scale convergent subsequence w.r.t.
in-plane oscillations.

One can establish relations between the notion of two-scale convergence for in-
plane oscillations in rescaled thin domains and traditional weak and strong convergence,
but also with the traditional two-scale convergence of Nguetseng and Allaire.

Proposition 3.7. Let U be some open and bounded subset of R3, Ŷ = [0, 1)2 and Y =
Ŷ ×

[
−1

2 ,
1
2

]
be defined like in Subsection 3.2.1 and let (εk)k be an arbitrary sequence of

positive real numbers converging to zero. Moreover, let (vεk)k be a sequence in L2(U).
Then
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(i) for v0 ∈ L2(U × Y ) one has the implications

vεk
2−⇀ v0 in L2(U × Y )

⇒ vεk
2−⇀
Ŷ

ˆ
(
−1

2 ,
1
2

) v0(·, ·, y3) dy3 in L2(U × Ŷ ),

vεk
2−→ v0 in L2(U × Y )

⇒ vεk
2−→
Ŷ

ˆ
(
−1

2 ,
1
2

) v0(·, ·, y3) dy3 in L2(U × Ŷ ),

(ii) for v0 ∈ L2(U × Ŷ ) there holds

vεk
2−⇀
Ŷ

v0 in L2(U × Ŷ ) ⇒ vεk ⇀

ˆ
Ŷ
v0(·, ŷ) dŷ in L2(U),

(iii) if v0 ∈ L2(U× Ŷ ) and v0 is independent of its second argument, i.e. v0 ∈ L2(U),
then

vεk → v0 in L2(U) ⇔ vεk
2−→
Ŷ

v0 in L2(U × Ŷ ),

(iv) if v0 ∈ L2(U × Ŷ ) such that vεk
2−⇀
Ŷ

v0 in L2(U × Ŷ ) and (wεk)k is another

sequence in L2(U) satisfying wεk
2−→
Ŷ

w0 in L2(U × Ŷ ) for some w0 ∈ L2(U ×

Ŷ ), it is
ˆ
U
vεk(x)wεk(x) dx→

ˆ
U

ˆ
Ŷ
v0(x, ŷ)w0(x, ŷ) dŷ dx.

For the first statement in this proposition I refer to [Neukamm, 2010, Proposition
6.2.5] (whereas the other statements are simple adaptions of the arguments found e.g.
in [Visintin, 2006, Theorem 1.3]).

The key results in Neukamm [2010] on two-scale convergence for in-plane oscilla-
tions concern the situation of a rescaled thin domain like B = ω ×

[
−1

2 ,
1
2

]
and a se-

quence in L2(B;R3) that can be identified as a sequence of gradients vε = ∇uε. Here,
the identification of the corresponding two-scale limit for in-plane oscillations leads to
a quite different result than in the case of common two-scale convergence (compare in
Theorem 2.18). The next theorem is only a special case of a more general result found
in [Neukamm, 2010, Theorem 6.3.3].

Theorem 3.8. Assume B := ω ×
[
−1

2 ,
1
2

]
, Ŷ = [0, 1)2 and Y := Y ×

[
−1

2 ,
1
2

]
to be

defined like in Subsection 3.2.1 and let (εk)k be an arbitrary sequence of positive real
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numbers converging to zero. Moreover, let (uεk)k be a weakly convergent sequence in
W1,2(B) with limit u0 satisfying the estimate

‖∇̂uεk‖
2
L2(B;R2) +

∥∥∥ 1
εk
∂3uεk

∥∥∥2

L2(B)
≤ C (3.13)

for all εk and some positive constant C. Then u0 is independent of x3 and there exist a
subsequence (εk`)` and a U0 ∈ L2(ω; W1,2

Ŷ -per
(Y ;R3)) such that[

∇̂uεk` ,
1
εk`
∂3uεk`

]
2−⇀
Ŷ

[
∇̂u0(x) + ∇̂yU0(x̂, (ŷ, x3)), ∂y3U0(x̂, (ŷ, x3))

]
in L2(B × Ŷ ;R3),

where ∂y1U0, . . . , ∂y3U0 denote the partial weak derivatives of U0 w.r.t. the components
of its second argument and ∇̂yU0 = [∂y1U0, ∂y2U0]T .

Given the results on extension operators and on two-scale convergence for in-plane
oscillations in rescaled thin domains, one can prove the following lemma which will
play a central role in the proof of the main Theorem 3.1.

Lemma 3.9. Let there be given the notation and assumptions stated in Theorem 3.1, a
sequence of positive real numbers (εk)k whose elements and ω satisfy (ε-Tiling), and
moreover the extension operators P from Theorem 3.2 and Pε as defined in (3.10).
Furthermore, let (vεk)k be a sequence in L2(B) such that vεk ∈ W1,2(Bε-perf) and
suppose

‖∇̂vεk‖
2
L2(Bε-perf ;R2) +

∥∥∥ 1
εk
∂3vεk

∥∥∥2

L2(Bε-perf)
≤ C

for all εk and some positive constant C. Set uεk := Pεkvεk ∈W1,2(B). Then

(i) (∇̂uεk)k and (∂3uεk)k satisfy estimate (3.13) for some (possibly different) εk-
independent constant C.

(ii) Suppose furthermore vεk → v0 in L2(B). Then v0 ∈W1,2(B), v0 is independent
of x3 and

uεk ⇀ v0 in W1,2(B).

Proof. Obviously, the first assertion of the lemma immediately follows from the second
inequality stated in Proposition 3.3 and the assumptions of the lemma.

To prove the second assertion, one again employs Proposition 3.3 to infer together
with the assumptions of the lemma, i.e. the uniform boundedness of both ‖vεk‖L2(Bε-perf)

and ‖∇̂vεk‖2L2(Bε-perf ;R2)
+ ‖ 1

εk
∂3vεk‖2L2(Bε-perf)

, that indeed also ‖uεk‖L2(B) is uni-
formly bounded. This in combination with the validity of (3.13) yields the uniform
boundedness of (uεk)k in W1,2(B). Hence, there is a u0 ∈W1,2(B) such that

uεk` ⇀ u0 in W1,2(B) (3.14)
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along a suitable subsequence (k`)`. Obviously, as (∇̂uεk)k and (∂3uεk)k satisfy es-
timate (3.13), it is ∂3uεk → 0 in L2(B). Thus, ∂3u0 = 0 and u0 is independent of
x3.

All that remains to do now is to show that u0 can be identified with v0 a.e. in B. To
this end, let U be an arbitrary open subset of B. Since uεk = Pεkvεk is the extension of
vεk from Bε-perf to B it is obvious that

ˆ
U∩Bε-perf

uεk(x) dx =

ˆ
U∩Bε-perf

vεk(x) dx. (3.15)

Turning to the integral on the left hand side, one first notices that the indicator function
of Bε-perf can be written like

1Bε-perf (x) = 1B(x)1Y ∗
(
x̂
εk
, x3

)
, (3.16)

where it is assumed that Y 3 y 7→ 1Y ∗ (ŷ, y3) is extended to R2 ×
[
−1

2 ,
1
2

]
by Ŷ -

periodicity in its ŷ-argument. Hence

ˆ
U∩Bε-perf

uεk(x) dx =

ˆ
B
1U (x)1Bε-perf (x)uεk(x) dx

=

ˆ
B
1U (x)1Y ∗

(
x̂
εk
, x3

)
uεk(x) dx. (3.17)

The function (x, ŷ) 7→ 1U (x)1Y ∗ (ŷ, x3) is an element of L∞(B; L∞per(Ŷ )) and can –
given some arbitrary η > 0 – be approximated with ψ ∈ C∞c (B; C∞per(Ŷ )) such that∥∥∥ψ(x, ŷ)− 1U (x)1Y ∗ (ŷ, x3)

∥∥∥
L2(B×Ŷ )

≤ η. (3.18)

Just like in the case of ‘normal’ two-scale convergence, it is easily checked that
ψ
(
x, x̂εk

)
2−→
Ŷ

ψ(x, ŷ) in L2(B × Ŷ ) (or inferred from the strong two-scale conver-

gence ψ
(
x, x̂εk

)
2−→ ψ(x, ŷ) in L2(B × Y ) by Example 2.1 and the first statement

of Proposition 3.7). Then, by applying the third statement of the same proposition to
uεk` → u0 in L2(B) (itself inferred from (3.14)) it is the fourth statement of Proposition
3.7 that leads to

ˆ
B
ψ
(
x, x̂

εk`

)
uεk` (x) dx→

ˆ
B

ˆ
Ŷ
ψ(x, ŷ)u0(x) dŷ dx

=

ˆ
B
u0(x)

(ˆ
Ŷ
ψ(x, ŷ) dŷ

)
dx. (3.19)

On the other hand, according to the isometry property of the unfolding operator for
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in-plane oscillations T̂εk` : L2(B)→ L2(B × Ŷ ) stated in Proposition 3.6 it is∣∣∣∣ˆ
B
ψ
(
x, x̂

εk`

)
uεk` (x) dx−

ˆ
B
1U (x)1Y ∗

(
x̂
εk`
, x3

)
uεk` (x) dx

∣∣∣∣
=

∣∣∣∣∣
ˆ
R3

ˆ
Ŷ

(
T̂εk`ψ

(
·, (̂·)
εk`

)
− T̂εk`1U T̂εk`1Y ∗

( (̂·)
εk`
, (·)3

))
(x, ŷ)

(
T̂εk`uεk`

)
(x, ŷ) dŷ dx

∣∣∣∣∣
≤
∥∥∥∥T̂εk`ψ(·, (̂·)

εk`

)
− T̂εk`1U T̂εk`1Y ∗

( (̂·)
εk`
, (·)3

)∥∥∥∥
L2(R3×Ŷ )

∥∥∥T̂εk`uεk`∥∥∥L2(R3×Ŷ )

Furthermore, by applying the definition of the periodic unfolding operator T̂εk` one finds
that (

T̂εk`1Y ∗
( (̂·)
εk`
, (·)3

))
(x, ŷ) = 1B

(
εk`b

x̂
εk`
c+ εk` ŷ, x3

)
1Y ∗(ŷ, x3)

= 1B(x)1Y ∗(ŷ, x3) (3.20)

where the last equality follows from the simplifying assumption (ε-Tiling) on the ge-
ometry of ω and the values of εk. Thus, one can further estimate∣∣∣∣ˆ

B
ψ
(
x, x̂

εk`

)
uεk` (x) dx−

ˆ
B
1U (x)1Y ∗

(
x̂
εk`
, x3

)
uεk` (x) dx

∣∣∣∣
≤
∥∥∥ψ((εk`b x̂εk` c+ εk` ŷ, x3

)
, ŷ
)

− 1U
(
εk`b

x̂
εk`
c+ εk` ŷ, x3

)
1B(x)1Y ∗(ŷ, x3)

∥∥∥
L2(R3×Ŷ )

‖uεk`‖L2(B)

≤

(∥∥∥ψ((εk`b x̂εk` c+ εk` ŷ, x3

)
, ŷ
)
− ψ(x, ŷ)

∥∥∥
L2(R3×Ŷ )

+
∥∥∥ψ(x, ŷ)− 1U (x)1Y ∗(ŷ, x3)

∥∥∥
L2(R3×Ŷ )

+
∥∥∥1U (x)1Y ∗(ŷ, x3)− 1U

(
εk`b

x̂
εk`
c+ εk` ŷ, x3

)
1B(x)1Y ∗(ŷ, x3)

∥∥∥
L2(R3×Ŷ )

)
· ‖uεk`‖L2(B).

In view of (3.18), passing to the limit εk` → 0 yields

lim sup
`→∞

∣∣∣∣∣
ˆ
B
ψ
(
x, x̂

εk`

)
uεk` (x) dx

−
ˆ
B
1U (x)1Y ∗

(
x̂
εk`
, x3

)
uεk` (x) dx

∣∣∣∣∣ ≤ η‖u0‖L2(B). (3.21)
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Having this at hand and recalling (3.17), it is now easy to infer

lim sup
`→∞

∣∣∣∣∣
ˆ
U∩Bε-perf

uεk` (x) dx−
ˆ
B
u0(x)

(ˆ
Ŷ
1U (x)1Y ∗(ŷ, x3) dŷ

)
dx

∣∣∣∣∣
≤ lim sup

`→∞

∣∣∣∣∣
ˆ
B
1U (x)1Y ∗

(
x̂
εk`
, x3

)
uεk` (x) dx−

ˆ
B
ψ
(
x, x̂

εk`

)
uεk` (x) dx

∣∣∣∣∣
+ lim
`→∞

∣∣∣∣∣
ˆ
B
ψ
(
x, x̂

εk`

)
uεk` (x) dx−

ˆ
B
u0(x)

(ˆ
Ŷ
ψ(x, ŷ) dŷ

)
dx

∣∣∣∣∣
+

∣∣∣∣∣
ˆ
B
u0(x)

(ˆ
Ŷ
ψ(x, ŷ) dŷ

)
dx−

ˆ
B
u0(x)

(ˆ
Ŷ
1U (x)1Y ∗(ŷ, x3) dŷ

)
dx

∣∣∣∣∣
≤ η‖u0‖L2(B) + 0 + η‖u0‖L2(B×Ŷ )

upon taking into account (3.21), (3.19) and (3.18). By choosing η arbitrarily small one
now has

ˆ
U∩Bε-perf

uεk` (x) dx→
ˆ
B
u0(x)

(ˆ
Ŷ
1U (x)1Y ∗(ŷ, x3) dŷ

)
dx

as εk` vanishes. In fact, by employing the very same arguments as before one can also
infer

ˆ
U∩Bε-perf

vεk` (x) dx→
ˆ
B
v0(x)

(ˆ
Ŷ
1U (x)1Y ∗(ŷ, x3) dŷ

)
dx.

Thus, in view of (3.15) it follows that
ˆ
U
u0(x)

(ˆ
Ŷ
1Y ∗(ŷ, x3) dŷ

)
dx =

ˆ
U
v0(x)

(ˆ
Ŷ
1Y ∗(ŷ, x3) dŷ

)
dx,

which by the arbitrariness of the open subset U of B results in

u0(x)

(ˆ
Ŷ
1Y ∗(ŷ, x3) dŷ

)
= v0(x)

(ˆ
Ŷ
1Y ∗(ŷ, x3) dŷ

)
for a.e. x ∈ B.

Now, since Y ∗ = Y \ V and by assumption V is compactly contained in Y one can
deduce

´
Ŷ
1Y ∗(ŷ, x3) dŷ > 0 for all x ∈ B and therefore u0(x) = v0(x) for a.e.

x ∈ B. In particular, v0 ∈W1,2(B) as claimed.
Since the above arguments reveal in fact that all weakly convergent subsequences

of (uεk)k in W1,2(B) have the same weak limit v0, it follows that the entire sequence
(uεk)k weakly converges to v0 in W1,2(B). This finishes the proof of the lemma.

With all these preparatory results at hand one can finally prove the main Theorem
3.1.
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3.3.3 Proof of the main result

Since the rescaled dissipation potentials (Fεk)k as defined in (3.5) are posed over a
common metric space, i.e. L2(Ω+

tr ∪ B ∪ Ω−tr) equipped with the strong convergence,
in the situation of Theorem 3.1 it suffices to verify the sequential characterization of Γ-
convergence (according to Corollary 2.6). Therefore, the proof as presented below will
be split in two parts, one dealing with the Γ-lim inf-inequality and the other providing a
proof for the Γ-lim sup-inequality.

Step 1. Γ-lim inf-inequality. Let there be given a sequence (vεk)k in L2(Ω+
tr ∪ B ∪

Ω−tr) such that vεk → v0 in L2(Ω+
tr ∪ B ∪ Ω−tr) and lim infk Fεk(vεk) < ∞, and let

(εk`)` be a subsequence satisfying lim infk Fεk(vεk) = lim`Fεk` (vεk` ). Hence, it is

vεk` ∈W1,2

Γ+
tr∪Γ−tr

(Ω+
tr ∪Bε-perf ∪ Ω−tr) for all ` ∈ N.

From the constitutive assumption (W3) on the energy densities W± and W interf as
stated in Section 3.2 and the boundedness of (Fεk` (vεk` ))`, it is now easily inferred that
the sequence (vεk` )` satisfies the a priori estimates

‖∇vεk`‖
2
L2(Ω±tr)

≤ C (3.22)

and

‖∇̂vεk`‖
2
L2(Bε-perf ;R2) +

∥∥∥ 1
εk`
∂3vεk`

∥∥∥2

L2(Bε-perf)
≤ C (3.23)

for all ` ∈ N and some positive constant C > 0. At this point, it turns out useful to
extend the sequence (vεk` )`, vεk` ∈W1,2

Γ+
tr∪Γ−tr

(Ω+
tr ∪Bε-perf ∪Ω−tr), to a sequence in the

εk-independent space W1,2

Γ+
tr∪Γ−tr

(Ω+ ∪B ∪ Ω−). This is can be done by setting

uεk` (x) :=

{
vεk` (x) if x ∈ Ω+

tr ∪ Ω−tr,(
Pεk`vεk`

)
(x) if x ∈ Bε-perf

where Pεk` : W1,2(Bε-perf) → W1,2(B) is the extension operator defined in (3.10).
Moreover, by the above a priori-estimates (3.22) and (3.23) on (vεk` )` and the strong
convergence vεk` → v0 in L2(Ω+

tr ∪B ∪ Ω−tr) it is easily verified that indeed

uεk`

∣∣
Ω±tr
≡ vεk`

∣∣
Ω±tr

⇀ v0

∣∣
Ω±tr

in W1,2

Γ±tr
(Ω±tr) (3.24)

and from Lemma 3.9 one obtains that

uεk`

∣∣
B
⇀ v0

∣∣
B

in W1,2(B) and v0 is independent of x3 in B.

In particular, v0

∣∣
Ω±tr
∈ W1,2

Γ±tr
(Ω±tr) and v0

∣∣
B
∈ W1,2(B). Since by construction

uεk`

∣∣
Bε-perf ≡ vεk`

∣∣
Bε-perf for all ` ∈ N, the traces of uεk`

∣∣
Ω±tr

and uεk`

∣∣
B

on the

upper and lower faces of B (i.e. on ω × {±1
2}, which is completely contained in

Bε-perf ), coincide. By the continuity of the trace operator, this yields equality of the
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traces of v0

∣∣
Ω±tr

and v0

∣∣
B

on the upper and lower boundaries of B and therefore v0 ∈
W1,2

Γ+
tr∪Γ−tr

(Ω+ ∪ B ∪ Ω−). Recalling the independence of v0 of x3 in B as established

above, one can conclude v0 ∈ VΓ+,Γ−(Ω+,Ω−, B).

As concerns the limiting behavior of the rescaled dissipation potential in the bodies
adjacent to the interface Bε-perf , standard lower semicontinuity arguments for convex
integral functionals, together with the construction uεk`

∣∣
Ω±tr

= vεk`

∣∣
Ω±tr

, the weak con-

vergences (3.24) and the assumed convexity of W± (see (W2)), lead to

ˆ
Ω±tr

W±(∇v0(x)) dx ≤ lim inf
`→∞

ˆ
Ω±tr

W±(∇uεk` (x)) dx

= lim inf
`→∞

ˆ
Ω±tr

W±(∇vεk` (x)) dx (3.25)

Whereas the asymptotics of the interface term in Fεk` requires some more atten-
tion. Thanks to (3.23) and the construction of uεk` = Pεk`vεk` in B, by the first
assertion of Lemma 3.9 one knows that the sequence (uεk` |B)k satisfies assumption
(3.13) in B = ω ×

[
−1

2 ,
1
2

]
. Hence, by the compactness result stated in Theorem 3.8

one can find a subsequence (here without loss of generality again (εk`)`) and some
U0 ∈ L2(ω; W1,2

Ŷ -per
(Y ;R3)) such that

[
∇̂uεk` ,

1
εk`
∂3uεk`

]
2−⇀
Ŷ

[
∇̂v0(x) + ∇̂yU0(x̂, (ŷ, x3)), ∂y3U0(x̂, (ŷ, x3))

]
in L2(B × Ŷ ;R3),

According to the definition of two-scale convergence for in-plane oscillations, this
means that

[
T̂εk` (∇̂uεk` ), T̂εk`

(
1
εk`
∂3uεk`

) ]
⇀
[
∇̂v0(x) + ∇̂yU0(x̂, (ŷ, x3)), ∂y3U0(x̂, (ŷ, x3))

]
in L2(R3 × Ŷ ;R3), (3.26)

where T̂εk` is the corresponding unfolding operator for in-plane oscillations from Defi-
nition 3.4. While from (3.16) and (3.20) it follows that

(
T̂εk`1Bε-perf

)
(x, ŷ) = 1B(x)1Y ∗(ŷ, x3) (3.27)

the isometry property of the unfolding operator for in-plane oscillations T̂εk` stated in
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Proposition 3.6 gives

ˆ
Bε-perf

W interf
(
∇̂vεk` (x), 1

εk`
∂3vεk` (x)

)
dx

=

ˆ
B
1Bε-perf (x)W interf

(
∇̂uεk` (x), 1

εk`
∂3uεk` (x)

)
dx

=

ˆ
R3

ˆ
Ŷ

(
T̂εk`1Bε-perf

)
(x, ŷ)

W interf
(
T̂εk` (∇̂uεk` )(x, ŷ), T̂εk`

(
1
εk`
∂3uεk`

)
(x, ŷ)

)
dŷ dx

=

ˆ
B

ˆ
Ŷ
1Y ∗ (ŷ, x3)

W interf
(
T̂εk` (∇̂uεk` )(x, ŷ), T̂εk`

(
1
εk`
∂3uεk`

)
(x, ŷ)

)
dŷ dx.

Now, the weak convergence (3.26), the assumed convexity of W interf and standard
lower semicontinuity arguments for convex integral functionals allow to pass to the
limit εk` → 0, resulting in

lim inf
`→∞

ˆ
Bε-perf

W interf
(
∇̂vεk` (x), 1

εk`
∂3vεk` (x)

)
dx

≥
ˆ
B

ˆ
Ŷ
1Y ∗ (ŷ, x3)

W interf
(
∇̂v0(x) + ∇̂yU0(x̂, (ŷ, x3)), ∂y3U0(x̂, (ŷ, x3))

)
dŷ dx

=

ˆ
ω

ˆ
(
−1

2 ,
1
2

)
ˆ
Ŷ
1Y ∗ (ŷ, x3)

W interf
(
∇̂v0(x̂, x3) + ∇̂yU0(x̂, (ŷ, x3)), ∂y3U0(x̂, (ŷ, x3))

)
dŷ dx3 dx̂.

Since v0 is independent of x3 in B as stated previously, the expression on the right hand
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side can be further simplified like (recall that Y = Ŷ ×
[
−1

2 ,
1
2

]
)

lim inf
`→∞

ˆ
Bε-perf

W interf
(
∇̂vεk` (x), 1

εk`
∂3vεk` (x)

)
dx

≥
ˆ
ω

(ˆ
(
−1

2 ,
1
2

)
ˆ
Ŷ
1Y ∗ (ŷ, x3)

W interf
(
∇̂v0(x̂, 0) + ∇̂yU0(x̂, (ŷ, x3)), ∂y3U0(x̂, (ŷ, x3))

)
dŷ dx3

)
dx̂

=

ˆ
ω

(ˆ
Y
1Y ∗(y)

W interf
(
∇̂v0(x̂, 0) + ∇̂yU0(x̂, y), ∂y3U0(x̂, y)

)
dy

)
dx̂

≥
ˆ
ω

inf

{ˆ
Y
1Y ∗(y)

W interf
(

[∇̂v0(x̂, 0), 0]T +∇yw(y)
)

dy : w ∈W1,2

Ŷ -per
(Y )

}
dx̂.

Finally, by means of (3.8) the last inequality reveals that

lim inf
`→∞

ˆ
Bε-perf

W interf
(
∇̂vεk` (x), 1

εk`
∂3vεk` (x)

)
dx

≥
ˆ
ω
Ŵ interf

(
∇̂v0(x̂, 0)

)
dx̂. (3.28)

To conclude, from (3.25), (3.28) and the fact that v0 ∈ VΓ+,Γ−(Ω+,Ω−, B) it fol-
lows that

lim inf
k→∞

Fεk(vεk) = lim inf
`→∞

Fεk` (vεk` )

= lim inf
`→∞

(ˆ
Ω+

tr

W+(∇vεk` (x)) dx+

ˆ
Ω−tr

W−(∇vεk` (x)) dx

+

ˆ
Bε-perf

W interf
(
∇̂vεk` (x), 1

εk`
∂3vεk` (x)

)
dx

)

≥
ˆ

Ω+
tr

W+(∇v0(x)) dx+

ˆ
Ω−tr

W−(∇v0(x)) dx

+

ˆ
ω
Ŵ interf

(
∇̂v0(x̂, 0)

)
dx̂

= FHom(v0).

In other words, the functionalFHom stated in Theorem 3.1 satisfies the Γ-lim inf-inequality
for the sequence of rescaled dissipation potentials (Fεk)k as claimed.
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Step 2. Γ-lim sup-inequality. Let there be given some v0 ∈ L2(Ω+
tr ∪ B ∪ Ω−tr) and

assume without loss of generality FHom(v0) < ∞. Thus v0 ∈ VΓ+,Γ−(Ω+,Ω−, B)

meaning v0 ∈ W1,2

Γ+
tr∪Γ−tr

(Ω+
tr ∪ B ∪ Ω−tr) and ∂3v0|B = 0. Regarding the definition of

Ŵ interf stated in Theorem 3.1 and the coercivity and convexity assumptions (W2) and
(W3) made on W interf in Section 3.2, it is easily seen that the set

Λ(x̂) :=

{
w : w ∈W1,2

Ŷ -per
(Y ∗),

ˆ
Y ∗
w(y) dy = 0,

ˆ
Y ∗
W interf

(
[∇̂v0(x̂, 0), 0]T +∇yw(y)

)
dy = Ŵ interf

(
∇̂v0(x̂, 0)

)}
is nonempty for all x̂ ∈ ω. From Proposition 6.3 and Theorem 6.5 of Fonseca and Leoni
[2007] one obtains the existence of a measureable selection V0 : ω → W1,2

Ŷ -per
(Y ∗),

and from the coercivity (W3) of W interf and Poincaré’s inequality one can deduce that
in fact V0 ∈ L2(ω; W1,2

Ŷ -per
(Y ∗)). Using the extension operator P : W1,2(Y ∗) →

W1,2(Y ) from Proposition 3.2, the selection V0 can be extended to some U0 : ω →
W1,2

Ŷ -per
(Y ) by setting

U0(x̂, y) :=
(
PV0(x̂, ·)

)
(y),

and Proposition 3.2 also reveals that U0 ∈ L2(ω; W1,2

Ŷ -per
(Y )). Recalling that P is an

extension operator implies U0(x̂, y) = V0(x̂, y) for all y ∈ Y ∗, x̂ ∈ ω, and a simple
calculation showsˆ

Y
1Y ∗(y)W interf

(
[∇̂v0(x̂, 0), 0]T +∇yU0(x̂, y)

)
dy

=

ˆ
Y
1Y ∗(y)W interf

(
[∇̂v0(x̂, 0), 0]T +∇y

(
PV0(x̂, ·)

)
(y)
)

dy

=

ˆ
Y
1Y ∗(y)W interf

(
[∇̂v0(x̂, 0), 0]T +∇yV0(x̂, y)

)
dy

=Ŵ interf
(
∇̂v0(x̂, 0)

)
. (3.29)

For δ some small positive real number let Ψδ ∈ C∞c (ω; C∞
Ŷ -per

(Y )) be such that

‖Ψδ − U0‖L2(ω×Y ) + ‖∇yΨδ −∇yU0‖L2(ω×Y ;R3) ≤ δ. (3.30)

Furthermore, assume every Ψδ(x̂, ·) to be extended from Y = Ŷ ×
[
−1

2 ,
1
2

]
to the larger

cuboid Ŷ ×
[
−3

2 ,
3
2

]
by reflection w.r.t. the upper and lower faces of Y , i.e. Ŷ ×

{
−1

2

}
and Ŷ ×

{
1
2

}
. Let ρδ ∈ C∞c

(
−3

2 ,
3
2

)
be a cut-off function with values in [0, 1] such that

it equals 1 on
[
−1

2 ,
1
2

]
and has its support contained in

(
−1

2 − δ,
1
2 + δ

)
. Finally, set

Φδ : ω ×
(
Ŷ ×

[
−3

2 ,
3
2

])
→ R, Φδ(x̂, y) := ρδ(y3) Ψδ(x̂, y)
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and define a sequence vεk,δ ∈W1,2

Γ+
tr∪Γ−tr

(Ω+
tr ∪B ∪ Ω−tr) through

vεk,δ(x) := v0(x) + εkΦδ

(
x̂,
(
x̂
εk
, x3

))
, x ∈ Ω+

tr ∪B ∪ Ω−tr.

Obviously then

vεk,δ → v0 in L2(Ω+
tr ∪B ∪ Ω−tr) as εk → 0. (3.31)

Also, for x ∈ Ω+
tr ∪B ∪ Ω−tr a simple calculation shows that

∇̂vεk,δ(x) = ∇̂v0(x)

+ εk∇̂xΦδ

(
x̂,
(
x̂
εk
, x3

))
+ ∇̂yΦδ

(
x̂,
(
x̂
εk
, x3

))
= ∇̂v0(x)

+ εkρδ(x3)∇̂xΨδ

(
x̂,
(
x̂
εk
, x3

))
+ ρδ(x3)∇̂yΨδ

(
x̂,
(
x̂
εk
, x3

))
,

(3.32)

and

∂3vεk,δ(x) = ∂3v0(x)

+ εk∂y3Φδ

(
x̂,
(
x̂
εk
, x3

))
= ∂3v0(x)

+ εkρ
′
δ(x3)Ψδ

(
x̂,
(
x̂
εk
, x3

))
+ εkρδ(x3)∂y3Ψδ

(
x̂,
(
x̂
εk
, x3

))
.

(3.33)

In view of ∂3v0 = 0 in B and ρδ = 1 in
[
−1

2 ,
1
2

]
the above derivatives simplify for

x = (x̂, x3) ∈ B = ω ×
[
−1

2 ,
1
2

]
. That is,

∇̂vεk,δ(x) = ∇̂v0(x)

+ εk∇̂xΨδ

(
x̂,
(
x̂
εk
, x3

))
+ ∇̂yΨδ

(
x̂,
(
x̂
εk
, x3

))
for x ∈ B, (3.34)

∂3vεk,δ(x) = εk∂y3Ψδ

(
x̂,
(
x̂
εk
, x3

))
for x ∈ B. (3.35)

Inserting vεk,δ into the corresponding rescaled dissipation potential Fεk and passing
to the limit εk → 0 leads to the following results. Regarding the limiting behavior in
the bodies Ω+

tr and Ω−tr adjacent to the rescaled interface Bε-perf , one first notices that
by (3.32), (3.33) and the smoothness of Ψδ and ρδ

∇̂vεk,δ
2−→
Ŷ
∇̂v0 + ρδ(x3)∇̂yΨδ(x̂, (ŷ, x3)) in L2(Ω±tr × Ŷ ;R2),

∂3vεk,δ → ∂3v0 in L2(Ω±tr).

as εk → 0. From the above strong two-scale convergence in L2(Ω±tr × Ŷ ;R2), the
isometry property of the unfolding operator for in-plane oscillations T̂εk : L2(Ω±tr) →
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L2(Ω±tr × Ŷ ) (see Proposition 3.6) and the continuity and growth of W± (given the
assumptions (W2) and (W3); continuity from the convexity of W± on the entire R3) it
follows that

ˆ
Ω±tr

W± (∇vεk,δ(x)) dx

=

ˆ
R3

ˆ
Ŷ
1Ω±tr

(
εkb x̂εk c+ εkŷ, x3

)
W±

(
T̂εk
(
∇̂vεk,δ

)
(x, ŷ), T̂εk

(
∂3vεk,δ

)
(x, ŷ)

)
dŷ dx

→
ˆ

Ω±tr

ˆ
Ŷ
W±

(
∇̂v0(x) + ρδ(x3)∇̂yΨδ(x̂, (ŷ, x3)), ∂3v0(x)

)
dŷ dx (3.36)

as εk vanishes. Since Ψδ has been extended to ω ×
(
−3

2 ,
3
2

)
by reflection arguments, it

follows from (3.30) that

∇̂yΨδ(x̂, (ŷ, x3))→ ∇yU0 in L2
(

(Ω±tr ∩ {1
2 ≤ ±x3 ≤ 3

2})× Ŷ ;R3
)

as the small parameter δ vanishes. Also, by assumption it is supp ρδ ⊆
(
−1

2 − δ,
1
2 + δ

)
.

Thus, ρδ(x3)∇̂yΨδ(x̂, (ŷ, x3)) as a function of L2((Ω±tr ∩ {1
2 ≤ ±x3 ≤ 3

2}) × Ŷ ) has
its support contained in (Ω±tr ∩ {1

2 ≤ ±x3 ≤ 1
2 + δ})× Ŷ and therefore

ρδ(x3)∇̂yΨδ(x̂, (ŷ, x3))→ 0 in measure over
(
Ω±tr ∩ {1

2 ≤ ±x3 ≤ 3
2}
)
× Ŷ

as δ tends to 0. From these two observations one infers that

ρδ(x3)∇̂yΨδ(x̂, (ŷ, x3))→ 0 in L2
(

(Ω±tr ∩ {1
2 ≤ ±x3 ≤ 3

2})× Ŷ ;R3
)

as δ becomes smaller and smaller, thus also L2-strongly as a function of L2(Ω±tr × Ŷ ).
In other words, for (δ`)` some vanishing sequence of positive real numbers one infers
from (3.36)

lim
`→∞

(
lim
k→∞

ˆ
Ω±tr

W± (∇vεk,δ`(x)) dx

)
ˆ

Ω±tr

ˆ
Ŷ
W±

(
∇̂v0(x), ∂3v0(x)

)
dŷ dx =

ˆ
Ω±tr

W±(∇v0(x)) dx. (3.37)

When it comes to the limiting behavior of the interface term in Fεk , one observes
that from (3.34) and (3.35) it follows

∇̂vεk,δ
2−→
Ŷ
∇̂v0(x) + ∇̂yΨδ(x̂, (ŷ, x3)) in L2(B × Ŷ ;R2),

1
εk
∂3vεk,δ

2−→
Ŷ

∂y3Ψδ(x̂, (ŷ, x3)) in L2(B × Ŷ )
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as εk vanishes. Employing once more the isometry property of the unfolding operator
for in-plane oscillations T̂εk : L2(B) → L2(B × Ŷ ) and recalling (3.27) these conver-
gences yield

ˆ
Bε-perf

W interf
(
∇̂vεk,δ(x), 1

εk
∂3vεk,δ(x)

)
dx

=

ˆ
B
1Bε-perf (x)W interf

(
∇̂vεk,δ(x), 1

εk
∂3vεk,δ(x)

)
dx

=

ˆ
R3

ˆ
Ŷ

(
T̂εk1Bε-perf

)
(x, ŷ)

W interf
(
T̂εk
(
∇̂vεk,δ

)
(x, ŷ), T̂εk

(
1
εk
∂3vεk,δ

)
(x, ŷ)

)
dŷ dx

=

ˆ
B

ˆ
Ŷ
1Y ∗(ŷ, x3)

W interf
(
T̂εk
(
∇̂vεk,δ

)
(x, ŷ), T̂εk

(
1
εk
∂3vεk,δ

)
(x, ŷ)

)
dŷ dx

→
ˆ
B

ˆ
Ŷ
1Y ∗(ŷ, x3)

W interf
(
∇̂v0(x) + ∇̂yΨδ(x̂, (ŷ, x3)), ∂y3Ψδ(x̂, (ŷ, x3))

)
dŷ dx

as εk tends to zero. Recalling that v0 is independent of x3 in B, this can be further
simplified like

lim
k→∞

ˆ
Bε-perf

W interf
(
∇̂vεk,δ(x), 1

εk
∂3vεk,δ(x)

)
dx

=

ˆ
ω

(ˆ
(
−1

2 ,
1
2

)
ˆ
Ŷ
1Y ∗(ŷ, x3)

W interf
(
∇̂v0(x̂, 0) + ∇̂yΨδ(x̂, (ŷ, x3)), ∂y3Ψδ(x̂, (ŷ, x3))

)
dŷ dx3

)
dx̂

=

ˆ
ω

(ˆ
Y
1Y ∗(y)W interf

(
∇̂v0(x̂, 0) + ∇̂yΨδ(x̂, y), ∂y3Ψδ(x̂, y)

)
dy

)
dx̂
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Remembering (3.30) one can now pass to the limit δ` → 0 and obtains

lim
`→∞

(
lim
k→∞

ˆ
Bε-perf

W interf
(
∇̂vεk,δ`(x), 1

εk
∂3vεk,δ`(x)

)
dx

)
= lim
`→∞

(ˆ
ω

(ˆ
Y
1Y ∗(y)

W interf
(
∇̂v0(x̂, 0) + ∇̂yΨδ`(x̂, y), ∂y3Ψδ`(x̂, y)

)
dy

)
dx̂

)

=

ˆ
ω

(ˆ
Y
1Y ∗(y)

W interf
(
∇̂v0(x̂, 0) + ∇̂yU0(x̂, y), ∂y3U0(x̂, y)

)
dy

)
dx̂,

which in view of (3.29) is nothing but

lim
`→∞

(
lim
k→∞

ˆ
Bε-perf

W interf
(
∇̂vεk,δ`(x), 1

εk
∂3vεk,δ`(x)

)
dx

)
=

ˆ
ω
Ŵ interf

(
∇̂v0(x̂, 0)

)
dx̂, (3.38)

Hence, from (3.37) and (3.38) it follows that

lim
`→∞

(
lim
k→∞

Fεk(vεk,δ`)

)
= lim
`→∞

(
lim
k→∞

ˆ
Ω+

tr

W+ (∇vεk,δ`(x)) dx+ lim
k→∞

ˆ
Ω−tr

W− (∇vεk,δ`(x)) dx

+ lim
k→∞

ˆ
Bε-perf

W interf
(
∇̂vεk,δ`(x), 1

εk
∂3vεk,δ`(x)

)
dx

)

=

ˆ
Ω+

tr

W+(∇v0(x)) dx+

ˆ
Ω−tr

W−(∇v0(x)) dx

+

ˆ
ω
Ŵ interf

(
∇̂v0(x̂, 0)

)
dx̂

=FHom(v0).

In other words, by successively passing to the limit εk → 0 and δ` → 0 the doubly
indexed sequence

(
Fεk(vεk,δ`)

)
k,`

would recover the limit energy FHom(v0) in v0 ∈
VΓ+,Γ−(Ω+,Ω−, B). Now, in order to obtain a recovery sequence from (vεk,δ`)k,` one
has to choose a suitable diagonal sequence. This can be done with the help of [Attouch,



Homogenization in perforated thin domains 105

1984, Corollary 1.18]. To this end, define

c`,k :=
∥∥vεk,δ` − v0

∥∥
L2(Ω+∪B∪Ω−)

+

∣∣∣∣∣
ˆ

Ω+
tr

W+ (∇vεk,δ`(x)) dx−
ˆ

Ω+
tr

W+(∇v0(x)) dx

∣∣∣∣∣
+

∣∣∣∣∣
ˆ

Ω−tr

W− (∇vεk,δ`(x)) dx−
ˆ

Ω−tr

W−(∇v0(x)) dx

∣∣∣∣∣
+

∣∣∣∣∣
ˆ
Bε-perf

W interf
(
∇̂vεk,δ`(x), 1

εk
∂3vεk,δ`(x)

)
dx

−
ˆ
ω
Ŵ interf

(
∇̂v0(x̂, 0)

)
dx̂

∣∣∣∣∣,
and obtain from (3.31), (3.37) and (3.38) that

lim
`→∞

(
lim
k→∞

c`,k

)
= 0.

Then, [Attouch, 1984, Corollary 1.18] states the existence of a subsequence (`(k))k
such that

lim
k→∞

c`(k),k = lim
`→∞

(
lim
k→∞

c`,k

)
= 0.

Finally, setting

vεk := vεk,δ`(k) ∈W1,2

Γ+
tr∪Γ−tr

(Ω+
tr ∪B ∪ Ω−tr)

yields the desired recovery sequence for v0, as it is revealed by∥∥vεk − v0

∥∥
L2(Ω+∪B∪Ω−)

≤ c`(k),k and
∣∣Fεk(vεk)−FHom(v0)

∣∣ ≤ c`(k),k

and limk c`(k),k = 0. This finishes the proof of Theorem 3.1.

3.4 Voids touching the periodicity cell’s faces

Like already outlined in Subsection 3.1.2 and depicted in Figure 3.3 (right) it remains to
study the case of tubular voids that stretch (e.g. in x1-direction) over the entire interface
Bε-perf
ε . In the notation outlined in Subsection 3.2.1 this corresponds to a cylindrical

void V of the form V = [0, 1) ×H where H b [0, 1) ×
[
−1

2 ,
1
2

]
shall be smooth, and

a perforated periodicity cell Y ∗ = Y \ V like shown in Figure 3.4. In other words,
the interface Bε-perf

ε in the assembly Ωε is perforated by periodically recurring, parallel
tubular voids where both the mutual distance and the cross-sectional diameter of the
voids are of order ε.
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Just like in the previous case of voids compactly contained in the periodicity cell Y
I will impose homogeneous Dirichlet boundary conditions on Γ+

ε and Γ−ε . Whereas on
the boundaries of the voids enclosed in the perforated interface Bε-perf

ε there shall hold
suitable boundary conditions to mimick the presence of heating wires filling the voids
(cf. the motivation in Subsection 3.1.2). More precisely, assuming that these heating
wires are held on constant temperature T > 0, the heat flux into the interface material
occupyingBε-perf

ε is supposed to be proportional to the difference between wire temper-
ature and interface temperature. Thus, given the thermal conductivity matrix 1

εA
interf

of the interface material as described in Subsection 3.2.2 – recall that the conductivity
of the interface material was assumed to scale with the inverse of the interface thickness
ε – any temperature distribution u : Ωε → R in the assembly Ωε has to obey(

1
εA

interf∇u(x)
)
· n(x; ∂Bε-perf

ε )

= −α
(
u(x)− T

)
for all x ∈ ∂Bε-perf

ε ∩B◦ε . (3.39)

Therein, n( · ; ∂Bε-perf
ε ) denotes the outward unit normal to Bε-perf

ε and α > 0 some
positive parameter. With the generic notation W interf(F ) = 1

2A
interfF · F , F ∈ R3,

and

G : R→ R, G(v) := 1
2α
(
v − T

)2 (3.40)

the boundary condition (3.39) can equivalently be written like(
1

ε

∂W interf

∂F
(∇u(x))

)
· n(x; ∂Bε-perf

ε )

= −∂G
∂v

(u(x)) for all x ∈ ∂Bε-perf
ε ∩B◦ε .

Finally, on the other parts of the boundary of the assembly Ωε, i.e. on(
∂Ω±ε ∩ {x : ±x3 >

ε
2}
)
\Γ±ε there shall simply hold homogeneous Neumann bound-

ary conditions.
Expressing the resulting temperature distribution in the assembly Ωε under the

above described boundary conditions by means of a dissipation potential

Eε : W1,2

Γ+
ε ∪Γ−ε

(Ωε)→ R

yields

Eε(u) :=

ˆ
Ω+

ε

W+(∇u(x)) dx +

ˆ
Ω−ε

W−(∇u(x)) dx

+

ˆ
Bε-perf

ε

1
εW

interf(∇u(x)) dx+

ˆ
∂Bε-perf

ε ∩B◦ε
G(u(x)) da(x) (3.41)

Herein, like outlined in Subsection 3.2.2, the constitutive properties of the materials
occupying the bodies Ω±ε and the interfaceBε-perf

ε are described through generic energy
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densities W± : R3 → R and W interf : R3 → R. In fact, by identifying W±(F ) =
1
2A
±F ·F andW interf(F ) = 1

2A
interfF ·F , F ∈ R3, withA± andAinterf the respective

positive definite and symmetric conductivity matrices, it is an easy task to show that the
unique minimizer of Eε is the equilibrium temperature distribution in the assembly Ωε

under the previously described boundary conditions (and satisfies in particular (3.39)).

In analogy to the previous situation of voids that are compactly contained in the pe-
riodicity cell, also in the present case of tubular voids enclosed in the highly conductive
interface layer Bε-perf

ε one can anticipate the limit behavior of the dissipation poten-
tial (3.41) as the interface thickness and void diameter ε vanishes. By the very same
arguments as used in Section 3.3, it is clear that the bulk terms

´
Ω±W

±(∇u(x)) dx
will enter the limit dissipation potential unchanged. Also, the homogeneous Dirichlet
boundary conditions on Γ+

ε and Γ−ε are likely to translate into homogeneous Dirichlet
boundary conditions on Γ+ and Γ−. Moreover, even in the presence of tubular voids
in Bε-perf

ε stretching over the entire interface the interface layer still forms a connected
set. Hence, the high conductivity of the interface material will again prevent heat from
accumulating in the interface but rather lead to a temperature distribution that is contin-
uous over the flattened interface ω. Also, any temperature distribution is likely to vary
smoothly in interface direction ω as sharp temperature gradients would dissipate rapidly
in the interface. In other words, most probably the term

´
Bε-perf

ε

1
εW

interf(∇u(x)) dx
describing the interface layer behaves in the limit of ε becoming smaller and smaller
again like some

´
ω Ŵ

interf(∇̂u(x̂, 0)) da(x̂) for u : Ω → R a smooth temperature
distribution. Clearly, the geometry of the tubular voids in Bε-perf

ε will enter the homog-
enized interfacial energy density Ŵ interf : R2 → R, as it is clear that Ŵ interf will in
general be strongly anistropic. As concerns the source term

´
∂Bε-perf

ε ∩B◦ε
G(u(x)) da(x)

in the above dissipation potential Eε, the constant heat provided by heating wires leads
to a preferred temperature T on the inner boundaries of the voids ∂Bε-perf

ε ∩ B◦ε , with
deviations from T being penalized (see the definition of G in (3.39)). Now, since the
interface material in between two neighboring voids is by assumption highly conduc-
tive and the mutual distance of the voids (being of order ε) also becomes smaller and
smaller, it appears reasonable to conclude that T becomes – for small interface thickness
and void diameter ε – the preferred temperature in the entire interface. Consequently,
one might expect that the source term

´
∂Bε-perf

ε ∩B◦ε
G(u(x)) da(x) can asymptotically

be replaced by another source term
´
ω Ĝ(u(x̂, 0)) da(x̂) over the flattened interface ω,

where Ĝ : R → R is some function penalizing deviations from the wire temperature
T . In view of these arguments, one is led to conclude that in the limit of small interface
thickness and void diameter ε the dissipation potential Eε behaves like

EHom : VΓ+,Γ−(Ω+,Ω−, ω)→ R
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where

EHom(u) :=

ˆ
Ω+

W+(∇u(x)) dx +

ˆ
Ω−

W−(∇u(x)) dx

+

ˆ
ω
Ŵ interf(∇̂u(x̂, 0)) da(x̂) +

ˆ
ω
Ĝ(u(x̂, 0)) da(x̂). (3.42)

Indeed, suitable Γ-convergence arguments reveal this heuristic derivation to be cor-
rect; see Theorem 3.10 in the upcoming subsection.

3.4.1 Statement of the limit problem and outline of the proof

In order to make the dissipation potentials Eε for the case of tubular voids in the perfo-
rated interface layer Bε-perf

ε accessible to a Γ-convergence analysis, one needs to trans-
form them such that for all possible values of the interface thickness and the void diam-
eter ε they take arguments from one and the same topological vector space. This is once
more done like in Subsection 3.3.1 by applying Ciarlet’s rescaling argument to bring the
interface layer Bε-perf

ε from thickness ε to fixed thickness 1. Let there be given some
u ∈W1,2

Γ+
ε ∪Γ−ε

(Ωε) and the change of variablesRε : Ω+
tr∪B∪Ω−tr → Ω+

ε ∪Bε∪Ω−ε de-

fined in (3.3). Then, set v(x) := u(Rε(x)) for x ∈ R−1
ε (Ωε) = Ω+

tr∪Bε-perf∪Ω−tr, with
Bε-perf = R−1

ε (Bε-perf
ε ). In particular, v results again as an element of W1,2

Γ+
tr∪Γ−tr

(Ω+
tr ∪

Bε-perf ∪ Ω−tr). Applying this change of variables to the single integral terms of Eε as
defined in (3.41) and recalling (3.4) yields

Eε(u) =

ˆ
Ω+

tr

W+(∇u(Rε(x))) dx +

ˆ
Ω−tr

W−(∇u(Rε(x))) dx

+

ˆ
Bε-perf

1
εW

interf(∇u(Rε(x))) εdx

+

ˆ
∂Bε-perf∩B◦

G
(
u(Rε(x)))

∣∣∣Cof (DRε(x))n(x; ∂Bε-perf)
∣∣∣da(x)

=

ˆ
Ω+

tr

W+(∇v(x)) dx +

ˆ
Ω−tr

W−(∇v(x)) dx

+

ˆ
Bε-perf

W interf
(
∇̂v(x), 1

ε∂3v(x)
)

dx

+

ˆ
∂Bε-perf∩B◦

G(v(x))
∣∣∣Mε n(x; ∂Bε-perf)

∣∣∣da(x)

=: Fε(v).

Here, the change of variables in the source term
´
∂Bε-perf

ε ∩B◦ε
G(u(x)) da(x) follows

Nanson’s formula (see e.g. [Ciarlet, 1988, Theorem 1.7-1]). In particular, for invertible
matrices M ∈ R3×3 the Cofactor-matrix is defined as Cof M := (detM)M−T and a
simple calculation shows that

Cof (DRε(x)) = Cof (diag(1, 1, ε)) = diag(ε, ε, 1) = Mε
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with Mε as in (3.9). Furthermore, n( · ; ∂Bε-perf) denotes the outward unit normal to
Bε-perf . Having removed the dependency on the interface thickness by the above rescal-
ing argument, the domain of the resulting functional Fε : W1,2

Γ+
tr∪Γ−tr

(Ω+
tr ∪ Bε-perf ∪

Ω−tr) → R still varies with the voids in the rescaled perforated interface Bε-perf . This
obstacle is again overcome by extending Fε to the larger space L2(Ω+

tr ∪ B ∪ Ω−tr) by
∞. Thus, the extended and rescaled dissipation potential

Fε : L2(Ω+
tr ∪B ∪ Ω−tr)→ (−∞,∞]

becomes

Fε(v) :=



ˆ
Ω+

tr

W+(∇v(x)) dx +

ˆ
Ω−tr

W−(∇v(x)) dx

+

ˆ
Bε-perf

W interf
(
∇̂v(x), 1

ε∂3v(x)
)

dx

+

ˆ
∂Bε-perf∩B◦

G(v(x))
∣∣∣Mε n(x; ∂Bε-perf)

∣∣∣da(x)

if v ∈W1,2

Γ+
tr∪Γ−tr

(Ω+
tr ∪Bε-perf ∪ Ω−tr),

∞ else.

(3.43)

Again it should be noticed that the rescaled and extended dissipation potential Fε
is still equivalent to the original dissipation potential Eε from (3.41). Yet, it is directly
accessible to a Γ-convergence analysis which shows that also in the present case of
tubular voids stretching over the entire interface the heuristically motivated limit (3.42)
is obtained as a suitable Γ-limit for vanishing interface thickness and void diameter ε.

Theorem 3.10. Let there be given the notation and the assumptions from Section 3.2,
and suppose (εk)k to be a vanishing sequence of positive real numbers whose elements
εk and ω are compatible with (ε-Tiling). Moreover, assume ω to be convex and let
V = [0, 1)×H be a tubular void extending in x1-direction over the periodicity cell Y ,
leaving a perforated periodicity cell Y ∗ = Y \ V . Here, H b [0, 1) ×

[
−1

2 ,
1
2

]
shall

have a smooth boundary. Then, the rescaled dissipation potentials (Fεk)k defined in
(3.43) Γ-converge with respect to the L2(Ω+

tr ∪B ∪ Ω−tr)-norm, in symbols

Γ-lim
k→∞

Fεk = FHom

where FHom : L2(Ω+
tr ∪B ∪ Ω−tr)→ (−∞,∞] obeys

FHom(v) =



ˆ
Ω+

tr

W+(∇v(x)) dx +

ˆ
Ω−tr

W−(∇v(x)) dx

+

ˆ
ω
Ŵ interf

(
∇̂v(x̂, 0)

)
da(x̂)

+vol2 (∂V ∩ intY )

ˆ
ω
G(v(x̂, 0)) da(x̂)

if v ∈ VΓ+,Γ−(Ω+,Ω−, B),

∞ else.

(3.44)
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Therein, Ŵ interf : R2 → R is defined through

Ŵ interf(F̂ ) =

inf

{ˆ
Y ∗
W interf

(
[F̂ , 0]T +∇yw(y)

)
dy : w ∈W1,2

Ŷ -per
(Y ∗)

}
. (3.45)

Remark 3.5. The restriction that ω – in addition to the assumption (ε-Tiling) on ω and
the vanishing sequence (εk)k – be convex makes it actually an axis-parallel rectangle in
R2. This is easily seen, since by assumption (ε-Tiling) ω results as a polyhedron with
axis parallel faces and the convexity hypothesis forbids inward pointing corners.

As it is immediately noticed, the formula (3.45) for the limiting interfacial energy
Ŵ interf on the flattened interface ω is the same for tubular voids that touch the periodic-
ity cell’s lateral boundaries and for such that are compactly contained in the periodicity
cell (compare the situation in Theorem 3.1 and in (3.7)). Similarly, just like in Theorem
3.1 the identification of VΓ+,Γ−(Ω+,Ω−, B) with

VΓ+,Γ−(Ω+,Ω−, ω) =
{
u : u ∈W1,2(Ω),

u
∣∣
ω
∈W1,2(ω) and u = 0 on Γ+ ∪ Γ−

}
,

reveals the Γ-limit FHom in the above theorem to be nothing but the heuristically mo-
tivated dissipation potential EHom from (3.42). Hence, for both types of perforations
in the highly conductive interface Bε-perf

ε one obtains the same qualitative limiting be-
havior, telling that for small interface thickness and void diameter ε temperature dis-
tributions extend continuously over the flattened interface ω from one body into the
other, i.e. from Ω+ into Ω−. Whereas inside the flattened interface the temperature
varies smoothly and minimizes temperature gradients in interface direction due to the
interface material’s high conductivity.

Yet, the ingredients involved in the proof of Theorem 3.10 are quite different from
those used in Subsection 3.3.3 for the proof of Theorem 3.1. In fact, in the present
context of tubular voids, i.e. such touching the periodicity cell’s faces, traditional exten-
sion operators turn out to be unsuitable to extend functions from the rescaled perforated
interface layer Bε-perf to the entire rescaled interface B. This is because applying the
extension operator from Proposition 3.2 to two neighboring cells sharing a face that is
‘pierced’ by a tubular void V = [0, 1)×H , e.g. the face ([0, 1)×

[
−1

2 ,
1
2

]
) \H , yields

extensions of class W1,2 in the two individual cells. But there is a priori no guarantee
that the extensions into the ‘hole’H of the common face match, too. In fact, the traces of
the individual extensions on that face are in general going to differ in the hole H . Here,
a major advantage of the periodic unfolding method comes into play: periodically per-
forated domains can by suitably defined unfolding operators directly be unfolded into
a perforated periodicity cell, like proposed by Doina Cioranescu, Patrizia Donato and
Rachad Zaki in Cioranescu et al. [2006b]. Therefore, extension operators are no longer
required. Instead, the authors of Cioranescu et al. [2006b] make use of interpolation
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operators to prove compactness for W1,2-bounded sequences of functions over peri-
odically perforated domains, showing that there is a suitable weak W1,2-limit defined
over the entire domain without perforations (see [Cioranescu et al., 2006b, Section 3]).
Unfortunately, these results cannot simply be applied in the present context. In the case
of the thin perforated interface layer Bε-perf

ε , the domain thickness varies with the mu-
tual distance of the perforations ε, which is not covered in Cioranescu et al. [2006b]
(therein, the focus rests on perforated domains where the voids are periodically dis-
tributed over a fixed domain). Furthermore, after having eliminated the dependency on
the domain thickness by the above rescaling argument one has to work with L2-bounded
sequences of rescaled gradients over Bε-perf (cf. the interface terms in Fε as defined in
(3.43)), a situation that the authors in Cioranescu et al. [2006b] did not consider. On the
other hand, the periodic unfolding method for L2-bounded sequences of rescaled gra-
dients was extensively studied in Neukamm [2010] (see also the previous Section 3.3),
however in non-perforated rescaled domains. Therefore, in the proof of Theorem 3.10
I will mainly rely on bringing together the interpolation techniques from Cioranescu
et al. [2006b] and ideas for periodic unfolding in rescaled thin domains from Neukamm
[2010]. The resulting periodic unfolding operator for rescaled perforated thin domains,
as presented in the upcoming Subsection 3.4.2, together with a compactness result for
unfolded L2-bounded sequences of rescaled gradients over rescaled perforated thin do-
mains then allows to infer the Γ-lim inf-inequality for (Fεk)k and FHom. The weak
convergence arguments employed in the proof of the Γ-lim inf-inequality are actually
similar to those in the proof of Theorem 3.1. Finally, also the Γ-lim sup-inequality for
(Fεk)k and FHom can be inferred by similar steps as performed in Subsection 3.3.3 in
the context of Theorem 3.1.

The next Subsection 3.4.2 provides the definition of a periodic unfolding operator
for rescaled perforated thin domains and some of its basic properties. As announced
before, it also features interpolation error estimates and a compactness result for se-
quences of functions over rescaled perforated thin domains with L2-bounded rescaled
gradients. Nevertheless, in order to ease the presentation I will prove these results only
under the simplifying assumption (ε-Tiling) made in Subsection 3.2.1. This restriction
could of course be relaxed, but to my opinion only little new insight would be gained
while the technical efforts would increase significantly and the notation become even
more confusing. The proof of Theorem 3.10 is then outlined in Subsection 3.4.3.

3.4.2 Periodic unfolding in rescaled perforated thin domains

The definition of the unfolding operator for rescaled perforated thin domains likeBε-perf

follows a rather natural intuition. Recalling the simplifying assumption (ε-Tiling) on the
flattened interface ω and the possible values of the interface thickness and void diameter
ε, the rescaled perforated thin domain Bε-perf can be expressed like

Bε-perf =
⋃
â∈Zε

Mε

(
[â, 0]T + Y ∗

)
,
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where Zε is some finite subset of Z2, Y ∗ = Y \ V and V = [0, 1) ×H is the tubular
void from the previous subsection (H b [0, 1) ×

[
−1

2 ,
1
2

]
; for the definition of Mε see

(3.9)). In other words,Bε-perf is the union of finitely many translates of the rescaled per-
forated periodicity cell Mε Y

∗, which appears extremely stretched into the x3-direction
(or squeezed in interface-direction; compare Figure 3.7 below). Like depicted in the

Bε-perf

MεY
∗ 3Mεy = (εŷ, y3)

Y ∗ 3 y

x ∈ Bε-perf

=
(
ε
⌊
x̂
ε

⌋
, 0
)

+ (εŷ, y3)

=
(
ε
⌊
x̂
ε

⌋
+ εŷ, y3

)
"
"
"
"
"
""

Figure 3.7: Extremely streched voids in the rescaled perforated thin domain Bε-perf and
a periodic unfolding idea for Bε-perf

figure, the periodic unfolding idea for rescaled perforated thin domains is now to split
any point x ∈ Bε-perf into a part that tells the observer in which translated and rescaled
perforated periodicity cell Mε

(
[â, 0]T + Y ∗

)
to look for x, and a part that gives the

exact relative position of x in the rescaled perforated periodicity cell Mε Y
∗. That is,

x ∈Mε

(
[â, 0]T + Y ∗

)
⊆ Bε-perf is unfolded into Mε [â, 0]T +Mεy,
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or equivalently, recalling Mε = diag(ε, ε, 1) and that b·c : R2 → Z2 returns the integer
part of its argument (componentwise),

x ∈ Bε-perf is unfolded into
(
ε
⌊
x̂
ε

⌋
+ εŷ, y3

)
.

This intuition then yields the desired unfolding operator for rescaled perforated thin
domains.

Definition 3.11. Let ω be some open and bounded subset ofR2, B := ω×
[
−1

2 ,
1
2

]
and

Y = Ŷ ×
[
−1

2 ,
1
2

]
with Ŷ = [0, 1)2 be defined like in Section 3.2. Moreover, let ε be

some positive small parameter and assume that ω and ε satisfy assumption (ε-Tiling).
Finally, let Y ∗ := Y \ V for some V ⊆ Y and set

Bε-perf := B ∩
⋃
â∈Z2

Mε

(
[â, 0]T + Y ∗

)
where Mε = diag(ε, ε, 1). Then, for any v ∈ L2(Bε-perf) the periodic unfolding op-
erator T̂ ∗ε v ∈ L2(ω × Y ∗) for the rescaled perforated thin domain Bε-perf is defined
as (

T̂ ∗ε v
)
(x̂, y) := v

(
ε
⌊
x̂
ε

⌋
+ εŷ, y3

)
.

Here, b · c : R2 → Z2 returns the integer part of its argument.

Remark 3.6. I would like to emphasize that a similar unfolding idea was already in-
troduced in [Cioranescu et al., 2008b, Section 2.3] and applied to both Neumann sieve
problems (see Subsection 3.1.1 for Neumann sieve problems) and pore-type interface
problems where the pores do not touch the boundary of the periodicity cell. However,
the authors of Cioranescu et al. [2008b] studied quite different scalings. More precisely,
various geometric scalings, i.e. different ratios of interface thickness and diameter of
the voids included in the interface layer. In contrast, the interface problems analyzed
in this thesis address constitutive scalings of the material occupying the interface layer
(cf. the constitutive assumptions made in Subsection 3.2.2). Consequently, both the
homogenization results Theorems 3.1 and 3.10 and the results on the periodic unfold-
ing operators stated below (most notably Propositions 3.19, 3.20 and Lemma 3.21) are
quite different from those in [Cioranescu et al., 2008b, Sections 4 and 5] (cf. also the
literature review on interface problems in Subsection 3.1.1).

Just like other periodic unfolding operators, also the present adaption enjoys the
usual isometry property and consequently also the same compactness.

Proposition 3.12. Let there be given the periodic unfolding operator T̂ ∗ε for the rescaled
perforated thin domain Bε-perf as in Definition 3.11.

(i) The periodic unfolding operator T̂ ∗ε : L2(Bε-perf)→ L2(ω × Y ∗) satisfiesˆ
Bε-perf

v(x) dx =

ˆ
ω

ˆ
Y ∗

(
T̂ ∗ε v

)
(x̂, y) dy dx̂ for all v ∈ L2(Bε-perf).

In particular, T̂ ∗ε is an isometry.
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(ii) Suppose furthermore to be given a vanishing sequence of positive real numbers
(εk)k whose elements εk together with ω satisfy (ε-Tiling), and a sequence (vεk)k
such that vεk ∈ L2(Bε-perf) and (‖vεk‖L2(Bε-perf))k is bounded. Then there is a
v0 ∈ L2(ω × Y ∗) and a subsequence (εk`)` such that

T̂ ∗εk`vεk` ⇀ v0 in L2(ω × Y ∗).

Proof. By the assumption (ε-Tiling) made on B and ε, there is a finite subset Zε of Z2

such that

Bε-perf =
⋃
â∈Zε

Mε

(
[â, 0]T + Y ∗

)
.

Now, the proof of the first assertion pretty much follows the lines of Lemma 2.1, itself
an adaption of [Visintin, 2006, Lemma 1.1]. For arbitrary v ∈ L2(Bε-perf) it is

ˆ
Bε-perf

v(x) dx =
∑
â∈Zε

ˆ
Mε ([â,0]T +Y ∗)

v(x) dx

=
∑
â∈Zε

ε2

ˆ
Y ∗
v (ε(â+ ŷ), y3) dy

=
∑
â∈Zε

ˆ
ε(â+Ŷ )

ˆ
Y ∗
v (ε(â+ ŷ), y3) dy dx̂

=
∑
â∈Zε

ˆ
ε(â+Ŷ )

ˆ
Y ∗
v
(
ε
⌊
x̂
ε

⌋
+ εŷ, y3

)
dy dx̂

=

ˆ
ω

ˆ
Y ∗
v
(
ε
⌊
x̂
ε

⌋
+ εŷ, y3

)
dy dx̂ =

ˆ
ω

ˆ
Y ∗

(
T̂ ∗ε v

)
(x̂, y) dy dx̂.

This proves the first assertion, from which the second is obtained as a rather obvious
consequence.

Likewise, the periodic unfolding operator T̂ ∗ε for the rescaled perforated thin domain
Bε-perf shows general relations with common weak or strong convergence in L2(B).

Proposition 3.13. Suppose once more the assumptions stated in Definition 3.11 to be
valid, and let T̂ ∗ε be the periodic unfolding operator for the rescaled perforated thin
domain Bε-perf defined therein. Let (εk)k be a vanishing sequence of positive real num-
bers whose elements εk together with ω satisfy (ε-Tiling), and let (vεk)k be a sequence
such that vεk ∈ L2(Bε-perf). Then

(i) for v0 ∈ L2(ω × Y ∗) one has the implication

T̂ ∗εkvεk ⇀ v0 in L2(ω × Y ∗)

⇒ 1Bε-perfvεk ⇀

ˆ
Ŷ
1Y ∗(ŷ, x3)v0(x̂, (ŷ, x3)) dŷ in L2(B),
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(ii) if (vεk)k can actually be identified as a sequence in L2(B), then for v0 ∈ L2(B)
one has

vεk → v0 in L2(B) ⇒ T̂ ∗εkvεk → v0(x̂, y3) in L2(ω × Y ∗),

(iii) if v0 ∈ L2(ω × Y ∗) such that T̂ ∗εkvεk ⇀ v0 in L2(ω × Y ∗) and (wεk)k is another
sequence satisfying wεk ∈ L2(Bε-perf), T̂ ∗εkwεk → w0 in L2(ω × Y ∗) for some
w0 ∈ L2(ω × Y ∗), it follows thatˆ

Bε-perf
vεk(x)wεk(x) dx→

ˆ
ω

ˆ
Y ∗
v0(x̂, y)w0(x̂, y) dy dx̂.

Proof. To prove the first statement of the proposition, by the isometry property of the
unfolding operator T̂ ∗εk stated in Proposition 3.12 and the boundedness of weakly con-
vergent sequence (T̂ ∗εkvεk)k in L2(ω × Y ∗) one realizes that also ‖vεk‖L2(Bε-perf) is
bounded. Hence, the sequence (1Bε-perfvεk)k is bounded in L2(B). As a consequence,
it suffices to test (1Bε-perfvεk)k for weak convergence in L2(B) with functions from
C∞c (B). Hence, given ψ ∈ C∞c (B) it isˆ

B
1Bε-perf (x)vεk(x)ψ(x) dx =

ˆ
Bε-perf

vεk(x)ψ(x) dx

=

ˆ
ω

ˆ
Y ∗

(
T̂ ∗εkvεk

)
(x̂, y)

(
T̂ ∗εkψ

)
(x̂, y) dy dx̂

=

ˆ
ω

ˆ
Y ∗

(
T̂ ∗εkvεk

)
(x̂, y)ψ

(
ε
⌊
x̂
ε

⌋
+ εŷ, y3

)
dy dx̂.

By the smoothness of ψ, it follows that

ψ
(
ε
⌊
x̂
ε

⌋
+ εŷ, y3

)
→ ψ(x̂, y3) uniformly on ω × Y.

Hence, by the assumed weak convergence of (T̂ ∗εkvεk)k and Y = Ŷ ×
[
−1

2 ,
1
2

]
lim
k→∞

ˆ
B
1Bε-perf (x)vεk(x)ψ(x) dx

=

ˆ
ω

ˆ
Y ∗
v0(x̂, y)ψ(x̂, y3) dy dx̂ =

ˆ
ω

ˆ
Y
1Y ∗(y) v0(x̂, y)ψ(x̂, y3) dy dx̂

=

ˆ
ω

(ˆ
(
−1

2 ,
1
2

)
ˆ
Ŷ
1Y ∗(ŷ, y3) v0(x̂, (ŷ, y3))ψ(x̂, y3) dŷ dy3

)
dx̂

=

ˆ
B

(ˆ
Ŷ
1Y ∗(ŷ, x3) v0(x̂, (ŷ, x3)) dŷ

)
ψ(x) dx.

The second assertion is rather straightforward to show. To this end, one writes∥∥T̂ ∗εkvεk − v0(x̂, y3)
∥∥

L2(ω×Y ∗) ≤∥∥T̂ ∗εkvεk − T̂ ∗εkv0

∥∥
L2(ω×Y ∗) +

∥∥T̂ ∗εkv0 − v0(x̂, y3)
∥∥

L2(ω×Y ∗).



116 Voids touching the periodicity cell’s faces

By the isometry property of T̂ ∗εk stated in Proposition 3.12, the first term on the right
hand side is nothing but ‖vεk − v0‖L2(Bε-perf), thus vanishes by assumption as εk tends
to zero. As concerns the second term,∥∥T̂ ∗εkv0 − v0(x̂, y3)

∥∥2

L2(ω×Y ∗) =

ˆ
ω

ˆ
Y ∗

∣∣∣v0

(
ε
⌊
x̂
ε

⌋
+ εŷ, y3

)
− v0(x̂, y3)

∣∣∣2 dy dx̂

which would certainly vanish if v0 were smooth. Yet, the same holds for arbitrary v0 ∈
L2(B) as it is easily inferred by the density of C∞c (B) in L2(B) and an approximation
argument.

Finally, the third assertion is an easy consequence of the isometry property stated
in Proposition 3.12 and the convergence of products of weakly and strongly convergent
sequences in Hilbert spaces.

Remark 3.7. Other than for periodic unfolding operators over non-perforated domains,
in general the inverse implication in the second statement of the Proposition is wrong
(compare the Propositions 2.25 and 3.7). This is due to the fact that the periodic unfold-
ing operator T̂ ∗ε cannot control what happens inside the perforations. As a counterex-
ample one might consider

vε := 1Bε-perfψ + 1
ε (1− 1Bε-perf )

for a ψ ∈ C∞c (B) which is independent of x3, i.e. with a slight abuse of notation
ψ(x) = ψ(x̂). Then, a simply calculation shows that T̂ ∗ε vε = T̂ ∗ε ψ → ψ(x̂, y3) =
ψ(x̂) in L2(ω × Y ∗). Hence, (T̂ ∗ε vε)ε converges strongly in L2(ω × Y ∗), its limit is
independent of the Y ∗-argument, but ‖vε‖L2(B) = ‖ψ‖L2(Bε-perf)+

1
εvol (B\Bε-perf)1/2

is not even bounded.

However, the most interesting situations occur when the periodic unfolding operator
T̂ ∗ε for the rescaled perforated thin domain Bε-perf is applied to L2(Bε-perf)-bounded
sequences of rescaled gradients like [∇̂vε, 1

ε∂3vε], where vε ∈ W1,2(Bε-perf). As it
was revealed in Subsection 3.3.3, such sequences arise naturally in the analysis of the
interface problems studied in this thesis (more precisely, through a priori estimates, see
(3.23)). If the voids in the rescaled perforated thin domain Bε-perf are rescaled copies
of a void V that is compactly contained in the periodicity cell Y – i.e. the situation
analyzed in the previous Section 3.3, see Figure 3.6 – then it was revealed by Lemma
3.9 how extension operators P : W1,2(Y ∗) → W1,2(Y ) could help to establish essen-
tial compactness results. Both in W1,2(B) for the extensions of vε to W1,2(B), and for
the (unfolded) sequence of rescaled gradients [∇̂vε, 1

ε∂3vε]. Yet, in the present situa-
tion the tubular voids in the rescaled perforated thin domain Bε-perf are assembled from
copies of a void V that touches the periodicity cell’s boundary as depicted in Figure 3.7.
Therefore, extension operators turn out to be unsuitable to extend vε from Bε-perf to the
entire rescaled thin domain B. This is easily seen when applying an extension operator
(e.g. a rescaled version of P from Proposition 3.2; compare (3.10)) to two neighboring
copies of the rescaled perforated periodicity cell MεY

∗ whose common face is pierced
by the void V . Then, there is a priori no guarantee that the traces of the extensions in
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the respective cells match on the part of the common face that is occupied by the void.
To circumvent this issue, the authors of Cioranescu et al. [2006b] have resorted to the
use of interpolation operators instead of extension operators. More precisely, they em-
ployed polynomial interpolations in the cubic periodicity cell which in Finite Element
Theory are known as Q1-interpolations (see e.g. [Knabner and Angermann, 2003, Sec-
tion 3.3]). The Q1-interpolation operator takes a cube’s eight vertices as interpolation
nodes and fits a trilinear polynomial to the values given in these nodes. In this fashion
the Q1-interpolation results as continuous over faces of neighboring cubic periodicity
cells whenever the values corresponding to the nodes located on that face are identical
in both cells, and therefore as of class W1,∞ over neighboring cells. By suitably con-
densing a function vε ∈ W1,2(Bε-perf) to scalar values in the vertices of the rescaled
perforated periodicity cells MεY

∗ from which Bε-perf is assembled, Q1-interpolation
over the single cells yields an interpolation operator Qε : W1,2(Bε-perf) → W1,2(B).
In other words, this allows to embed the elements of a sequence vε ∈ W1,2(Bε-perf)
as Qεvε into W1,2(B), and thus to exploit common compactness properties of this
space. Indeed, Q1-interpolations are found quite frequently in the theory of periodic
unfolding, see e.g. Cioranescu et al. [2002, 2006b] but also Visintin [2006] where aQ1-
interpolation operator is used to define two-scale convergence in spaces of continuous
functions. In the present context of the rescaled perforated thin domainBε-perf however,
the Q1-interpolation has to be used with care on the extremely distorted rescaled perfo-
rated periodicity cells MεY

∗ forming Bε-perf . This calls for a detailed characterization
of the interpolation error ‖Qεvε − vε‖L2(Bε-perf), vε ∈W1,2(Bε-perf). Finally, with the
help of the interpolation operator Qε a compactness result for the (unfolded) sequence
of rescaled gradients [∇̂vε, 1

ε∂3vε] can be established, in spirit being similar to Lemma
3.9.

The remainder of this subsection is now concerned with the statement and proof of
this compactness result. To this end, basic properties of the Q1-interpolation operator
are stated and a definition of the resulting interpolation operator Qε : W1,2(Bε-perf)→
W1,2(B) is given. Then, following a careful analysis of the interpolation error
‖Qεvε − vε‖L2(Bε-perf) for vε ∈ W1,2(Bε-perf), the essential compactness result for
sequences of rescaled gradients [∇̂vε, 1

ε∂3vε] unfolded by T̂ ∗ε is stated and proved.

Definition 3.14. Let the cubic periodicity cell Y = Ŷ ×
[
−1

2 ,
1
2

]
, Ŷ = [0, 1)2, be

defined like in Subsection 3.2.1. Moreover, let the vertices of the periodicity cell Y be
numbered like shown in Figure 3.8. Then, the shapefunction qi : Y → R is the unique
trilinear polynomial in lin

{
1, y1, y2, y3, y1y2, y1y3, y2y3, y1y2y3

}
satisfying

qi(‘ Node j’) = δij .

Moreover, the Q1-interpolation operator Q is defined through

Q : R8 →W1,2(Y ), Qb :=

8∑
i=1

biqi.
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Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Y

Figure 3.8: The nodes 1, . . . , 8 in the cubic periodicity cell Y

Proposition 3.15. In the situation of Definition 3.14, the Q1-interpolation operator Q
enjoys the following properties. There is a positive constant CQ such that for every
b ∈ R8

‖Qb‖L2(Y ) ≤ CQ |b|,

‖∂y1
(
Qb
)
‖L2(Y ) ≤ CQ

∣∣∣[b2 − b1, b4 − b3, b6 − b5, b8 − b7]∣∣∣,
‖∂y2

(
Qb
)
‖L2(Y ) ≤ CQ

∣∣∣[b4 − b1, b3 − b2, b7 − b6, b8 − b5]∣∣∣,
‖∂y3

(
Qb
)
‖L2(Y ) ≤ CQ

∣∣∣[b5 − b1, b6 − b2, b7 − b3, b8 − b4]∣∣∣.
Proof. The first statement is trivial and the other estimates are basically corollaries from
the explicit forms of ∂y1

(
Qa
)
, ∂y2

(
Qa
)

and ∂y3
(
Qa
)
. In fact, this can easily be checked

by computing the derivatives of the shapefunctions q1, . . . , q8 (by hand or using a com-
puter algebra system).

Although the following adaption is fairly simple, for the sake of a brief notation it
turns out useful to introduce the Q1-interpolation operator on the rescaled periodicity
cell MεY .

Definition 3.16. The Q1-interpolation operator Q̃ε on the rescaled rescaled periodicity
cell MεY = [0, ε)2 ×

[
−1

2 ,
1
2

]
is defined as

Q̃ε : R8 →W1,2(MεY ), Q̃εb :=
(
Qb
)( (̂·)

ε , (·)3

)
.

In view of Proposition 3.15 it is straightforward to prove the properties of Q̃ε listed
below.
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Proposition 3.17. In the situation of Definition 3.16, the Q1-interpolation operator Q̃ε
on the rescaled periodicity cellMεY enjoys the following properties. There is a positive
constant CQ such that for every b ∈ R8

‖Q̃εb‖L2(MεY ) ≤ εCQ |b|,

‖∂y1
(
Q̃εb

)
‖L2(MεY ) ≤ εCQ

∣∣∣[ b2−b1ε , b4−b3ε , b6−b5ε , b8−b7ε

]∣∣∣ ,
‖∂y2

(
Q̃εb

)
‖L2(MεY ) ≤ εCQ

∣∣∣[ b4−b1ε , b3−b2ε , b7−b6ε , b8−b5ε

]∣∣∣ ,
‖∂y3

(
Q̃εb

)
‖L2(MεY ) ≤ εCQ |[b5 − b1, b6 − b2, b7 − b3, b8 − b4]| .

Having these preparatory definitions and properties at hand, one can now define a
suitable interpolation operator Qε : W1,2(Bε-perf)→W1,2(B) as follows.

Definition 3.18. Let Y = Ŷ ×
[
−1

2 ,
1
2

]
, Ŷ = [0, 1)2 be defined like in Section 3.2.

Moreover, let B = ω ×
[
−1

2 ,
1
2

]
, where ω is a convex open and bounded subset of R2

and ε a small positive parameter such that (ε-Tiling) is satisfied. Eventually, let V be
a subset of Y that does not touch the edges of Y and set Y ∗ := Y \ V and let r > 0
be such that r < 1

2dist(V,E) for all edges E of Y . Moreover, given the numbering
1©,. . . , 8© for the nodes of the rescaled periodicity cell MεY as shown in Figure 3.9, set

Kεr,r( i©) := i©+ [−εr, εr]2 × [0, r] for i ∈ {1, . . . , 4}
Kεr,r( i©) := i©+ [−εr, εr]2 × [−r, 0] for i ∈ {5, . . . , 8}

and observe that by assumption (ε-Tiling)

Bε-perf := B ∩
⋃
â∈Z2

Mε

(
[â, 0]T + Y ∗

)
=
⋃
â∈Zε

Mε

(
[â, 0]T + Y ∗

)
.

Then, for v ∈ W1,2(Bε-perf) and x ∈ Mε ([â, 0]T + Y ) the interpolation operator
Qεv ∈W1,2(B) is defined as

(Qεv)(x) =
(
Q̃εb

)(
x−Mε[â, 0]T

)
where

b :=

[ 
B∩
(

[εâ,0]T +Kεr,r( 1©)
) v(ξ) dξ, . . . ,

 
B∩
(

[εâ,0]T +Kεr,r( 8©)
) v(ξ) dξ

]
∈ R8.

Here, Q̃ε is the Q1-interpolation operator from Definition 3.16.
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MεY
∗

Kεr,r( 1©) PPPP

Kεr,r( 2©) PPPP Kεr,r( 3©)������

Kεr,r( 4©)
�
�
�
�

Kεr,r( 5©) PPPP

Kεr,r( 6©) PPPP Kεr,r( 7©)�������

Kεr,r( 8©)
�
�

2εr
2εr

r

Figure 3.9: Sets for taking mean values of vε ∈ W1,2(Bε-perf) around the vertices of
the rescaled periodicity cells MεY

∗ that are contained inside Bε-perf (top) or touch the
lateral boundary of B (bottom)

Remark 3.8. The sets over which mean values of vε ∈ W1,2(Bε-perf) are taken to
obtain the required node values for the Q1-interpolation Qεvε in the respective rescaled
perforated periodicity cells Mε ([â, 0]T + Y ∗) may not be entirely contained in Bε-perf .
This observation is illustrated in Figure 3.9 (bottom). In fact, this effect occurs for cells
Mε ([â, 0]T + Y ∗) that touch the lateral boundary of B. Yet, due to the assumption
(ε-Tiling) and the convexity of ω it follows that the base ω is an axis-parallel rectangle
(see Remark 3.5). Moreover, from (ε-Tiling) it also follows that the cells Mε ([â, 0]T +
Y ∗) match Bε-perf , which is why only the two situations shown in Figure 3.9 (bottom)
can be observed at the lateral boundary of B. However, one should notice well that for
all rescaled perforated periodicity cells Mε ([â, 0]T + Y ∗) in Bε-perf that do not touch
the lateral boundary of B one has [εâ, 0]T +Kεr,r( i©) ⊆ Bε-perf for all i = 1, . . . , 8.

Similar to what Proposition 3.3 stated for extension operators Pε : W1,2(Bε-perf)→
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W1,2(B) over rescaled perforated thin domains Bε-perf where the voids are rescaled
copies of some V b Y , also the interpolation operator Qε : W1,2(Bε-perf)→W1,2(B)
allows for estimates on the L2-norms of the interpolated function Qεvε and its gradient
∇
(
Qεvε

)
, vε ∈W1,2(Bε-perf).

Proposition 3.19. Let the notation and assumptions of Definition 3.18 hold and assume
v ∈ W1,2(Bε-perf). Then, the interpolation operator Qε : W1,2(Bε-perf) → W1,2(B)
satisfies the estimates

‖Qεv‖2L2(B) ≤ C(V ) ‖v‖2L2(Bε-perf)

and

‖∇̂
(
Qεv

)
‖2L2(B;R2) +

∥∥1
ε∂3

(
Qεv

)∥∥2

L2(B)

≤ C(V )
(
‖∇̂v‖2L2(Bε-perf ;R2) +

∥∥1
ε∂3v

∥∥2

L2(Bε-perf)

)
.

Here, C(V ) is a positive constant depending on the void V in the perforated periodicity
cell Y ∗ = Y \ V only.

Proof. In order to prove the first estimate stated in the proposition, considerMε ([â, 0]T+
Y ) ⊆ B for some â ∈ Zε (compare the assumption (ε-Tiling)). According to the Defi-
nition 3.18 of the interpolation operator Qε it is

(Qεv)(x) =
(
Q̃εb

)(
x−Mε[â, 0]T

)
for x ∈Mε

(
[â, 0]T + Y

)
where

b :=

[ 
B∩
(

[εâ,0]T +Kεr,r( 1©)
) v(ξ) dξ, . . . ,

 
B∩
(

[εâ,0]T +Kεr,r( 8©)
) v(ξ) dξ

]
∈ R8.

Hence, it follows from Proposition 3.17 that

‖Qεv‖2L2(Mε ([â,0]T +Y )) ≤ CQ ε
2 |b|2

=CQ ε
2

8∑
i=1

∣∣∣∣∣
 
B∩
(

[εâ,0]T +Kεr,r( i©)
) v(x) dx

∣∣∣∣∣ .
Applying Jensen’s inequality then leads to

‖Qεv‖2L2(Mε ([â,0]T +Y ))

≤CQ ε2
8∑
i=1

1

vol
(
B∩
(

[εâ,0]T +Kεr,r( i©)
)) ˆ

B∩
(

[εâ,0]T +Kεr,r( i©)
) |v(x)|2 dx.

Moreover, according to Remark 3.8 it is due to assumption (ε-Tiling) that for all i =
1, . . . , 8 the intersection B ∩

(
[εâ, 0]T + Kεr,r( i©)

)
leaves at least ‘one quarter’ of

[εâ, 0]T +Kεr,r( i©) (see also Figure 3.9 (bottom)). Thus,

vol
(
B ∩

(
[εâ, 0]T +Kεr,r( i©)

))
≥ vol

(
[0, εr]2 × [0, r]

)
= ε2 r3
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and furthermore

‖Qεv‖2L2(Mε ([â,0]T +Y )) ≤ CQ
8∑
i=1

1
r3

ˆ
B∩
(

[εâ,0]T +Kεr,r( i©)
) |v(x)|2 dx

= C(V )
8∑
i=1

ˆ
B∩
(

[εâ,0]T +Kεr,r( i©)
) |v(x)|2 dx.

Finally, recalling that B =
⋃
â∈Zε

Mε ([â, 0]T + Y ) and what has been said in Remark
3.8, summing the above inequality over all â ∈ Zε yields

‖Qεv‖2L2(B) =
∑
â∈Zε

‖Qεv‖2L2(Mε ([â,0]T +Y ))

≤ C(V )
∑
â∈Zε

8∑
i=1

ˆ
B∩
(

[εâ,0]T +Kεr,r( i©)
) |v(x)|2 dx ≤ C(V ) ‖v‖2L2(Bε-perf)

for some constant C(V ) depending on the void V only. This finishes the proof of the
first assertion.

As concerns the second statement of the proposition, the proof will be split into
several steps. In the first step it will be proved that for all â ∈ Zε such thatMε ([â, 0]T +
Y ) does not touch the lateral boundary of B one has

‖∂1

(
Qεv

)
‖2L2(Mε ([â,0]T +Y )) ≤ C(V )‖∂1v‖2L2([εâ,0]T +E1

εr) (3.46)

‖∂2

(
Qεv

)
‖2L2(Mε ([â,0]T +Y )) ≤ C(V )‖∂2v‖2L2([εâ,0]T +E2

εr) (3.47)

and

‖∂3

(
Qεv

)
‖2L2(Mε ([â,0]T +Y )) ≤ C(V )‖∂3v‖2L2([εâ,0]T +E3

εr). (3.48)

The sets E1
εr, E

2
εr and E3

εr are depicted in Figure 3.10 below. A second step will then
then reveal that for those â ∈ Zε such thatMε ([â, 0]T +Y ) touches the lateral boundary
of B one has similar estimates, namely

‖∂1

(
Qεv

)
‖2L2(Mε ([â,0]T +Y )) ≤ C(V )

(
‖∂1v‖2L2(B∩([εâ,0]T +E1

εr))

+
8∑
i=1

ˆ
B∩
(

[εâ,0]T +Kεr,r( i©)
) ∣∣∣[∇̂v(x), 1

ε∂3v(x)
]∣∣∣2 dξ

)
, (3.49)

‖∂2

(
Qεv

)
‖2L2(Mε ([â,0]T +Y )) ≤ C(V )

(
‖∂2v‖2L2(B∩([εâ,0]T +E2

εr))

+

8∑
i=1

ˆ
B∩
(

[εâ,0]T +Kεr,r( i©)
) ∣∣∣[∇̂v(x), 1

ε∂3v(x)
]∣∣∣2 dξ

)
(3.50)
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Figure 3.10: The setsE1
εr, E

2
εr andE3

εr in the rescaled perforated periodicity cellMεY
∗

and moreover

‖∂3

(
Qεv

)
‖2L2(Mε ([â,0]T +Y )) ≤ C(V )‖∂3v‖2L2(B∩([εâ,0]T +E3

εr)). (3.51)

Then, summing the estimates (3.46), (3.47) and (3.48) (multiplied by 1
ε2

) over all â ∈ Zε
such that the corresponding cell Mε ([â, 0]T + Y ) does not touch the lateral boundary
of B, and furthermore adding the sum of (3.49), (3.50) and (3.51) (multiplied by 1

ε2
) for

those â ∈ Zε such that Mε ([â, 0]T + Y ) touches the lateral boundary of B yields the
second assertion. Again it should be noticed that by the assumption (ε-Tiling) on ω and
ε it is B =

⋃
â∈Zε

Mε ([â, 0]T + Y ) and Bε-perf =
⋃
â∈Zε

Mε ([â, 0]T + Y ∗).
Step 1. For simplicity I will only prove (3.46), since both (3.47) and (3.48) can be

verified by the same strategy. Let â ∈ Zε be such that Mε ([â, 0]T + Y ) does not touch
the lateral boundary of B. Then, according to the Definition 3.18 of the interpolation
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operator Qε it is

Qε(x) =
(
Q̃εb

)(
x−Mε[â, 0]T

)
and by Proposition 3.17 one has

‖∂1

(
Qε
)
‖2L2(Mε ([â,0]T +Y )) ≤ ε

2CQ

((
b2−b1
ε

)2
+
(
b4−b3
ε

)2
+
(
b6−b5
ε

)2
+
(
b8−b7
ε

)2
)

(3.52)

where

b :=

[ 
[εâ,0]T +Kεr,r( 1©)

v(ξ) dξ, . . . ,

 
[εâ,0]T +Kεr,r( 8©)

v(ξ) dξ

]
∈ R8.

Exemplarily I will consider the term ((b2 − b1)/ε)2 while noticing that the others can
be treated in an analogous manner. Also for the sake of a brief notation I will assume
â = 0. Then, by the definition of b it follows

(
b2−b1
ε

)2
= 1
ε2

∣∣∣∣∣ 1
volKεr,r( 2©)

ˆ
Kεr,r( 2©)

v(x) dx− 1
volKεr,r( 1©)

ˆ
Kεr,r( 1©)

v(x) dx

∣∣∣∣∣
2

= 1
ε2

∣∣∣∣∣ 1
volKεr,r( 1©)

ˆ
Kεr,r( 1©)

v(x+ εe1)− v(x) dx

∣∣∣∣∣
2

, (3.53)

where I used that by definition Kεr,r( 2©) = εe1 +Kεr,r( 1©) (see Figure 3.9 (left)). As
for almost all x ∈ Kεr,r( 1©) one can write

v(x+ εe1)− v(x) dx =

ˆ ε

0
∂1v(x+ se1) ds,

twice applying Jensen’s inequality leads to

(
b2−b1
ε

)2
= 1
ε2

∣∣∣∣∣ 1
volKεr,r( 1©)

ˆ
Kεr,r( 1©)

ˆ ε

0
∂1v(x+ se1) ds dx

∣∣∣∣∣
2

≤ 1
ε2

1
volKεr,r( 1©)

ˆ
Kεr,r( 1©)

∣∣∣∣ˆ ε

0
∂1v(x+ se1) ds

∣∣∣∣2 dx

≤ 1
ε2

1
volKεr,r( 1©)

ˆ
Kεr,r( 1©)

ε

ˆ ε

0
|∂1v(x+ se1)|2 dsdx.

Here, a quite simple but crucial trick comes into play. In fact, enlarging the line integral
for any x ∈ Kεr,r( 1©) = 1©+ [−εr, εr]2 × [0, r] like
ˆ ε

0
|∂1v(x+ se1)|2 ds

=

ˆ x1+ε

x1

|∂1v(s, x2, x3)|2 ds ≤
ˆ εr+ε

−εr
|∂1v(s, x2, x3)|2 ds
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makes it independent of x1. Thus, one obtains(
b2−b1
ε

)2
≤1
ε

1
volKεr,r( 1©)

ˆ
Kεr,r( 1©)

ˆ εr+ε

−εr
|∂1v(s, x2, x3)|2 ds dx

=1
ε

2εr
volKεr,r( 1©)

ˆ
[−εr,εr]×[− 1

2
,− 1

2
+r]

ˆ εr+ε

−εr
|∂1v(s, x2, x3)|2 ds d(x2, x3)

= 2r
volKεr,r( 1©)

ˆ
[−εr,ε+εr]×[−εr,εr]×[− 1

2
,− 1

2
+r]
|∂1v(x1, x2, x3)|2 dx

= 2r
volKεr,r( 1©)

ˆ
1©+[−εr,ε+εr]×[−εr,εr]×[0,r]

|∂1v(x)|2 dx,

where the set 1©+ [−εr, ε+ εr]× [−εr, εr]× [0, r] is easily identified as a the subset of
E1
εr along the 1©− 2© edge inMεY

∗ as depicted in Figure 3.9. Repeating this argument
for ((b4 − b3)/ε)2, ((b6 − b5)/ε)2 and ((b8 − b7)/ε)2 leads by means of (3.52) to

‖∂1

(
Qεv

)
‖2L2(MεY )

≤ ε2CQ
2r

volKεr,r( 1©)

ˆ
E1

εr

|∂1v(x)|2 dx

≤ CQ 2r
4r3

ˆ
E1

εr

|∂1v(x)|2 dx

which is nothing but (3.46) (for â = 0).
Step 2. Again, for simplicity I will only prove (3.49) – both (3.50) and (3.51) can

be proved by similar arguments. Let â ∈ Zε be such that Mε ([â, 0]T + Y ) touches the
lateral boundary of B. Then, just like in the previous step the Definition 3.18 of the
interpolation operator Qε over Mε ([â, 0]T + Y ) gives

Qε(x) =
(
Q̃εb

)(
x−Mε[â, 0]T

)
and Proposition 3.17 once more reveals

‖∂1

(
Qε
)
‖2L2(Mε ([â,0]T +Y )) ≤ ε

2CQ

((
b2−b1
ε

)2
+
(
b4−b3
ε

)2
+
(
b6−b5
ε

)2
+
(
b8−b7
ε

)2
)

(3.54)

where

b :=

[ 
B∩
(

[εâ,0]T +Kεr,r( 1©)
) v(ξ) dξ, . . . ,

 
B∩
(

[εâ,0]T +Kεr,r( 8©)
) v(ξ) dξ

]
∈ R8.

The difference to the situation analyzed in the previous step is that the mean values
defining the various entries of b are now taken over the intersection of

(
[εâ, 0]T +

Kεr,r( i©)
)
, i = 1, . . . , 8, with B. In particular, these sets are no longer simple trans-

lates of one and the same set, which is why the argument used in (3.53) cannot be simply
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transferred to the present situation. Yet, like shown in Figure 3.9 (bottom), due to the
base ω of B being a rectangle that is tiled by copies of εŶ , only two different situations
for relative position of the rescaled perforated periodicity cellMε ([â, 0]T +Y ∗) and the
lateral boundary of B can occur. Either Mε ([â, 0]T +Y ∗) comes to lie in a corner of B
or shares one of its faces with the lateral boundary of B. As it can be seen from Figure

�
�
�
�
��

@
@
D
D
DD

B ∩ ([εâ, 0]T +Kεr,r( 1©)),

. . . , B ∩ ([εâ, 0]T +Kεr,r( 8©)) B ∩ ([εâ, 0]T

+E1
εr)

Figure 3.11: The situation ofMε

(
[â, 0]T +Y ∗

)
lying in a corner ofB’s lateral boundary

3.9, the lateral boundary of B then cuts the sets B ∩
(
[εâ, 0]T + Kεr,r( 1©)

)
,. . . ,B ∩(

[εâ, 0]T +Kεr,r( 8©)
)

always such that neighboring sets are either congruent or one is
congruent to a subset of the other. For instance, consider the situation shown in Fig-
ure 3.11 – all other cases can actually be treated in an analogous manner. Therein,
B∩

(
[εâ, 0]T +Kεr,r( 1©)

)
is congruent to a subset ofB∩

(
[εâ, 0]T +Kεr,r( 2©)

)
. Eval-

uating the term ((b2−b1)/ε)2 like in Step 1 now leads to (again, for a clearer exposition
let â = 0)(

b2−b1
ε

)2
(3.55)

= 1
ε2

∣∣∣∣∣ 1
vol (B∩Kεr,r( 2©))

ˆ
B∩Kεr,r( 2©)

v(x) dx− 1
vol (B∩Kεr,r( 1©))

ˆ
B∩Kεr,r( 1©)

v(x) dx

∣∣∣∣∣
2

≤ 2
ε2

∣∣∣∣∣ 1
vol (B∩Kεr,r( 1©))

ˆ
2©− 1©+B∩Kεr,r( 1©)

v(x) dx

− 1
vol (B∩Kεr,r( 1©))

ˆ
B∩Kεr,r( 1©)

v(x) dx

∣∣∣∣∣
2

(3.56)

+ 2
ε2

∣∣∣∣∣ 1
vol (B∩Kεr,r( 2©))

ˆ
B∩Kεr,r( 2©)

v(x) dx

− 1
vol (B∩Kεr,r( 1©))

ˆ
2©− 1©+B∩Kεr,r( 1©)

v(x) dx

∣∣∣∣∣
2

(3.57)

Now, having noticed that in the present situation depicted in Figure 3.11 (left) B ∩
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Kεr,r( 1©) = 1© + [0, εr]2 × [0, r] and 2©− 1© = εe1 in the rescaled periodicity cell
MεY (see Figure 3.9 (top)), the same methods as employed in the first step show

1
ε2

∣∣∣∣∣ 1
vol (B∩Kεr,r( 1©))

ˆ
2©− 1©+B∩Kεr,r( 1©)

v(x) dx

− 1
vol (B∩Kεr,r( 1©))

ˆ
B∩Kεr,r( 1©)

v(x) dx

∣∣∣∣∣
2

= 1
ε2

∣∣∣∣∣ 1
vol (B∩Kεr,r( 1©))

ˆ
1©+[0,εr]2×[0,r]

v(x+ εe1)− v(x) dx

∣∣∣∣∣
2

≤ r
vol (B∩Kεr,r( 1©))

ˆ
1©+[0,ε+εr]×[0,εr]×[0,r]

|∂1v(x)|2 dx

= r
vol (B∩Kεr,r( 1©))

ˆ
B∩( 1©+[−εr,ε+εr]×[−εr,εr]×[0,r])

|∂1v(x)|2 dx.

As concerns the term (3.57), turning to Figure 3.11 (left) allows to identify

B ∩Kεr,r( 2©) = 2©+ [−εr, εr]× [0, εr]× [0, r],

2©− 1©+B ∩Kεr,r( 1©) = 2©+ [0, εr]× [0, εr]× [0, r],

and a simple rescaling argument ṽε(x) := v(Mεx+ 2©) yields∣∣∣∣∣ 1
vol (B∩Kεr,r( 2©))

ˆ
B∩Kεr,r( 2©)

v(x) dx

− 1
vol (B∩Kεr,r( 1©))

ˆ
2©− 1©+B∩Kεr,r( 1©)

v(x) dx

∣∣∣∣∣
2

=

∣∣∣∣∣ ε2

vol (B∩Kεr,r( 2©))

ˆ
[−r,r]×[0,r]×[0,r]

ṽε(x) dx

− ε2

vol (B∩Kεr,r( 1©))

ˆ
[0,r]×[0,r]×[0,r]

ṽε(x) dx

∣∣∣∣∣
2

=

∣∣∣∣∣
 

[−r,r]×[0,r]×[0,r]
ṽε(x) dx−

 
[0,r]×[0,r]×[0,r]

ṽε(x) dx

∣∣∣∣∣
2

≤ 1
vol ([−r,r]×[0,r]×[0,r])

ˆ
[−r,r]×[0,r]×[0,r]

∣∣∣∣∣ṽε(x)−
 

[0,r]×[0,r]×[0,r]
ṽε(ξ) dξ

∣∣∣∣∣
2

dx.

Eventually, the term on the right hand side can be estimated by means of a suitable
version of Poincaré’s inequality, like e.g. found in [Jost, 2007, Corollary 9.1.4]. More
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precisely ∣∣∣∣∣ 1
vol (B∩Kεr,r( 2©))

ˆ
B∩Kεr,r( 2©)

v(x) dx

− 1
vol (B∩Kεr,r( 1©))

ˆ
2©− 1©+B∩Kεr,r( 1©)

v(x) dx

∣∣∣∣∣
2

≤C(r)

ˆ
[−r,r]×[0,r]×[0,r]

∣∣∇ṽε(x)
∣∣2 dx

=C(r)

ˆ
[−r,r]×[0,r]×[0,r]

∣∣Mε∇v(Mεx+ 2©)
∣∣2 dx

=C(r) 1
ε2

ˆ
2©+[−εr,εr]×[0,εr]×[0,r]

∣∣Mε∇v(x)
∣∣2 dx

=C(r)

ˆ
B∩Kεr,r( 2©)

∣∣∣[∇̂v(x), 1
ε∂3v(x)

]∣∣∣2 dx,

where C(r) is a positive constant depending on r only. Returning to (3.55) one can now
further estimate (3.56) and (3.57) like(

b2−b1
ε

)2
≤ 2r

vol (B∩Kεr,r( 1©))

ˆ
B∩( 1©+[−εr,ε+εr]×[−εr,εr]×[0,r])

|∂1v(x)|2 dx

+ 2C(r)
ε2

ˆ
B∩Kεr,r( 2©)

∣∣∣[∇̂v(x), 1
ε∂3v(x)

]∣∣∣2 dx

= C(r)
ε2

(ˆ
B∩( 1©+[−εr,ε+εr]×[−εr,εr]×[0,r])

|∂1v(x)|2 dx

+

ˆ
B∩Kεr,r( 2©)

∣∣∣[∇̂v(x), 1
ε∂3v(x)

]∣∣∣2 dx

)
.

forC(r) again a positive constant depending on r only. By repeating the same argument
for ((b4 − b3)/ε)2, ((b6 − b5)/ε)2 and ((b8 − b7)/ε)2 one can by means of (3.54) and
the definition of E1

εr as shown in Figure 3.10 infer

‖∂1

(
Qεv

)
‖2L2(MεY ) ≤ ε

2CQ
C(r)
ε2

(ˆ
B∩E1

εr

|∂1v(x)|2 dx

+
8∑
i=1

ˆ
B∩Kεr,r( i©)

∣∣∣[∇̂v(x), 1
ε∂3v(x)

]∣∣∣2 dx

)

= C(V )

(ˆ
B∩E1

εr

|∂1v(x)|2 dx

+

8∑
i=1

ˆ
B∩Kεr,r( i©)

∣∣∣[∇̂v(x), 1
ε∂3v(x)

]∣∣∣2 dx

)



Homogenization in perforated thin domains 129

which is nothing but (3.49) (with â = 0).

Another important result on the interpolation operatorQε : W1,2(Bε-perf)→W1,2(B)
is the following estimation of the interpolation error measured in the L2-norm over
Bε-perf .

Proposition 3.20. Again assume the notation and assumptions of Definition 3.18 to hold
and consider v ∈ W1,2(Bε-perf). The interpolation error Qεv − v of the interpolation
operator Qε : W1,2(Bε-perf)→W1,2(B) can over Bε-perf be estimated like∥∥Qεv − v∥∥2

L2(Bε-perf)
≤ ε2C(V )

(
‖∇̂v‖2L2(Bε-perf) +

∥∥1
ε∂3v

∥∥2

L2(Bε-perf)

)
where C(V ) is a positive constant depending on the void V in the periodicity cell Y
only.

Proof. By the assumption (ε-Tiling) on the base ω of B = ω ×
[
−1

2 ,
1
2

]
one has again

B =
⋃
â∈Zε

Mε

(
[â, 0]T + Y

)
and Bε-perf =

⋃
â∈Zε

Mε

(
[â, 0]T + Y ∗

)
.

Now, for some â in Zε the interpolation error over the rescaled perforated periodicity
cell Mε ([â, 0]T + Y ∗) is

ˆ
Mε ([â,0]T +Y ∗)

∣∣(Qεv)(x)− v(x)
∣∣2 dx

=

ˆ
Mε ([â,0]T +Y ∗)

∣∣∣(Q̃εb)(x−Mε[â, 0]T
)
− v(x)

∣∣∣2 dx

=ε2

ˆ
Y ∗

∣∣(Qb)(x)− v
(
Mε[â, 0]T +Mεx

)∣∣2 dx

where b ∈ R8 is defined through

b :=

[ 
B∩
(

[εâ,0]T +Kεr,r( 1©)
) v(ξ) dξ, . . . ,

 
B∩
(

[εâ,0]T +Kεr,r( 8©)
) v(ξ) dξ

]
∈ R8.

Again see Figure 3.9 for an illustration of the sets Kεr,r( 1©),. . . ,Kεr,r( 8©). Inserting
the Definition 3.14 for the Q1-interpolation operator Q leads to

ˆ
Mε ([â,0]T +Y ∗)

∣∣(Qεv)(x)− v(x)
∣∣2 dx

=ε2

ˆ
Y ∗

∣∣∣∣∣
8∑
i=1

biqi(x)− v
(
Mε[â, 0]T +Mεx

)∣∣∣∣∣
2

dx

=ε2

ˆ
Y ∗

∣∣∣∣∣
8∑
i=1

biqi(x)− ṽε(x)

∣∣∣∣∣
2

dx (3.58)
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for ṽε(x) := v
(
Mε[â, 0]T +Mεx

)
. Furthermore, a simple calculation shows that

b :=

[ (
M−1

ε B−[â,0]T
)
∩Kr( 1©)

ṽε(ξ) dξ, . . . ,

 (
M−1

ε B−[â,0]T
)
∩Kr( 8©)

ṽε(ξ) dξ

]
(3.59)

where Kr( i©) := M−1
ε Kεr,r( i©). See also the following Figure 3.12. As the polyno-

Y ∗

Kr( 1©)

Kr( 2©) Kr( 3©)

Kr( 4©)#
#
#

Kr( 5©)

Kr( 6©)
Kr( 7©)

Kr( 8©)

2r
2r

r

Figure 3.12: The congruent sets Kr( 1©),. . . ,Kr( 8©) and their relative position to the
perforated periodicity cell Y ∗

mial shape functions qi (i = 1, . . . , 8; see Definition 3.14) take values in [0, 1] only and
sum up to the constant function 1 over the periodicity cell Y , it follows from (3.58)

ˆ
Mε ([â,0]T +Y ∗)

∣∣(Qεv)(x)− v(x)
∣∣2 dx

=ε2

ˆ
Y ∗

∣∣∣∣∣
8∑
i=1

(bi − ṽε(x)) qi(x)

∣∣∣∣∣
2

dx

≤ε2

ˆ
Y ∗

(
8∑
i=1

|bi − ṽε(x)|2
)(

8∑
i=1

|qi(x)|2
)

dx

≤8ε2
8∑
i=1

ˆ
Y ∗
|ṽε(x)− bi|2 dx. (3.60)

Just like the proof of Proposition 3.19, also the remainder of this proof will be split into
two steps. The first step considers the situation of rescaled perforated periodicity cells
Mε ([â, 0]T + Y ∗) that do not touch the lateral boundary of B, whereas the second step
considers such that do touch the lateral boundary.

Step 1. In the situation where the rescaled periodicity periodicity cell Mε ([â, 0]T +
Y ∗) does not touch the lateral boundary ofB, it follows thatB∩

(
[εâ, 0]T+Kεr,r( i©)

)
=
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[εâ, 0]T +Kεr,r( i©) for all i = 1, . . . , 8, hence also after the above change of variables(
M−1
ε B − [â, 0]T

)
∩Kr( i©) = Kr( i©) for all i = 1, . . . , 8. Now, let

P̃i : W1,2 (Y ∗ ∪Kr( i©))→W1,2
(
[−r, 1 + r]2 ×

[
−1

2 ,
1
2

])
be an extension operator according to [Oleı̆nik et al., 1992, Lemma 4.1]. Turning to the
term

´
Y ∗ |bi − ṽε(x)|2 dx in (3.60) and recalling (3.59) yields

ˆ
Y ∗
|ṽε(x)− bi|2 dx

=

ˆ
Y ∗

∣∣∣∣∣ṽε(x)−
 
Kr( i©)

ṽε(ξ) dξ

∣∣∣∣∣
2

dx

=

ˆ
Y ∗

∣∣∣∣∣(P̃iṽε)(x)−
 
Kr( i©)

(
P̃iṽε

)
(ξ) dξ

∣∣∣∣∣
2

dx

≤
ˆ

[−r,1+r]2×
[
−1

2 ,
1
2

]
∣∣∣∣∣(P̃iṽε)(x)−

 
Kr( i©)

(
P̃iṽε

)
(ξ) dξ

∣∣∣∣∣
2

dx.

Here, it is once more the Poincaré inequality as stated in [Jost, 2007, Corollary 9.1.4]
that allows to further estimate

ˆ
Y ∗
|ṽε(x)− bi|2 dx ≤ C(r, i)

ˆ
[−r,1+r]2×

[
−1

2 ,
1
2

] ∣∣∣∇(P̃iṽε)(x)
∣∣∣2 dx.

for another positive constant C(r, i) depending r and i through the enlarged periodicity
cell [−r, 1 + r]2 ×

[
−1

2 ,
1
2

]
and the set Kr( i©) only. Now, due to the continuity of the

extension operator P̃i as stated in [Oleı̆nik et al., 1992, Lemma 4.1] the right hand side
can be bounded from above like

ˆ
Y ∗
|ṽε(x)− bi|2 dx ≤ C(r, i)

ˆ
Y ∗∪Kr( i©)

∣∣∇(ṽε)(x)
∣∣2 dx

for another constant C(r, i). Since by definition ṽε(x) := v
(
Mε[â, 0]T + Mεx

)
it

follows ∇
(
ṽε
)
(x) = Mε∇v

(
Mε[â, 0]T + Mεx

)
, and reverting the change of variables

in v implies

ˆ
Y ∗
|ṽε(x)− bi|2 dx

≤ 1
ε2
C(r, i)

ˆ
Mε([â,0]T +Y ∗∪Kεr,r( i©))

|Mε∇v(x)|2 dx

= C(r, i)

ˆ
Mε([â,0]T +Y ∗∪Kεr,r( i©))

∣∣∣[∇̂v(x), 1
ε∂3v(x)

]∣∣∣2 dx.
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This together with (3.60) finally leads to
ˆ
Mε ([â,0]T +Y ∗)

∣∣(Qεv)(x)− v(x)
∣∣2 dx

≤8ε2
8∑
i=1

C(r, i)

ˆ
Mε([â,0]T +Y ∗∪Kεr,r( i©))

∣∣∣[∇̂v(x), 1
ε∂3v(x)

]∣∣∣2 dx

≤ε2C(V )

ˆ
Mε([â,0]T +Y ∗∪Kεr,r( 1©)∪...∪Kεr,r( 8©))

∣∣∣[∇̂v(x), 1
ε∂3v(x)

]∣∣∣2 dx (3.61)

where the constantC(V ) depends on V only (through r > 0 and the extension operators
P̃1, . . . , P̃8; yet, these quantities are completely determined by the geometry of V , cf.
Definition 3.18).

Step 2. Consider the case of Mε ([â, 0]T + Y ∗) touching the lateral boundary of B.
Other than in the previous step, the setsB∩

(
[εâ, 0]T+Kεr,r( i©)

)
in the statement (3.59)

of b result now in general as genuine subsets of [εâ, 0]T + Kεr,r( i©). Nevertheless, if
one could again find an extension operator

P̃i : W1,2
(
Y ∗ ∪

((
M−1
ε B − [â, 0]T

)
∩Kr( i©)

))
→W1,2

(
[−r, 1 + r]2 ×

[
−1

2 ,
1
2

])
in the sense of [Oleı̆nik et al., 1992, Lemma 4.1], then the very same arguments as used
in the first step would lead by (3.59) and (3.60) to

ˆ
Y ∗
|ṽε(x)− bi|2 dx

=

ˆ
Y ∗

∣∣∣∣∣ṽε(x)−
 (
M−1

ε B−[â,0]T
)
∩Kr( i©)

ṽε(ξ) dξ

∣∣∣∣∣
2

dx

=

ˆ
Y ∗

∣∣∣∣∣(P̃iṽε)(x)−
 (
M−1

ε B−[â,0]T
)
∩Kr( i©)

(
P̃iṽε

)
(ξ) dξ

∣∣∣∣∣
2

dx

≤
ˆ

[−r,1+r]2×
[
−1

2 ,
1
2

]
∣∣∣∣∣(P̃iṽε)(x)−

 (
M−1

ε B−[â,0]T
)
∩Kr( i©)

(
P̃iṽε

)
(ξ) dξ

∣∣∣∣∣
2

dx.

and another application of [Jost, 2007, Corollary 9.1.4] yields

ˆ
Y ∗
|ṽε(x)− bi|2 dx

≤ C
(
r, (M−1

ε B − [â, 0]T ) ∩Kr( i©)
) ˆ

[−r,1+r]2×
[
−1

2 ,
1
2

] ∣∣∣∇(P̃iṽε)(x)
∣∣∣2 dx. (3.62)

for a positive constant C
(
r, (M−1

ε B − [â, 0]T ) ∩Kr( i©)
)

depending on r > 0 and the
volume of the set (M−1

ε B− [â, 0]T )∩Kr( i©) only. Yet, as already outlined in Remark
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3.8 and illustrated in Figure 3.9, due to the assumption (ε-Tiling) on the base ω of B
and the convexity of ω, only two different geometric situations for the intersection of
Mε ([â, 0]T + Y ∗) with the lateral boundary of B can occur. For the sets(

M−1
ε B − [â, 0]T

)
∩Kr( i©) =

(
M−1
ε (·)− [â, 0]T

)(
B ∩ ([εâ, 0]T +Kεr,r( i©))

)
(3.63)

this means that the lateral boundary of B can either cut them in half or leaves a quarter
of the original set Kr( i©) (cf. Figure 3.11). In other words, for all rescaled perforated
periodicity cells Mε ([â, 0]T +Y ∗) touching the lateral boundary of B and all ε the sets
(3.63) describe only a finite number of different geometries. This not only means that
there is a common constant C(V ) in (3.62) for all i = 1, . . . , 8, but that the number
of extension operators P̃i is also finite and independent of ε. Thus, there is a common
constant in the sense of [Oleı̆nik et al., 1992, Lemma 4.1] such that from (3.62) one can
further deduceˆ

Y ∗
|ṽε(x)− bi|2 dx ≤ C(V )

ˆ
Y ∗∪((M−1

ε B−[â,0]T )∩Kr( i©))

∣∣∇(ṽε)(x)
∣∣2 dx

for some common constant C(V ) depending on V only. Recalling ∇
(
ṽε
)
(x) =

Mε∇v
(
Mε[â, 0]T+Mεx

)
and reverting the change of variables ṽε(x) := v

(
Mε[â, 0]T+

Mεx
)

leads to
ˆ
Y ∗
|ṽε(x)− bi|2 dx

≤ 1
ε2
C(V )

ˆ
B∩Mε([â,0]T +Y ∗∪Kεr,r( i©))

|Mε∇v(x)|2 dx

= C(V )

ˆ
B∩Mε([â,0]T +Y ∗∪Kεr,r( i©))

∣∣∣[∇̂v(x), 1
ε∂3v(x)

]∣∣∣2 dx.

Finally, from (3.60) one obtains
ˆ
Mε ([â,0]T +Y ∗)

∣∣(Qεv)(x)− v(x)
∣∣2 dx

≤8ε2
8∑
i=1

C(V )

ˆ
B∩Mε([â,0]T +Y ∗∪Kεr,r( i©))

∣∣∣[∇̂v(x), 1
ε∂3v(x)

]∣∣∣2 dx

≤ε2C(V )

ˆ
B∩Mε([â,0]T +Y ∗∪Kεr,r( 1©)∪...∪Kεr,r( 8©))

∣∣∣[∇̂v(x), 1
ε∂3v(x)

]∣∣∣2 dx (3.64)

where again the constant C(V ) depends on V only.
Step 3. The proof of the proposition is now complete when summing (3.61) for

all â ∈ Zε such that Mε ([â, 0]T + Y ∗) does not touch the lateral boundary of B and
adding the sum of (3.64) over all â ∈ Zε such that Mε ([â, 0]T +Y ∗) touches the lateral
boundary of B.
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In the proof of Theorem 3.10 I mainly rely on the following result.

Lemma 3.21. Assume the assumptions of Definition 3.18 to be valid and let (εk)k be a
vanishing sequence of positive real numbers such that each of its elements εk is com-
patible with these assumptions. Also, let there be given the periodic unfolding operator
T̂ ∗εk : L2(Bε-perf) → L2(ω × Y ∗) for the rescaled perforated thin domain Bε-perf .
Moreover, let (vεk)k be a sequence having bounded L2(Bε-perf)-norm and suppose
vεk ∈W1,2(Bε-perf). Also, assume that there is a positive constant C > 0 such that

‖∇̂vεk‖
2
L2(Bε-perf ;R2) +

∥∥∥ 1
εk
∂3vεk

∥∥∥2

L2(Bε-perf)
≤ C

for all εk. Then there is a subsequence (εk`)` and a function v0 ∈ W1,2(B) which is
independent of x3 such that

Qεk`vεk` ⇀ v0 in W1,2(B),

T̂ ∗εk`vεk` ⇀ v0(x̂, 0) in L2(ω; W1,2(Y ∗))

and some V0 ∈ L2(ω; W1,2

Ŷ -per
(Y ∗)) satisfying

[
T̂ ∗εk` (∇̂vεk` ), T̂ ∗εk`

(
1
εk`
∂3vεk`

)]
⇀
[
∇̂v0(x̂, 0), 0

]T
+∇yV0(x̂, y) in L2(ω × Y ∗;R3).

Here, the space W1,2

Ŷ -per
(Y ∗) is like in Subsection 3.2.3 the set of all W1,2(Y ∗)-functions

w that satisfyw(y+eα) = w(y) for all y ∈ ∂Y ∗∩{y : yα = 0} such that y+eα ∈ ∂Y ∗,
α = 1, 2.

Proof. As concerns the first assertion of the lemma, from Proposition 3.19 and the
L2(Bε-perf)-bounds on vεk and [∇̂vεk , 1

εk
∂3vεk ] one obtains

‖Qεkvεk‖L2(B) ≤ C

and

‖∇̂
(
Qεkvεk

)
‖2L2(B;R2) +

∥∥∥ 1
εk
∂3

(
Qεkvεk

)∥∥∥2

L2(Bε-perf)
≤ C

for all εk and some positive constant C. Hence, as claimed there is subsequence (εk`)`
and a v0 in W1,2(B) such that Qεk`vεk` ⇀ v0 in W1,2(B). Moreover, by the bounded-
ness of ‖ 1

εk
∂3

(
Qεkvεk

)
‖L2(Bε-perf) one infers ∂3v0 = 0 in B, i.e. v0 is independent of

x3 in B.
To prove the second assertion, first one employs the definition of the unfolding

operator T̂ ∗εk for the rescaled perforated thin domain Bε-perf to infer(
T̂ ∗εkvεk

)
(x̂, y) = vεk

(
εk

⌊
x̂
εk

⌋
+ εkŷ, y3

)



Homogenization in perforated thin domains 135

and

∇y
(
T̂ ∗εkvεk

)
(x̂, y) =

[
εk∇̂vεk

(
εk

⌊
x̂
εk

⌋
+ εkŷ, y3

)
, ∂3vεk

(
εk

⌊
x̂
εk

⌋
+ εkŷ, y3

)]
= εk

[
T̂ ∗εk(∇̂vεk)(x̂, y), T̂ ∗εk

(
1
εk
∂3vεk

)
(x̂, y)

]
.

Then, the isometry property of T̂ ∗εk stated in Proposition 3.12 yields

‖T̂ ∗εkvεk‖
2
L2(ω;W1,2(Y ∗))

=

ˆ
ω

ˆ
Y ∗

∣∣∣(T̂ ∗εkvεk)(x̂, y)
∣∣∣2 +

∣∣∣∇y(T̂ ∗εkvεk)(x̂, y)
∣∣∣2 dy dx̂

=

ˆ
ω

ˆ
Y ∗

∣∣∣(T̂ ∗εkvεk)(x̂, y)
∣∣∣2 dy dx̂

+ ε2
k

ˆ
ω

ˆ
Y ∗

∣∣∣T̂ ∗εk(∇̂vεk)(x̂, y)
∣∣∣2 +

∣∣∣T̂ ∗εk ( 1
εk
∂3vεk

)
(x̂, y)

∣∣∣2 dy dx̂

=‖vεk‖
2
L2(Bε-perf)

+ ε2
k‖∇̂vεk‖

2
L2(Bε-perf ;R2) + ε2

k

∥∥∥ 1
εk
∂3vεk

∥∥∥2

L2(Bε-perf)
.

Thus, according to the assumptions on (vεk)k stated in the lemma the sequence (T̂ ∗εkvεk)k
is bounded in L2(ω; W1,2(Y ∗)). Without loss of generality one may therefore assume
that there is some U ∈ L2(ω; W1,2(Y ∗)) such that

T̂ ∗εk`vεk` ⇀ U in L2(ω; W1,2(Y ∗))

along the same subsequence (vεk` )`. Yet, one also has the identity

T̂ ∗εk`vεk` = T̂ ∗εk` (Qεk`vεk` ) + T̂ ∗εk` (vεk` −Qεk`vεk` ).

According to the second assertion of Proposition 3.13, the strong convergence
Qεk`vεk` → v0 in L2(B) and the independence of v0 from its third argument, one
obtains

T̂ ∗εk` (Qεk`vεk` )→ v0(x̂, 0) in L2(ω × Y ∗). (3.65)

Whereas the term T̂ ∗εk` (vεk` − Qεk`vεk` ) can by means of the isometry of T̂ ∗εk` and the
interpolation error estimate from Proposition 3.20 be bounded from above like

‖T̂ ∗εk` (vεk` −Qεk`vεk` )‖2L2(ω×Y ∗) = ‖vεk` −Qεk`vεk`‖
2
L2(Bε-perf)

≤ ε2
k`
C(V )

(
‖∇̂vεk`‖

2
L2(Bε-perf ;R2) +

∥∥∥ 1
εk`
∂3vεk`

∥∥∥2

L2(Bε-perf)

)
.

Then, the assumed L2(Bε-perf)-boundedness of [∇̂vεk , 1
εk
∂3vεk ] together with (3.65)

yields

T̂ ∗εk`vεk` = T̂ ∗εk` (Qεk`vεk` ) + T̂ ∗εk` (vεk` −Qεk`vεk` )

→ v0(x̂, 0) in L2(ω × Y ∗)
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as εk` vanishes. Therefore, the weak L2(ω; W1,2(Y ∗))-limit U of (T̂ ∗εk`vεk` )` can actu-
ally be idenitified as v0(x̂, 0) which proves the second assertion of the proposition.

Eventually, the proof of the third statement follows well-known arguments from the
theory of periodic unfolding, as outlined e.g. in [Cioranescu et al., 2008a, Section 3].
To this end, define the local averaging operator

M̂∗εk : L2(Bε-perf)→ L2(ω × Y ∗),
(
M̂∗εkv

)
(x̂, y) :=

 
Y ∗

(
T̂ ∗εkv

)
(x̂, y) dy.

In particular, with the help of the local averaging operator M̂∗εk one can state

ˆ
Y ∗

(
T̂ ∗εkv − M̂

∗
εk
v
)

(x̂, y) dy = 0

for a.e. x̂ ∈ ω. Now, since Y ∗ 3 y 7→
(
M̂∗εkvεk

)
(x̂, y) is constant, the function

wεk := 1
εk

(
T̂ ∗εkvεk − M̂

∗
εk
vεk

)
results as an element of L2(ω; W1,2(Y ∗)) and has the property of vanishing integral
mean over Y ∗ for a.e. x̂ ∈ ω. Hence, one can apply Poincaré’s inequality and obtains

‖wεk‖
2
L2(ω;W1,2(Y ∗)) =

ˆ
ω
‖wεk(x̂, ·)‖2W1,2(Y ∗) dx̂

≤ C(Y ∗)

ˆ
ω
‖∇ywεk(x̂, ·)‖2L2(Y ∗;R3) dx̂

= C(Y ∗)‖∇ywεk‖
2
L2(ω×Y ∗;R3). (3.66)

Using the definition of the unfolding operator T̂ ∗εk for the rescaled perforated thin do-
main Bε-perf , a simple calculation shows that the derivatives of wεk w.r.t. the second
argument are given through

∇̂ywεk = 1
εk
∇̂y
(
T̂ ∗εkvεk

)
= T̂ ∗εk(∇̂vεk)

and

∂y3wεk = 1
εk
∂y3

(
T̂ ∗εkvεk

)
= T̂ ∗εk

(
1
εk
∂3vεk

)
.

Thus, once more by the isometry property of T̂ ∗εk the assumed L2(Bε-perf)-boundedness
of ∇̂vεk and 1

εk
∂3vεk indicates that (∇ywεk)k is bounded in L2(ω × Y ∗;R3). This to-

gether with (3.66) yields the boundedness of (wεk)k in L2(ω; W1,2(Y ∗)). Then, setting

yc :=

 
Y ∗
y dy
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(just like in [Cioranescu et al., 2008a, Section 3]), there is some V0 ∈ L2(ω; W1,2(Y ∗))
such that along (εk`)` (upon possibly choosing another subseqence) it is

wεk` −∇v0(x̂, 0) · (y − yc) ⇀ V0 in L2(ω; W1,2(Y ∗)). (3.67)

In particular, by the independence of v0 from x3 and the above explicit characterization
of ∇ywεk` = [T̂ ∗εk` (∇̂vεk` ), T̂ ∗εk` ( 1

εk`
∂3vεk` )],

[
T̂ ∗εk` (∇̂vεk` ), T̂ ∗εk`

(
1
εk`
∂3vεk`

)]
⇀ ∇v0(x̂, 0) +∇yV0(x̂, y) in L2(ω × Y ∗;R3)

=
[
∇̂v0(x̂, 0), 0

]T
+∇yV0(x̂, y).

The proof of the lemma would be finished if one could show that in fact V0(x̂, ·) ∈
W1,2

Ŷ -per
(Y ∗) for a.e. x̂ ∈ ω. To this end, I again adapt the ideas of [Cioranescu et al.,

2008a, Section 3]). Set

YV,1 := {y : y1 = 0, y ∈ ∂Y ∗ and y + e1 ∈ ∂Y ∗} ,

i.e. YV,1 is the intersection of the vertical faces of Y ∗ that are parallel to the hyperplane
{x : x1 = 0}. Furthermore, let ψ ∈ C∞c (ω× YV,1). Some calculations then reveal that

ˆ
ω

ˆ
YV,1

(
wεk` (x̂, y)− wεk` (x̂, y + e1)

)
ψ(x̂, y) da(y) dx̂

=

ˆ
ω

ˆ
YV,1

1
εk`

((
T̂ ∗εk`vεk`

)
(x̂, y)−

(
T̂ ∗εk`vεk`

)
(x̂, y + e1)

)
ψ(x̂, y) da(y) dx̂

=

ˆ
ω

ˆ
YV,1

(
T̂ ∗εk`vεk`

)
(x̂, y) 1

εk`

(
ψ(x̂, y)− ψ((x1 − εk` , x2), y)

)
da(y) dx̂

→
ˆ
ω

ˆ
YV,1

v0(x̂, 0) ∂x1ψ(x̂, y) da(y) dx̂ (3.68)

where the convergence follows from the second assertion of the lemma and the conti-
nuity of the trace operator. Similarly, it is

ˆ
ω

ˆ
YV,1

(
∇v0(x̂, 0) · (y − yc)−∇v0(x̂, 0) · (y + e1 − yc)

)
ψ(x̂, y) da(y) dx̂

=

ˆ
ω

ˆ
YV,1

−∂x1v0(x̂, 0) ψ(x̂, y) da(y) dx̂

=

ˆ
ω

ˆ
YV,1

v0(x̂, 0) ∂x1ψ(x̂, y) da(y) dx̂. (3.69)
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Furthermore, by the convergence (3.67) one has
ˆ
ω

ˆ
YV,1

(
wεk` (x̂, y)−∇v0(x̂, 0) · (y − yc)

)
ψ(x̂, y) da(y) dx̂

→
ˆ
ω

ˆ
YV,1

V0(x̂, y)ψ(x̂, y) da(y) dx̂ and
ˆ
ω

ˆ
YV,1

(
wεk` (x̂, y + e1)−∇v0(x̂, 0) · (y + e1 − yc)

)
ψ(x̂, y) da(y) dx̂

→
ˆ
ω

ˆ
YV,1

V0(x̂, y + e1)ψ(x̂, y) da(y) dx̂.

This, together with (3.68) and (3.69) leads to the conclusion
ˆ
ω

ˆ
YV,1

(
V0(x̂, y)− V0(x̂, y + e1)

)
ψ(x̂, y) da(y) dx̂ = 0

for all ψ ∈ C∞c (ω × YV,1), hence

V0(x̂, y) = V0(x̂, y + e1) for a.e. y ∈ YV,1

and a.e. x̂ ∈ ω. The same arguments repeated for the faces of Y ∗ that are parallel to the
hyperplane {x : x2 = 0} finally reveal that V0(x̂, ·) ∈W1,2

Ŷ -per
(Y ∗) for a.e. x̂ ∈ ω and

the proof of the lemma is finished.

With all these results at hand, one can now turn to the proof of Theorem 3.10.

3.4.3 Proof of the main results

The rescaled dissipation potentials (Fεk)k from (3.43) corresponding to the rescaled
perforated thin domain Bε-perf with tubular voids stretching over the entire rescaled
interface layer (see Figure 3.3, Figure 3.4 and Figure 3.7) are posed over the common
metric space L2(Ω+

tr ∪B ∪Ω−tr) equipped with the strong convergence. Hence, to prove
Theorem 3.10 it suffices to verify the sequential characterization of Γ-convergence for
the sequence (Fεk)k (again by means of Corollary 2.6). The following proof will be
split into two parts, one for the Γ-lim inf-inequality and the other for the Γ-lim sup-
inequality.

Step 1. Γ-lim inf-inequality. Let there be given a sequence (vεk)k in L2(Ω+
tr ∪

B ∪ Ω−tr) such that vεk → v0 in L2(Ω+
tr ∪ B ∪ Ω−tr) and lim infk Fεk(vεk) < ∞, and

let (εk`)` be a subsequence satisfying lim infk Fεk(vεk) = lim`Fεk` (vεk` ). Hence,

vεk` ∈W1,2

Γ+
tr∪Γ−tr

(Ω+
tr ∪Bε-perf ∪ Ω−tr) for all ` ∈ N.

As in the proof of Theorem 3.1, from the constitutive assumption (W3) on the
energy densities W± and W interf as stated in Section 3.2 and the boundedness of
(Fεk(vεk` ))`, it is easily inferred that the sequence (vεk` )` satisfies the a priori estimates

‖∇vεk`‖
2
L2(Ω±tr)

≤ C (3.70)
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and

‖∇̂vεk`‖
2
L2(Bε-perf ;R2) +

∥∥∥ 1
εk`
∂3vεk`

∥∥∥2

L2(Bε-perf)
≤ C (3.71)

for all ` ∈ N and some positive constant C. From the strong convergence vεk → v0 in
L2(Ω+

tr∪B∪Ω−tr), the fact that vεk` |Ω±tr ∈W1,2

Γ±tr
(Ω±tr) for all ` ∈ N and the boundedness

of (3.70) one concludes that

vεk` |Ω±tr ⇀ v0|Ω±tr in W1,2

Γ±tr
(Ω±tr). (3.72)

In particular, v0|Ω±tr ∈W1,2

Γ±tr
(Ω±tr). Moreover, from estimate (3.71) and Lemma 3.21 one

obtains the existence of a ṽ0 ∈W1,2(B) independent of x3 such that

Qεk`

(
vεk`

∣∣
Bε-perf

)
⇀ ṽ0 in W1,2(B), (3.73)

T̂ ∗εk`
(
vεk`

∣∣
Bε-perf

)
⇀ ṽ0(x̂, 0) in L2(ω; W1,2(Y ∗), (3.74)

where Qεk` : W1,2(Bε-perf) → W1,2(B) is the interpolation operator from Definition

3.18 and T̂ ∗εk` : L2(Bε-perf) → L2(ω × Y ∗) the unfolding operator for the rescaled

perforated thin domain Bε-perf from Definition 3.11. The same lemma also states the
existence of a V0 ∈ L2(ω; W1,2

Ŷ -per
(Y ∗)) such that

[
T̂ ∗εk` (∇̂vεk` ), T̂ ∗εk`

(
1
εk`
∂3vεk`

)]
⇀
[
∇̂v0(x̂, 0), 0

]T
+∇yV0(x̂, y) in L2(ω × Y ∗;R3). (3.75)

Now, the assumed strong convergence vεk` |B → v0|B in L2(B) and Proposition 3.13
reveal that

T̂ ∗εk`
(
vεk`

∣∣
Bε-perf

)
→ v0

∣∣
B

(x̂, y3) in L2(ω × Y ∗).

This together with (3.74) yields the identity

v0

∣∣
B

(x̂, y3) = ṽ0(x̂, 0) for a.e. (x̂, y) ∈ ω × Y ∗.

Hence, v0(x̂, ·) is constant for a.e. x̂ ∈ ω and therefore

v0

∣∣
B

(x) = ṽ0(x̂, 0) for a.e. x ∈ B. (3.76)

To conclude v0|Ω±tr ∈ W1,2

Γ±tr
(Ω±tr), v0

∣∣
B
∈ W1,2(B) and v0 is independent of x3 in B.

What remains to show now is that the traces of v0|Ω±tr and v0

∣∣
B

on the faces ω × {±1
2}

of B conincide. In this case one would conclude v0 ∈ W1,2

Γ+
tr∪Γ−tr

(Ω+
tr ∪ B ∪ Ω−tr) and

v0 is independent of x3 in B, thus v0 ∈ VΓ+,Γ−(Ω+,Ω−, B). By the assumption on the
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tubular void V = [0, 1)×H for someH b [0, 1)×[−1
2 ,

1
2 ], it follows that there is an r >

0 such that the layer L := ω×[1
2−r,

1
2 ] does not touch the voids inBε-perf . Moreover, it

is according to (3.71) (vεk` |L)` a bounded sequence in W1,2(L), thus converges without
loss of generality weakly in that space. However,∥∥∥vεk` ∣∣L − v0

∣∣
L

∥∥∥
L2(L)

≤
∥∥∥vεk` ∣∣Bε-perf −Qεk`

(
vεk`

∣∣
Bε-perf

)∥∥∥
L2(L)

+
∥∥∥Qεk` (vεk` ∣∣Bε-perf

)
− v0

∣∣
B

∥∥∥
L2(L)

≤
∥∥∥vεk` ∣∣Bε-perf −Qεk`

(
vεk`

∣∣
Bε-perf

)∥∥∥
L2(Bε-perf)

+
∥∥∥Qεk` (vεk` ∣∣Bε-perf

)
− v0

∣∣
B

∥∥∥
L2(B)

−→ 0 + 0

as εk` vanishes. This can be easily deduced on the one hand from (3.73) and (3.76),
and on the other hand from Proposition 3.20 and the a priori-estimate (3.71). Hence,
vεk` |L ⇀ v0|L in W1,2(L). Since vεk` ∈W1,2

Γ+
tr∪Γ−tr

(Ω+
tr ∪ Bε-perf ∪ Ω−tr) for all ` ∈ N,

the traces of vεk` |Ω+
tr

and vεk` |L on the face ω × {1
2} of B conincide for all `. Finally,

due to the weak continuity of the trace operator, it also follows that the limits

lim
`→∞

trω×{ 1
2
}

(
vεk`

∣∣
Ω+

tr

)
= trω×{ 1

2
}

(
v0

∣∣
Ω+

tr

)
and

lim
`→∞

trω×{ 1
2
}

(
vεk`

∣∣
L

)
= trω×{ 1

2
}
(
v0

∣∣
L

)
conincide. In other words, v0|Ω+

tr
and v0|B have identical traces on ω × {1

2}, and by
similar arguments it follows that also v0|Ω−tr and v0|B have identical traces on ω×{−1

2}.
This yields v0 ∈ W1,2

Γ+
tr∪Γ−tr

(Ω+
tr ∪ B ∪ Ω−tr) and v0 is independent of x3 in B, hence

v0 ∈ VΓ+,Γ−(Ω+,Ω−, B) as claimed.
As concerns the limiting behavior of the rescaled dissipation potential Fεk` in the

bodies adjacent to the interface Bε-perf , again standard lower semicontinuity arguments
for convex integral functionals, together with the weak convergences (3.72) and the
assumed convexity of W± (see (W2)) lead to

ˆ
Ω±tr

W±(∇v0(x)) dx ≤ lim inf
`→∞

ˆ
Ω±tr

W±(∇vεk` (x)) dx. (3.77)

With the help of the unfolding operator T̂ ∗εk` the asymptotics of the interface term in
the rescaled dissipation potential Fεk` can be easily described. In fact, by the isometry

property of T̂ ∗εk` stated in Proposition 3.12 it is

ˆ
Bε-perf

W interf
(
∇̂vεk` (x), 1

εk`
∂3vεk` (x)

)
dx

=

ˆ
ω

ˆ
Y ∗
W interf

(
T̂ ∗εk` (∇̂vεk` )(x̂, y), T̂ ∗εk`

(
1
εk`
∂3vεk`

)
(x̂, y)

)
dy dx̂
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Just like in the proof of Theorem 3.1, the weak convergence (3.75), the assumed con-
vexity ofW interf and standard lower semicontinuity arguments for convex integral func-
tionals allow to pass to the limit εk` → 0, resulting in

lim inf
`→∞

ˆ
Bε-perf

W interf
(
∇̂vεk` (x), 1

εk`
∂3vεk` (x)

)
dx

= lim inf
`→∞

ˆ
ω

ˆ
Y ∗
W interf

(
T̂ ∗εk` (∇̂vεk` )(x̂, y), T̂ ∗εk`

(
1
εk`
∂3vεk`

)
(x̂, y)

)
dy dx̂

≥
ˆ
ω

ˆ
Y ∗
W interf

(
[∇̂v0(x̂, 0), 0]T +∇yV0(x̂, y)

)
dy dx̂

≥
ˆ
ω

inf

{ˆ
Y ∗
W interf

(
[∇̂v0(x̂, 0), 0]T +∇yw(y)

)
dy : w ∈W1,2

Ŷ -per
(Y ∗)

}
dx̂

=

ˆ
ω
Ŵ interf

(
∇̂v0(x̂, 0)

)
dx̂. (3.78)

Before analyzing the source term in the rescaled dissipation potential Fεk` , one has
to perform some minor computations. Again, by the assumption (ε-Tiling) on ω and the
elements of the sequence (εk)k

ˆ
∂Bε-perf∩B◦

G(vεk` (x))
∣∣∣Mεk`

n(x; ∂Bε-perf)
∣∣∣da(x)

=
∑
â∈Zε

ˆ
Mεk`

([â,0]T +∂V ∩intY )
G(vεk` (x))

∣∣∣Mεk`
n
(
x;Mεk`

([â, 0]T + ∂V )
) ∣∣∣ da(x).

(3.79)

Applying the unfolding T̂ ∗εk` in the single integrals of the above sum is in fact equivalent
to performing the change of variables

Sεk` : Y →Mεk`
([â, 0]T + Y ), Sεk` (y) = Mεk`

([â, 0]T + y)

in the respective terms. Again with the help of Nanson’s formula (see [Ciarlet, 1988,
Theorem 1.7-1]) this amounts to

ˆ
Mεk`

([â,0]T +∂V ∩intY )
G(vεk` (x))

∣∣∣Mεk`
n
(
x;Mεk`

([â, 0]T + ∂V )
) ∣∣∣da(x)

=

ˆ
∂V ∩intY

G
(
vεk` (Sεk` (y))

) ∣∣∣Mεk`
n
(
Sεk` (y);Mεk`

([â, 0]T + ∂V )
) ∣∣∣∣∣∣Cof (∇Sεk` (y))n(y; ∂V )

∣∣∣da(y)

=

ˆ
∂V ∩intY

G
(
vεk` (εk` â+ εk` ŷ, y3)

) ∣∣∣Mεk`
n
(
Mεk`

y;Mεk`
∂V
) ∣∣∣∣∣∣ε2

k`
M−1
εk`

n(y; ∂V )
∣∣∣da(y). (3.80)
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On the other hand, a corollary of Nanson’s formula [Ciarlet, 1988, p. 41] allows to
identify

n
(
Mεk`

y;Mεk`
∂V
)

=
Cof

(
Mεk`

)
n(y, ∂V )∣∣∣Cof

(
Mεk`

)
n(y, ∂V )

∣∣∣
=

M−1
εk`

n(y, ∂V )∣∣∣M−1
εk`

n(y, ∂V )
∣∣∣ .

Using this one can further deduce

ˆ
Mεk`

([â,0]T +∂V ∩intY )
G(vεk` (x))

∣∣∣Mεk`
n
(
x;Mεk`

([â, 0]T + ∂V )
) ∣∣∣da(x)

=

ˆ
∂V ∩intY

G
(
vεk` (εk` â+ εk` ŷ, y3)

) ∣∣∣Mεk`

M−1
εk`

n(y,∂V )∣∣∣M−1
εk`

n(y,∂V )
∣∣∣
∣∣∣∣∣∣ε2

k`
M−1
εk`

n(y; ∂V )
∣∣∣da(y)

=ε2
k`

ˆ
∂V ∩intY

G
(
vεk` (εk` â+ εk` ŷ, y3)

) ∣∣∣n(y; ∂V )
∣∣∣ da(y)

=ε2
k`

ˆ
∂V ∩intY

G
(
vεk` (εk` â+ εk` ŷ, y3)

)
da(y).

Inserting this into (3.80) yields

ˆ
∂Bε-perf∩B◦

G(vεk` (x))
∣∣∣Mεk`

n(x; ∂Bε-perf)
∣∣∣da(x)

=
∑
â∈Zε

ε2
k`

ˆ
∂V ∩intY

G
(
vεk` (εk` â+ εk` ŷ, y3)

)
da(y)

=
∑
â∈Zε

ˆ
εk` (â+Ŷ )

ˆ
∂V ∩intY

G
(
vεk` (εk` â+ εk` ŷ, y3)

)
da(y) dx̂

=
∑
â∈Zε

ˆ
εk` (â+Ŷ )

ˆ
∂V ∩intY

G
(
vεk`

(
εk`

⌊
x̂
εk`

⌋
+ εk` ŷ, y3

))
da(y) dx̂

=

ˆ
ω

ˆ
∂V ∩intY

G
((
T̂ ∗εk`vεk`

)
(x̂, y)

)
da(y) dx̂. (3.81)

Since from (3.74) and (3.76) and the continuity of the trace operator it also follows

T̂ ∗εk`
(
vεk`

∣∣
Bε-perf

)
⇀ v0(x̂, 0) in L2(ω; L2(∂V )),
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one can in view of the convexity of G : R→ R like defined in (3.40) conclude

lim inf
`→∞

ˆ
∂Bε-perf∩B◦

G(vεk` (x))
∣∣∣Mεk`

n(x; ∂Bε-perf)
∣∣∣ da(x)

= lim inf
`→∞

ˆ
ω

ˆ
∂V ∩intY

G
((
T̂ ∗εk`vεk`

)
(x̂, y)

)
da(y) dx̂

≥
ˆ
ω

ˆ
∂V ∩intY

G(v0(x̂, 0)) da(y) dx̂

=vol2 (∂V ∩ intY )

ˆ
ω
G(v0(x̂, 0)) dx̂. (3.82)

Finally, from v0 ∈ VΓ+,Γ−(Ω+,Ω−, B), (3.77), (3.78) and (3.82) it is now easy to
infer

lim inf
`→∞

Fεk` (vεk` ) ≥
ˆ

Ω+
tr

W+(∇v0(x)) dx+

ˆ
Ω−tr

W−(∇v(x)) dx

+

ˆ
ω
Ŵ interf

(
∇̂v0(x̂, 0)

)
dx̂

+ vol2 (∂V ∩ intY )

ˆ
ω
G(v0(x̂, 0)) dx̂

=FHom(v0),

which concludes the proof of the Γ-lim inf-inequality.
Step 2. Γ-lim sup-inequality. The proof of the Γ-lim sup-inequality is very similar

to what has been done in the case of Theorem 3.1. In fact, since many of the arguments
employed therein can be applied literally also in the present situation, I will only sketch
the proof of the Γ-lim sup-inequality. Let v0 ∈ L2(Ω+

tr ∪ B ∪ Ω−tr) and assume without
loss of generality FHom(v0) < ∞. Thus v0 ∈ VΓ+,Γ−(Ω+,Ω−, B), in other words
v0 ∈W1,2

Γ+
tr∪Γ−tr

(Ω+
tr ∪ B ∪ Ω−tr) and ∂3v0|B = 0. By the same arguments as used in the

proof of Theorem 3.1 one obtains the existence of some V0 ∈ L2(ω; W1,2

Ŷ -per
(Y ∗)) such

that

V0(x̂, ·) ∈

{
w : w ∈W1,2

Ŷ -per
(Y ∗),

ˆ
Y ∗
w(y) dy = 0,

ˆ
Y ∗
W interf

(
[∇̂v0(x̂, 0), 0]T +∇yw(y)

)
dy = Ŵ interf

(
∇̂v0(x̂, 0)

)}
. (3.83)

Moreover, for δ some small positive real number one can also find a smooth function
Ψδ ∈ C∞c (ω; C∞

Ŷ -per
(Y ∗)) such that

‖Ψδ − V0‖L2(ω×Y ∗) + ‖∇yΨδ −∇yV0‖L2(ω×Y ∗;R3) ≤ δ. (3.84)

Like in Step 1 of the present proof, by the assumption on the tubular void V = [0, 1)×
H for some H b [0, 1) × [−1

2 ,
1
2 ], it follows that there is an r > 0 such that both
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Ŷ × [1
2 − r,

1
2 ] and Ŷ × [−1

2 ,−
1
2 + r] do not touch the void in Y ∗ = Y \ V . Therefore,

one may assume Ψδ to be extended to the set
(
Ŷ × [−1

2 − r,
1
2 + r]

)
\V by reflection of

Ψδ|Ŷ×[ 1
2
−r, 1

2
]
and Ψδ|Ŷ×[− 1

2
,− 1

2
+r]

w.r.t. the top and bottom faces of Y ∗, i.e. w.r.t. Ŷ ×

{1
2} and Ŷ ×{−1

2}. Furthermore, ρδ ∈ C∞c ([−1
2 − r,

1
2 + r]) shall be a cut-off function

with values in [0, 1] such that it equals 1 on [−1
2 ,

1
2 ] and has its support contained in

[−1
2 − δ,

1
2 + δ]. Again, one defines a sequence vεk,δ ∈W1,2

Γ+
tr∪Γ−tr

(Ω+
tr ∪ Bε-perf ∪ Ω−tr)

through

vεk,δ(x) := v0(x) + εkρδ(x3)Ψδ

(
x̂,
(
x̂
εk
, x3

))
, x ∈ Ω+

tr ∪B ∪ Ω−tr.

Obviously,

vεk,δ → v0 in L2(Ω+
tr ∪B ∪ Ω−tr) as εk → 0.

Once more for x ∈ Ω+
tr ∪B ∪ Ω−tr, a simple calculation show that

∇̂vεk,δ(x) = ∇̂v0(x)

+ εkρδ(x3)∇̂xΨδ

(
x̂,
(
x̂
εk
, x3

))
+ ρδ(x3)∇̂yΨδ

(
x̂,
(
x̂
εk
, x3

))
,

and

∂3vεk,δ(x) = ∂3v0(x)

+ εkρ
′
δ(x3)Ψδ

(
x̂,
(
x̂
εk
, x3

))
+ εkρδ(x3)∂y3Ψδ

(
x̂,
(
x̂
εk
, x3

))
.

In view of ∂3v0 = 0 in B and ρδ = 1 in
[
−1

2 ,
1
2

]
the above derivatives simplify for

x = (x̂, x3) ∈ B = ω ×
[
−1

2 ,
1
2

]
. That is,

∇̂vεk,δ(x) = ∇̂v0(x)

+ εk∇̂xΨδ

(
x̂,
(
x̂
εk
, x3

))
+ ∇̂yΨδ

(
x̂,
(
x̂
εk
, x3

))
for x ∈ B, (3.85)

∂3vεk,δ(x) = εk∂y3Ψδ

(
x̂,
(
x̂
εk
, x3

))
for x ∈ B. (3.86)

While not going into details, by similar arguments to those used in the proof of
Theorem 3.1 one can in fact show that

lim
`→∞

(
lim
k→∞

ˆ
Ω±tr

W± (∇vεk,δ`(x)) dx

)

=

ˆ
Ω±tr

ˆ
Ŷ
W±

(
∇̂v0(x), ∂3v0(x)

)
dŷ dx =

ˆ
Ω±tr

W±(∇v0(x)) dx, (3.87)

where (δ`)` shall be some arbitrary vanishing sequence of positive real numbers.
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Regarding the limiting behavior of the interface term in the rescaled dissipation
potential Fεk(vεk), one first notices that by (3.85)

T̂ ∗εk(∇̂vεk,δ) = T̂ ∗εk
(
∇̂v0

)
(x̂, y) + εk∇̂xΨδ

(
εk

⌊
x̂
εk

⌋
+ εkŷ, y

)
+ ∇̂yΨδ

(
εk

⌊
x̂
εk

⌋
+ εkŷ, y

)
→ ∇̂v0(x̂, 0) + ∇̂yΨδ(x̂, y) in L2(ω × Y ∗;R2)

and by (3.86)

T̂ ∗εk( 1
εk
∂3vεk,δ) = ∂y3Ψδ

(
εk

⌊
x̂
εk

⌋
+ εkŷ, y

)
→ ∂y3Ψδ(x̂, y) in L2(ω × Y ∗).

With these two strong convergences at hand, it is again easy to infer that

lim
k→∞

ˆ
Bε-perf

W interf
(
∇̂vεk,δ(x), 1

εk
∂3vεk,δ(x)

)
dx

= lim
k→∞

ˆ
ω

ˆ
Y ∗
W interf

(
T̂ ∗εk(∇̂vεk,δ)(x̂, y), T̂ ∗εk

(
1
εk
∂3vεk,δ

)
(x̂, y)

)
dy dx̂

=

ˆ
ω

ˆ
Y ∗
W interf

(
[∇̂v0(x̂, 0), 0]T +∇yΨδ(x̂, y)

)
dy dx̂.

Then, with the help of (3.84) one can pass to limit δ` → 0 and obtains

lim
`→∞

(
lim
k→∞

ˆ
Bε-perf

W interf
(
∇̂vεk,δ`(x), 1

εk
∂3vεk,δ`(x)

)
dx

)
= lim
`→∞

(ˆ
ω

ˆ
Y ∗
W interf

(
[∇̂v0(x̂, 0), 0]T +∇yΨδ`(x̂, y)

)
dy dx̂

)

=

ˆ
ω

(ˆ
Y ∗
W interf

(
[∇̂v0(x̂, 0), 0]T +∇yV0(x̂, y)

)
dy

)
dx̂,

which by (3.83) is nothing but

lim
`→∞

(
lim
k→∞

ˆ
Bε-perf

W interf
(
∇̂vεk,δ`(x), 1

εk
∂3vεk,δ`(x)

)
dx

)
=

ˆ
ω
Ŵ interf(∇̂v0(x̂, 0)) dx̂. (3.88)

Furthermore, the source term can be treated as follows. By performing the same
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steps leading to (3.81) one has
ˆ
∂Bε-perf∩B◦

G(vεk,δ(x))
∣∣∣Mεk n(x; ∂Bε-perf)

∣∣∣ da(x)

=

ˆ
ω

ˆ
∂V ∩intY

G
((
T̂ ∗εkvεk,δ

)
(x̂, y)

)
da(y) dx̂

=

ˆ
ω

ˆ
∂V ∩intY

G
(
v0(x̂, 0) + εkΨδ

(
εk

⌊
x̂
εk

⌋
+ εkŷ, y

))
da(y) dx̂

→
ˆ
ω

ˆ
∂V ∩intY

G(v0(x̂, 0)) da(y) dx̂

=vol2 (∂V ∩ intY )

ˆ
ω
G(v0(x̂, 0)) dx̂. (3.89)

as εk vanishes.
Now, by collecting the convergences (3.87), (3.88) and (3.89) one can conclude

lim
`→∞

(
lim
k→∞

Fεk(vεk,δ`)

)
= lim
`→∞

(
lim
k→∞

ˆ
Ω+

tr

W+ (∇vεk,δ`(x)) dx+ lim
k→∞

ˆ
Ω−tr

W− (∇vεk,δ`(x)) dx

+ lim
k→∞

ˆ
Bε-perf

W interf
(
∇̂vεk,δ`(x), 1

εk
∂3vεk,δ`(x)

)
dx

+ lim
k→∞

ˆ
∂Bε-perf∩B◦

G(vεk,δ`(x))
∣∣∣Mεk n(x; ∂Bε-perf)

∣∣∣da(x)

)

=

ˆ
Ω+

tr

W+(∇v0(x)) dx+

ˆ
Ω−tr

W−(∇v0(x)) dx

+

ˆ
ω
Ŵ interf

(
∇̂v0(x̂, 0)

)
dx̂

+ vol2 (∂V ∩ intY )

ˆ
ω
G(v0(x̂, 0)) dx̂

=FHom(v0).

The proof of the Γ-lim sup-inequality can finally be completed by applying the very
same diagonalization argument already used in the proof of Theorem 3.1.



Chapter 4

Nonconvergence in convex
homogenization by the use of
multiple coordinate frames

This last chapter of my thesis is the result of a collaboration with my friend and col-
league Stefan Neukamm that started already in summer 2008 when we discovered ‘by
accident’ a somewhat particular property of two-scale convergence. That is, we proved
that two-scale convergence of a sequence of functions (see Subsection 2.4.1) actually
depends on the specific coordinate frame in which the functions’ domain is described.
To the extent that two-scale convergent sequences in one coordinate frame may result
as non two-scale convergent in another coordinate frame. Moreover, we could precisely
describe how a change of variables to a translated coordinate frame affects two-scale
convergence. In fact, as a result of an intense exchange of eMails between Trento and
Munich in May 2008 (Stefan was PhD student at the Technische Universität München
back then while I was already staying in Trento) that lasted only two days we could
already establish the main result of our collaboration. However, following the advice
of my supervisor, Prof. Augusto Visintin, we kept on elaborating the main result and
finally managed to solve a new kind of homogenization problem involving multiple co-
ordinate frames in which we observed general nonconvergence, dependending on the
specific sequence of microscale parameters chosen. These results were published in
Asymptotic Analysis in 2011, vol. 71(3), pp. 163–183 with the title ‘On the interplay of
two-scale convergence and translation’ (cf. Neukamm and Stelzig [2011]).

4.1 Introduction and outline

Two-scale convergence, as it was already introduced in detail in Subsection 2.4.1, is
an already well-established, well-studied and important tool in the theory of periodic
homogenization, and its relation to ‘traditional’ notions of convergence appears to be
well-understood (see the Propositions 2.15 and 2.24). Yet, we were quite surprised
by the effects on two-scale convergence in L2(Ω) caused by the simplest change of
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variables one can think of: a translation of the underlying coordinate frame describing
the domain Ω. While the translation operator is continuous w.r.t. strong and weak
convergence in L2(Ω), its interplay with two-scale convergence turns out to be more
subtle. As an illustration one might consider for one space dimension Ω = R and the
periodicity cell Y = [0, 1) the sequence

uε : R→ R, uε(x) := umacro(x)uoscill(
x
ε ),

parametrized by vanishing microscale parameters ε, with umacro being an arbitrary func-
tion in L2(R) and uoscill a smooth, Y -periodic function s.t.

´
Y uoscill(y) dy = 1. It is

well-known that

uεk(x) ⇀ umacro(x) weakly in L2(R)

uεk(x)
2−⇀ umacro(x)uoscill(y) weakly two-scale in L2(R× Y )

for any vanishing sequence of positive real numbers (εk)k (see the Example 2.1 and
e.g. Proposition 2.15). Clearly, the translated sequence (uεk(x + t))k converges to
umacro(x + t) weakly in L2(R). In contrast to this, (uεk(x + t))k may not even be
weakly two-scale convergent. Still, as it remains bounded in L2(Ω), the translated se-
quence exhibits weakly two-scale convergent subsequences (by the classical two-scale
compactness result in Theorem 2.17). For instance, if εk = 2

k and t = 1, then the trans-
lated sequence solely exhibits the weak two-scale cluster points umacro(x+1)uoscill(y)
and umacro(x + 1)uoscill

(
y + 1

2

)
. From this one might with some optimism ‘deduce’

that for any sequence (εk)k and any translation t,

each weak two-scale cluster point of (uεk(x+ t))k

is of the form umacro(x+ t)uoscill(y + r)

for some r ∈ Y , which we call a ‘microtranslation’.
Indeed, we are going to prove the following: Let (uεk)k be a sequence in L2(Ω)

(Ω an open subset of RN and Y = [0, 1)N ) that weakly two-scale converges to u ∈
L2(Ω × Y ) w.r.t. the vanishing sequence (εk)k and consider an arbitrary translation
t ∈ RN . Then each weak two-scale cluster point of the translated sequence (uεk(·+t))k
has the form u(·+ t, ·+ r) for some microtranslation r. That is, the original weak two-
scale limit not only shifted in its ‘macrovariable’ by the ‘macrotranslation’ t, but also in
the ‘microvariable’ by the microtranslation r. More precisely, we show that the set Cw
of all weak two-scale cluster points of (u(·+ t)εk)k can be characterized according to

Cw =
{
u(·+ t, ·+ r) : r ∈M

}
whereM denotes the set of all attainable microtranslations. It turns out, thatM is com-
pletely determined by the translation t and the vanishing sequence (εk)k. In the case
where (uεk)k strongly two-scale converges to u, the very same representation holds true
for the set Cs of all strong two-scale cluster points of the translated sequence. Thus trans-
lation of the coordinate frame considerably affects two-scale convergence in L2(Ω), in
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a way that only depends on the translation t and the vanishing sequence (εk)k but not
on the particular sequence of functions itself. Finally, we will show that Cw, Cs andM
are compact and illustrate the dependence ofM on the choice of t and (εk)k.

Later on in Section 4.3, we apply these results to a homogenization problem that
involves two distinct coordinate frames being translated by a constant vector. Our goal
is to characterize the asymptotic behavior of the oscillating functional

Fε : W1,2
0 (Ω;RN )→ [0,+∞),

Fε(u) :=

ˆ
Ω
W
(
x
ε ,Du(x)

)
dx+

ˆ
Ω−t

W
(
x
ε ,Du(x+ t)

)
dx,

t ∈ RN being an arbitrary translation, as the size ε of the oscillations tends to zero.
Here, the energy density W (y, F ) shall be convex, continuous and of quadratic growth
in F , and Y -periodic in y. In the case t = 0, this kind of problem has been exten-
sively studied, most notably by Marcellini in his fundamental contribution Marcellini
[1978] and later on also in non-convex situations related to elasticity by Müller Müller
[1987] (see the introduction of this thesis, Subsection 2.2.3). Since the early 1990s,
many authors have revisited the above problem with trivial translation t = 0 employing
methods related to two-scale convergence in order to elegantly prove Γ-convergence
of Fε to a homogenized limiting problem (see in particular Allaire [1992]; Cioranescu
et al. [2006a]; Visintin [2007]). In the new situation with nontrivial translation t 6= 0
on the other hand, Γ-convergence generally fails as we show explicitely in Section 4.4.
However, thanks to our characterization of weak two-scale cluster points of translated
sequences we can explicitly state the lower and upper Γ-limits of Fε (as ε vanishes) in
terms of associated microtranslations. In passing we note that in Subsection 4.3.2 we
provide an abstract result on Γ-convergence that may be of its own interest.

4.2 Two-scale convergence in translated coordinate frames

Here and hereafter we will denote by Ω an open subset ofRN . Given an arbitrary vector
t ∈ RN , the set Ω− t is to be understood as the set {x− t : x ∈ Ω }. As the periodicity
cell Y we take the N -dimensional unit cube [0, 1)N and any function defined on Y
in one of its variables is assumed to be extended to RN by Y -periodicity. Moreover,
we will frequently encounter the sequence (εk)k, which shall be an arbitrary but fixed
vanishing sequence of positive real numbers. Following ideas from Cioranescu et al.
[2002] and adopting the notation used in Visintin [2006], we define N : RN → ZN

andR : RN → Y by setting

N (x) := max{z ∈ ZN : zi ≤ xi, i = 1, . . . , N}, R(x) := x−N (x)

wherein max is taken componentwise.

4.2.1 The occurrence of microtranslations

As explained in the Section 4.1, our intention is to understand the behavior of weakly
or strongly two-scale convergent sequences under translation of the coordinate frame.
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To this end, it is convenient to define the following:

Definition 4.1. Let (uεk)k be a sequence in L2(Ω) and t ∈ RN .

(i) The set of all weak two-scale cluster points of the sequence (uεk)k translated by
t is defined by

Cw :=
{
v ∈ L2((Ω−t)×Y ) : there exists a subsequence (k`)` s.t.

uεk` (·+ t)
2−⇀ v in L2((Ω− t)×Y )

}
.

The set of all strong two-scale cluster points of the sequence (uεk)k translated by
t is defined by

Cs :=
{
v ∈ L2((Ω−t)×Y ) : there exists a subsequence (k`)` s.t.

uεk` (·+ t)
2−→ v in L2((Ω− t)×Y )

}
.

(ii) The set of all microtranslations emerging from the translation t and (εk)k is de-
fined by

M :=
{
r ∈ Y : r is a cluster point of

(
R( t

εk
)
)
k

in RN
}
.

Moreover, we call a subsequence (k`)` a (t, r)-subsequence, if lim
`→∞

R( t
εk`

) = r.

When considering a weakly or strongly two-scale convergent sequence (uεk)k in
L2(Ω), the reasoning in the previous section suggests that we cannot expect two-scale
convergence of the translated sequence (uεk(· + t))k. In particular, the sets Cw and Cs
are going to be nontrivial. However, they can be characterized in a very precise manner:

Theorem 4.2. Let (uεk)k be a sequence in L2(Ω) and u ∈ L2(Ω×Y ).

(i) If uεk
2−⇀ u in L2(Ω×Y ), then

Cw =
{
u(·+ t, ·+ r) : r ∈M

}
.

(ii) If uεk
2−→ u in L2(Ω×Y ), then

Cs =
{
u(·+ t, ·+ r) : r ∈M

}
.

Regarding this result, we urge the reader to notice that the set of all weak (strong)
two-scale cluster points Cw (Cs) of a two-scale convergent sequence (uεk)k translated by
t does not depend on the sequence itself, but only on the vanishing sequence (εk)k, the
translation t and the original two-scale limit u. Indeed, since all two-scale cluster points
can be obtained by doubly translating the original limit u by t in the macrovariable
and by r ∈ M in the microvariable, we refer toM as the set of all microstranslations
emerging from the translation t and (εk)k.

The main ingredient in the proof of Theorem 4.2 will be the next lemma, which can
be regarded as a result of its own interest.
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Lemma 4.3. Let (k`)` be a (t, r)-subsequence and (uεk` )` a weakly (respectively strongly)
two-scale convergent sequence in L2(Ω×Y ) with limit u. Then the sequence (uεk` (·+
t))` is weakly (respectively strongly) two-scale convergent in L2((Ω−t)×Y ) to the func-
tion

u(·+ t, ·+ r) ∈ L2((Ω−t)×Y ).

Proof. The proof of this statement will be two-stage.
Step 1. We first consider the case of weak two-scale convergence uεk`

2−⇀ u. Since
the translated sequence remains bounded, it suffices to prove

lim
`→∞

ˆ
Ω−t

uεk` (x+ t)ϕ(x, x
εk`

) dx =

ˆ
Ω−t

ˆ
Y
u(x+ t, y + r)ϕ(x, y) dy dx (4.1)

for all ϕ ∈ C∞c (Ω − t; C∞per(Y )). By the change of variables x 7→ x − t we can write
the integral on the left hand side as

ˆ
Ω−t

uεk` (x+ t)ϕ(x, x
εk`

) dx =

ˆ
Ω
uεk` (x)ϕ

(
x− t, x

εk`
− t

εk`

)
dx

=

ˆ
Ω
uεk` (x)ϕ

(
x− t, x

εk`
− r
)

dx+

ˆ
Ω
uεk` (x)ϕεk` (x) dx, (4.2)

where

ϕεk` (x) := ϕ
(
x− t, x

εk`
− t

εk`

)
− ϕ

(
x− t, x

εk`
− r
)
.

Since ϕ(· − t, · − r) ∈ C∞c (Ω; C∞per(Y )) is an admissible two-scale testfunction and

uεk`
2−⇀ u, we can pass to the limit in the first integral of (4.2) and obtain (after retrans-

formation)

lim
`→∞

ˆ
Ω
uεk` (x)ϕ

(
x− t, x

εk`
− r
)

dx =

ˆ
Ω−t

ˆ
Y
u(x+ t, y + r)ϕ(x, y) dy dx.

(4.3)

Now, it remains to show that the second integral in (4.2) vanishes in the limit. Therefore,
we prove that ϕεk` → 0 uniformly. Due to the decomposition

t
εk`

= N
(

t
εk`

)
+R

(
t
εk`

)
and the Y -periodicity of ϕ in the second variable, we deduce

ϕεk` (x) = ϕ
(
x− t, x

εk`
− r + r`

)
− ϕ

(
x− t, x

εk`
− r
)
,

where r` := r −R
(

t
εk`

)
.

Now, the condition of (k`)` being a (t, r)-subsequence and the smoothness of ϕ
implies first that r` → 0 and secondly, that ϕεk` vanishes uniformly. Consequently,
assertion (4.1) follows.
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Step 2. Assume now strong two-scale convergence uεk`
2−→ u. From Step 1 we

already know that the translated sequence weakly two-scale converges to u(·+ t, ·+ r).
However, this is already sufficient to infer strong two-scale convergence of the translated
sequence, since ‖v‖L2(Ω) = ‖v(· + t)‖L2(Ω−t) for all v ∈ L2(Ω) and thus ‖uεk` (· +
t)‖L2(Ω−t) → ‖u(·+ t, ·+ r)‖L2((Ω−t)×Y ).

Having this preparatory result at hand, the proof of the main Theorem 4.2 is no
longer difficult:

Proof of Theorem 4.2. We confine ourselves to proving the statement for Cw, since
the proof for Cs is similar.

First, we show the inclusion {u(·+ t, ·+ r) : r ∈M} ⊆ Cw. Let r ∈ M and
(k`)` a corresponding (t, r)-subsequence. By Lemma 4.3 we obtain uεk` (· + t)

2−⇀
u(·+ t, ·+ r) and conclude u(·+ t, ·+ r) ∈ Cw.

In order to show the opposite inclusion, let v ∈ Cw and choose a subsequence (k`)`

such that uεk` (· + t)
2−⇀ v. By the compactness of Y we can assume without loss of

generality that

R
(

t
εk`

)
→ r.

Hence, (k`)` is a (t, r)-subsequence with r ∈ M and Lemma 4.3 implies that v =
u(·+ t, ·+ r).

4.2.2 Strong compactness of in the set of cluster points

The next result states that the set of all weak (respectively strong) two-scale cluster
points Cw (respectively Cs) of a translated weakly (respectively strongly) two-scale con-
vergent sequence and the set of all microtranslationsM are compact:

Proposition 4.4. The set M is a compact subset of RN . In the situation of the first
(respectively second) statement of Theorem 4.2, the set Cw (respectively Cs) is compact
w.r.t. strong convergence in L2((Ω− t)×Y ).

Proof. The proof is split into two parts, the first dealing with the compactness ofM,
the second stating the compactness of Cw. As the compactness of Cs can be proved
similarly to Cw, we do not go into the details of its proof.

Step 1. First, let us remark that

M =

{
r ∈ RN : lim inf

k→∞

∣∣∣R( t
εk

)
− r
∣∣∣ = 0

}
. (4.4)

Obviously M is bounded. We will see that it is also closed: Consider an arbitrary
sequence (r`)` inM that converges to some r ∈ RN . We define the quantity

c`,k :=
∣∣∣R( t

εk

)
− r`

∣∣∣+ |r` − r| .



Nonconvergence due to multiple coordinate frames 153

Since r` ∈ M, equation (4.4) implies that lim infk c`,k = |r` − r| for all ` ∈ N, and
therefore

lim sup
`→∞

(
lim inf
k→∞

c`,k

)
= lim sup

`→∞
|r` − r| = 0. (4.5)

Utilizing [Attouch, 1984, Lemma 1.17], we can choose a subsequence (`(k))` such that

lim inf
k→∞

c`(k),k ≤ lim sup
`→∞

(
lim inf
k→∞

c`,k

)
and deduce by (4.5) that the left hand side is equal to 0. A simple triangle inequality
then leads to

lim inf
k→∞

∣∣∣R( t
εk

)
− r
∣∣∣ ≤ lim inf

k→∞

(∣∣∣R( t
εk

)
− r`(k)

∣∣∣+
∣∣r`(k) − r

∣∣)
= lim inf

k→∞
c`(k),k = 0

and again with the help of (4.4) we deduce that r ∈M.
Step 2. Like in the situation of Theorem 4.2, let u denote the weak two-scale limit

of the sequence (uεk)k. We introduce the mapping

Φ : M→ L2((Ω− t)×Y ), r 7→ u(·+ t, ·+ r).

By Theorem 4.2 one can easily see that Φ(M) is equal to Cw. Since M is compact
by step 1, it is sufficient to prove that Φ is continuous. But this is true, since for every
sequence (r`)` in Y converging to some r we observe u(·+ t, ·+ r`)→ u(·+ t, ·+ r)
in L2((Ω− t)×Y ).

Before proceding with the application of the results of the present section to a
novel type of variational convex homogenization, we shall state several explanatory
comments.

Remark 4.1. Since (R( t
εk

))k is a sequence in the compact set Y , we in particular con-
clude

M 6= ∅ and thus Cw 6= ∅

for every weakly two-scale convergent sequence (uεk)k in L2(Ω). The same observation
is true for a strongly two-scale convergent sequence (uεk)k and Cs.

Indeed, the sets Cw and Cs of all two-scale cluster points can be very rich, as it
is revealed by the following example: We consider the case N = 1. Let t 6= 0 be an
arbitrary translation vector inR and define εk := |t|

k+sgn(t)·q(k) , where q : N→ Q∩[0, 1]
is a surjective map and sgn returns the sign of its argument. In this case we obtain
M = [0, 1] = Y .
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Remark 4.2. The result of this section can be easily extended to converging translations:
Let Ω = RN , tk → t in RN and consider a subsequence (k`)` satisfying

lim
`→∞

∣∣∣R( tk`εk` )− r∣∣∣ = 0

for some r ∈ Y . Then for any weakly two-scale convergent sequence (uεk` )` in L2(RN )
with limit u we have

uεk` (·+ tk`)
2−⇀ u(·+ t, ·+ r) in L2(RN×Y ).

This can be seen by modifying the definition of ϕεk` in equation (4.2) in the proof of
Lemma 4.3:ˆ

RN

uεk` (x+ tk`)ϕ
(
x, x

εk`

)
dx =

ˆ
RN

uεk` (x)ϕ
(
x− tk` ,

x
εk`
− tk`

εk`

)
dx

=

ˆ
RN

uεk` (x)ϕ
(
x− t, x

εk`
− r
)

dx+

ˆ
RN

uεk` (x)ϕεk` (x) dx

with

ϕεk` (x) := ϕ
(
x− tk` ,

x
εk`
− tk`

εk`

)
− ϕ

(
x− t, x

εk`
− r
)
.

Since ϕ is smooth, ϕεk` vanishes uniformly.

Remark 4.3. In Meunier and Van Schaftingen [2005] Meunier and van Schaftingen in-
troduce a modification of the periodic unfolding operator from Cioranescu et al. [2002]
that features additive perturbations on the microscale ε, which they call microscopic
translations. As concerns the objective of their contribution, Meunier and van Schaftin-
gen prove that vanishing microscopic translations do not alter the two-scale limit be-
havior of a sequence of functions. Upon assuming that these microscopic translations
originate from ‘very small macroscopic translations’, their insight corresponds to the
previous remark for the case of macroscopic translations (tε)ε satisfying tε/ε→ 0 and
consequentlyM = {0}.

However, we would like to remark that in contrast to our analysis the subtle connec-
tion between macroscopic translations and the corresponding microscopic translations
is not discussed in Meunier and Van Schaftingen [2005].

Remark 4.4. Translations occurring in the microscopic variable of homogenized quan-
tities sometimes play a crucial role in the understanding of the underlying homogeniza-
tion processes, see e.g. our results in Section 4.3 below. Let us remark that micro-
translations may also originate from phenomena other than macroscopic translations of
the coordinate frame. For instance, this is the case for the Bloch wave homogenization
method due to Allaire and Conca Allaire and Conca [1996]. The purpose of this method
is to characterize the asymptotic behavior of the spectrum associated to linear second
order elliptic PDEs with periodically oscillating coefficients as the size of the period
tends to zero. Therein, microtranslations emerge from a Bloch wave decomposition (cf.
Allaire and Conca [1995]) and play a key role in the resulting cell problems (see Allaire
and Conca [1996]; Castro and Zuazua [1996]).
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4.3 A novel problem in variational convex homogenization

In this section we present an application of our previous insights to a novel homog-
enization problem. To this end, we will provide a convergence study for an oscillat-
ing convex integral functional, the oscillating arguments of which are translated by a
nonzero macroscopic quantity. Whereas in the absence of translation one can prove Γ-
convergence of the integral functionals, in its presence Γ-convergence no longer holds
true in general. Nevertheless, the results of the Section 4.2 allow us to explicitly identify
the lower and the upper Γ-limit.

4.3.1 An oscillating integral functional involving two coordinate frames

For the notation used in the sequel we also refer to the preceding section. Let t be an
arbitrary but fixed translation in RN and Ω be an open and bounded subset of RN . We
consider the functional

Fε : W1,2
0 (Ω;RN )→ R, u 7→

ˆ
Ω
W (xε ,Du(x)) dx+

ˆ
Ω−t

W (xε ,Du(x+ t)) dx

for a positive microscale parameter ε and seek to describe its behavior as ε vanishes.
We assume that the integrand

W : Y×RN×N → R, (y, F ) 7→W (y, F )

satisfies the properties (W1), (W2) and (W3) stated in Subsection 2.2.3 (in a vector-
valued fashion though), i.e.

for all F ∈ RN×N the map y 7→W (y, F ) is measurable and Y -periodic,

for a.e. y ∈ Y the map F 7→W (y, F ) is convex,
there exist positive constants c, C such that

c(|F |2 − 1) ≤W (y, F ) ≤ C(1 + |F |2)

for a.e. y ∈ Y and all F ∈ RN×N .

Indeed, for vanishing translation t = 0 the homogenization of integral functionals like
(Fε)ε with integrands satisfying the above assumptions using Γ-convergence methods is
classical. Besides the introduction of this thesis (see Subsection 2.2.3 and in particular
Theorem 2.9) we refer to Marcellini [1978]; Müller [1987]; Allaire [1992]; Cioranescu
et al. [2006a]; Visintin [2007] for this homogenization result. However, for nonzero
translations t the homogenization of (Fε)ε becomes far more delicate as we will show
hereafter.

Prior to stating the homogenization result, we introduce the following objects, which
depend on a microtranslation r and naturally arise in the subsequent analysis: For r ∈
Y , y ∈ Y and F ∈ RN×N we set

Wr(y, F ) := W (y, F ) +W (y − r, F )

WHom,r(F ) := inf
{ ˆ

Y
Wr(y, F + Dyϕ(y)) dy : ϕ ∈W1,2

per(Y ;RN ),

ˆ
Y
ϕ(y) dy = 0

}
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and refer toWr as the microtranslated energy density and toWHom,r as its homogeniza-
tion. Moreover, we define the corresponding two-scale energy functional Fr, as well as
the homogenized microtranslated energy FHom,r according to

Fr(u, u1) :=

ˆ
Ω

ˆ
Y
Wr(y,Du(x) + Dyu1(x, y)) dy dx,

FHom,r(u) :=

ˆ
Ω
WHom,r(Du(x)) dx

for every u ∈W1,2
0 (Ω;RN ) and every u1 ∈ L2(Ω; W1,2

per(Y ;RN )).

Theorem 4.5. Let (εk)k be an arbitrary vanishing sequence of positive real numbers.
Then

Γ-lim inf
k→∞

Fεk = inf
r∈M
FHom,r

Γ-lim sup
k→∞

Fεk = sup
r∈M
FHom,r

w.r.t. the weak topology in W1,2
0 (Ω;RN ). Like in Definition 4.1,M denotes the set of

all microtranslations emerging from the translation t and (εk)k.

In fact, Theorem 4.5 reveals that for a nonzero translation t one can no longer ex-
pect Γ-convergence of the sequence (Fεk)k. An explicit example therefor is found in the
upcoming Section 4.4. Our result also contrasts the classical homogenization problem
for convex integral functionals, where there indeed holds Γ-convergence (see Subsec-
tion 2.2.3, Theorem 2.9). It should again be noticed that our Theorem 4.5 recovers the
classical result Theorem 2.9 by choosing the trivial translation t = 0, henceM = { 0 }
according its Definition 4.1.

For the sake of a brief notation, in the following we set for every u ∈W1,2
0 (Ω;RN )

F−Hom(u) := inf
r∈M
FHom,r(u) and F+

Hom(u) := sup
r∈M
FHom,r(u).

There are two main insights that we will rely on in the proof of Theorem 4.5.
First, we observe that (Fεk)k is Γ-convergent along (t, r)-subsequences. More

precisely, for r ∈ M we will show that Γ-lim`Fεk` = FHom,r along every (t, r)-
subsequence (k`)`. This will be done by combining Theorem 4.2 and general (lower
semi-) continuity properties of convex integral functionals with oscillating integrands
stated in Proposition 4.6 below. For a systematic investigation of the convex oscillating
integral functionals with methods related to two-scale convergence we refer to Visintin
[2007].

Secondly, we will provide an abstract result, which allows us to identify the lower
and upper Γ-limit of a sequence by falling back to Γ-convergent subsequences. That
is, if (fk)k is a sequence of functions on a topological space X , such that the sequen-
tial characterization of Γ-convergence is valid for (fk)k and the set L(x) := { f(x) :
f is Γ-limit of a subsequence of (fk)k } attains its extrema for all x ∈ X , then the lower
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and upper Γ-limit of (fk)k are given pointwise as (Γ-lim infk fk) (x) = minL(x) and
(Γ-lim supk fk) (x) = maxL(x), respectively (see Theorem 4.10). We will see that
this observation together with the Γ-convergence of (Fεk)k along (t, r)-subsequences
allows us to prove Theorem 4.5.

The following result and similar statements can be found in Visintin [2007] and
Allaire [1992]; Cioranescu et al. [2006a, 2002].

Proposition 4.6. LetW satisfy the conditions (W1),. . . ,(W3) and let U be an open and
bounded subset of RN . For ε > 0 define the functionals

Jε : L2(U ;RN×N )→ R, F 7→
ˆ
U
W (xε , F (x)) dx,

J : L2(U×Y ;RN×N )→ R, F 7→
ˆ
U

ˆ
Y
W (y, F (x, y)) dy dx.

Then:

(i) The functionals Jε and J are continuous w.r.t. strong convergence and lower
semicontinuous w.r.t. weak convergence. Moreover, the functionals are convex
and finite.

(ii) Let F ∈ L2(U×Y ;RN×N ) and (Fεk)k be a sequence in L2(U ;RN×N ). If

Fεk
2−⇀ F in L2(U×Y ;RN×N ), then

J (F ) ≤ lim inf
k→∞

Jεk(Fεk).

Moreover, if Fεk
2−→ F in L2(U×Y ;RN×N ), it is

J (F ) = lim
k→∞

Jεk(Fεk).

An immediate consequence of the foregoing proposition and Theorem 4.2 is the
observation below.

Corollary 4.7. Let F ∈ L2(Ω×Y ;RN×N ), let (Fεk)k be a sequence in L2(Ω;RN×N ),
r ∈M and (k`)` a corresponding (t, r)-subsequence. Then

(i) if Fεk
2−⇀ F in L2(Ω×Y ;RN×N ), then

ˆ
Ω

ˆ
Y
Wr(y, F (x, y)) dy dx ≤

lim inf
`→∞

( ˆ
Ω
W ( x

εk`
, Fεk` (x)) dx+

ˆ
Ω−t

W ( x
εk`
, Fεk` (x+ t)) dx

)
,

(ii) if Fεk
2−→ F in L2(Ω×Y ;RN×N ), then

ˆ
Ω

ˆ
Y
Wr(y, F (x, y)) dy dx =

lim
`→∞

( ˆ
Ω
W ( x

εk`
, Fεk` (x)) dx+

ˆ
Ω−t

W ( x
εk`
, Fεk` (x+ t)) dx

)
.
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With this result at hand, we can finally prove Γ-convergence of (Fεk)k along (t, r)-
subsequences. Note that by the growth assumption (W3) and Poincaré’s inequality the
sequence (Fεk)k is equicoercive. Hence, by Theorem 2.5 Γ-convergence of (Fεk)k and
its subsequences can equivalently be verified in terms of sequential Γ-convergence.

Proposition 4.8. Let r ∈ M and (k`)` be a corresponding (t, r)-subsequence. Then
the following statements are valid.

(i) For every u ∈W1,2
0 (Ω;RN ) and every sequence (uεk` )` weakly converging to u

in W1,2
0 (Ω;RN ) we have

FHom,r(u) ≤ lim inf
k→∞

Fεk` (uεk` ).

(ii) For every u ∈ W1,2
0 (Ω;RN ) there is a sequence (uεk` )` weakly converging to u

in W1,2
0 (Ω;RN ) such that

FHom,r(u) = lim
`→∞

Fεk` (uεk` ).

Proof. The statements of the proposition will be proved separately in the following two
steps.

Step 1. Let (uεk` )` be a sequence that converges to uweakly in W1,2
0 (Ω;RN ) and let

(ηn)n be an arbitrary subsequence of (εk`)`. In view of the compactness result Theorem
2.18 we find another subsequence (ηnm)m and a function u1 ∈ L2(Ω; W1,2

per(Y ;RN ))
with

´
Y u1(x, y) dy = 0 for a.e. x ∈ Ω, such that

Duηnm

2−⇀ Du+ Dyu1 in L2(Ω×Y ;RN×N ).

Upon recalling the definitions of FHom,r and WHom,r, an application of Corollary 4.7
leads to

FHom,r(u) ≤ lim inf
m→∞

Fηnm
(uηnm

). (4.6)

We see that every subsequence of (εk`)` has a further subsequence satisfying (4.6).
Consequently, inequality (4.6) remains valid for the whole sequence (εk`)` and we infer
the validity of the first assertion.

Step 2. Consider an arbitrary u ∈W1,2
0 (Ω;RN ). We start with the observation that

the functional Fhom,r can be characterized by means of Fr in the following way (see
Remark 4.5 for details).

FHom,r(u) = Fr(u, u1) for some u1 ∈ L2(Ω; W1,2
per(Y ;RN )) (4.7)

with
ˆ
Y
u1(x, y) dy = 0 for a.e. x ∈ Ω.

By density we now find a sequence (vn)n in C∞c (Ω; C∞per(Y ;RN )) such that

vn → u1 in L2(Ω×Y ;RN ), Dyvn → Dyu1 in L2(Ω×Y ;RN×N ) (4.8)
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subject to
´
Y vn(·, y) dy = 0. We define the doubly indexed sequence of functions

(un,`)n,` in W1,2
0 (Ω;RN ) by

un,`(x) := u(x) + εk`vn(x, x
εk`

).

Invoking the technique of two-scale decomposition (cf. e.g. Visintin [2006]) we
could easily find a diagonal sequence uεk` := un(`),` such that (uεk` )` ⇀ u weakly in

W1,2
0 (Ω;RN ) and (Duεk` )`

2−→ Du + Dyu1 in L2(Ω×Y ;RN×N ). In view of Corol-
lary 4.7 this sequence would clearly recover the limit energy and prove the assertion.
However, for the reader’s convenience we will present a self-contained construction of
the recovery sequence.

To this end we start with the observation that for every n ∈ N we have

un,` −−−⇀
`→∞

u in W1,2
0 (Ω;RN ), (4.9)

Dun,`
2−−−→

`→∞
Du+ Dyvn in L2(Ω×Y ;RN×N ), (4.10)

where the latter follows from the smoothness of vn (see e.g. Example 2.1 or Visintin
[2006]). Hence, we can apply Corollary 4.7 and infer

lim
`→∞

Fεk` (un,`) = Fr(u, vn).

Now, the strong convergence (4.8) and the assumptions (W2), (W3) imply

lim
n→∞

(
lim
`→∞

Fεk` (un,`)

)
= Fr(u, u1) =

(4.7)
FHom,r(u). (4.11)

The previous reasoning suggests that we may obtain the recovery sequence (uεk` )` by
carefully choosing a diagonal sequence of (un,`)n,`. With this intention in mind, we
define the quantity

cn,` :=
∣∣∣Fεk` (un,`)−FHom,r(u)

∣∣∣+ ‖un,` − u‖L2(Ω;RN ).

By means of Rellich’s compactness theorem, (4.9) and (4.11) imply

lim
n→∞

(
lim
`→∞

cn,`

)
= 0.

Referring to [Attouch, 1984, Corollary 1.18], we find a subsequence (n(`))` with
lim` cn(`),` = 0 and consequently the sequence uεk` := un(`),` recovers the limit energy,
i.e.

lim
`→∞

Fεk` (uεk` ) = FHom,r(u),

and converges to u w.r.t. strong convergence in L2(Ω;RN ). It remains to prove

uεk` −−−⇀`→∞
u in W1,2

0 (Ω;RN ). (4.12)
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First, we observe that the sequence (uεk` )k must be norm bounded in W1,2
0 (Ω;RN )

due to the growth condition (W3) and the boundedness of (Fεk` (uεk` ))`. Hence, we
can extract from any subsequence of (uεk` )` a further subsequence, which is weakly

convergent in W1,2
0 (Ω;RN ). But any weak limit of these subsequences must coincide

with u, because of the strong convergence of (uεk` )` to u in L2(Ω;RN ); thus, (4.12) is
valid and (uεk` )` is a recovery sequence.

Before proceeding further, we analyze the dependence of the homogenized micro-
translated energy FHom,r on the microtranslations r.

Lemma 4.9. For all F ∈ RN×N and u ∈W1,2
0 (Ω;RN ) the maps

r 7→WHom,r(F ) and r 7→ FHom,r(u)

are continuous.

Proof. We remark that due to the growth condition (W3) it is sufficient to prove the
continuity of r 7→ WHom,r(F ). Let F ∈ RN×N be arbitrary and define for all r ∈ Y
the functional

Er :

{
ϕ ∈W1,2

per(Y ;RN ) :

ˆ
Y
ϕ(y) dy = 0

}
→ R, ϕ 7→

ˆ
Y
Wr(y, F + Dyϕ(y)) dy.

By the assumptions on W and Poincaré’s inequality, we see that ϕ 7→ Er(ϕ) is convex,
coercive and continuous w.r.t. to strong convergence in W1,2

per(Y ;RN ). Therefore, for all
r ∈ Y the functional Er admits a minimizer ϕr ∈W1,2

per(Y ;RN ) with
´
Y ϕr(y) dy = 0,

thus

Er(ϕr) = WHom,r(F ).

We recall the growth condition (W3) and infer that

2c
(
‖F + Dyϕr‖2L2(Y ;RN×N ) − 1

)
≤ Er(ϕr) ≤

ˆ
Y

2W (y, F ) dy ≤ 2C(1 + |F |2).

As a consequence, Poincaré’s inequality implies the boundedness of the sequence (ϕr)r
in W1,2

per(Y ;RN ). Now, consider an arbitrary sequence (rn)n in Y with rn → r. Due to
the previous considerations, we can extract a subsequence (rnm)m such that

lim inf
n→∞

Whom,rn(F ) = lim
m→∞

Whom,rnm
(F )

and in addition ϕrnm
⇀ ϕ0 weakly in W1,2

per(Y ;RN ) for a function ϕ0 ∈W1,2
per(Y ;RN )

with
´
Y ϕ0(y) dy = 0. As it is easily seen, we also have ϕrnm

(· + rnm) ⇀ ϕ0(· + r)

weakly in W1,2
per(Y ;RN ). Hence, we can exploit the weak lower semicontinuity of the

functional ϕ 7→
´
Y W (y, F + Dyϕ(y)) dy and obtain

Er(ϕ0) ≤ lim inf
m→∞

Ernm
(ϕrnm

) = lim inf
n→∞

Whom,rn(F ). (4.13)
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On the other hand there holds

lim sup
n→∞

Whom,rn(F ) ≤ lim sup
n→∞

Ern(ϕr) = Er(ϕr). (4.14)

Herein, the last identity can be inferred from the observation, that the functional ϕ 7→´
Y W (y, F + Dyϕ(y)) dy is continuous w.r.t. strong convergence and ϕr(· + rn) →
ϕr(· + r) strongly in W1,2

per(Y ;RN ) as n → ∞. In view of (4.13) and (4.14), we have
just shown that

Er(ϕ0) ≤ lim inf
n→∞

Whom,rn(F ) ≤ lim sup
n→∞

Whom,rn(F ) ≤WHom,r(F ). (4.15)

Upon recalling WHom,r(F ) = infϕ Er(ϕ) ≤ Er(ϕ0), we realize that the inequalities in
(4.15) are indeed equalities. This completes the proof.

So far we have shown Γ-convergence of (Fεk)k toFHom,r along (t, r)-subsequences
and the continuous dependence of FHom,r on the microtranslation r (see Proposition
4.8). As we will prove now, this already allows us to reduce the proof of Theorem 4.5 to
the situation considered in the upcoming Subsection 4.3.2. Therein, we show how lower
and upper Γ-limits of a sequence can be characterized by means of its subsequences’
Γ-limits (see Theorem 4.10).

Proof of Theorem 4.5. Define the set

L :=

{
F : F = Γ-lim

`→∞
Fεk` for a subsequence (k`)`

}
.

In view of Proposition 4.8 and the fact, that every subsequence (k`)` contains a (t, r)-
subsequence for a certain r ∈M, we immediately conclude that

L = {FHom,r : r ∈M} .

Note that for any u ∈ W1,2
0 (Ω;RN ) the map r 7→ FHom,r(u) is continuous due to

Lemma 4.9. SinceM is a compact subset of RN by Proposition 4.4, there exist r+ and
r− inM such that

F+
Hom(u) = Fhom,r+(u) and F−Hom(u) = Fhom,r−(u).

This enables us to conclude the proof by applying the abstract Theorem 4.10 found in
the next subsection, which might be regarded a result of its own interest.

Before turning to the missing abstract Γ-convergence result in Subsection 4.3.2 and
stating an explicit example illustrating the general nonconvergence for convex homog-
enization problems involving multiple coordinate frames (in Section 4.4), we state two
concluding remarks. While the first remark provides a technical detail which we used
in the proof of Proposition 4.8, the second remark indicates a slight generalization of
our homogenization result Theorem 4.5.
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Remark 4.5. Let r ∈ Y and F ∈ L2(Ω;RN×N ). Then there exists a function v ∈
L2(Ω; W1,2

per(Y ;RN )) with
´
Y v(x, y) dy = 0 for a.e. x ∈ Ω, such thatˆ

Ω
WHom,r(F (x)) dx =

ˆ
Ω

ˆ
Y
Wr(F (x) + Dyv(x, y)) dy dx. (4.16)

Due to the convexity and continuity (W2) and the growth (W3) of W , for a.e. x ∈ Ω
there exists ϕ ∈W1,2

per(Y ;RN ) with
´
Y ϕ(y) dy = 0 and

WHom,r(F (x)) =

ˆ
Y
Wr(y, F (x) + Dyϕ(y)) dy,

thus the multifunction

Λ(x) :=
{
ϕ ∈W1,2

per(Y ;RN ) :ˆ
Y
Wr(y, F (x) + Dyϕ(y)) dy = WHom,r(F (x)) and

ˆ
Y
ϕ(y) dy = 0

}
is well-defined. One can now show (for instance by applying Proposition 6.3 and
Theorem 6.5 of Fonseca and Leoni [2007]) that Λ possesses a measurable selection
x 7→ v(x) ∈ Λ(x). Moreover, the growth condition (W3) and Poincaré’s inequality
imply that v ∈ L2(Ω; W1,2

per(Y ;RN )). The definition of Λ then immediately implies
the claimed identity (4.16). Note that (4.16) in particular establishes for every u ∈
W 1,2

0 (Ω;RN ) the existence of a u1 ∈ L2(Ω; W1,2
per(Y ;RN )) with

´
Y u1(x, y) dy = 0

for a.e. x ∈ Ω, such that FHom,r(u) = Fr(u, u1).

Remark 4.6. The restriction in Theorem 4.5 to the space W1,2
0 (Ω;RN ) implies that

the sequence (Fεk)k is equicoercive w.r.t. to weak convergence in W1,2
0 (Ω;RN ) and

therefore the sequential characterization of Γ-convergence (which we exploited in the
proof of Theorem 4.5) is valid for (Fεk)k. Likely, results similar to Theorem 4.5 hold
in more general situations. For instance let G be a function from W1,2(Ω;RN ) into R
and consider the functionals

Fε : W1,2(Ω;RN )→ R, u 7→
ˆ

Ω
W (xε ,Du(x)) dx+

ˆ
Ω−t

W (xε ,Du(x+ t)) dx,

where t ∈ RN is an arbitrary translation and W fulfills (W1),. . . ,(W3). If G satisfies
one of the following conditions

(G1) G is finite, continuous w.r.t. to weak convergence in W1,2(Ω;RN ) and coercive
w.r.t. to the strong convergence in L2(Ω;RN ),

(G2) there exists g ∈W1,2(Ω;RN ) such that G(u) = 0 if u− g ∈W1,2
0 (Ω;RN ) and

+∞ otherwise,

then

Γ-lim inf
k→∞

(Fεk + G) = F−Hom + G

Γ-lim sup
k→∞

(Fεk + G) = F+
Hom + G

with respect to weak convergence in W1,2(Ω;RN ). Herein,F+
Hom andF−Hom are defined

as before.
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4.3.2 A general Γ-convergence result

In Proposition 4.8 we showed that the sequence (Fεk)k Γ-converges along (t, r)-sub-
sequences, and the proof of Theorem 4.5 tells us that this is sufficient to explicitely
characterize all possible clusterpoints of (Fεk)k in the topology of Γ-convergence. In
particular, due to the strong dependence of the subsequences’ Γ-limits on emerging mi-
crotranslations r ∈ M these clusterpoints do not conincide in general (see Section 4.4
for a counterexample), thus one cannot expect Γ-convergence along the entire sequence
(Fεk)k. At this point one might then wonder, whether one can at least infer the lower
and upper Γ-limits of a sequence of functionals in case one explicitely knew all clus-
terpoints in the topology of Γ-convergence. In fact, as we now show that for certain
situations this is the case.

Theorem 4.10. Let (X, T ) be a topological vector space and (fk)k a sequence of func-
tions from X into [−∞,+∞]. We define the set

L :=
{
f : f = Γ-lim

`→∞
fk` for a subsequence (k`)`

}
and assume that

(i) for all x ∈ X there exists a sequence (xk)k converging to x in X such that(
Γ-lim inf
k→∞

fk

)
(x) = lim inf

k→∞
fk(xk),

(ii) any subsequence of (fk)k has a Γ-convergent subsequence,

(iii) for all x ∈ X there exist f−, f+ ∈ L such that

f−(x) ≤ f(x) ≤ f+(x) for every f ∈ L.

Then there holds(
Γ-lim inf
k→∞

fk

)
(x) = min

f∈L
f(x) and

(
Γ-lim sup
k→∞

fk

)
(x) = max

f∈L
f(x).

for every x ∈ X .

Proof. Let x ∈ X and f+, f− ∈ L according to assumption (iii). We remind the reader
of the definition of the lower and upper Γ-limit given in Section 2.2.3, which reads as(

Γ-lim inf
k→∞

fk

)
(x) := sup

U∈U(x)
lim inf
k→∞

inf
y∈U

fk(y),(
Γ-lim sup
k→∞

fk

)
(x) := sup

U∈U(x)
lim sup
k→∞

inf
y∈U

fk(y),
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where U(x) denotes the set of all open neighborhoods of x. One immediately realizes
that

lim inf
k→∞

inf
y∈Ũ

fk(y) ≤ lim inf
`→∞

inf
y∈Ũ

fk`(y) and lim sup
k→∞

inf
y∈Ũ

fk(y) ≥ lim sup
`→∞

inf
y∈Ũ

fk`(y)

for any subsequence (k`)` and any Ũ ∈ U(x). From this we easily infer the estimates(
Γ-lim inf
k→∞

fk

)
(x) ≤ f−(x) and

(
Γ-lim sup
k→∞

fk

)
(x) ≥ f+(x)

by first considering particular subsequences satisfying Γ-lim` fk` = f− (respectively
Γ-lim` fk` = f+) and, secondly, taking the supremum over all Ũ ∈ U(x) on both sides.

In order to show the characterization of the lower Γ-limit of (fk)k stated above, it
remains to show (Γ-lim infk fk)(x) ≥ f−(x). By assumption (i) and (ii) we can find a
sequence (xk)k converging to x in X , a subsequence (k`)` and f ∈ L such that

lim
`→∞

fk`(xk`) =

(
Γ-lim inf
k→∞

fk

)
(x) and Γ-lim

`→∞
fk` = f.

Since Γ-limits naturally satisfy the ’lim inf-inequality’ (also in the case where the se-
quential characterization is not valid), we infer lim inf

`→∞
fk`(xk`) ≥ f(x) and by applying

condition (iii) we finally obtain(
Γ-lim inf
k→∞

fk

)
(x) = lim inf

`→∞
fk`(xk`) ≥ f(x) ≥ f−(x).

For the characterization of the upper Γ-limit of (fk)k, we need to prove that

(Γ-lim sup
k→∞

fk)(x) ≤ f+(x).

Let Ũ ∈ U(x). Again due to assumption (ii) we can switch to a subsequence (k`)` with

lim sup
k→∞

inf
y∈Ũ

fk(y) = lim
`→∞

inf
y∈Ũ

fk`(y) and Γ-lim
`→∞

fk` = f,

where f ∈ L. In passing we realize

lim sup
k→∞

inf
y∈Ũ

fk(y) ≤ sup
U∈U(x)

lim sup
`→∞

inf
y∈U

fk`(y) = f(x) ≤ f+(x),

where the last inequality follows by assumption (iii). Since this estimate is true for
all Ũ ∈ U(x), it remains valid if we pass to the supremum over all Ũ ∈ U(x). This
completes the proof.

We remark that in the situation of Theorem 2.5 the sequential characterization of the
lower and upper Γ-limit is valid and assumption (i) is fulfilled (see [Dal Maso, 1993,
Proposition 8.16] for details). Thus, Proposition 4.10 can indeed be applied in the proof
of Theorem 4.5.
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4.4 An example of nonconvergence

In this final section we state an explicit example showing that in general the lower and
upper Γ-limits of the energy functionals (Fεk)k are different in the presence of nontrivial
translations t, as it may be anticipated from our homogenization result Theorem 4.5.
Here, we highlight once more the importance of the particular sequence of microscale
parameters (εk)k – different choices of (εk)k result in different limit behavior of the
sequence (Fεk)k.

In the example below we consider the special situation of quadratic energy func-
tionals. To this end, let L be a Y -periodic function from RN into the space of fourth
order tensors over R and suppose that

〈L(y)F, G〉 = 〈L(y)G, F 〉,
c|F |2 ≤ 〈L(y)F, F 〉 ≤ C|F |2

for all F,G ∈ RN×N , a.e. y ∈ Y and some positive constants c, C. The energy density
shall now be given as

W (y, F ) := 〈L(y)F, F 〉,

which obviously complies with the properties (W1),. . . ,(W3). Observe that

WHom,r(F ) =

ˆ
Y
W (y, F + Dyϕr,F (y)) dy,

where ϕr,F ∈W1,2
per(Y ;RN ) is the unique solution of the linear problem

ˆ
Y
〈L(y)(F + Dyϕ(y), Dyψ(y)〉dy = 0 for all ψ ∈W1,2

per(Y ;RN )

subject to
´
Y ϕ(y) dy = 0. In the particular situation where N = 1,M = {0, 1

2} and

L(y) = α(y) =

{
α1 if y ∈ [k, k + 1

2) for k ∈ Z
α2 else

we can explicitely compute F+
Hom and F−Hom. The above set of microtranslationsM =

{0, 1
2} occurs e.g. in the case of εk = 2

k and t = 1. A calculations shows

WHom,r(F ) = αHom,r|F |2, where αHom,r :=

(ˆ
Y

1

α(y) + α(y − r)
dy

)−1

.

In the case of r ∈ {0, 1
2} we infer

αhom,0 =
4α1α2

α1+α2
, α

hom,
1
2

= α1+α2 and α
hom,

1
2
−αhom,0 =

(α1 − α2)2

α1 + α2
≥ 0.
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With the help of the homogenization result Theorem 4.5 one obtains the explicit repre-
sentations (

Γ-lim inf
k→∞

Fεk
)

(u) =
4α1α2

α1 + α2

ˆ
Ω
|u′(x)|2 dx,(

Γ-lim sup
k→∞

Fεk
)

(u) = (α1 + α2)

ˆ
Ω
|u′(x)|2 dx,

for all u ∈ W1,2
0 (Ω). Finally, we conclude that (Fεk)k is Γ-convergent, if and only if

α1 = α2.
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tizitätsbedingung für Einkristalle. ZAMM – Journal of Applied Mathematics and
Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 9(1):49–58.
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