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The current article presents the first application of the
Generalized Stochastic Microdosimetric Model (GSM2) for
computing explicitly a cell survival curve. GSM2 is a general
probabilistic model that predicts the kinetic evolution of DNA
damages taking full advantage of a microdosimetric descrip-
tion of a radiation energy deposition. We show that, despite
the high generality and flexibility of GSM2, an explicit form
for the survival fraction curve predicted by the GSM2 is
achievable. We illustrate how several correction terms
typically added a posteriori in existing radiobiological models
to improve the prediction accuracy, are naturally included
into GSM2. Among the most relevant features of the survival
curve derived from GSM2 and presented in this article, is the
linear-quadratic behavior at low doses and a purely linear
trend for high doses. The study also identifies and discusses
the connections between GSM2 and existing cell survival
models, such as the Microdosimetric Kinetic Model (MKM)
and the Multi-hit model. Several approximations to predict
cell survival in different irradiation regimes are also
introduced to include intercellular non-Poissonian behav-
iors. � 2022 by Radiation Research Society

INTRODUCTION

In the last decades, there has been an increasing attention

in the development of mathematical models for describing

the biological damage induced by different types of

radiation (1, 2). These predictive models have found their

main application in two fields, particle therapy and space

radioprotection. Currently, only two models are used in

clinical treatments with both protons and carbon ions: the

‘‘Microdosimetric Kinetic Model’’ (MKM) (3, 4) and the

‘‘Local Effect Model’’ (LEM) (5, 6).

The MKM describes the temporal-evolution of the
average number of DNA damages occurring in a single
cell nucleus to obtain the survival probability of a cell
population versus the macroscopic radiation dose delivered.
Assuming a priori that the number of DNA lesions follows a
Poisson distribution, the MKM predicts a linear-quadratic
(LQ) cell survival curve. Although the linear-quadratic
description of the survival curve is widely used in literature
(7), experimental evidence have pointed out that in certain
cases, such as for high-LET particles or in high-dose
regimes, the cell survival deviates significantly from a LQ
behavior.

The experimentally appearing linearization at high dose
has been object of debate, including impact of prolonged
irradiation (Dasu and Toma-Dasu, 2015), subpopulation
sensitivities or different radibiological effects [see McMa-
hon’s Topical Review (7)] and even experimental bias due
to the difficult operating conditions. It is however a largely
observed effect, which typically challenges the radiobio-
logical models.

Several models have been derived to overcome these
limitations. For instance, the LEM model assumes a linear-
quadratic-linear behavior for the cell survival, with a LQ
curve at low doses, switching to a purely linear trend above
a certain dose threshold. It is worth noticing that the newer
version of LEM (LEM IVþ) (6, 8), provides a RBE
prediction based on explicit LQL parameterization and on a
DSB-in-domain model, in a similar manner to what is done
in the MKM and GSM2. As for the MKM, instead, ad hoc
correction terms have been added to the main formulation,
such as the overkilling effects and the inter-cellular damage
interactions (4, 9–12). A comprehensive overview of the
MKM original formulation along with all the generaliza-
tions can be found in the literature (2).

To date, several mechanistic models exist (3–6, 8–11, 13–
19), to the best of our knowledge, there is no model to date
that gives a rigorous probabilistic treatment of DNA damage
formation and evolution to provide an accurate, mechanistic
based, description of the resulting cell survival. In the data
by Cordoni et al. (19), a new model has been introduced, the
‘‘Generalized Stochastic Microdosimetric Model’’ (GSM2),
that describes the radiation-induced damages using differ-
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ential equations for the time evolution of the DNA damage
probability distribution. It has been shown how the
stochastic nature of energy deposition, based on micro-

dosimetric arguments, and a probabilistic description of the
damage kinetics can be combined in a master equation,
expressing the spatio-temporal damage density function. In
published article (19), it has been further investigated how
different parameters, e.g., the initial DNA damage distribu-

tion or the radiation conditions, lead to different probability
distributions that can significantly deviate from the
Poissonian law which is typically assumed.

Using the findings reported by Cordoni et al. (19), the

current work explores in addition the stochastic effects
related to energy deposition and derive an explicit
expression for the survival curve. We will demonstrate
how the more general description provided by GSM2
naturally includes the description of several features

typically added as correction terms to the existing models.
Such corrections include for instance overkilling effects,
dependence on the radiation LET or a linear behavior at
high doses. To the best of our knowledge GSM2 is the first

mechanistic model that naturally embeds all the above
effects, typically referred to in literature as non-Poissonian
effects.

From a more mathematical perspective, the pairwise DNA
damage interaction term included into GSM2 implies that

GSM2 does not fall into the class of so-called birth and
death processes (20). This implies that the extensive
literature on birth-death process cannot be directly used.
Therefore, specific and advanced mathematical arguments

must be used to derive an expression for the survival curves.
We will first compute an explicit form for the solution of the
master equation, prescribing thus the probability that the
DNA damages repair. Notable enough, the resulting

probability goes beyond the typical exponential repair of
the MKM, showing a multi-exponential behavior as
empirically predicted (21, 22). Thus, suitable mathematical
arguments on the involved microdosimetric distribution
using well-known properties of the Laplace transform,

allow us to explicit the relation between the predicted
survival probability and the imparted dose. The final
survival curve exhibits a linear-quadratic behavior for low
doses and gradually shifts towards a linear trend for higher

doses. It is worth stressing that this behavior naturally
emerges from the probabilistic description provided by the
GSM2 and it is not assumed a priori.

Further we show how the GSM2 is strictly related to
existing radiobiological models, such as the multi-hit model
and the MKM, providing it also a suitable generalization.
Given the importance of such an argument, investigation on
the connection between GSM2 and existing models is
currently under a deepening study.

At last, non-Poissonian corrections on the whole cell
population are introduced averaging the single domain
survival curve against the microdosimetric energy deposi-

tion distribution on the cell nucleus. Different approxima-

tions are treated to account for a wide variety of LET and

doses regimes.

It must be noticed that, given the general probabilistic
nature of GSM2, to estimate the model parameters requires
both biological and physical data not available in the current
literature. Therefore, an extensive data collection campaign
is currently in progress within the experiment Microbe_IT,
financed by Istituto Nazionale di Fisica Nucleare (INFN).
Further, it must be highlighted that the current work has an
important fallout in GSM2 parameter estimation. In fact, a
close formula expression for the survival curve allows to
directly estimate parameters with standard fitting procedure
using survival data, which are easily obtainable in the
literature.

In the companion paper, an extensive analysis of the
survival curve derived in the present paper is treated.
Simulating energy deposition by different particle beams
using TOPAS (23), it is investigated how the survival curve
changes for different ions and different energies. Particular
attention is dedicated to higher LET particle for which the
existing models fail to accurately predict the cell survival
curve. Mixed radiation fields are also considered showing
that GSM2 flexibility allows to model a wide variety of
irradiation situations.

THEORY AND CALCULATIONS

The Generalized Stochastic Microdosimetric Model

GSM2 is a fully probabilistic model that aims at
accurately describing the stochastic nature of energy
deposition in volumes of interest for cellular systems.
The final goal is to overcome existing models, which
mostly assume a Poissonian distribution of energy
deposition, to provide a better prediction of biological
endpoints relevant for radiotherapy applications and to
possibly link the related parameters to more mechanisti-
cally relevant quantitities. GSM2 was first introduced by
Cordoni et al. (19), where a detailed description of its
structure can be found. The model is based on the
following funding assumptions:

� The cell nucleus can be divided into Nd independent
domains d;

� radiation can create two different types of DNA
damages, called lethal and sublethal lesions;

� lethal lesions represent a damage that cannot be repaired,
while sublethal lesions can be either repaired or
converted into a lethal lesion either by spontaneous
death or by combination with another sublethal lesion;

� the average number of lethal and sublethal lesions in a
single domain d is proportional to the specific energy z
deposited by radiation on the site.

The further assumptions are then made to decide the cell
fate:
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� If a domain suffers a lethal lesion, then the domain is
considered dead;

� if at least one domain is dead, then the whole cell is dead.

Using this description, lethal lesions represent clustered
DNA damage that cannot be repaired whereas sublethal
lesions are double-strand breaks that can be repaired; such
assumption is in analogy with existing radiobiological
models for cell survival computation (2, 3, 9–11).

For modelling the time evolution of the number of lethal
and sublethal lesions, we will denote by Y tð Þ;X tð Þð Þ the
state of the system at time t, where X and Y are two
N�valued random variables representing the number of
sublethal and lethal lesions, respectively.

A sublethal lesion can evolves in three different ways: 1.
it can become a lethal lesion at a rate a, 2. it can be be
repaired at a rate r, or it can combine with another sublethal
lesion to become a lethal lesion at a rate b. This scheme can
be represented by the following equations:

X!a y

Xþ X!b Y ð1Þ

X!r A
where A represents the group of healthy cells.

On the bases of Eq. (1), we developed the Micro-
dosimetric Master Equation (MME) (19)

]tp t; y; xð Þ ¼ E�1;2 � 1
� �

x x � 1ð Þbp t; y; xð Þ½ �
þ E�1;1 � 1
� �

xap t; y; xð Þ½ �
þ E0;1 � 1
� �

xrp t; y; xð Þ½ �
¼ E�1;2 x x � 1ð Þbp t; y; xð Þ½ � þ E�1;1 xap t; y; xð Þ½ �
þ E0;1 xrp t; y; xð Þ½ � ;

ð2Þ
where the creation operator is defined as

Ei;j f y; xð Þ½ � :¼ Ei;j � 1
� �

f y; xð Þ½ � :¼ f yþ i; x þ jð Þ � f y; xð Þ :

The MME (2) governs the time evolution of the joint
probability density function for lethal and sublethal lesions
inside the cell nucleus. In particular, p(t,y,x) denotes the
probability of having exactly x sublethal lesions and y lethal
lesions at time t. The creation/annihilation operators instead
model the increase/decrease of lesions, according to the a, b,
r rates. A detailed derivation of the MME (2) can be found
in the literature (19).

The MME is coupled with an initial damage distribution
derived from microdosimetric spectra, which describe the
radiation-field quality and allow as direct link with
measurable quantities.

In fact, the single-event distribution of energy deposition
on a domain d, referred to as f1;d zð Þ (24), can be either
computed numerically with a Monte Carlo code or
measured experimentally. Given a cell nucleus domain d,

the probability of the domain being exposed to m events
follow a Poisson distribution of mean kn :¼ zn

zF
, being zn the

mean energy deposition on the nucleus and zF the first
moment of the single event distribution f1;d. Then, assuming
a Poissonian probability that a domain could register m
events, the energy deposition distribution is given by

f zjznð Þ :¼
X‘

m¼0

e
�zn

zF

m!

zn

zF

� �m

fm;d zð Þ ; ð3Þ

where fm;d zð Þ is the energy deposition distribution resulting
from m depositions.

In particular, the distribution resulting from m events can
be computed convolving m times the single event distribu-
tion (24), Chapter II.2. Therefore, the distribution fm;d of the
imparted energy z is computed iteratively as

f2;d zð Þ :¼
Z‘

0

f1;d �zð Þf1;d z� �zð Þd�z ;

. . . ;

fm;d zð Þ :¼
Z‘

0

f1;d �zð Þfm�1;d z� �zð Þd�z :

Given an energy deposition z, the induced number of
lesions is again a random variable. The standard assumption
is that the distribution of sublethal lesions X or lethal lesions
Y are Poisson random variables of mean value jz and kz,
respectively.

We call pX
z xjjzð Þ and pY

z yjkzð Þ the initial random
distributions for the number of sublethal and lethal lesions,
respectively, for a given energy deposition z. In the present
work, we will assume that pX

z xjjzð Þ and pY
z yjkzð Þ are

Poisson random variables.

In this view, the MME (2) becomes

]tp t; y; xð Þ ¼ E�1;2 x x � 1ð Þbp t; y; xð Þ½ �
þE�1;1 xap t; y; xð Þ½ �
þE0;1 xrp t; y; xð Þ½ � ;

p 0; y; xð Þ ¼ pX
0 xð ÞpY

0 yð Þ ;

8
>><

>>:
ð4Þ

where the initial distribution is obtained as

pX
0 xð Þ ¼

Z‘

0

pX
z xjjzð Þf zjznð Þdz ;

pY
0 yð Þ ¼

Z‘

0

pY
z yjkzð Þf zjznð Þdz :

ð5Þ

The initial condition (5) represents a simple and yet
important generalization of the standard assumptions. Both
pX

0 and pY
0 may not be Poisson distributed even if pX

z xjjzð Þ
and pY

z yjkzð Þ are Poisson random variables. Fig. 1 shows a
schematic representation for survival assessment via GSM2.

Even if pX
z xjjzð Þ is a Poisson random variable, the initial

distribution pX
0 xð Þ does not need to be Poissonian. For the
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sake of brevity, we will only focus on pX
0 xð Þ, because an

analogous argument holds for pY
0 xð Þ.

Assuming pX
z xjjzð Þ to be a Poisson random variable of

mean jz, the first moment of the distribution pX
0 xð Þ can be

computed as

X

x�0

xpX
0 xð Þ ¼

X

x�0

x

Z‘

0

pX
z xjjzð Þf zjznð Þdz

¼
Z‘

0

f zjznð Þ
X

x�0

xe�jz jzð Þx

x!
dz ¼

Z‘

0

jzf zjznð Þdz

¼ jzn :

It further follows that

X

x�0

x x � 1ð ÞpX
0 xð Þ ¼

X

x�0

x x � 1ð Þ
Z‘

0

pX
z xjjzð Þf zjznð Þdz

¼
Z‘

0

f zjznð Þ
X

x�0

x x � 1ð Þe�jz jzð Þx

x!
dz

¼
Z‘

0

jz2j2f zjznð Þdz ¼ j2M2 ;

being M2 the second moment of the distribution f zjznð Þ.
Using the Rossi and Zaider textbook (24), we have

M2 ¼ zn zn þ zDð Þ; zD ¼
m2

m1

;

with mn the nth moment of the single event distribution f1;d.

Here we have used that m1 ¼ zF. Thus, the variance of

pX
0 xð Þ is given by

X

x�0

x2pX
0 xð Þ �

X

x�0

xpX
0 xð Þ

 !2

¼
X

x�0

x x � 1ð ÞpX
0 xð Þ þ

X

x�0

xpX
0 xð Þ �

X

x�0

xpX
0 xð Þ

 !2

¼ j2M2 þ jzn � j2z2
n ¼ j2znzD þ jzn :

The variable pX
0 xð Þ is Poissonian distributed if the first

two moments are equal, i.e., jzn ¼ j2znzD þ jzn. If

j2znzD , , 1, which is true for low-LET radiation or low

doses, then pX
0 xð Þ follows a Poisson distribution, but in

general for high-LET radiation or high-dose regimes the

distribution significantly deviates from a Poisson law.

Therefore, a deviation from a Poissonian law emerges not

only for high-LET radiation but also at high doses; so that,

for the same radiation quality we might expect different

probability distributions, not necessarily Poissonian, for

lesions at different doses. This naturally incorporates the

overkilling effect, often included in the existing radiobio-

logical models with ad hoc correction.

It is worth stressing nonetheless that, even if pX
0 xð Þ is

Poisson, the long-time lethal lesion distribution might be

different from a Poissonian distribution due to non-linear

effects, such as the double lesions combination.

See Table 1, which contains a list of all free parameters of

GSM2

Survival Curve Computation

An estimate of the survival probability after radiation

exposure can be obtained with GSM2. We will describe the

calculation process for a single domain, and then extend it

to the entire cell population. The survival probability can be

FIG. 1. Schematic representation of the procedure for cell survival fraction assessment implemented by means
of GSM.
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calculated by solving the MME (2):

Sd znð Þ :¼ P lim
t!‘

Y tð Þ ¼ 0
� �

; ð6Þ

where the dependence of Sd on the energy deposition zn is

explicitly reported.

Assuming that the domains are independent of each other,
the survival of a single cell can be obtained as

Sn znð Þ :¼ Sd znð Þð ÞNd ¼ P lim
t!‘

Y tð Þ ¼ 0
� �� �Nd

: ð7Þ

In the present work, the domains are considered indepen-

dent, as it is typically assumed in similar studies.
Nonetheless, as it has been demonstrated by Cordoni (19),

this assumption can be dropped to allow for diffusive
movements of the lesions within the entire cell nucleus.

Thus, a multi-event distribution on the whole cell
population can be defined as

fn znjDð Þ :¼
X‘

m¼0

pn mjDð Þfm;c znð Þ ;

where fm;c znð Þ is the energy deposition distribution resulting

from m deposition events in a single nucleus and pn mjDð Þ is
the probability that m energy depositions occur in a nucleus.

The fm;c znð Þ distribution can be obtained convolving the
single event distribution f1;c znð Þ, as described above.

As D ¼
R ‘

0
zn fn znjDð Þdzn ; the cell survival probability for

the whole cell population can be computed as

S Dð Þ ¼
Z‘

0

Sn znð Þfn znjDð Þdzn : ð8Þ

Equation (8) provides the cell survival probability for a

macroscopic dose D.

From a heuristic point of view, since the number of sub-
lethal lesion can only decrease, the points y; 0ð Þ : y 2 N0f g
are absorbing states. Furthermore, the system reaches an
absorbing state in finite time with probability 1, converging

towards a limiting stationary distribution. In particular, for any
initial condition x, it holds that,

P lim
t!‘

Xx tð Þ ¼ 0
� �

¼ 1 ;

and we can infer that,

p‘ y; xð Þ ¼ d xð Þ � p‘ yð Þ ¼: �p‘ yð Þ : ð9Þ
By absorbing state, we mean that once the system reaches

the point y; 0ð Þ it cannot leave anymore that state and future
evolutions are no longer of interest. A rigorous proof of this
result can be found elsewhere (25, 26).

It is worth highlighting that, in explicitly deriving the
above limiting distribution, the quadratic term in the MME
(2) implies that the considered process does not fall into the
broad category of birth-death processes, and thus we could
not take advantage of the extensive literature available on
such type of processes. In this direction, usually approxi-
mation of the general model enables to obtain an explicit
form for the stationary distribution (25).

Despite these issues, in the present work we will illustrate
a derivation of an explicit form for the survival curve.

For any y, x0 and t0 , t, we denote

Pt0;x0
Y tð Þ ¼ yð Þ ¼ P Y tð Þ ¼ yjY t0ð Þ ¼ y;X t0ð Þ ¼ x0ð Þ;

as the probability to have exactly y lethal lesions at time t,
knowing that at a previous time t0 there were y lethal lesions
and x0 sub-lethal lesions.

Knowing that at time t0 , t the system was in the state
0; x0ð Þ, we define S tjx01; t0ð Þ as the survival probability at

time t. Thus,

S tjx0; t0ð Þ :¼ P Y tð Þ ¼ 0jY t0ð Þ ¼ 0 ; X t0ð Þ ¼ x0ð Þ

¼
Xx0

x¼0

Pt0;x0
Y tð Þ;X tð Þð Þ ¼ 0; xð Þð Þ : ð10Þ

Differentiating with respect to time both sides of Eq. (10),
we obtain

]tS tjx0; t0ð Þ ¼
Xx0

x¼0

]tPt0;x0
Y tð Þ;X tð Þð Þ ¼ 0; xð Þð Þ

¼
Xx0

x¼0

]tpt0;x0
t; 0; xð Þ : ð11Þ

Note that pt0;x0
t; 0; xð Þ is the solution to Eq. (2), considering

its initial value,

pt0;x0
t0; x; yð Þ ¼ d yð Þd x � x0ð Þ :

As discussed above, the solution for a general probabilistic
initial datum p t0; x; yð Þ ¼ pX

0 xð ÞpY
0 yð Þ can be obtained using

the total law of probability,

p t; y; xð Þ ¼
X

x0;y0

pt0;y0;x0
t; y; xð Þp t0; y0; x0ð Þ : ð12Þ

Therefore, merging Eqs. (11) and (12), we obtain that the
survival probability must satisfy the following differential
equation,

]tS tð Þ ¼
Xx0

x¼0

X

x0�0

]tp t0;x0ð Þ t; 0; xð ÞpX
0 x0ð ÞpY

0 y0ð Þ: ð13Þ

To simplify the notation, we will drop the subscript t0; x0ð Þ,
and instead use p t; xð Þ ¼ pt0;x0

t; 0; xð Þ. Furthermore, we will

TABLE 1
Full List of GSM2 Parameter

Parameter Meaning

a Rate at which a sublethal lesion becomes a lethal lesion
b Rate at which two sublethal lesions combine to become

a lethal lesion
r Rate at which a sublethal lesion repairs
j Mean number of sublethal lesions per Gray
k Mean number of lethal lesions per Gray
rd Domain radius
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describe the calculations for the specific case t0 ¼ 0, being

the general case completely analogous.

The solution of Eq. (11) can be derived from Eq. (2), and

then calculated iteratively. Using Eq. (2) we have that,

]tp t; xð Þ ¼ x þ 1ð Þrp t; x þ 1ð Þ
� aþ rð Þx þ bx x � 1ð Þð Þp t; xð Þ : ð14Þ

As the number of sublethal lesion (i.e., the x variable) can

only decrease, we have that p t; x0 þ 1ð Þ ¼ 0 for x ¼ x0.

Therefore, p t; x0ð Þ satisfies,

]tp t; x0ð Þ ¼ � aþ rð Þx0 þ bx0 x0 � 1ð Þð Þp t; x0ð Þ ;

whose explicit solution is given by,

p t; x0ð Þ ¼ e�c x0ð Þt ;

c x0ð Þ :¼ aþ rð Þx0 þ bx0 x0 � 1ð Þð Þ : ð15Þ

For x ¼ x0 � 1, we obtain,

]tp t; x0 � 1ð Þ ¼ �c x0 � 1ð Þp t; x0 � 1ð Þ þ q x0ð Þp t; x0ð Þ ;

With q x0 þ 1ð Þ :¼ x0 þ 1ð Þr. Using p t; x0ð Þ from Eq. (15),

it follows

p t; x0 � 1ð Þ ¼
Z t

0

q x0ð Þe�c x0�1ð Þ t�sð Þp s; x0ð Þds

¼ q x0ð Þ
c x0ð Þ � c x0 � 1ð Þ e�c x0�1ð Þt � e�c x0ð Þt

� �
:

ð16Þ

Iterating above reasoning for any x0 we infer that the

general solution p t; xð Þ must be a sum of exponential

functions

p t; xð Þ ¼
Xx0

k¼x

C k; x; x0ð Þe�c kð Þt ; ð17Þ

for a given function C k; x; x0ð Þ.
Inserting Eq. (17) into Eq. (16), and comparing

exponential functions of the same order, we conclude that

the general solution is given by,

p t; xð Þ ¼
Xx0

k¼xþ1

C k; x; x0ð Þ e�c kð Þt � e�c xð Þt
� �

; ð18Þ

with

C k; x; x0ð Þ :¼ q x þ 1ð Þq x þ 2ð Þq x þ 3ð Þ . . . q x0ð Þ
C1 k; xð ÞC2 k; x0ð Þ ;

being

C1 k; xð Þ :¼ c xð Þ � c kð Þð Þ c x þ 1ð Þ � c kð Þð Þ . . .�
� . . . c k � 1ð Þ � c kð Þð Þ ;

C2 k; x0ð Þ :¼ c k þ 1ð Þ � c kð Þð Þ . . . c x0ð Þ � c kð Þð Þ :

The calculation described above demonstrates that the

repair probability follows a multi-exponential form, and

thus deviates from the predictions of the existing

theory, which assumes an exponential repair kinetics

(21, 22).

For x ¼ 0, we obtain,

p t; 0ð Þ ¼
Z t

0

rp s; 1ð Þds

¼ r
Xx0

k¼2

C k; 1; x0ð Þ
Z t

0

e�c kð Þs � e� aþrð Þs
� �

ds

¼
Xx0

k¼2

C k; 1; x0ð Þ 1� e�c kð Þt

c kð Þ � 1� e� aþrð Þt

aþ r

� �

¼
Xx0

k¼0

C k; 0; x0ð Þe�c kð Þt ; ð19Þ

which agrees with Eq. (17).

Integrating Eq. (11) with respect to time, we obtain from

Eqs. (18) and (19),

S tjx0ð Þ � 1 ¼
Xx0

x¼0

p t; xð Þ � p 0; xð Þð Þ ¼
Xx0

x¼0

p t; xð Þ � 1

¼
Xx0�1

x¼1

Xx0

k¼xþ1

C k; x; x0ð Þ e�c kð Þt � e�c xð Þt
� �

þ e�c x0ð Þt þ
Xx0

k¼0

C k; 0; x0ð Þe�c kð Þt � 1 :

For t ! ‘, we obtain,

e�c kð Þt ! 0 ;

so that only the term with k ¼ 0 does not converge to 0 and

yields

S‘;x0
:¼ lim

t!‘
S tjx0ð Þ ¼ C 0; 0; x0ð Þ : ð20Þ

Equation (20) has a natural and intuitive meaning. Since the

number of sublethal lesions can only decrease, it can reach 0

in a finite time with probability 1. Therefore, as t! ‘, the

only term that remains in Eq. (20) is the one coming from

p t; 0ð Þ, that does not converge to 0.

Using the rule of total probability, we can obtain the

solution for a probabilistic initial data from Eq. (12) as

p t; 0; xð Þ ¼
X‘

x0¼x

px0
t; 0; xð Þp 0; 0; x0ð Þ

¼
X‘

x0¼x

px0
t; 0; xð ÞpX

0 x0ð ÞpY
0 0ð Þ ;

where px0
t; 0; xð Þ can be computed as in Eq. (18). In this

case, the survival probability becomes
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S tð Þ ¼ P Y tð Þ ¼ 0ð Þ ¼
X‘

x¼0

P Y tð Þ ¼ 0;X tð Þ ¼ xð Þ

¼
X‘

x¼0

p t; 0; xð Þ ¼
X‘

x¼0

X‘

x0¼x

px0
t; 0; xð ÞpX

0 x0ð ÞpY
0 0ð Þ :

ð21Þ

The probability px0
t; 0; xð Þ can be calculated according to

Eq. (18) only for x0 � 2. We can also compute the values

for x0 � 1, considering that in such scenario no double

interactions can occur. Thus, we obtain

p1 t; 0; 1ð Þ ¼ e� aþrð Þt;

p1 t; 0; 0ð Þ ¼ r 1�e� aþrð Þt

aþr ;
p1 t; 0; xð Þ ¼ 0; x � 2;
p0 t; 0; 0ð Þ ¼ 1;
p0 t; 0; xð Þ ¼ 0; x � 1:

8
>>>><

>>>>:

ð22Þ

Combining a similar methodology as the one described

above with Eqs. (18), (19), (21), (22), yields the following

S tð Þ ¼
X‘

x¼0

X‘

x0¼x

px0
t; 0; xð ÞpX

0 x0ð ÞpY
0 0ð Þ

¼
X‘

x0¼0

px0
t; 0; 0ð ÞpX

0 x0ð ÞpY
0 0ð Þ

þ
X‘

x¼1

X‘

x0¼x

px0
t; 0; xð ÞpX

0 x0ð ÞpY
0 0ð Þ

¼ pX
0 0ð ÞpY

0 0ð Þ þ r

aþ r
pX

0 1ð ÞpY
0 0ð Þ 1� e� aþrð Þt

� �

þ
X‘

x0¼2

Xx0

k¼0

pX
0 x0ð ÞpY

0 0ð ÞC k; 0; x0ð Þe�c kð Þt

þ
X‘

x¼1

e�c xð ÞtpX
0 xð ÞpY

0 0ð Þ

þ
X‘

x¼1

X‘

x0¼xþ1

Xx0

k¼xþ1

pX
0 x0ð ÞpY

0 0ð ÞC k; x; x0ð Þ

� e�c kð Þt � e�c xð Þt
� �

:

ð23Þ

Considering Eq. (23) in the limit t ! ‘, and using that

e�c xð Þt ! 0 as t! ‘, we obtain that only the terms with

k ¼ 0 do not converge to 0. Thus

Sd znð Þ :¼ lim
t!‘

S tð Þ

¼ pX
0 0jznð ÞpY

0 0jznð Þ þ r

aþ r
pX

0 1jznð ÞpY
0 0jznð Þ

þ
X‘

x0¼2

pX
0 x0jznð ÞpY

0 0jznð ÞC x0ð Þ ; ð24Þ

with C x0ð Þ :¼ C 0; 0; x0ð Þ. Here we have employed the

notation pX
0 x0jznð Þ, pY

0 0jznð Þ and S‘ znð Þ to emphasize the

dependence of the initial distributions on the average

deposited energy on the cell nucleus zn.

We can give a probabilistic interpretation of the terms
appearing in Eq. (24): 1. pX

0 x0jznð Þ and pY
0 0jznð Þ represent

the probability that the domain suffers x0 sub-lesions and 0
lethal lesion, respectively; 2. C x0ð Þ are weighting terms that
represent the probability that x0 sub-lethal lesions are
repaired so that the domain survives.

The survival probability of the whole cell, when receiving
an average energy deposition of zn, is therefore evaluated as

S znð Þ ¼ P lim
t!‘

Y1 tð Þ ¼ 0
� 	

\ . . . \ YNd tð Þ ¼ 0
� 	� �� �

¼
YNd

i¼1

P lim
t!‘

Yi tð Þ ¼ 0
� �

¼
YNd

i¼1

S‘ znð Þ

¼
YNd

i¼1

pX
0 0jznð ÞpY

0 0jznð Þ

þ
YNd

i¼1

X‘

x0¼1

C x0ð ÞpX
0 x0jznð ÞpY

0 0jznð Þ :

ð25Þ
If we assume that all domains have the same probability
distribution, we obtain

S znð Þ ¼ pX
0 0jznð ÞpY

0 0jznð Þ þ
X‘

x0¼1

C x0ð ÞpX
0 x0jznð ÞpY

0 0jznð Þ
 !Nd

:

ð26Þ
The survival Eq. (26) calculated with GSM2 has a

substantial difference from the standard Poisson-based
models. As shown in Appendix B, the survival probability
for a cell is generally computed by averaging the survival on
a single domain, after it received an energy deposition z. On
the contrary, we account for stochasticity deriving from
energy deposition at the very beginning. In fact, the single
domain survival probability is calculated taking into account
all possible stochastic energy depositions z. Therefore, the
cell survival probability is not the average over all possible
energy depositions, but it is estimated as the probability that
none of the domains suffers a lethal lesion.

Explicit Formulation of the Initial Conditions for the
Survival Fraction Computation

The survival probability of Eq. (26) is expressed in terms
of the initial damage distribution pX

0 x0jznð Þ. We will derive a
more explicit form for the survival equation by using the
microdosimetric distribution f1;d, so that the relation of the
survival curve on the variable zn appears explicitly. For the
sake of readability, mathematical computations are reported
in detail in Appendix A, whereas the current Section only
reports main steps and results.

For x.0, using Eqs. (3)–(5), the following holds

pX
0 xð Þ ¼

X

m�0

h zn; m; j; xð Þ
Z‘

0

e�jzzxfm;d zð Þdz : ð27Þ

with
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h zn; m; j; xð Þ :¼ jx

x!

zm
n

zm
Fm!

e
�zn

zF :

We will denote by L g zð Þ½ � the Laplace transform of the
function g, defined as

L g zð Þ½ � jð Þ :¼
Z‘

0

e�jzg zð Þdz :

Taking advantage of the Laplace transform property, we
have

L zxg zð Þ½ � jð Þ ¼ �1ð Þx dx

djx
L g zð Þ½ � jð Þ; x.0;

L g zð Þ � g zð Þ½ � jð Þ ¼ L g zð Þ½ � jð Þð Þ2 : ð28Þ
Substituting Eq. (28) into Eq. (27), we find

pX
0 xð Þ ¼ �1ð Þx jx

x!
e
�zn

zF � dx

djx
exp

zn

zF

Z‘

0

e�jzf1;d zð Þdz

2

4

3

5 :

ð29Þ
M jð Þ and Mx jð Þ represent the moment generating function
and the x�translated moment generating function, respec-
tively, of the single-event distribution f1 defined as

M jð Þ :¼
Z‘

0

e�jzf1 zð Þdz ¼
X

n�0

�1ð Þn

n!
jnmn;

Mx jð Þ :¼
Z‘

0

zxe�jzf1 zð Þdz ¼
X

n�0

�1ð Þn

n!
jnmnþx;

where mn is the nth moment of single-event distribution
f1;d zð Þ.

For x ¼ 0, we find the particular case

pX
0 0ð Þ ¼ exp � zn

zF

Z‘

0

1� e�jzð Þf1;d zð Þdz

2

4

3

5; ð30Þ

and analogously for pY
0 0ð Þ

pY
0 0ð Þ ¼ exp � zn

zF

Z‘

0

1� e�kz
� �

f1;d zð Þdz

2

4

3

5: ð31Þ

From Eq. (29), some mathematical computations (see
Appendix A) yield the following

pX
0 x0jznð ÞpY

0 0jznð Þ ¼ exp � zn

zF

Z‘

0

2� e�jz � e�kz
� �

f1;d zð Þdz

2

4

3

5

� �jð Þx

x!
H zn; x;Mð Þ;

with

H zn; x;Mð Þ :¼
Xx

i¼1

Xi

j¼1

Xj

l¼1

�1ð Þi �1ð Þj

i� jð Þ! j � lð Þ!
zn

zF

� �j

�Mi�lBx;l M1; . . . ;Mx�lþ1ð Þ:

Above we have defined by Bx;l M1; . . . ;Mx�lþ1ð Þ is the Bell’s
polynomial defined as

Bx;l M1; . . . ;Mx�lþ1ð Þ :¼
X x!

j1! . . . jx�lþ1!
M1ð Þj1 . . . Mx�lþ1ð Þjx�lþ1 ;

and the summation ranges over multi-indexes such that

j1 þ j2 þ . . .þ jx�lþ1 ¼ l;

j1 þ 2j2 þ . . .þ x � lþ 1ð Þjx�lþ1 ¼ x:

The survival Eq. (24) becomes

Sd znð Þ ¼ exp � zn

zF

Z‘

0

2� e�jz � e�kz
� �

f1;d zð Þdz

2

4

3

5

� 1þ
X‘

x0¼1

�jð Þx0

x0!
H zn; x0;Mð ÞC x0ð Þ

" #

: ð32Þ

Thus, the survival for the whole cell nucleus is calculated

as

S znð Þ ¼ exp �Nd
zn

zF

Z‘

0

2� e�jz � e�kz
� �

f1;d zð Þdz

2

4

3

5

� 1þ
X‘

x0¼1

�jð Þx0

x0!
H zn; x0;Mð ÞC x0ð Þ

" #Nd

: ð33Þ

To emphasize the dependence of Eq. (33) on zn, the terms

of H zn; x;Mð Þ contained in Eq. (33) can be rearranged to

obtain

S znð Þ ¼ exp �Nd
zn

zF

Z‘

0

2� e�jz � e�kz
� �

f1;d zð Þdz

2

4

3

5

� 1þ
X‘

k¼1

zn

zF

� �k

Gk Mð Þ
 !Nd

; ð34Þ

with

Gk Mð Þ :¼
X‘

x0¼k

Xx0

i¼1

Xi

j¼1

�1ð Þi �1ð Þj

i� jð Þ! j � kð Þ!
�jð Þx0

x0!
C x0ð Þ

�Mi�kBx0;k M1; . . . ;Mx0�kþ1ð Þ: ð35Þ

Remark 1: In the very particular case of low-LET

radiation, as showed above since j2znzD , , 1, we infer

that pX
0 follows a Poisson distribution.

Therefore, using the fact that the initial damage

distribution is Poisson distributed, Eq. (34) simplifies to
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S znð Þ ¼ e�Ndzn jþkð Þ 1þ
X‘

x0¼1

zx0
n

jx0

x0!
C x0ð Þ

 !Nd

: ð35Þ

Comparison with Existing Radiobiological Models for
Predicting Survival Fraction

Equation (34) depends on the biological parameters a, b,
r, j and k, as well as on the physical parameters related to
energy deposition, mainly described by the single-event
specific energy spectra f1;d zð Þ. In particular, the survival Eq.
(34) is the product of a linear exponential function

exp �Nd
zn

zF

Z‘

0

2� e�jz � e�kz
� �

f1;d zð Þdz

2

4

3

5 ;

and a polynomial function of general order on zn

1þ
X‘

k¼1

zn

zF

� �k

Gk Mð Þ
 !Nd

:

The linear exponential function describes the initial damage
formation inside the cell. This term depends on the
biological parameters j and k, describing the number of
initial lethal and sublethal lesions for a given energy event z,
and on the radiation quality via the single-event spectra
f1;d zð Þ. It is worth stressing that, differently from most
existing models, the whole microdosimetric distribution is
considered rather than solely mean values, preserving the
largest part of information achievable by physics measure-
ments or simulation of a given radiation field.

The polynomial function, instead, accounts for the time
evolution of the DNA damages. Each term G depends on
the full energy spectrum f1;d zð Þ through the moment
generating function M; this is a relevant difference with
the majority of existing models, which are mainly based on
the first two moments of the microdosimetric distribution.
The probabilistic description of the G terms is that the ith
term accounts for the damage caused by i events. Each term
is weighted by the probability that such event occurs and
that the induced DNA damage is repaired.

The survival curve in Eq. (24), written in compact form
as,

Sd znð Þ :¼
X

x0�0

pX
0 x0jznð ÞpY

0 0jznð ÞC x0ð Þ; ð36Þ

can be seen as a generalization of a multihit (MH) model
(24, 28). We recall in fact that the MH model assumes that
cell killing is due to several events that might happens in a
target. Therefore, the survival probability at a given dose D
can be expressed as

S Dð Þ ¼
XN

j¼0

p jjDð Þ;

where N is the maximum number of events that can occur,

and p(jjD) is the probability of registering exactly events at
a prescribed dose D. Unlike the standard MH model, we do
not assume a priori any a priori upper limit for the number
of hits. In fact, GSM2 suitably weighs the number of
observed damages by the probability that a certain number
of damages results from a specific microdosimetric and
further consider the probability that damages are repaired.

Another difference between the MH and the proposed
model, is that the number of lesions generated by an event is
derived exploiting microdosimetry. In particular, the
probability that a certain number of damages results from
energy deposition is not assumed to Poissonian but it is
derived from a mechanistic dynamical Eq. (2) allowing for
repair and damage interaction. As shown in the literature
(19), the resulting probability can be Poissonian under
specific irradiation conditions, but can also differ signifi-
cantly from a Poisson distribution, e.g., in high-dose
regimes.

Several possible choices for p(jjD) have been shown in
the literature; for instance, the standard assumptions is to
consider p(jjD) to be a Poisson distribution [(24) see
Chapter VI, ‘‘Applications of Microdosimetry in Biology’’].
More recently an advanced version of the MH modal has
been proposed in Vassiliev (28) assuming a more general
probability distribution. Notable enough, the generalized
MH model derived in Vassiliev (28) can be seen as a
particular case of the GSM2.

If we approximate the multi-event microdosimetric
distribution as

fm;d zð Þ ¼ d z� mzFð Þ ; ð37Þ
with d z� mzFð Þ the Dirac delta centered in mzF, we obtain
from Eq. (27),

pX
0 xð Þ ¼

Z‘

0

e�jz jzð Þx

x!
f zjznð Þdz

¼
X

m�0

Z‘

0

e�jz jzð Þx

x!

zm
n

zm
Fm!

e
�zn

zFd z� mzFð Þdz

¼
X

m�0

e�jmzF
jmzFð Þx

x!

zm
n

zm
Fm!

e
�zn

zF

¼ e
�zn

zF
1�e�jzFð Þ

Bx e
�zn

zF
e�jzF

� �
; ð38Þ

with Bx the Bell polynomial. Equation (38) is equal to the
main equation derived in Vassiliev (28). Therefore,
inserting Eq. (38) into Eq. (26) we obtain a generalization
of the non-Poissonian multi-hit model proposed in Vassiliev
(28).

Although a distribution fm;d zð Þ of the type described by
Eq. (37) is reasonable, it is nonetheless an approximation
because it completely neglects the variance in the micro-
dosimetric energy deposition event. To overcome this
limitation, in this work we have exploited the full micro-
dosimetric information coming from the entire spectrum.
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After taking the logarithm, Eq. (34) becomes

logS znð Þ ¼ �Nd
zn

zF

Z‘

0

2� e�jz � e�kz
� �

f1;d zð Þdz

2

4

3

5

þ Ndlog 1þ
X‘

k¼1

zn

zF

� �k

Gk Mð Þ
 !

: ð39Þ

For low doses, we have that zn , , 1, and expanding up to

the second term in zn in Eq. (39), we obtain

logS znð Þ;
0
� zn

zF
Nd

Z‘

0

2� e�jz � e�kz
� �

f1;d zð Þdz

þ zn

zF
NdG1 Mð Þ � Nd

zn

zF

� �2 G1 Mð Þ2

2
� G2 Mð Þ

 !

¼ �a0 Mð Þzn � b0 Mð Þz2
n; ð40Þ

with

a0 Mð Þ ¼ Nd

zF

R‘

0

2� e�jz � e�kz
� �

f1;d zð Þdz

� Nd

zF
G1 Mð Þ ;

b0 Mð Þ ¼ Nd

z2
F

G1 Mð Þ2
2
� G2 Mð Þ

� �
:

8
>>>><

>>>>:

ð41Þ

In Eq. (40), we are neglecting higher order polynomials

in zn coming from Eq. (34). Additionally, the linear and

quadratic terms depend on all the moments of the single

event microdosimetric distribution f1;d, rather than just on

the first two moments zF and zD as in all classical

models. By dropping all moments greater than the

second, GSM2 provides the similar results as the existing

models (2).

For high doses, i.e., zn..1, the linear term in Eq. (39)

dominates the logarithm, so that

logS znð Þ;
‘
� zn

zF
Nd

Z‘

0

2� e�jz � e�kz
� �

f1;d zð Þdz

0

@

1

A: ð42Þ

Above low and high dose approximation emphasize how

the proposed model naturally incorporates the linear-

quadratic-linear (LQL) behavior of the survival curves

experimentally observed, especially in low-LET regime

(29).

Furthermore, GSM2 satisfies the Hugh-Kellerer theorem
(13, 24). In fact, assuming that no bystander effects (30) can

occur, cells that experience no event must survive. As

shown above, the event frequency for a given absorbed dose

D is D=zF. As the events are statistically independents, the

Poisson statistics implies that there is a natural lower bound

to the survival, that is

Sd Dð Þ � e
�D

zF : ð43Þ

The standard linear-quadratic model violates the lower

bound in the high-dose region.

If each cell has received the same dose, i.e., zn ¼ D, Eq.

(42) shows that in the high-dose regime, the derived

survival follows a linear exponential function

Sd Dð Þ ¼ e
�D

zF

R‘

0

2�e�jz�e�kzð Þf1;d zð Þdz

� �

� e
�D

zF ;

where the inequality follows from the fact that

Z‘

0

2� e�jz � e�kz
� �

f1;d zð Þdz � 1:

The bound is clearly satisfied under the low-dose regimes,

proving that GSM2 does not violate the Hugh-Kellerer
theorem.

Non-Poissonian Inter-Cellular Corrections

Given a dose D, the energy deposition distribution can be

computed as described above for f zjznð Þ. We therefore have

that

fn znjDð Þ :¼
X‘

m¼0

pn mjDð Þfm;c znð Þ ;

where fm;n znð Þ is the distribution resulting from m energy

depositions in a single cell nucleus and pn mjDð Þ is the

probability that a m energy deposition occurs in a cell

nucleus. The distribution fm;n znð Þ can be obtained convolv-

ing the single event distribution f1;n znð Þ.
Therefore, the total cell survival probability can be

obtained as described in Rossi and Zaider (24).

Equation (8) contains all the overkilling corrections

typically added to the survival curve formulations to

account for the stochastic nature of energy deposition.

Given the survival curve Sn znð Þ explicitly computed in

Eq. (34) the survival curve S Dð Þ can efficiently calculated

using standard numerical integration techniques. Nonethe-

less, using some physical considerations concerning the

stochasticity of energy deposition some useful simplifica-

tions can be derived. In the companion paper, a detailed

comparison of the survival curve S Dð Þ and the approxima-

tions derived in subsequent sections are investigated into

details.

It is worth stressing that, as highlighted in Appendix B, in

the original MKM formulation (3), it has been assumed that

no stochasticity in energy deposition among cell domains

happens, so that S Dð Þ can be obtained via the approxima-

tion

fn znjDð Þ’ d zn � Dð Þ ;

yielding using Eq. (8) the survival curve
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S Dð Þ ¼ Sd Dð Þ

¼ exp �Nd
D

zF

Z‘

0

2� e�jz � e�kz
� �

f1;d zð Þdz

2

4

3

5

� 1þ
X‘

k¼1

D

zF

� �k

Gk Mð Þ
 !Nd

;

with Gk Mð Þ as in Eq. (35).

In the following, suitable approximation of the micro-

dosimetric spectrum fn znjDð Þ will be introduced and

considered under different LET and doses regimes. Thus,

the resulting survival curve will be computed highlighting

its main aspects.

The Low-Dose Regime

For low doses, and in particular in the case

a0 Mð Þzn þ b0 Mð Þz2
n , , 1 ;

with a0 and b0 given as in Eq. (41), Eq. (40) yields

S Dð Þ’ 1

�
Z‘

0

a0 Mð Þzn þ b0 Mð Þ � a2
0 Mð Þ

2

� �
z2

n

� �
fn znjDð Þdzn

¼ 1� a0 Mð Þmc
1 � b0 Mð Þ � a2

0 Mð Þ
2

� �
mc

2;

ð44Þ

with mc
1 and mc

2 the first and second moment, respectively,

of the multi-event distribution fn znjDð Þ. Using the explicit

forms for the moments mc
1 and mc

2 (24), we can conclude

using Eq. (44) that

S Dð Þ’ 1� a0 Mð Þ þ b0 Mð Þ � a2
0 Mð Þ

2

� �
zD

� �
D

� b0 Mð Þ � a2
0 Mð Þ

2

� �
D2 ’ e�a Mð ÞD�b Mð ÞD2

; ð45Þ

with

a Mð Þ ¼ a0 Mð Þ þ b0 Mð Þ � a2
0

Mð Þ
2

� �
zD;n ;

b Mð Þ ¼ b0 Mð Þ � a2
0

Mð Þ
2

� �
;

8
<

:
ð46Þ

where zD;n is the dose average of the specific energy in multi

events. Equations (45) and (46) emphasize the connection

of the current models with the classical MKM. In fact, as

shown in Cordoni (19), in the low-dose regimes the GSM2

predicts a Poissonian behaviour of lethal damages so that

the standing assumption of the MKM is recovered.

Nonetheless, it is worth stressing that, differently from the

MKM, the a and b coefficients in Eq. (46) depends on the

radiation quality via M.

The Medium-/Low-Dose and High-LET Regime

For high-LET regimes and medium/low doses, more

precisely in regimes for which D
zF

, , 1, the probability of

more than one event is negligible. In such a situation, either

0 or 1 event is registered, so that the multi-event energy

distribution can be approximated as

fn znjDð Þ :¼
X‘

m¼0

e
�D

zF

m!

D

zF

� �n

fm;c zð Þ

’ e
�D

zF d znð Þ þ
D

zF
f1;c znð Þ

� �
: ð47Þ

Calculating Eq. (8) with the approximated multi-event

distribution Eq. (47), we obtain

S Dð Þ ¼
Z‘

0

Sd znð Þfn znjDð Þdzn ’ e
�D

zF

þ e
�D

zF
D

zF

Z‘

0

Sd znð Þf1;c znð Þdzn: ð48Þ

A further approximation can be included into Eq. (48); in

fact, Eq. (40) demonstrated that the survival at low doses is

linear-quadratic, and thus, combining Eq. (40) with Eq. (48)

we obtain

S Dð Þ’ e
�D

zF þ e
�D

zF
D

zF

Z‘

0

e�a0zn�b0z2
n f1;c znð Þdzn; ð49Þ

with a0 and b0 as in Eq. (41).

From Eq. (49) we find further

S Dð Þ’ exp � D

zF

Z‘

0

1� e�a0zn�b0z2
n

� �
f1;c znð Þdzn

2

4

3

5: ð50Þ

It is worth stressing that Eq. (50) highlights an insightful

connection to the DNA-lesion theory of radiation action

(24). In fact, Eq. (50) recover the main equation of DNA-

lesion theory of radiation action (24).

The High-Dose Regime

For a high-dose regime, more rigorously in regimes for

which it holds that D
zF

..1, the multi-event distribution

becomes Gaussian distributed (13). We therefore have that

f zjznð Þ :¼
X‘

m¼0

e
�zn

zF

m!

zn

zF

� �n

fm;d zð Þ’ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pzDD
p e

�1
2

zn�Dð Þ2
zDD ; ð51Þ

where zD is the dose average of the specific energy in single

events.

Assessing Eq. (8) with the approximated multi-event

distribution Eq. (51), we obtain using the purely linear

behavior for the survival curve Sd znð Þ showed in Eq. (42),
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S Dð Þ ¼
Z‘

0

Sd znð Þfn znjDð Þdzn

’
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pzDD
p

Z‘

0

e�aHLzn e
�1

2

zn�Dð Þ2
zDD dzn; ð52Þ

where zD is the dose average of the specific energy in single
events on the cell-nucleuous and

aHL :¼ Nd

Z‘

0

2� e�jz � e�kz
� �

f1;c zð Þdz

0

@

1

A :

Solving Eq. (52), we find

S Dð Þ ¼ e�aHL 1�aHLzD
2ð ÞD: ð53Þ

As mentioned above, Eq. (53) accounts for overkilling
effects. In fact, a cell irradiated with a higher LET will have
a lower probability of surviving, resulting in a greater value
for aHL. According to Eq. (53), the corresponding survival
curve will be corrected and shifted upward by a greater term
a2

HLzD

2
, yielding in fact the typical effect of overkilling

corrections.

CONCLUSIONS

In the present work, we used the new GSM2 model (19)
to obtain an equation for cell survival. GSM2 takes into
account the effects of stochasticity in different aspects of
radiation-induced damage, e.g., in the initial damage
distribution as well as in the damage evolution, and for
this reason the derivation of an explicit and consistent form
for the survival curve is not trivial. The pairwise interaction
of damages implies that the resulting Microdosimetric
Master Equation does not fall into the class of the standard
birth-death processes, thus preventing the use of the
extensive literature already available and requiring the
development of ad hoc mathematical techniques methods.
Furthermore, the general form of the initial damage
distribution takes advanced physical and mathematical
arguments to derive an explicit form for the survival curve
predicted by GSM2.

From the comparison of GSM2 calculations with the
typical shape of measured survival cell curves, two
important aspects emerge: 1. The model predicts a linear-
quadratic-linear behavior of the survival as a function of
the dose, i.e. a linear-quadratic behavior at low doses and a
purely linear at high doses; and 2. Describing the radiation
field quality with the whole microdosimetric spectrum can
include a more detailed description of the radiation quality
than considering only average values, as most of the
existing models do. These aspects make GSM2 a very
promising model for providing a general description of cell
survival for ions of different LET, with specific reference to
high-LET regimes.

In addition, we illustrated a rigorous generalization to
consider inter-cellular non-Poissonian effects. Using
suitable approximations for the microdosimetric spectra
at high and low doses, we showed how the stochasticicity
of energy deposition among different cells can be taken
into account.

This article also described the connection between
GSM2 and different existing radiobological models for
cell survival computation. Besides a close connection with
the MKM already discussed in Cordoni (19), analogies
with predictions from the Multi-Hit Model and the DNA-
lesion theory of radiation action (28, 31), emerged in the
current work. Further links between the GSM2 and
existing survival models, such as the Multi-Hit Model
and the Repair-Misrepair Model, are currently under
investigation.

A detailed analysis of the survival curves, whose
calculation method has been reported here will be reported
in a companion paper. The study will focus on the
dependence of the survival curves on the ion type and
LET.

APPENDIX A

Explicit Formulation of the Initial Conditions for the
Survival Fraction Computation: Detailed Mathematical

Derivation

The current section expands ‘‘Explicit Formulation of the Initial

Conditions for the Survival fraction Computation’’ reporting detailed

mathematical derivation of the Survival curve. Recall that, the following

holds

pX
0 xð Þ ¼

Z‘

0

e�jz jzð Þx

x!
f zjznð Þdz ¼

X

m�0

Z‘

0

e�jz jzð Þx

x!

zm
n

zm
Fm!

e
�zn

zF fm;d zð Þdz

¼
X

m�0

h zn; m; j; xð Þ
Z‘

0

e�jzzxfm;d zð Þdz:

ðA1Þ

with

h zn; m; j; xð Þ :¼ jx

x!

zm
n

zm
Fm!

e
�zn

zF :

We will denote by L g zð Þ½ � the Laplace transform of the function g,

defined as

L g zð Þ½ � jð Þ :¼
Z‘

0

e�jzg zð Þdz:

Taking advantage of the Laplace transform property, we have

L zxg zð Þ½ � jð Þ ¼ �1ð Þx dx

djx
L g zð Þ½ � jð Þ; x.0

L g zð Þ�g zð Þ½ � jð Þ ¼ L g zð Þ½ � jð Þð Þ2: ðA2Þ

Substituting Eq. (A2) into Eq. (A1), we find
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pX
0 xð Þ ¼

X

m�0

h zn; m; j; xð Þ
Z‘

0

e�jzzxfm;d zð Þdz

¼
X

m�0

h zn; m; j; xð Þ �1ð Þx dx

djx
L f1;d zð Þ
� �m

jð Þ
� �

¼ �1ð Þx jx

x!
e�

zn
zF � dx

djx

X

m�0

zm
n

zm
Fm!

Z‘

0

e�jzf1;d zð Þdz

0

@

1

A

m

¼ �1ð Þx jx

x!
e
�zn

zF � dx

djx
exp

zn

zF

Z‘

0

e�jzf1;d zð Þdz

2

4

3

5: ðA3Þ

M jð Þ and Mx jð Þ represent the moment generating function and the
x�translated moment generating function, respectively, of the single-event
distribution f1 defined as

M jð Þ :¼
Z‘

0

e�jzf1 zð Þdz ¼
X

n�0

�1ð Þn

n!
jnmn;

Mx jð Þ :¼
Z‘

0

zxe�jzf1 zð Þdz ¼
X

n�0

�1ð Þn

n!
jnmnþx;

where mn is the nth moment of single-event distribution f1;d zð Þ.
Defining for short

g jð Þ ¼ zn

zF

Z‘

0

e�jzf1;d zð Þdz ¼ zn

zF
M jð Þ ;

the following equalities hold true (27)

dx

djx
eg jð Þ ¼ eg jð Þ

Xx

i¼1

�1ð Þi

i!

Xi

j¼1

�1ð Þj i
j

� �
dx

djx
gj jð Þg jð Þi�j;

dx

djx
gj jð Þ ¼

Xj

l¼1

zn

zF

� �l j!

j � lð Þ! gj�l jð ÞBx;l M1; . . . ;Mx�lþ1ð Þ; ðA4Þ

where Bx;l M1; . . . ;Mx�lþ1ð Þ is the Bell’s polynomial defined as

Bx;l M1; . . . ;Mx�lþ1ð Þ :¼
X x!

j1! . . . jx�lþ1!
M1ð Þj1 . . . Mx�lþ1ð Þjx�lþ1 ;

and the summation ranges over multi-indexes such that

j1 þ j2 þ . . .þ jx�lþ1 ¼ l;

j1 þ 2j2 þ . . .þ x � lþ 1ð Þjx�lþ1 ¼ x:

Using Eq. (A4), we thus get

dx

djx
eg jð Þ ¼ eg jð Þ

Xx

i¼1

Xi

j¼1

Xj

l¼1

�1ð Þi �1ð Þj

i� jð Þ! j � lð Þ!
zn

zF

� �j

�Mi�lBx;l M1; . . . ;Mx�lþ1ð Þ: ðA5Þ

Inserting Eq. (A5) into Eq. (A3) we finally obtain

pX
0 xð Þ ¼ �jð Þx

x!
exp � zn

zF

Z‘

0

1� e�jzð Þf1;d zð Þdz

2

4

3

5

�
Xx

i¼1

Xi

j¼1

Xj

l¼1

�1ð Þi �1ð Þj

i� jð Þ! l� 2ð Þ!
zn

zF

� �j

�Mi�lBx;l M1; . . . ;Mx�lþ1ð Þ

¼ exp � zn

zF

Z‘

0

1� e�jzð Þf1;d zð Þdz

2

4

3

5� �jð Þx

x!
H zn; x;Mð Þ;

ðA6Þ

with

H zn; x;Mð Þ :¼
Xx

i¼1

Xi

j¼1

Xj

l¼1

�1ð Þi �1ð Þj

i� jð Þ! j � lð Þ!
zn

zF

� �j

�Mi�lBx;l M1; . . . ;Mx�lþ1ð Þ: ðA7Þ

For x ¼ 0, we find the particular case

pX
0 0ð Þ ¼ exp � zn

zF

R‘

0

1� e�jzð Þf1;d zð Þdz


 �
; ðA8Þ

and analogously for pY
0 0ð Þ

pY
0 0ð Þ ¼ exp � zn

zF

R‘

0

1� e�kz
� �

f1;d zð Þdz


 �
: ðA9Þ

From Eqs. (A6), (A8) and (A9), and exploiting the fact that

pX
0 x0jznð ÞpY

0 0jznð Þ ¼ exp � zn

zF

Z‘

0

2� e�jz � e�kz
� �

f1;d zð Þdz

2

4

3

5

� �jð Þx

x!
H zn; x;Mð Þ;

the survival Eq. (24) becomes

Sd znð Þ ¼ exp � zn

zF

Z‘

0

2� e�jz � e�kz
� �

f1;d zð Þdz

2

4

3

5

� 1þ
X‘

x0¼1

�jð Þx0

x0!
H zn; x0;Mð ÞC x0ð Þ

" #

: ðA10Þ

Thus, the survival for the whole cell nucleus is calculated as

S znð Þ ¼ exp �Nd
zn

zF

Z‘

0

2� e�jz � e�kz
� �

f1;d zð Þdz

2

4

3

5

� 1þ
X‘

x0¼1

�jð Þx0

x0!
H zn; x0;Mð ÞC x0ð Þ

" #Nd

: ðA11Þ

APPENDIX B

The Microdosimetric Kinetic Model (MKM) and its
Connection to the GSM2

The Microdosimetric Kinetic Model (MKM) is one of the most used
radiobiological model that, starting from microdosimetric spectra, aims at
quantifying the cell survival, for a given radiation field.

The MKM starting point is the same as the GSM2 but, instead of the
full probability distribution for lethal and sublethal lesions, the
corresponding average values are considered. Using assumptions intro-
duced in section ‘‘The Generalized Stochastic Microdosimetric Model,’’
denoting by �xg;z and �yg;z the number of type II and type I lesion for domain
d and dose z; respectively, it is assumed that they satisfy the following set
of coupled ODE

d
dt

�yd;z tð Þ ¼ a�xd;z þ b�x2
d;z;

d
dt �xd;z tð Þ ¼ � aþ rð Þ�xd;z � 2b�x2

d;z :

(

ðB1Þ

Assuming further that aþ rð Þ 	 2b above equation is reduced to

d
dt

�yd;z tð Þ ¼ a�xd;z þ b�x2
d;z ;

d
dt �xd;z tð Þ ¼ � aþ rð Þ�xd;z :

�
ðB2Þ

In the following, for ease of notation, we will omit the subscript d; zð Þ
denoting for short �x :¼ �xd;z, resp. �y :¼ �yd;z.
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One of the final goals of the MKM model, starting from micro-
dosimetric measurements, is to predict the survival probability of cell
nuclei when exposed to ionizing radiation. In order to achieve the goal one
more assumption is made.

The lethal lesion distribution follows a Poissonian distribution.
Under Poissonian distribution assumptions above, the probability that

domain d survives as t! ‘ when exposed to the specific energy z,
denoted by Sd;zd

can be computed as the probability that the random
outcome of a Poisson random variable is null. Therefore Sd;zd

is given by,

Sd;zd
¼ e

lim
t!‘

�yd;z tð Þ
: ðB3Þ

Explicit computation (3, 32), shows that the number of lethal lesions as
t! ‘ can be computed as

lim
t!‘

�yd;z tð Þ ¼ kþ aj
aþ r

� �
zþ bj2

2 aþ rð Þ z
2;

so that we obtain from Eq. (B3)

Sd;zd
¼ eAzþBz2

;

with A and B some suitable constants independent of the domain d and
specific energy zd of the domain d.

The survival log probability Eq. (B3) cab be extended to the whole cell
nucleus, denoted by logSn as

logSn;zn
:¼
XNd

i¼1

logSd;zd

¼ �NdA

Z‘

0

zdfd zd ; znð Þdzd � NdB

Z‘

0

z2
dfd zd; znð Þdzd; ðB4Þ

where fd zd; znð Þ denotes the probability density of zd for a cell nucleus
specific energy zn. In particular, the following holds

zn ¼
Z‘

0

zdfd zd; znð Þdzd :

The log survival in Eq. (B4) can be thus written as

logSn;zn
¼ � aþ �zdbð Þzn � bz2

n ;

being �zd the dose mean zd per event defined as

�zd :¼
R ‘

0
z2

dfd;1 zdð ÞdzdR ‘

0
zdfd;1 zdð Þdzd

;

where fd;1 zdð Þ is the single-event probability density of zd in the domain d.
The total survival log probability logS for a population of irradiated

cells is then given by,

logS ¼ log

Z‘

0

Sn;zn
fn zn; Dð Þdzn

0

@

1

A ; ðB5Þ

where similar to above we have denoted by fn zn; Dð Þ the probability
density of zn for an absorbed dose D, i.e.,

D ¼
Z‘

0

znfn zd ; Dð Þdzn :

Assuming that Eq. (B5) can be approximated as

logS ¼ log

Z‘

0

Sn;zn
fn zn; Dð Þdzn

0

@

1

A’

Z‘

0

log Sn;zn

� �
fn zn; Dð Þdzn

¼ � aþ �zd � �znð Þbð ÞD� bD2; ðB6Þ

with �zn the dose mean zn per event.

The first line of Eq. (B6) is an approximation that is not valid in.

Several generalizations (4, 9–12, 32, 33), have been proposed in order

to take into account effects due to a non-Poissonian distribution of lethal

lesions. To the best of our knowledge, most of these models try to correct

the log survival Eq. (B6) introducing some correction term based on

overkilling effects. For instance, in Sato and Furusawa (11) the following

correction has been proposed

logS ¼ � aþ �zd � �znð Þbð Þf �zd;�znð ÞD� bD2 ;

where f �zd ;�znð Þ is a suitable correction term that depends on both �zd and �zn.

Another form is given in Kase (12) as

logS ¼ � aþ �z�db
� �

D� bD2 ;

where �z�d is a term that accounts for overkilling effects.

Connection between the MKM and the GSM2

The present section aims at showing that the mean value of the master

equation does satisfy, under certain assumptions, the kinetic Eq. (B1). In

what follows, E denotes the mean value of a random variable defined as

�x tð Þ :¼ E X tð Þ½ � ¼
X

x;y�0

xp t; y; xð Þ;

�y tð Þ :¼ E Y tð Þ½ � ¼
X

x;y�0

yp t; y; xð Þ:

Note that the following holds true,

X

x;y�0

xEi;j f y; xð Þp t; y; xð Þ½ � ¼ �Ejf Y;Xð Þ;

X

x;y�0

yEi;j f y; xð Þp t; y; xð Þ½ � ¼ �Eif Y;Xð Þ: ðB7Þ

Therefore, multiplying the MME (2) by x and y, we obtain using (B7)

d
dt E Y tð Þ½ � ¼ bE X tð Þ X tð Þ � 1ð Þ½ � þ aE X tð Þ½ �;
d
dt E X tð Þ½ � ¼ �2bE X tð Þ X tð Þ � 1ð Þ½ � � aþ rð ÞE X tð Þ½ �:

�
ðB8Þ

Equation (B8) are still not of the form of Eq. (B1); in particular they

depend on a second order moment E X tð Þ X tð Þ � 1ð Þ½ �. Nonetheless,

explicit computation will show that, if we try to compute a kinetic

equation for the second order moment E X tð Þ X tð Þ � 1ð Þ½ �, we would obtain

a dependence on higher moments, and so to obtain an infinite set on

coupled ODE. To solve the impasse, we shall make what is called a mean-
field assumptions, that is, we assume that,

E X tð Þ X tð Þ � 1ð Þ½ �;E X tð Þ½ �2 ;

so that under the mean-field assumption Eq. (13) become,

d
dt

�y tð Þ ¼ b�x2 tð Þ þ a�x tð Þ ;
d
dt �x tð Þ ¼ �2�x2 tð Þ � aþ rð Þ�x tð Þ ;

�
ðB9Þ

and the original kinetic equations are in turn recovered.

A quick remark on the mean-field assumption is needed. In the case of x
being large enough, we have that the following approximation holds true

E X tð Þ X tð Þ � 1ð Þ½ �;E X tð Þ½ �2; therefore, the mean-field assumption means

that E X tð Þ X tð Þ � 1ð Þ½ � � E X tð Þ½ �2 ; 0. Noticing that the last term is

nothing but the variance, and recalling that the variance for a random

variable is null if and only if the random variable is in fact deterministic, if

the mean-field assumption is realistic than the realized number of lesions

does not differ much from the mean value so that everything we need to

know is the mean value. On the contrary if there are evidence that the

mean value is not a realistic approximation for the realized number of

lesions, the mean-field assumption must be considered unrealistic so that

the knowledge of the full probability distribution is essential to have a

complete understanding of the system.
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6. Friedrich T, Scholz U, Elsässer T, Durante M, Scholz M.
Calculation of the biological effects of ion beams based on the
microscopic spatial damage distribution pattern. Int J Radiat Biol.
2012;88(1-2):103-107. doi:10.3109/09553002.2011.611213

7. M McMahon SJ. The linear quadratic model: usage, interpretation
and challenges. Phys Med Biol. 2018 Dec 19;64(1):01TR01. doi:
10.1088/1361-6560/aaf26a

8. Friedrich T, Durante M, Scholz M. Modeling cell survival after
photon irradiation based on double-strand break clustering in
megabase pair chromatin loops. Radiat Res. 2012 Nov;178(5):385-
94. doi: 10.1667/RR2964.1. Epub 2012 Sep 21. PMID: 2299822

9. Hawkins RB. A Microdosimetric-Kinetic Model of Cell Killing by
Irradiation from Permanently Incorporated Radionuclides. Radiat
Res. 2018 Jan;189(1):104-116. doi: 10.1667/RR14681.1.

10. Inaniwa T, Suzuki M, Furukawa T, et al. Effects of dose-delivery
time structure on biological effectiveness for therapeutic carbon-
ion beams evaluated with microdosimetric kinetic model. Radiat
Res. 2013;180(1):44-59. doi:10.1667/RR3178.1

11. Sato T, Furusawa Y. Cell survival fraction estimation based on the
probability densities of domain and cell nucleus specific energies
using improved microdosimetric kinetic models [published
correction appears in Radiat Res. 2012 Dec;178(6):622]. Radiat
Res. 2012;178(4):341-356. doi:10.1667/rr2842.1

12. Kase Y, Kanai T, Matsumoto Y, et al. Microdosimetric
measurements and estimation of human cell survival for heavy-
ion beams. Radiat Res. 2006;166(4):629-638. doi:10.1667/
RR0536.1

13. Rossi HH, Zaider M. Saturation in dual radiation action.
Quantitative Mathematical Models in Radiation Biology. Springer,
1988; 111–118.

14. McMahon, S., Schuemann, J., Paganetti, H. et al. Mechanistic
modelling of DNA repair and cellular survival following radiation-
induced DNA damage. Sci Rep 2016; 6:33290. https://doi.org/10.
1038/srep33290

15. M Frese MC, Yu VK, Stewart RD, Carlson DJ. A mechanism-
based approach to predict the relative biological effectiveness of
protons and carbon ions in radiation therapy. Int J Radiat Oncol
Biol Phys. 2012;83(1):442-450. doi:10.1016/j.ijrobp.2011.06.1983

16. Carlson DJ, Stewart RD, Semenenko VA, Sandison GA.
Combined use of Monte Carlo DNA damage simulations and
deterministic repair models to examine putative mechanisms of
cell killing. Radiat Res. 2008 Apr;169(4):447-59. doi: 10.1667/
RR1046.1

17. Stewart RD, Yu VK, Georgakilas AG, Koumenis C, Park JH,
Carlson DJ. Effects of radiation quality and oxygen on clustered
DNA lesions and cell death. Radiat Res. 2011 Nov;176(5):587-
602. doi: 10.1667/rr2663.1

18. Stewart RD, Carlson DJ, Butkus MP, Hawkins R, Friedrich T,
Scholz M. A comparison of mechanism-inspired models for
particle relative biological effectiveness (RBE). Med Phys. 2018
Nov;45(11):e925-e952. doi: 10.1002/mp.13207

19. Cordoni F, Missiaggia M, Attili A, Welford SM, Scifoni E, La
Tessa C. Generalized stochastic microdosimetric model: The main
formulation. Phys Rev E. 2021 Jan;103(1-1):012412. doi: 10.1103/
PhysRevE.103.012412

20. Karlin S, McGregor J. ‘‘The Classification of Birth and Death
Processes.’’ Transactions of the American Mathematical Society
86, no. 2 (1957): 366–400. https://doi.org/10.2307/1993021

21. Fowler JF. Is repair of DNA strand break damage from ionizing
radiation second-order rather than first-order? A simpler explana-
tion of apparently multiexponential repair. Radiat Res. 1999
Aug;152(2):124-36.

22. Carabe-Fernandez A, Dale RG, Paganetti H. Repair kinetic
considerations in particle beam radiotherapy. Br J Radiol. 2011
Jun;84(1002):546-55. doi: 10.1259/bjr/19934996

23. Zhu H, Chen Y, Sung W, McNamara AL, Tran LT, Burigo LN,
Rosenfeld AB, Li J, Faddegon B, Schuemann J, Paganetti H. The
microdosimetric extension in TOPAS: development and compar-
ison with published data. Phys Med Biol. 2019 Jul
11;64(14):145004. doi: 10.1088/1361-6560/ab23a3

24. Rossi HH, Zaider M. Microdosimetry and its Applications.
Springer, 1996.

25. Gardiner CW. Handbook of Stochastic Methods. 3rd edition,
Springer Berlin, 1985.

26. Van Kampen NG. Stochastic Processes in Physics and Chemistry.
First edition, Elsevier, 1992.
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