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A B S T R A C T   

Lung ultrasound (LUS) is an important imaging modality to assess the state of the lung surface. Nevertheless, LUS 
is limited to the visual evaluation of imaging artifacts, especially the vertical ones. These artifacts are observed in 
pathologies characterized by a reduction of dimensions of air-spaces (alveoli). In contrast, there exist pathol
ogies, such as chronic obstructive pulmonary disease (COPD), in which an enlargement of air-spaces can occur, 
which causes the lung surface to behave essentially as a perfect reflector, thus not allowing ultrasound pene
tration. This characteristic high reflectivity could be exploited to characterize the lung surface. Specifically, air- 
spaces of different sizes could cause the lung surface to have a different roughness, whose estimation could 
provide a way to assess the state of the lung surface. In this study, we present a quantitative multifrequency 
approach aiming at estimating the lung surface’s roughness by measuring image intensity variations along the 
lung surface as a function of frequency. This approach was tested both in silico and in vitro, and it showed 
promising results. For the in vitro experiments, radiofrequency (RF) data were acquired from a novel experi
mental model. The results showed consistency between in silico and in vitro experiments.   

1. Introduction 

Lung ultrasound (LUS) is nowadays widely adopted in clinical 
practice to assess the state of the lung surface [1,2]. Specifically, the 
main characteristics of LUS (i.e., portability, real-time imaging, and non- 
ionizing radiations) render it particularly suitable for patients’ moni
toring [3,4]. 

Nevertheless, being LUS mainly based on the visual evaluation of 
imaging artifacts, it remains subjective and qualitative [1,2,4,5]. To 
improve LUS specificity, researchers have recently started to develop 
quantitative LUS approaches aiming at estimating the state of the lung 
surface [6-13]. However, these approaches can be used to assess the 
state of lung surface only in pathologies characterized by a reduction of 
dimensions of air-spaces (alveoli), and thus an increased permeability of 
the lung with respect to ultrasound waves [2,14]. Therefore, these 
techniques cannot be used for patients affected by lung pathologies 
characterized by an enlargement of air-spaces [14]. 

Being the third leading cause of death worldwide (causing 3.23 
million deaths in 2019) [15,16], chronic obstructive pulmonary disease 
(COPD) can be considered the most representative example of lung 
disease characterized by an enlargement of air spaces. Indeed, the 

peripheral air-space dimensions in COPD patients are generally above 
490 µm, whereas they are mainly between 340 and 440 µm in healthy 
subjects [17]. Similarly to what happens in a healthy lung, the 
enlargement of peripheral air-spaces’ dimensions causes the lung sur
face to behave essentially as a perfect reflector, thus not allowing ul
trasound penetration [14]. This characteristic high reflectivity could be 
exploited to characterize the lung surface. Specifically, we hypothesize 
that air-spaces of different sizes could cause the lung surface to exhibit a 
different roughness [18], whose estimation could provide a way to 
assess the state of the lung surface [14]. To clarify, as the increase of air- 
spaces’ dimensions can occur also peripherally (thus, at the lung sur
face) [17,18], this increase is implicitly translated into a variation of 
lung surface (air) roughness. Fig. 1 shows a pictorial representation of 
lung surface roughness variation following air-spaces’ enlargement. This 
enlargement of peripheral air-spaces causing the lung surface to have a 
different roughness can be clearly observed from lung histologies of 
COPD patients, as shown in [18]. 

In this study, we present a quantitative multifrequency approach 
aiming at estimating the lung surface’s roughness. In particular, this 
estimation is performed by measuring image intensity variations along 
the lung surface as a function of frequency [14]. Specifically, when 
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roughness is introduced at the surface and a wave is transmitted in a 
direction perpendicular to the surface, it is expected that a part of the 
wave is back-scattered in directions different from the transmitted one, 
thus causing a decrease of intensity. This deviation from the trans
mission direction should depend on the relation between the wavelength 

(thus, the frequency) in the propagation medium (i.e., soft tissues) and 
the roughness. Therefore, we aim at understanding whether it is possible 
to observe intensity variations of the waves back-scattered from a rough 
surface, map this variation, and, finally, evaluate the possibility to 
extract information on the roughness dimensions from the obtained 
map. We set our experiments in specific ranges of roughness and fre
quency, which correspond to the range of interest of peripheral air- 
spaces’ dimensions [17] and the frequencies typically used in medical 
ultrasound, respectively. This approach was tested both in silico (nu
merical simulations), and in vitro, where radiofrequency (RF) data were 
acquired from a novel experimental model. 

The paper is organized as follows. While materials and data acqui
sition are presented in Sec. 2.1, the process to quantify the surface in
tensity is described in Sec. 2.2. The results are then presented in Sec. 3, 
followed by discussion and conclusions in Sec. 4. 

2. Materials and methods 

2.1. Materials and data acquisition 

2.1.1. In silico 
The computational 2D (two-dimensional) domain simulated with the 

k-wave [19] MATLAB toolbox consisted of 2000 × 4000 pixels along the 
lateral dimension and depth, respectively. As the numerical grid-size 
(square pixels) was equal to 10 µm, the physical size of computational 
domain resulted in 20 × 40 mm. Specifically, a homogeneous muscle 
layer was simulated in the first 20 mm of depth, whereas a lung surface 
with 9 different levels of roughness was added at 20 mm [14]. The 
roughness was simulated by introducing, at the lung surface, semi- 
circular scatterers (representing alveoli) having a diameter ranging 
from 200 to 600 µm, with a 50-µm step-size. This roughness was intro
duced only in the central part of the domain (between − 3 and 3 mm in 
the lateral dimension), whereas the remaining parts of the interface 
(from − 10 to − 3 mm and from 3 to 10 mm) were kept smooth (see 
Fig. 2). This was done to clearly visualize intensity variations between 
the smooth and the rough parts of the mimicked lung surface. Moreover, 
the smooth areas served as reference points when the reconstructed 
images were normalized with respect to their maximum (see Sec. 2.2). 

Steel was used to mimic the lung surface, as it can simulate a highly 
reflective acoustic interface. Specifically, the reflection coefficient of a 
steel/muscle interface (R ≅ 0.93) is comparable with the reflection 
coefficient of an air/muscle interface (R ≅ 0.99). It is important to 

Fig. 1. Pictorial representation of lung surface roughness variation following air-spaces’ enlargement. The top representation shows regular-sized and spaced alveoli 
(air-spaces), whereas the bottom representation shows the disposition of enlarged alveoli (air-spaces) at the peripheral lung. The alveoli are represented in light blue, 
the surface roughness is represented as a red line, and tissue is represented in pink. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 2. The simulated computational domain is shown. The first 20 mm of 
depth consist of muscle (blue). A simulated lung surface, consisting of steel 
(yellow), was added at 20 mm. This surface has different roughness levels, 
modeled with semi-circular scatterers (representing alveoli), which have a 
diameter ranging from 200 to 600 μm, with a 50-μm step-size (between − 3 to 3 
mm in lateral dimension). The figure shows an example of domain with scat
terers’ diameter equal to 450 μm (left). The same area of the domain is shown 
for all the levels of roughness (right). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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highlight how a material able to form a highly reflective acoustic 
interface is needed as we aim at analyzing the phenomena occurring at 
the interface and not inside that material. Moreover, steel allowed us to 
fabricate lung-mimicking phantoms having controllable size at micro
metric scale, thus providing us the possibility for a consistent compari
son with the in silico experiments. Table 1 shows the simulated acoustic 
properties for muscle and steel. 

For each domain, data were acquired with a plane wave imaging 
strategy by transmitting a 4-µs-time-length pulse (bandwidth equal to 
0.5 MHz at − 6 dB), and center frequencies from 3 to 10 MHz, with a 1- 
MHz step size (8 images per domain). Table 2 shows the wavelength 
values for muscle (λ0) and steel (λsteel), as well as their ratio with the 
numerical grid-size. In transmission phase, the entire array (composed 
by 64 elements) was excited. The kerf and pitch were 45 and 245 µm, 
respectively; however, for the domain approximation, the actual simu
lated values were 40 and 240 µm, respectively. The array was placed at 
150 µm of depth from the beginning of the computational domain, and 
centered with respect to the lateral dimension (i.e., laterally extending 
from approximately − 7.7 mm to 7.7 mm). To reconstruct each image, a 
sub-array of 16 elements was linearly shifted along the entire array in 
reception, thus forming images composed by 49 lines along the lateral 
dimension. No focus was applied both in transmission and reception 

phases. The time sampling interval dt equals to 316 ps, resulting in a 
sampling frequency of 1/dt ≅ 3.1645 GHz. No time gain compensation 
(TGC) was applied, and a speed of sound of 1580 m/s was assumed for 
the time–space conversion (along depth). 

The choice of a plane wave imaging strategy was made to save 
computational time (thus, performing a higher amount of simulations). 
Similarly, plane wave transmissions were used in vitro. 

2.1.2. In vitro 
The ULA-OP programmable platform [20] and an LA533 (Esaote, 

Florence, Italy) linear array probe (having pitch and element size along 
the lateral dimension equal to 245 and 220 μm, respectively [21]) were 
exploited to acquire RF data with different center frequencies. Specif
ically, the data were acquired by transmitting pulses having the same 
bandwidth and center frequency of the in silico experiments. The utilized 
probe has a − 6 dB bandwidth from 3.8 to 12 MHz and a − 12 dB 
bandwidth from 3.2 to 13.2 MHz [11]. The maximum of the transducer 
transfer function is at 8 MHz. A 50 MHz sampling frequency was used 
(dt = 20 ns). A sub-aperture of 64 elements was employed in trans
mission and reception, and the images were reconstructed with dynamic 
beamforming (dynamic focus in reception). Each final image, which was 
reconstructed by linearly shifting this sub-aperture over the entire array 
(192 elements), consists of 129 lines. To avoid saturation phenomena, 
the driving signal amplitude was maintained to 10% of the maximum 
amplitude allowed by the ULA-OP system [12]. To clarify, the driving 
signal is the electrical signal utilized to excite each element of the 
transmit aperture (the maximum output voltage is 24 Vpp [20]). No time 
gain compensation (TGC) was applied, and a speed of sound of 1480 m/s 
was assumed for the time–space conversion (along depth). 

To in vitro mimic the same levels of roughness utilized in silico, a 
phantom consisting of austenitic stainless steel AISI (American Iron and 
Steel Institute) 316L (Euronorm number = 1.4404) was produced by a 
Concept Laser Mlab (General Electric Additive, Boston, US), i.e., a 3D 
metal LPBF (laser powder bed fusion) printer (maximum power = 100 
Watts, and laser spot size = 45 µm). Specifically, the phantom consisted 
of 9 stripes along its length made with varying roughness. Each rough 
stripe was composed of semi-cylinders arranged consecutively along the 
phantom width. The 9 rough stripes were separated by 8 smooth stripes 
(no roughness), each having the same length (1 cm). Therefore, as 
shown in Fig. 3, the total phantom length was 17 cm (9 cm + 8 cm), 
whereas its width was 5 cm (to allow the probe to laterally cover the 
entire area). 

The steel phantom was immersed in a water tank and positioned on a 
steel plate (Fig. 4), which was used to align the phantom consistently 

Table 1 
Simulated acoustic properties for muscle and steel.  

Medium Speed of sound 
[m/s] 

Volumetric mass density 
[kg/m3] 

Acoustic impedance 
[MRayl] 

Muscle  
[22] 

c0 = 1580 ρ0 = 1041 Z0 = c0 × ρ0 ≅ 1.645 

Steel [23] csteel = 5940 ρsteel = 7860 Zsteel = csteel × ρsteel ≅

46.69  

Table 2 
Wavelength values for muscle and steel and their ratio with the numerical grid- 
size.   

Frequency [MHz]  

3 4 5 6 7 8 9 10 

λ0 [µm] 527 395 316 263 226 198 176 158 
λ0/grid-size 52.7 39.5 31.6 26.3 22.6 19.8 17.6 15.8 
λsteel [µm] 1980 1485 1188 990 849 743 660 594 
λsteel/grid- 

size 
198 148.5 118.8 99 84.9 74.3 66 59.4  

Fig. 3. Picture of the steel model is shown. The model has a width of 5 cm to allow the probe to laterally cover the entire area. The length of each rough stripe is 1 
cm, for a total of 17 cm (9 levels of roughness + 8 smooth areas to separate the different levels of roughness). The figure shows zoomed areas for each rough stripe 
(center). An additional zoom operation shows the finer details of each rough stripe (top). 

F. Mento et al.                                                                                                                                                                                                                                   



Ultrasonics 135 (2023) 107143

4

with the probe displacement, guided by an automatic positioning system 
(GAMPT, Merseburg, Germany). We have defined the axis parallel to the 
phantom width as lateral direction, and the axis parallel to the phantom 

length as elevation direction (Fig. 4, left). The phantom was placed at 2 
cm of depth from the probe (Fig. 4, top right). 

The data were sequentially acquired. Specifically, the probe was 

Fig. 4. The utilized steel phantom (yellow), probe (orange), positioning system (white), steel plate, water tank (black), and the three directions, i.e., lateral (blue), 
elevation (red), and depth (dashed green), are shown. Three pictures (left, center, and top right) show the geometry of the acquisition from three different views. The 
distance between the phantom and the probe is approximately equal to 2 cm (top right). The bottom right pictures show the finer details of different rough stripes of 
the steel phantom (550 μm, 600 μm, and 200 μm). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 5. Examples of reconstructed images (scatterers’ diameter equal to 550 μm) are shown (top) together with the corresponding normalized ITOT graph (bottom). 
The first row shows the reconstructed images for in silico experiments, whereas the second row shows the reconstructed images for in vitro experiments (images are 
displayed with a 35-dynamic range). The ROIs in which the corresponding normalized ITOT was computed are highlighted with red (in silico) and blue (in vitro) 
rectangles. The corresponding normalized ITOT values, plotted as a function of frequency, are shown with red (in silico) and blue (in vitro) points (bottom). For 
visualization purpose, we also show the corresponding interpolated values (dashed lines), obtained with a PCHIP (Piecewise Cubic Hermite Interpolating Polynomial) 
interpolation (pchip MATLAB function) applied along frequency (0.01-MHz step size). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Fig. 6. The normalized ITOT graphs (for each level of roughness) are shown. The normalized ITOT values, plotted as a function of frequency, are shown with red (in 
silico) and blue (in vitro) points. For visualization purpose, we also show the corresponding interpolated values (dashed lines), obtained with a PCHIP (Piecewise 
Cubic Hermite Interpolating Polynomial) interpolation (pchip MATLAB function) applied along frequency (0.01-MHz step size). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. The normalized ITOT values for in silico experiments are shown as a function of λST (x-axis) and semi-circular scatterers’ diameter D (y-axis). The figure was 
generated by linearly interpolating the normalized ITOT values along λST (1-μm step size) and using the pcolor MATLAB function with interpolated shading. The figure 
is shown with a 15-dB dynamic range (colorbar at the bottom). Red points represent the values of normalized ITOT > -3 dB used for LR (the obtained LR model is 
depicted in purple; the width and shadowing of the line representing the model were so defined to improve visualization). Green points represent the values of 
normalized ITOT > -3 dB not used for LR, and blue points represent values of normalized ITOT ≤ -3 dB (not used for LR). All these points (red, green, and blue) were 
obtained from Fig. 6 values (red points in each graph). The peripheral air-spaces dimensions generally observed in healthy subjects (between 340 and 440 μm) and in 
patients affected by COPD (above 490 μm) are highlighted along the y-axis in green and red, respectively. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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placed above the first rough stripe (Fig. 4, top right), and all the data 
corresponding to that roughness level were acquired with different 
center frequencies. Then, the probe was automatically moved along the 
elevation direction by 2 cm to acquire the data corresponding to the 
second roughness level. The process was repeated until reaching the last 
rough stripe. 

2.2. Quantification of surface intensity 

2.2.1. In silico 
To estimate the surface intensity, a two-step procedure was applied 

to the reconstructed images. In step 1, to extract the envelope, the Hil
bert transform was applied. Each reconstructed image was then 
normalized with respect to its maximum value. In step 2, we displayed 
the images in logarithmic scale with a 35-dB dynamic range, and defined 
a region of interest (ROI) in which we computed the total intensity (ITOT) 
[9,11,12]. This ROI was defined as the area where the roughness was 
introduced, i.e., between − 3 and 3 mm in the lateral dimension, and 
extending in depth from 18.5 mm to 21.5 mm (see Fig. 5, first row). The 
depth range was set by considering the spatial length of the transmitted 
pulse, i.e., 4 μs × 1580 m/s

2 ≅ 3 mm, and the surface depth (20 mm). Only 
values above − 35 dB in the ROI (empirical threshold) were used to 
compute ITOT [9,11]. 

To evaluate the surface intensity as a function of frequency, we 
exploited a scaled version of ITOT (normalized ITOT). Specifically, for 
each roughness level, we normalized the eight ITOT values (obtained 
with frequencies varying from 3 to 10 MHz) with respect to their 
maximum (see Fig. 5, bottom, red line) [9,11,12]. 

2.2.2. In vitro 
The surface intensity was estimated in vitro with a procedure 

consistent with what was done in silico. The main differences are asso
ciated with step 1 and with the ROI definition. Specifically, as first 
operation, to be consistent with the in silico experiments, we evaluated 
only the 49 central lines (from approximately − 6 to 6 mm along lateral 
dimension) of the reconstructed images. Considering only the central 
lines allowed us also to prevent undesired contributions coming from the 
edges of the steel phantom. Then, we applied a sixth-order bandpass 
Butterworth filter having a 1-MHz bandwidth and centered at the 
different center frequencies [12]. We successively applied the Hilbert 
transform to each filtered image, thus extracting the envelope [12]. To 
normalize the images consistently with what was done in silico, we ac
quired data from a smooth steel surface by using the same acquisition 
settings (e.g., from 3 to 10 MHz of center frequency and 0.5 MHz of 
bandwidth). Then, after having applied the same processing steps used 
for the rough surface (above mentioned), we extracted the 8 maximum 
values (one for each center frequency) from the smooth surface data. 
Finally, the rough surface images were normalized with respect to these 
maxima, and displayed in logarithmic scale with a 35-dynamic range. 
After these processing operations, the surface intensity was computed by 
means of the ITOT parameter [9,11]. Specifically, this parameter was 
computed in a ROI extending over the entire lateral dimension (from 
approximately − 6 to 6 mm) and depths from 18.5 mm to 21.5 mm (see 
Fig. 5, second row). The empirical threshold was set to − 35 dB as done in 
silico. 

The normalized ITOT (see Fig. 5, bottom, blue line) was then 
computed as done in silico. 

Fig. 8. The normalized ITOT values for in vitro experiments are shown as a function of λST (x-axis) and semi-circular scatterers’ diameter D (y-axis). The figure was 
generated by linearly interpolating the normalized ITOT values along λST (1-μm step size) and using the pcolor MATLAB function with interpolated shading. The figure 
is shown with a 15-dB dynamic range (colorbar at the bottom). Red points represent the values of normalized ITOT > -3 dB used for LR (the obtained LR model is 
depicted in purple; the width and shadowing of the line representing the model were so defined to improve visualization). Green points represent the values of 
normalized ITOT > -3 dB not used for LR, and blue points represent values of normalized ITOT ≤ -3 dB (not used for LR). All these points (red, green, and blue) were 
obtained from Fig. 6 values (blue points in each graph). The peripheral air-spaces dimensions generally observed in healthy subjects (between 340 and 440 μm) and 
in patients affected by COPD (above 490 μm) are highlighted along the y-axis in green and red, respectively. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. The normalized ITOT graphs (for each D) for in silico experiments with air are shown as a function of frequency (top). The normalized ITOT values are shown 
with red points. For visualization purpose, we also show the corresponding interpolated values (red dashed lines), obtained with a PCHIP (Piecewise Cubic Hermite 
Interpolating Polynomial) interpolation (pchip MATLAB function) applied along frequency (0.01-MHz step size). At the bottom the normalized ITOT values are shown 
as a function of λST (x-axis) and D (y-axis). The figure was generated by linearly interpolating the normalized ITOT values along λST (1-μm step size) and using the 
pcolor MATLAB function with interpolated shading. The figure is shown with a 15-dB dynamic range (colorbar at the bottom). Red points represent the values of 
normalized ITOT > -3 dB used for LR (the obtained LR model is depicted in purple; the width and shadowing of the line representing the model were so defined to 
improve visualization). Green points represent the values of normalized ITOT > -3 dB not used for LR, and blue points represent values of normalized ITOT ≤ -3 dB (not 
used for LR). All these points (red, green, and blue) were obtained from the values depicted on top part of Fig. 9 (red points in each graph). The peripheral air-spaces 
dimensions generally observed in healthy subjects (between 340 and 440 μm) and in patients affected by COPD (above 490 μm) are highlighted along the y-axis in 
green and red, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3. Results 

Fig. 6 shows the normalized ITOT for the 9 different scatterers’ 
diameter as a function of frequency for in silico (normalized IIS

TOT; see 
Fig. 6, red graphs) and in vitro (normalized IIV

TOT; see Fig. 6, blue graphs) 
experiments. It is observable how a strong agreement between 
normalized IIS

TOT and normalized IIV
TOT exists, and becomes stronger when 

the diameter increases. 
To more precisely assess the consistency between in silico and in vitro 

results, Fig. 7 and Fig. 8 show the normalized ITOT values for in silico 
(Fig. 7) and in vitro (Fig. 8) experiments as a function of λ and D. To 
consistently compare Fig. 7 and Fig. 8, we set in the x-axis the wave
length of soft-tissues (λST), computed considering a speed of sound of 
1530 m/s, which is between the speed of sound in water (1480 m/s; in 
vitro experiments) and in muscle (1580 m/s; in silico experiments). It is 
observable how the normalized ITOT values seem to be consistent, and 
how it is possible to draw a linear model from both figures. Specifically, 
to model the relation between λST and D, a linear regression (LR) model 
fitting specific normalized ITOT values > -3 dB (red circles in Figs. 7 and 
8) was obtained by means of the fitlm MATLAB function for both in silico 
(Fig. 7) and in vitro (Fig. 8) experiments. To further clarify, the − 3-dB 
arbitrary threshold was applied to the normalized ITOT values depicted 
in Fig. 6. Then, only a subgroup of values greater than − 3 dB (red circles 
in Figs. 7 and 8) were used to fit the LR models depicted in Figs. 7 and 8 
(purple line). Specifically, for each D (from 200 to 600 µm), we 
considered the first peak of normalized ITOT (values greater than − 3 dB) 
starting from the smallest λST (highest frequency). However, for the in 
vitro experiments, the fit was performed by considering the peaks 
observed from 400 to 600 µm, as this approach seems not to work on 
these data for lower values of D (below 400 µm). The linear models 
obtained from in silico and in vitro experiments are D [µm] = − 93.9794 
+ 2.2142 × λST [µm] and D [µm] = − 34.0824 + 1.992 × λST [µm], 
respectively. By considering the in vitro results (Fig. 8), no peaks (values 
of normalized ITOT > -3 dB) were observed for higher frequencies (8, 9 
and 10 MHz) and, thus, smaller λST (191, 170, and 153 µm). In contrast, 
in silico results showed peaks at those frequencies (Fig. 7). Overall, 34 (9 
of which used for LR) and 24 (5 of which used for LR) peaks were 
detected in silico and in vitro, respectively. 

Finally, we performed further numerical simulations following the 
same procedure adopted for steel but simulating air (speed of sound and 
volumetric mass density equal to 300 m/s and 1.23 kg/m3, respectively 
[13]) instead of steel. The results are shown in Fig. 9, where the obtained 
linear model is also presented (Fig. 9, bottom). The fit was performed by 
considering the peaks observed from 400 to 600 µm (as done for the 
experimental model made by steel), and the obtained linear model is D 
[µm] = 18.1648 + 2.6560 × λST [µm]. The obtained linear model seems 
to be consistent with the model obtained in Fig. 7 (simulation of steel), 
with the main difference associated with a positive offset of about 112 
µm. 

4. Discussion and conclusions 

LUS is an imaging modality used by clinicians to evaluate the state of 
the lung surface in real time [1,3]. However, LUS has a poor specificity 
as it is mainly based on the visual evaluation of imaging artifacts 
[1,2,4,5]. 

Even though recent attempts to develop LUS quantitative techniques 
exist [6–13], these approaches are applicable only to pathologies char
acterized by a reduction of air-spaces’ dimensions [2,14]. Indeed, these 
techniques were developed to characterize a lung having an increased 
permeability with respect to ultrasound waves [2,14]. No quantitative 
approaches have been designed for lung pathologies characterized by an 
enlargement of air-spaces (impermeable lung) [14]. 

For this reason, in this article we have proposed a quantitative 
multifrequency approach to estimate the lung surface’s roughness, 

which can allow the indirect estimation of the air-spaces’ dimensions 
[14]. This approach was tested both in silico and in vitro (using a novel 
experimental model). 

As shown in Fig. 6, it is clear how by increasing D from 250 to 600 µm 
the variability between the in silico and in vitro results tends to decrease, 
especially for 550 and 600 µm. This can be explained by the ability of the 
steel model to consistently mimic the numerically simulated 2D domain 
when D is larger. Specifically, as shown in Fig. 3 and Fig. 4 (bottom 
right), micrometric imperfections in the printing process more strongly 
affect a roughness characterized by smaller values of D. Therefore, these 
imperfections could lead to stronger inconsistencies between in silico 
and in vitro results when D is smaller. 

However, as the peripheral air-space dimensions are generally above 
340 µm [17], the experimental model could be considered a reliable tool 
to mimic real air-spaces dimensions, which generate different roughness 
levels at the lung surface. Specifically, as above mentioned, the in vitro 
results are strongly consistent with in silico results for values of D above 
500 µm, which correspond to the peripheral air-spaces dimensions of 
COPD patients [17]. This shows how this novel experimental model 
could be exploited to reliably mimic levels of roughness observable at 
the lung surface of patients affected by pathologies characterized by 
increased air-spaces’ dimensions. Moreover, we have shown how a 
simple linear model could be utilized to assess surface roughness by 
measuring image intensity variations as a function of frequency. 

Even though promising results were presented in this study, the 
presence of specific limitations should be highlighted. The first limita
tion consists in the presence of shear waves and mode conversions in 
steel, which were not considered in silico, but could potentially have 
played a role during the in vitro experiments. Moreover, contrary to what 
happens in steel (shear velocity equal to 3100 m/s [23]), shear waves 
should not play a significant role in lung tissue. Another limitation could 
be associated with the periodic and simplified geometry that we 
analyzed in this study with respect to a more heterogeneous geometry 
observable in real lungs. The small discrepancies between the imaging 
strategies utilized in silico and in vitro could also have an impact on the 
obtained results, even though both strategies are based on unfocused 
transmissions. In addition, it is important to highlight how the threshold 
to normalized ITOT used to fit the linear models was arbitrarily set to − 3 
dB. Finally, even though the variation of intensities at the lung surface 
could be caused by different roughness levels, it could be caused also by 
other lung abnormalities, such as sub-pleural consolidations. All these 
aspects should be evaluated when translating this multifrequency 
approach in vivo. 

In this study, for simplicity, only unfocused (plane wave) trans
missions were employed. In future studies, the impact of focused beams 
will also be investigated. As other future studies, we aim at assessing 
how the presence of a heterogeneous medium in the first 20 mm of depth 
can impact on the roughness estimation. Moreover, the impact of the 
ultrasound beam’s angle of incidence on the roughness estimation will 
be analyzed. After this, we also plan to validate this quantitative 
multifrequency approach in vivo by acquiring and analyzing RF data 
from COPD patients. 
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