

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

AN ALGORITHM SUITE FOR MINIMIZING THE
NUMBER OF HOPS BETWEEN COMMUNICATION
PEERS IN A BLUETOOTH SCATTERNET

Csaba Kiss Kalló, Carla-Fabiana Chiasserini,
Roberto Battiti and Marco Ajmone Marsan

November 2004

Technical Report # DIT-04-101

.

An Algorithm Suite for Minimizing the Number of Hops between
Communication Peers in a Bluetooth Scatternet

Csaba Kiss Kalló
Roberto Battiti

Università di Trento
Dipartimento di Informatica e Telecomunicazioni�

kkcsaba,battiti � @dit.unitn.it

Carla-Fabiana Chiasserini
Marco Ajmone Marsan
Politecnico di Torino

Dipartimento di Elettronica�
chiasserini,ajmone � @polito.it

Abstract
Mobility, and the fact that nodes may change their commu-
nication peers in time, generate permanently changing traf-
fic flows in a Bluetooth scatternet. Thus, forming an opti-
mal scatternet for a given traffic pattern may be not enough,
rather a scatternet that best supports traffic flows as they vary
in time is required.

In this article we propose an algorithm suite that enables us
to modify the nodes’ links and roles. Periodically executing
these algorithms helps maintaining the distance (measured
in hops weighted with the corresponding traffic intensity) be-
tween every source-destination pair at a minimum. This will
allow for higher network throughput, lower packet delivery
delay and nodes’ energy consumption, and reduced commu-
nication overhead.

1 Introduction
Even though the Bluetooth wireless technology originally
was aimed to replace cables, its suitability for a wide range of
applications was rapidly revealed. A main feature that opened
new horizons for this technology is its support for seamless
networking with different types of devices.

The Bluetooth Specification 1.2 [1] defines how to orga-
nize Bluetooth-enabled devices in a network with at most 8
nodes, called piconet. Further, it introduces the scatter mode
for supporting inter-piconet communication. In particular, it
describes how time division should be implemented on nodes
participating in multiple piconets, earlier discussed also in
[12, 3]. However, the problem of efficient scatternet forma-
tion as well as many relevant optimization issues, discussed
in numerous research papers [14, 11, 16, 10, 4, 6, 2, 5, 9, 15,
12, 3, 13], are still not addressed in this latest version of the
specification.

Researchers revealed many factors influencing the opera-
tion of a scatternet. We believe that optimal values of the
following parameters provide good performance [10]:

– energy consumption – lower is better
– supported traffic – higher is better
– duration of scatternet formation – shorter is better
– link scheduling – lower bridge degree is better.

Many proposals for scatternet formation are available in
the literature by now, each making different trade-offs with
the aforementioned parameters. One of the earliest works on
Bluetooth scatternet structures [9] proposes three approaches:
the first uses the sniff mode to enable up to 255 nodes con-
nect to a single piconet while the other two build a tree-
structured and a decentralized topology, respectively. Tree-
shaped topologies were proposed also by others [16], however
this structure has some important drawbacks [15]. In such a
scatternet packets between different branches of the tree are
routed up and down through the whole topology; if one node
leaves the network, its whole subtree will loose connectivity;
the root node is a bottleneck and all the other masters are also
slaves in the same time, resulting in intra-piconet communi-
cation outage when the master is active in the other piconet.

In ring-shaped topologies, formed by the algorithms in [6],
every node is a master, forming its own piconet. This is a
major drawback because high inter-piconet interference can
be generated by a small number of nodes. It is even worse
that the algorithms in [6] require for all nodes to be in-range.

Bluetooth scatternets that provide good performance in
most application environments are decentralized. Such scat-
ternets are formed by the algorithms proposed in [14, 10], re-
quiring for all nodes to be in communication range, but there
also exist more general ones [15, 4] without this shortcom-
ing. Decentralized scatternets impose less constraints on se-
lecting the roles of the nodes and on how to set up links be-
tween them. In change, routing and link scheduling becomes
more complicated than in the case of tree- and ring-structured
topologies, with major influence on the overall performance.
Next we outline several research efforts focused on compen-
sating this shortcoming.

In the series of optimization works Miklós et.al. in [11]
are the first to observe that setting up a high number of links
in a scatternet can increase the overall throughput only to a
certain limit. Above that limit the link scheduling overhead
will lower the overall performance.

In [2] a technique for reducing the load of the most con-
gested node is described and the approach is further improved
in [5] with a technique that enables incremental formation of
feasible scatternet topologies.

1

Raman et.al in [13] argue that power consumption and
communication speed can be improved using application
layer information at the lower layers. This is known as cross-
layer optimization.

According to our best knowledge, neither the above works
nor other optimization efforts study the possibilities of reduc-
ing the distance in hops between source and destination nodes
in a scatternet. Thus, in our work we present a technique that
fills in this gap.

Mobility and the fact that nodes may change their commu-
nication peers in time generate permanently changing traffic
flows in a scatternet. Even if we had a scatternet formation
algorithm that would produce optimal topologies, some time
after the scatternet formation suboptimal traffic flows would
show up, due to the changing source-destination associations
between the nodes as well as because of mobility. Therefore,
it is not enough to form an optimal scatternet, rather a scat-
ternet that best supports traffic flows as they vary in time is
required.

Our approach consists of an algorithm suite that enables
the modification of nodes’ links and roles and searches for
such a scatternet configuration that minimizes the distance (in
hops weighted with the traffic intensity) between all source-
destination communication peers. This will allow for a higher
network throughput, lower packet delivery delays and nodes
energy consumption, and reduced communication overhead.

The remaining part of this work is organized as follows.
In Section 2 the parameters of our problem are introduced
and a formal description of the optimization problem is given.
A centralized solution to the problem as well as a detailed
presentation of the optimization algorithms are available in
Section 3. We present our simulation results in Section 4.
Finally, conclusions are drawn in Section 5.

2 Notations and Problem Formulation
Each piconet is composed of a master and up to 7 active
slaves. A node participating in more than one piconet is called
bridge. A node can be a master in only one piconet but it can
be a slave in any number of piconets.

Let � be the set of nodes in the scatternet, � the set of
masters, and � the set of all slaves. Notice that only pure
masters are not elements of � and ����� ��	� if there are
master&bridge nodes in the scatternet. We denote with
 the
set of traffic connections in the scatternet.� �
������������ , the routing matrix, stores the path between
each source-destination pair �������! #"$
 ; we have

� ������ �&%(' if connection �)�*�+�, is routed on arc �.-/��0, ,1
otherwise.2 �3��4 ��� � is the traffic matrix with 4 ��� "65 1 � '87 indicating the

intensity of the data flow on the connection ���*�+�, . 4 �9� � 1
means that there is no traffic flow between the nodes � and � .: �;�=< ��� � , the hop matrix, contains the minimum number
of hops between any connection �������! #"$
 .

> �3�+? �@� � is the radio proximity matrix with

? ��� � % ' if nodes - and 0 are in-range,1
otherwise.

The link matrix A �3�CB �@� � is defined as

B �@� � % ' if - is master of 0 , DE-/��0F"G�;H9-I�� 01
otherwise.

The link matrix indicates the master-slave connections in the
scatternet. Link matrix properties are explained below and
summarized in Table 1.

1) A master has on its row one entry equal to 1 for each of
its slaves.

2) A pure slave has one entry equal to 1 on its column cor-
responding to its master.

3) A slave&bridge has on its column exactly one entry
equal to 1 for each of its masters.

4) A master&bridge node has one entry equal to 1 for each
of its slaves on its row and for each of its masters on its col-
umn.

5) A free node – node not belonging to any piconet – has
all 0s on both its row and column.

Table 1: Link matrix properties based on nodes’ role
Role of node J Property
Master KML�+NPO B.Q �SR '
Pure slave K L�TNPO B � QU� '
Slave&bridge K L�TNPO B � Q RWV
Master&bridge K L�+NPO B.Q �SR ' and K L�XNPO B � Q R '
Free node K L�+NPO B Q � � 1

and K L�XNPO B � Q � 1
We define function Y as

Y � Z[��\ �/]_^�` 4 �9� < ���*a (1)

Y is the sum of the number of hops weighted with the traffic
intensity between all source-destination pairs in the scatternet.

Our objective is to solve the following optimization prob-
lem, >cb dfeXgh Y (2)

subject to the following constraints [2] ai A piconet must contain one master and up to 7 slaves.

LZ�+NPO B Q �Ujlk �mDUJG"�� (3)

i There can exist a master-slave relationship between two
nodes if and only if they are in radio proximity of each
other. B ��� j ? ��� ��Dn-/��0F"f� (4)

2

� If
�

is master of � , then � cannot be master of
�
.

�����	�
������
������ � � ������� ���� � (5)

� Traffic between source � and destination � can be routed
through edge � � �"! only if

�
and � communicate, i.e. ei-

ther
�

is assigned to � , or � is assigned to
�
.

#%$�&���
'�����(�
�����)� *� � �"!+�-, ��� � � ����� (6)

� All traffic between two nodes is routed through a mini-
mum length paths, with no loops. The selected path may
not necessarily be the same in both directions, if more
than one minimum length paths exist.

. $�& � . &/$ � 0� � �"!+�-, (7)1
�32 �5476 # $�&��� � . $�& � 0� � �"!+�-, (8)

� Other constraints that are widely used for making routing
possible should also be considered.

3 Problem Solution
To solve our problem we generate a connected and totally
functional scatternet, as detailed in Section 3.2. Based on
the processing power, we choose one of the masters, the so-
called optimizer, to coordinate the optimization procedure.
The optimizer collects relevant information about all nodes
in the scatternet, such as the identity and role of the nodes
and their neighbors, masters and communication peers, and
feeds it into the optimization algorithm.

The optimizer uses a local search strategy based on a set
of possible changes that can be made on the topology, the so-
called moves. Moves may lead to piconet formation or merg-
ing, or just make slaves move from one piconet to another
one. In particular, moves targeting slaves typically increase
the number of piconets in the network, while moves targeting
masters may merge piconets. Thus, in our optimization pro-
cedure we try to reduce the number of hops by first moving
slaves and then moving masters. As an example, consider the
scatternet shown in Figure 1. If there is a high traffic flow
between slaves 8 and 12, then the scatternet can be optimized
by removing node 8 from master 2 and assigning it to master
1.

For each move, the optimizer calculates the new value that
function 8 would assume. If the move decreases 8 , it is
stored, otherwise it is dropped. At the end of the optimiza-
tion the most convenient scatternet configuration, stored dur-
ing the search, is set.

The optimization algorithm can be executed periodically.
We call the time between two executions optimization period.
Implicit feedback from the scatternet, like the number of re-
cently arrived/left nodes and the gain of previous executions,
can be used for dynamically determining the optimization pe-
riod. Thus, in a scatternet with dynamically changing traffic

Pure slave

Pure master

Slave&bridge

Master&bridge

12

3

4

5

6
7

8

9
11

12

10

Figure 1: Scatternet snapshot

connections and high node mobility the optimization period
will be short, while in quasi-static environments the optimiza-
tion will be rarely executed. Note, however, that in this paper
we only study single executions of the optimization proce-
dure. The behavior of periodically optimized scatternets is
subject for future study.

3.1 Move Types

A move is a set of modifications on the master-slave relation-
ship between two nodes in the network. Such modifications
are made by link creation, deletion and/or by master-slave role
exchange. If, due to these modifications, some nodes get dis-
connected, the operations necessary to reconnect them to the
scatternet are considered as parts of the same move.

We identify four kinds of possible moves:
Slave to Slave (SS) – a slave connects to a different mas-

ter or establishes a new piconet with a node which then ex-
changes its role from slave to master. Since moving bridge
nodes influences considerably the routing scheme of the scat-
ternet we are not moving bridge nodes but only pure slaves.

Example (based on Figure 1): we want to remove slave 8
from master 2 and assign it to master 1. To this end we set��9;: �=< and

�?>@: � �
; i.e., first we cancel the link between

master 2 and slave 8, then we create the link between master
1 and slave 8.

Slave to Master (SM) – a slave creates a new piconet by
paging another node.

Example (based on Figure 1): we want to remove slave 8
from master 2, change its role into master and assign slave 5
to it. To this end we set

�39;: �A< then
��:�B � �

. This means
that we cancel the link between master 2 and slave 8, then we
create the link between node 8 and slave 5.

Master to Slave (MS) – a master becomes a pure slave.
Such a move is possible only if the slaves of the moving mas-
ter (i.e. the node giving up its role of master) can be assigned
to other nodes in the scatternet. The optimizer takes the aban-
doned slaves (i.e the slaves of the moving master) one-by-one
and assigns them to an already existing master, using SS and
SM moves.

Master to Master (MM) – merging two piconets: a master
overtakes all the slaves of another master. Such a move can
take place when any node in the two piconets is in the range
of the persisting master (i.e. the node maintaining its role of
master after the move) and the total number of nodes in the
two piconets is not greater then 8. This move can be done by
removing from C all the 1s from the row of the master that is

3

about to become a slave and adding them to the corresponding
positions in the row of the persisting master. The old master
should be connected to the persisting one through an addi-
tional operation. For instance, if node � gives up its role of
master and joins the piconet of master � , the additional oper-
ation would be �������
	 .
3.2 Scatternet Generation

For our simulations we generate an initial scatternet based on
the algorithm proposed by Basagni and Petrioli in [4]. We
generate � nodes randomly positioned in the network area.
The size of the network area is chosen so that the radio topol-
ogy results to be connected with high probability.

For each node we generate a random weight, that indicates
the willingness of the device for assuming special roles (mas-
ter or bridge) in the scatternet. After all nodes and weights
have been generated, we select the init masters (the nodes
with the biggest weight in their radio proximity [4]). Slaves
get connected to one of the init masters in their radio proxim-
ity (at less then 10 meters). If a slave is located in the radio
proximity of more then one init masters, a random choice is
made. We believe that parking and unparking slaves (like in
[9]) when scatternet formation is possible, is an inconvenient
operation since it does not give the possibility to all the de-
vices to be active at the same time and requires extra opera-
tions from the master. Therefore, in the case where more than
7 nodes are in the radio proximity of an init master, only 7
of them become members of its piconet while the others will
organize themselves in one or more other piconets. This hap-
pens in a subsequent step of the scatternet formation when the
masters and their salves are selected in the same manner as in
the case of init masters but taking into account also the nodes
that have gotten a role already.

Once all nodes have been assigned to a piconet, the algo-
rithm proceeds with selecting firstly the one-hop bridge nodes
between neighboring masters. Only one bridge is placed be-
tween two masters and, if possible, a bridge gets connected to
two masters only. If there are more then one potential bridge
nodes between two masters, we select the one that has the
smaller number of masters (possibly 1) and whose physical
distance from the two masters is smaller. By doing so we re-
duce the bridge scheduling overhead and select bridges that
receive the strongest signal from the masters.

As the last step of the scatternet formation, we connect all
of the two-hop pure masters if they were not already con-
nected through the scatternet. In [4] all two-hop masters are
connected. Although this is necessary for building a con-
nected scatternet, it introduces redundant links between the
nodes that consume device resources. Since our work con-
centrates mainly on scatternet optimization and not formation,
we assume that some time after the network formation nodes
abandon these redundant links and maintain the shortest path
only to those neighboring nodes that are at least 6 hops away
from them. (Notice that the minimum distance between the
pure slaves of two two-hop pure masters is 5, hence the value
of 5 above.) At this time, a master node may also become a

1. OPTIMIZER
2. �
�����������
3. F � ActualNrHops()
4. slavelist � list of slaves (for SX module)
5. masterlist � list of masters (for MS and MM)
6. for k � 1 to nr diversifications do
7. call SX or MS or MM optimization module
8. if F > ActualNrHops() then
9. F � ActualNrHops()
10. ����� � ���
11. �����
�������
12. HUpdate()
13. shuffle slavelist (for SX module)
14. shuffle masterlist (for MS and MM module)
15. ����� ��� �
16. HUpdate()
17. end OPTIMIZER

18. SX optimization module
19. for each slave i in slavelist do
20. ssbestmove � SS(slavelist[i])
21. smbestmove � SM(slavelist[i])
22. if ssbestmove.localF < smbestmove.localF then
23. SSmover(slavelist[i], ssbestmove.bestid)
24. else SMmover(slavelist[i], smbestmove.bestid)

25. MS optimization module
26. for each master i in masterlist do
27. moves � MS(masterlist[i])
28. if moves is not empty then
29. MSmover(moves)

30. MM optimization module
31. for each master i in masterlist do
32. mmbestmove � MM(masterlist[i])
33. if mmbestmove.localF < F then
34. MMmover(masterlist[i], mmbestmove.bestid)

Figure 2: Pseudo code of the optimizer

bridge.
If physically possible, at the end of the algorithm we obtain

a connected scatternet. The simulation environment genera-
tion ends with selecting a predefined number of traffic con-
nections between random source and destination nodes.

3.3 The Optimization Procedure

The optimization procedure is the core of our work. It coordi-
nates the various kind of modifications performed on the scat-
ternet topology, aimed to reduce the number of hops between
communicating nodes. The optimization procedure should
run on a selected node, possibly with strong computational
power, capable of collecting all the necessary data about par-
ticipating nodes.

The optimization algorithm is presented in Figure 2. It con-
sists of a main body from which three different optimization
modules, namely SS, SM (either one denoted by SX in Figure

4

2), MS and MM, can be called. At the beginning of the main
body several initializations are performed. First the initial
state of the link matrix � is saved (line 2). In line 3 with the
function ActualNrHops() we retrieve the number of weighted
hops between all the source-destination pairs and assign it to�

, our function to be minimized. In lines 4-5 all pure slaves
and masters are selected and put in slavelist and masterlist,
used later by the slave optimization (i.e. when SS or SM
moves are performed) and master optimization (i.e. when MS
or MM moves are performed) modules, respectively.

In line 6 we cycle through the optimization procedure
nr diversifications times. Inside the cycle one of our three op-
timization modules is executed. Each of these modules per-
forms a local search [8] using the corresponding moves for
finding a scatternet configuration that reduces the value of

�
.

The operation of the optimization modules as well as the role
of the aforementioned cycle is explained in details later in this
section.

After the optimization module has been selected and exe-
cuted, we obtain a scatternet configuration with an

�
value

that we confront with the initial (or previously stored) value
of

�
. If this new value is smaller than the initial one, we have

a more optimal scatternet configuration. Therefore, we save
this configuration in ������� and update the value of

�
(lines 8-

10). Before the next iteration of the for loop we set � to its
initial value (line 11). We also update the hop matrix � since
the moves made during the optimization modified it. This is
performed by the HUpdate() function based on � . Finally,
the nodes in slavelist or masterlist are reordered (i.e. a diver-
sification is done) and the algorithm proceeds with the next
iteration of the for loop.

After the for loop � is set to the best configuration found,
stored in � ����� , and the hop matrix is updated.

Our optimization modules operate as explained next.
The SX optimization module evaluates one-by-one each

node from slavelist (line 19). The SS and SM algorithms are
called one after the other in this module, since they both pro-
vide an alternative for moving the same slave. As we will see,
this is not the case when moving masters.

Although not explicitly mentioned in the pseudo code, dur-
ing the search slaves can change their role to master. There-
fore, as the for loop in line 19 cycles through the slaves in
slavelist, each node should be checked whether it is still a
slave. All the pure slaves are then evaluated using a series
of SS and SM moves (lines 20-21) for possible reductions of�

. The functions SS() and SM(), implementing this series
of moves, get as input the identifier of a slave from slavelist.
They both return a pair (bestid, localF), containing the iden-
tifier (bestid) of the node to which the slave should be moved
for obtaining the biggest reduction of F, held by localF. These
pairs are stored in the variables ssbestmove and smbestmove
for SS() and SM(), respectively. The return value of these two
functions can be interpreted as ”the best F value of sxbest-
move.nrhops for this slave can be obtained by connecting it
to node sxbestmove.id”. If no move of the slave reduces the

value of F, the identifier of its current master is returned ac-
companied by F’s initial value. A detailed description of the
SS and SM algorithms can be found in Section 3.4.

The optimization algorithm continues by evaluating the
outcome of the SS() and SM() algorithms (lines 22-24). De-
pending on the hop reduction provided by SS() and SM() the
SSmover() or the SMmover() function is executed. SSmover()
and SMmover() act on the link matrix � , therefore after their
execution the hop matrix should be updated. Indeed, this is
what the HUpdate() function is used for in line 12.

A secondary task of SSmover() and SMmover() is to update
the variable (not shown in the pseudo code) storing the role
of each node. We prefer to use such a variable instead of re-
calculating every time the roles from the link matrix, in order
to reduce the execution time.

The two master optimization modules operate in a similar
manner, but they are somewhat simpler since the MS and MM
moves have separate, dedicated modules. This is required
since they do not provide alternative moves for the same mas-
ter.

The MS optimization module, however, differs on a further
point from all other modules since the MS() algorithm returns
a list of already executed moves instead of one single move
that is to be executed later. This is because for transforming
a master into slave we need to move all its slaves to some
other master (as detailed in Section 3.5). After this series of
moves has been executed inside MS() it would be a waste of
CPU time resetting them at the end of MS() then setting them
again in the frame of the MSmover(). Thus, the only task of
the MSmover() function is to update the variable (not shown)
storing the roles of the nodes in the moves list. The impact of
this choice on the system’s modularity is minor.

Thus, we call the MS() algorithm for each master in the
master list. If it returns a non-empty list of moves (meaning
that a move has been performed) that reduces

�
, the MM-

mover() function is called for updating the roles of the moved
nodes.

In the MM optimization module (line 30) the MM() algo-
rithm shows similar behavior to that of the SS() and SM()
algorithms. It returns a node identifier (mmbestmove.bestid)
and the number of weighted hops (mmbestmove.localF) that
the MM move with that identifier would produce. If mmbest-
move.localF is less then the value of

�
, it means that a more

optimal scatternet configuration has been found.
Returning to the the for cycle in line 6, let us take a closer

look to why is that necessary to repeat the optimization with
different ordering of the slaves and masters when we already
found a configuration with a lower

�
. The reason is that even

if this configuration has lower number of hops between all
its source-destination pairs than the original one, it is high
the probability that other, better solutions exist. For example,
in case of slave optimizations better solutions can exist due
to the fact that during the execution of the algorithm slaves
can change their masters. Since pure slaves do not forward
data, SS and SM moves directly influence only the number

5

of hops between the moving slave and its destinations. Pure
slaves take part only as target nodes in any communication.
However, indirectly they can affect also communication links
where they do not play neither the role of source nor that of
destination. In particular, this is possible when a slave moves
to another master and another slave could have used it in a
latter iteration to shorten the path to its own destinations.

On the other hand, if slaves A and B communicate, they
will mutually try to move closer to each other. The number
of hops that can be cut off from the route between A and B
is not always symmetric. In many cases if we make the hop
reduction from the point of view of A, it is not possible to
carry out also the reductions from B, because of the route
modifications.

We can conclude that the order in which slaves are analyzed
by the optimizer is important. Therefore, it is reasonable to
suppose that repeating the same procedure (lines 6-14) but
with a different ordering of the slaves in the slavelist could
produce a better solution. This is what we do in our algorithm.
We reset � to its saved initial value (line 11), update the hop
matrix � , generate a random ordering of the slaves (line 13)
and re-execute the search.

The reason why we generate randomly the order of slaves
is that we want to examine only a few possibilities from the
huge search space. Recalculating the minimum paths be-
tween all nodes of the scatternet would be extremely time-
consuming. For example, in a scatternet with only 30 nodes
typically the number of pure slaves will be 12. All the possi-
ble permutations of 12 slaves are almost 480 million. Trying
all these permutations requires an unacceptably big amount
of time. Therefore, we prefer to repeat the search for only
several times and choose the best solution found. The im-
portance of the cycle from line 6 is to specify the number of,
so-called, diversifications of the search trajectory [8]. This
means that we will randomly reorder the slaves in �������
	��
�������� � ���
	 � ����������������� � � of times. The local minima found in a
diversification is compared against the former optima stored
in � . If the new local minima is smaller, F will be assigned
this new value and the link matrix will also be saved in � ��!�"
(line 8-10).

The situation is similar also with masters. The central idea
is that at every iteration of the optimization algorithm we
have to chose only one move from a set of mutually exclud-
ing moves. Therefore choosing one move from the set we
may eliminate the possibility of performing moves that could
produce a lower � value. Thus, repeating the same search
trying different moves from the same set of mutually exclud-
ing moves raises the probability of finding a more optimal
configuration. This is the reason why we repeat the search��� � ���
	 � ����������������� � � times.

The optimization algorithm can execute the optimization
modules sequentially, combining them in different ways. For
instance, if we perform the SX, MS and MM optimization
modules, we obtain an optimization algorithm that we refer
to as SX MS MM. The SX module can also be replaced by

1. SS (id)
2. localF # ActualNrHops()
3. bestid, m # MyMaster(id)
4. for each neighbor i of slave id do
5. if h[id][i] > 2 and
6. (i is not master or (for SM: NA)
7. (i is master and (for SM: NA)
8. NrSlaves(i) < 7)) then (for SM: NA)
9. l[m][id] # 0
10. l[i][id] # 1 (for SM: l[id][i] # 1)
11. if localF > ActualNrHops() then
12. localF # ActualNrHops()
13. bestid # i
14. l[m][id] # 1
15. l[i][id] # 0 (for SM: l[id][i] # 0)
16. return (bestid, localF)
17. end SS

Figure 3: Pseudo code of the SS and SM algorithms

an SS or SM module giving the so-called SS MS MM and
SM MS MM optimizations, respectively.

Regardless of the optimization modules used, after exe-
cuting the optimization algorithm a certain number of times,
we find a scatternet configuration with fewer hops connect-
ing traffic sources to destinations. Our algorithm can guaran-
tee a global optimal configuration only if each optimization
module is called for all possible permutations of nodes in the
corresponding slavelist and masterlist. This would take an
unacceptable long period of time. Therefore, a good trade-
off between the number of diversifications and execution time
should be found for achieving acceptable performance in real
environments.

3.4 Reduction of hops by moving slaves

As already mentioned in the previous sections, slave opti-
mization aims at finding the best possible SS or SM move for
reducing the number of weighted hops between a slave and
all its communication peers. During the optimization slaves
are assigned one-by-one to each node in their radio proximity
and the produced reduction of hops is evaluated. After all the
neighbors of a slave were checked, the move that produced
the biggest hop reduction will be selected. Next the slave
optimization algorithms, SS() and SM(), are detailed. Since
these two algorithms are similar we discuss them together,
outlining the differences where it is the case.

Slave optimization starts by several initializations (Figure
3). localF stores the best solution found until the current in-
stant for the current ordering of the slaves (line 2). With func-
tion MyMaster() the master of the evaluated slave is retrieved
and stored in m (line 3). The same initial value is assigned
also to the variable bestid, which keeps the identifier of the
best potential target node.

The cycle starting at line 4 evaluates one-by-one all neigh-
bors i of slave id. Not all neighbors will be used for the opti-
mization. In the lines 5-8 we impose a series of requirements
for the neighbors that will be evaluated. Thus, the condition

6

in line 5 filters out all neighbors that are in the same piconet in
which the evaluated slave, id, is. This way we avoid creating
piconets inside another piconet. The conditions in lines 6-8
are used only in the SS algorithm to avoid moving new slaves
to a master that already has 7 of them. Therefore, only those
neighbors are evaluated, which are either pure slaves, bridges
or masters having less then 7 slaves. These constraints are not
applicable (NA) for SM moves where the number of slaves
that a master has is not important, since after the move the
slave id will create its own piconet.

Before the execution of an SS move the slave id is con-
nected to its master m while the target neighbor, i, is not
connected to that same master (recall condition in line 5).
Therefore, the corresponding positions in the link matrix �
are ��� ����� �
	��
��� and ��� ���
� ��	������ . The SS and SM moves
alter these settings as shown in lines 9-10. In case of an SS
move the neighbor i pages slave id, while for SM moves slave
id becomes a master and pages neighbor i. Once the move
has been executed, its effect on the number of hops is eval-
uated and, if there is any improvement, the newly calculated
number of hops and the identifier of the target node, will be
stored in localF and bestid, respectively (lines 11–13). After
the evaluation the original links are restored, differentiating
again between SS and SM moves (lines 14-15).

Once the evaluation of the whole neighborhood was termi-
nated, the pair (bestid, localF), containing the identifier of the
target node that produced the biggest hop reduction (localF),
is returned (line 16).

3.5 Reduction of hops by moving masters

The MS Algorithm

After moving slaves, we try to reduce the number of hops
between source and destination nodes by moving also mas-
ters.

The MS optimization algorithm (Figure 4) gets as input the
identifier of a master, id, and returns the list of moves that
the algorithm was able to identify for reducing the value of �
(see (1)), after a predefined number of iterations.

The MS algorithm has three main parts. The first part (line
3-16) concerns the reassignment of id’s slaves to new masters
while the second part (line 17-26) finds the new master of id,
based on the number of hops between all source-destination
pairs in the scatternet. Finally, the last 9 lines re-execute the
series of moves that produce the highest hop reduction and
return the movelist to the optimizer. Next we present the al-
gorithm in details.

In line 2 two variables are initialized: � contains the low-
est number of weighted hops found up to the current moment
while initnrhops is the value of � at the beginning of the al-
gorithm. After the initializations a cycle is started (line 3) for
reassigning to new masters all the slaves of id, i.e. pure slaves,
bridges and master&bridges. In this cycle the slaves of id are
analyzed one-by-one. The algorithm handles differently the
pure slaves on one hand and bridges and master&bridges on
the other hand.

1. MS(id)
2. F, initnrhops � ActualNrHops()
3. for each slave j of master id do
4. if j is a pure slave then
5. sugmast � SuggestMaster(j,id)
6. if sugmast �� id then
7. l[sugmast][j] � 1
8. l[id][j] � 0
9. append move to movelist
10. else
11. Restore(movelist,id)
12. clear movelist
13. return movelist
14. if j is a bridge or master&bridge then
15. l[id][j] � 0
16. append move to movelist
17. for each potential target master i do
18. if CommonMaster(i,id) = 0 then l[i][id] � 1
19. append move to movelist
20. HUpdate()
21. if CheckConnectivity(movelist) �� 0 and
22. F > ActualNrHops() then
23. F � ActualNrHops()
24. bestmaster � i
25. if CommonMaster(i,id) = 0 then l[i][id] � 0
26. remove last move from movelist
27. if initnrhops > F then
28. if CommonMaster(bestmaster,id) = 0 then
29. l[bestmaster][id] � 1
30. append move to movelist
31. else
32. Restore(movelist, id)
33. clear movelist
34. HUpdate()
35. return movelist

Figure 4: Pseudo code of the MS algorithm

The SuggestMaster() function (line 5) finds for each pure
slave a master in the slave’s radio proximity, that can overtake
it from id. Further, it finds the master that reduces the most
the number of weighted hops between the slave and all its
destinations. If no such a master is found, the function returns
the identifier of the slave’s old master. However, if the return
value, stored in the variable sugmast, is a master’s identifier,
other than id, then the slave is moved to this master (lines 7-8)
and the move is stored in a movelist. The elements of movelist
are made of node pairs indicating which node has been moved
to which master.

If there is one single slave that cannot be moved to another
master, then it is not possible to perform any optimization
with the master id, thus the algorithm returns the control to
the optimizer (line 13). It would be possible to transform a
slave into master, however we do not want to increase the
number of masters in the scatternet while performing the MS
algorithm. Moreover, it is among the tasks of this algorithm
to compensate the increase in the number of masters produced

7

by SS and SM moves. Therefore, the MS algorithm restores
the link matrix � (line 11) based on the movelist and returns
an empty movelist to the optimizer, signifying that no MS
move can be performed with the master id.

If the role of id’s slave is bridge or master&bridge (line
14), the situation is easier because we do not have to look
for a master that can overtake it, since these kind of nodes
already have at least one other master. Therefore, all the algo-
rithm does is to remove the link of the slave from id and store
this move in movelist. Since bridge and bridge&master nodes
can always be moved, we do not have to perform any related
verifications.

If the algorithm did not return the control to the optimizer
in line 13, in line 17 we proceed with its second phase. Hence,
we can assume that every slave of id has successfully been
moved to some other master. Therefore, we start searching
for a master that could accommodate also id in its piconet.
Usually in big and dense scatternets there will be more then
one such masters, however we want to find the one reducing
the most the value of � . The second phase (line 17-26) con-
centrates on this issue.

We take one-by-one each potential target master that could
accommodate id. In line 18, using the CommonMaster() func-
tion, we check whether id and the evaluated master i have a
master in common. We do so in order to avoid creating ”tri-
angles”, i.e. piconets in another piconet. A new link between
i and id is created only if they do not already have a master
in common. Anyway it be, in movelist will be recorded (line
19) that node id has been moved to node i, even if no modifi-
cation on the link matrix has been performed. This operation
is necessary for the function CheckConnectivity() that veri-
fies whether the connectivity of the scatternet was damaged
by the moves. If it finds a path between each pair of nodes in
movelist, it can be stated that the moves have not damaged the
connectivity, given that the scatternet was connected at the be-
ginning of the algorithm. Notice that the function HUpdate()
is called before CheckConnectivity(), to recalculate the short-
est paths between every node of the scatternet. HUpdate()
takes the necessary input data from the link matrix � , uses
Floyd’s algorithm for solving the all-shortest path problem
[7], and stores the result in � (recall from Section 2).

Beside the connectivity check the hop reduction obtained
by moving id to i is also evaluated (line 22). The Actual-
NrHops() function returns the current number of weighted
hops in the scatternet, which is compared to � . If the cur-
rent number of weighted hops is less then the one stored in

� , the value of � is updated and so is besttagetmaster, the
variable containing the identity of the master that produced
the lowest number of weighted hops so far.

For any outcome of the connectivity check in line 21, the
move of id to master i is undone (line 25-26) and the algo-
rithm continues with a subsequent iteration (line 17), evaluat-
ing the following potential new master of id.

The second phase of the algorithms terminates when the
evaluation of all the masters is finished. At this point, in �

we have the lowest number of weighted hops found during
the search, while bestmaster stores the identity of the master
that produced this � . Note that all moves performed with the
slaves of id are stored in movelist, but there is no move for id
itself yet (see lines 25-26). In the third phase, if � is smaller
than the initial number of weighted hops (line 27), the best
move found is performed again and this move is appended to
movelist as well (lines 28-30).

If no better solution was found by moving master id, all
moves performed with id’s slaves are undone (lines 32-33).

A final update of � is done in line 34, then the algorithm
terminates by returning movelist to the optimizer. If a more
optimal position for id has been found, movelist will contain
the corresponding sequence of moves that lead to that config-
uration. Otherwise an empty list is returned.

The MM Algorithm

Although the MM moves target masters, the structure of the
MM algorithm is similar to the SS and SM ones and not MS
as one would expect. It basically consists of checking every
neighboring master of a master id, saving their links to their
slaves, checking the hop reduction and resetting the original
links. The MM algorithm is presented in details next.

At the beginning of the algorithm we initialize several vari-
ables. Thus, localF is set to the current number of weighted
hops between the communication peers; tm will hold the total
number of masters in the scatternet using the TotNrMasters()
function while nrs is set to the number of id’s slaves. bestid,
the variable storing the identifier of the master that could over-
take all the nodes in the piconet of id, is initialized to id. Fi-
nally, in line 6 all the links that connect id to its slaves are
stored.

The main part of the algorithm starts in line 7 with a loop
that takes one-by-one every neighboring master i (i.e. mas-
ters in radio proximity) of id with the goal of piconet fusion.
These masters are further filtered in line 8. First, it is verified
whether the total number of slaves in the piconets of id and i
is less then 6. This condition is necessary to observe the spec-
ification requirement of 8 nodes in the new piconet. Second, it
is also checked (using the Collocated() function) whether all
the slaves of id are in the range of master i. If such a master is
identified, the MM move described in Section 3.1 is executed,
as follows. The loop in lines 10-12 moves the slaves of id to i
then id itself is connected to i (lines 13–14), too. (The assign-
ment in line 13 is useful only when a link exists between id
and i.) After the move the hop matrix � is updated to enable
hop counting (line 15), and the move is checked (lines 16-19)
in the following manner. If the number of weighted hops in
the scatternet is less then it was before the move or it is the
same but the number of masters (i.e. piconets) decreased then
the identity, i, of the target master is stored, as well as the
number of weighted hops and piconets. In any case, after this
verification the original state of the link matrix � is restored
(line 22) and the search for another potential target master is
continued.

8

1. MM(id)
2. localF � ActualNrHops()
3. tm � TotNrMasters()
4. nrs � NrSlaves(id)
5. bestid � id
6. store all slave links of id
7. for each neighboring master i of id do
8. if NrSlaves(i) + nrs � 6 and Collocated(i, id)
9. store all slave links of i
10. for each slave j of id do
11. l[id][j] � 0
12. l[i][j] � 1
13. l[id][i] � 0
14. l[i][id] � 1
15. HUpdate()
16. if localF > ActualNrHops() or
17. (localF = ActualNrHops() and
18. tm > TotNrMasters())
19. bestid � i
20. localF � ActualNrHops()
21. tm � TotNrMasters()
22. restore all links of id and i
23. return (bestid, localF)

Figure 5: Pseudo code of the MM algorithm

After checking all neighboring masters the identifier of the
target master that could overtake all nodes in id’s piconet, re-
ducing the most the number of weighted hops (localF), is re-
turned.

4 Numerical Results
To evaluate the performance of our algorithms, we imple-
mented a Bluetooth scatternet simulator in C++. Since the
algorithms operate on the scatternet topology, in our simula-
tor we mainly considered topology-related aspects like phys-
ical links, nodes’ roles, radio proximity and multihop con-
nections, omitting protocol stack details and the problem of
connection establishment delays.

We tested the optimizer by generating 50 scatternets, of 100
nodes each, over an area of 66x66 m � . We set the nodes’ ra-
dio range to 10 m and ��� ���
	��
���������������������������� � ! . We
randomly generated 100 source-destination bidirectional (200
unidirectional) communication pairs (elements of "). The
traffic intensity (�$#�%) on these connections is 0.1, 0.25 and 0.5
for 50%, 30% and 20% of &'��($�*) connections, respectively.
All simulations were run on a Linux PC with a 1.7 Ghz CPU
and 256 Mb RAM.

We performed experiments combining the SS, SM, MS and
MM optimizations in many different ways. In this section we
present results derived from the most illustrative sample opti-
mizations. In particular, we consider three groups of experi-
ments referring to the case where the optimizer is called one,
two and three times, respectively, during the same simulation.
Each call to the optimizer corresponds to a different optimiza-
tion module. Figures 6-8 show the evolution of function +
during these experiments, against the number of diversifica-

245

250

255

260

265

270

275

280

285

0 5 10 15 20 25 30 35 40 45 50

F
 [w

ei
gh

te
d

ho
ps

]

Diversifications

SS
SM

SS_SM
MS
MM

Figure 6: Optimization with simple moves

230

240

250

260

270

280

290

300

0 500 1000 1500 2000

F
 [w

ei
gh

te
d

ho
ps

]

Diversifications

SS_SM_MM
SM_MM
SS_MS

MS_MM

Figure 7: Optimization in two phases

230

240

250

260

270

280

290

300

0 500 1000 1500 2000 2500 3000

F
 [w

ei
gh

te
d

ho
ps

]

Diversifications

SS_MS_MM
SM_MS_MM

SS_SM_MS_MM

Figure 8: Optimization in three phases

tions.

Then, for each group of experiments, the one giving the
best performance is evaluated in greater details in Tables 2-
4. In each table, the following metrics are presented. The
Slaves, Slave&bridges and Total master parameters report the
number of pure slaves, slave&bridges and total number of
pure masters and master&bridges, respectively. The parame-
ter Links represents the number of links in the scatternet. The
Weighted hops row shows the overall optimization achieved
after each module of the optimization is terminated, while the
Hops row presents the corresponding hop count. The distance
weighted (i.e multiplied) by the traffic intensity (�,#�%) is ex-
pressed in weighted hops ([wh]), and the distance is measured
in hops ([h]). The rows referring to the SM, MS and/or MM

9

Table 2: Optimization with SM moves
EXPERIMENT #1 Before After Diff. %
Pure slaves 32.92 14.32 -18.60 -56.50
Slave&bridges 32.48 33.42 0.94 2.89
Total Masters 34.60 52.26 17.66 51.04
Links 121.32 121.32 0.00 0.00
SM optimization [wh] 274.97 250.22 -24.75 -9.08
Hops [h] 1222.08 1121.68 -100.40 -8.26
Weighted hops [wh] 274.97 250.22 -24.75 -9.08

Table 3: Optimization with SM MM moves
EXPERIMENT #2 Before After Diff. %
Slaves 33.34 21.20 -12.14 -36.41
Slave&bridges 32.34 38.02 5.68 17.56
Total Masters 34.32 40.78 6.46 18.82
Links 121.04 131.12 10.08 8.33
SM optimization [wh] 274.48 249.81 -24.67 -9.09
MM optimization [wh] 249.81 234.75 -15.06 -6.14
Hops [h] 1221.88 1054.92 -166.96 -13.76
Weighted hops [wh] 274.48 234.75 -39.73 -14.64

Table 4: Optimization with SM MS MM moves
EXPERIMENT #3 Before After Diff. %
Pure slaves 33.02 24.82 -8.20 -24.83
Slave&bridges 32.84 35.68 2.84 8.65
Total masters 34.14 39.50 5.36 15.70
Links 121.42 125.26 3.84 3.16
SM optimization [wh] 278.74 254.47 -24.27 -8.86
MS optimization [wh] 254.47 241.36 -13.11 -4.48
MM optimization [wh] 241.36 235.06 -6.30 -2.67
Hops [h] 1228.24 1047.88 -180.36 -14.34
Weighted hops [wh] 278.74 235.06 -43.68 -15.26

optimizations in the Before and After columns contain values
of the weighted distance in the scatternet configuration ex-
actly before and after that specific phase of the optimization.
All other values in these two columns refer to the beginning
and the end of the entire optimization procedure. The last two
columns indicate the differences between the values in the
Before and After columns, expressed in the appropriate unit
(Diff.) as well as in percents (%).

First, let us consider Figure 6 and Table 2. In Figure6, for
the sake of readability we present only the first 50 diversi-
fications out of 1000 (the curves remain flat from that point
onward). The plot shows that the SM optimization produces
the greatest weighted hop reduction among the simple moves.
Master moves (MS and MM), instead, produce small hop re-
duction. This confirms that in our initial scatternet masters
were selected with care. Table 2 presents the results of the
SM optimization, i.e the most performing among the simple
moves. Observe that the SM optimization gives a weighted
hop reduction of 9.08%, at the expense of 51% increase in
the number of masters (i.e piconets). In fact, according to
their definition, SM moves transform the moving slave into a
master creating a new piconet. The number of links instead is

unchanged, since SM moves always tear off a link for another.
To improve performance in terms of weighted distance and

keep the number of piconets small, we perform also master
moves after having moved the slaves (i.e after the 1000th it-
eration). The results are presented in Figure 7. It can be seen
that the largest hop reduction (14.64%) is obtained through
the SM MM optimization, whose performance is reported in
Table 3. Table 3 shows that the 14.64% gain in hop reduc-
tion corresponds to 18.82% and 8.33% increase in the num-
ber of masters and links, respectively. We would like to men-
tion that the SS MS optimization produces a lower hop re-
duction (12.8%) but it increases the number of masters and
links by only 1.49% and 0.54%, respectively. This highlights
that master moves counterweight the increase in number of
masters produced by slave moves.

Figure 8 presents the results of our third experiment, com-
posed of slave optimizations followed by both MS and MM
moves (diversifications ����������������� and 	
�������
������� , respec-
tively). We obtained the best results with the SM MS MM
optimization (see Table 4). This optimization gives also the
best overall performance. However, if we take into account
the average optimization execution times, we have: 26.94,
42.95 and 82.43 minutes for SM, SM MM and SM MS MM,
respectively. Thus, we can conclude that it is not worth per-
forming both, MS and MM moves for additional 1-2% of hop
reduction.

Finally, we highlight that the step-like behavior of func-
tion � in all of the three plots in Figures 6-8 suggests that
most of the hop reductions happen at the beginning of each
call to the optimizer, namely within the first 10-50 diversi-
fications. Therefore, we can drastically reduce the number
of diversifications and, thus the execution times without any
significant impact on the overall performance. For example,
repeating the SM, SM MM and SM MS MM optimizations
with ��� ���������
������������� � !"�#�%$&��� , the (execution time, re-
duction) pairs, expressed in [� , '], will be of (15.33, 8.67),
(21.71, 13.82) and (42.8, 14.29), respectively.

5 Conclusion
In this work we presented a centralized method to dynami-
cally adapt a Bluetooth scatternet topology to changing traffic
conditions. We defined an algorithm suite that reconfigures
the nodes role and links so as to minimize the number of hops
between communicating nodes in the scatternet. Our simu-
lations have shown that slave reconfigurations (i.e moves) in-
crease the number of piconets, but this can be compensated
by master moves, thus obtaining an overall hop reduction be-
tween all communication peers of about 15%.

The weaknesses of our approach are its centralized nature
and its long execution time. Finding a decentralized solution
as well as reducing execution times will be subject for future
work.

Acknowledgment
This work was partially supported by the Italian Ministry
of University and Research through the VICOM project and

10

by the Autonomous Province of Trento through the WILMA
project.

We thank Mauro Brunato for his feedback and for his help
in the graphical visualization of the simulation environment.

References
[1] Bluetooth Specification 1.2. May 2003.
[2] M. Ajmone Marsan, C. F. Chiasserini, A. Nucci, G. Carello,

and L. De Giovanni. Optimizing the topology of Bluetooth
wireless personal area networks. In IEEE INFOCOM 2002,
New York, NY, USA, June 2002.

[3] S. Baatz, M. Frank, C. Khl, P. Martini, and C. Scholz. Adap-
tive scatternet support for Bluetooth using sniff mode. In 26th
Annual Conference on Local Computer Networks, LNC 2001,
Tampa, Florida, USA, 2001.

[4] S. Basagni and C. Petrioli. A scatternet formation protocol
for ad hoc networks of Bluetooth devices. In IEEE Vehicular
Technology Conference (VTC), pages 424–8, 2002.

[5] C. F. Chiasserini, M. Ajmone Marsan, E. Baralis, and P. Garza.
Towards feasible distributed topology formation algorithms
for Bluetooth-based WPANs. In 36th Annual Hawaii Inter-
national Conference on System Sciences, Big Island, Hawai,
January 2003.

[6] C. C. Foo and K. C. Chua. Bluerings - Bluetooth scatternets
with ring structures. In International Conference on Wireless
and Optical Communications, Banff, Canada, July 2002.

[7] I. Foster. Designing and Building Parallel Programs, chapter
3.9. On-line edition, 1995.

[8] J. Hurink. Introduction to Local Search. Lecture notes, 2001.
[9] M. Kalia, S. Garg, and R. Shorey. Scatternet structure and

inter-piconet communication in the Bluetooth system. In IEEE
National Conference on Communications, New Delhi, India,
2000.

[10] C. Law and K. Y. Siu. A Bluetooth scatternet formation al-
gorithm. In IEEE Symposium on Ad Hoc Wireless Networks
2001, San Antonio, TX, USA, November 2001.

[11] G. Miklós, A. Rácz, Z. Turányi, A. Valkó, and P. Johans-
son. Performance aspects of Bluetooth scatternet formation.
In First Annual Workshop on Mobile and Ad Hoc Networking
and Computing (MobiHoc), pages 147–48, August 2000.

[12] A. Rácz, G. Miklós, F. Kubinszky, and A. Valkó. A pseudo
random coordinated scheduling algorithm for Bluetooth scat-
ternets. In ACM Symposium on Mobile AD Hoc Networking
and Computing, volume 99, pages 1–100, Long-Beach, CA,
USA, 2001.

[13] B. Raman, P. Bhagwat, and S. Seshan. Arguments for cross-
layer optimizations in Bluetooth scatternets. In Symposium on
Applications and the Internet, San Diego, CA, 2001.

[14] T. Salonidis, P. Bhagwat, L. Tassiulas, and R. LaMaire. Dis-
tributed topology construction of Bluetooth personal area net-
works. In IEEE INFOCOM, Anchorage, April 2001.

[15] Z. Wang, R. Thomas, and Z. Haas. Bluenet – a new scatter-
net formation scheme. In 35th Annual Hawaii International
Conference on System Sciences, Big Island, Hawaii, 2002.

[16] G. V. Zaruba, S. Basagni, and I. Chlamtac. Bluetrees - scat-
ternet formation to enable Bluetooth-based ad hoc networks.
In IEEE International Conference on Communications (ICC
2001), volume 99, pages 273–7, 2001.

11

