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ABSTRACT
By incorporating ergonomics principles into the task allocation processes, human-robot collaboration
(HRC) frameworks can favour the prevention of work-related musculoskeletal disorders (WMSDs).
In this context, existing offline methodologies do not account for the variability of human actions
and states; therefore, planning and dynamically assigning roles in human-robot teams remains an
unaddressed challenge. This study aims to create an ergonomic role allocation framework that
optimises the HRC, taking into account task features and human state measurements. The presented
framework consists of two main modules: the first provides the HRC task model, exploiting AND/OR
Graphs (AOG)s, which we adapted to solve the allocation problem; the second module describes the
ergonomic risk assessment during task execution through a risk indicator and updates the AOG-related
variables to influence future task allocation. The proposed framework can be combined with any time-
varying ergonomic risk indicator that evaluates human cognitive and physical burden. In this work,
we tested our framework in an assembly scenario, introducing a risk index named Kinematic Wear.
The overall framework has been tested with a multi-subject experiment. The task allocation results
and subjective evaluations, measured with questionnaires, show that high-risk actions are correctly
recognised and not assigned to humans, reducing fatigue and frustration in collaborative tasks.

1. Introduction
The research field studying collaborative processes, in

which humans and robots work together to achieve shared
goals, is known as Human-Robot Collaboration (HRC).
HRC can improve industrial manufacturing and logistic
processes by exploiting humans’ and robots’ skills at the
same time [1, 2]. Due to their easy and fast reconfig-
urability, robotic platforms can meet the requirements of
the new products’ demands, appearing practical in small
and medium-sized enterprises (SMEs), characterised by
flexible and varying production lines. Furthermore, HRC
frameworks may be empowered to embed safety [3, 4], and
ergonomics [5, 6] principles. This potentially responds to the
urgency of reducing work-related musculoskeletal disorders
(WMSDs), which are the primary cause of absenteeism and
lost productivity in industries [7].

To provide robots with information about workers’ er-
gonomic risk, the careful monitoring of the biomechanical
risk associated with their activities is fundamental. For this
purpose, numerous approaches can be found in literature.
Most of them analyses a particular aspect or a specific
activity: carrying and lifting [8], pushing and pulling [9], low
loads at high frequency [10], posture andmovements [11, 12,
13]. Within HRC frameworks, to assess the ergonomic risk
during hybrid task execution, mainly posture-based indexes
have been exploited [14, 15, 16]. The latter evaluate the body
configurations that the human is adopting while performing
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the task and assign a bio-mechanical risk to the actions
based on the range of motion of the joints involved and the
type of movements (i.e., bending, twisting, etc.). However,
the choice of the most suitable ergonomic index to drive
the robot behaviour should be driven by the task features.
For instance, if the human agent is required to manipulate
heavy objects, a posture-based index cannot describe the
associated risk. In some cases, the information about human
dynamics (i.e., moments and forces developed within the
human body) is the key requirement for the robot adaptation
[17, 18, 19, 20, 21]. On the other hand, the digitalisation of
the workplace may lead to work intensification and constant
time pressure, calling for the design of indexes that can
assess the workers’ mental stress and extra cognitive load
[22, 23].

Given the advantages of collaborative solutions for work-
cell settings, researchers have tried to close the gap be-
tween the industrial requirements and the HRC paradigm by
focusing on human-robot interfaces, robot control modali-
ties, robot intelligence, and robot perception of the human
psycho-physical state to organise an appropriate collabora-
tion plan. One of the main issues in defining a teamwork
strategy is how to distribute the roles among teammates.
Literature refers to it as the role allocation problem. Role
allocation is mostly studied within the context of multi-robot
systems [24], where team coordination is necessary to ac-
complish the final common objective. The typical approach
consists of designing functions, often called utilities, able
to describe the quality of agent-task pairing and find the
optimal solution through an optimisation algorithm. Calcu-
lating an agent’s utility is not trivial because it depends on
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Figure 1: The framework scheme emphasises the distinction between its two main modules. The "Ergonomics Assessment"
module, during the human action performance, is responsible for the human state evaluation, updating the ergonomic risk that
will change the cost of each AOG arc. The "Role Allocation" provides at each iteration the next task-allocated worker pairing,
which is the result of the AO* search through the AOG structure, modelled accounting for task features and workers’ conditions.

the agent’s aptitude for the role’s responsibilities, the role’s
priority, and the team’s current and future needs. Gener-
alising a multi-robot scenario to a mixed team of agents
(robots and humans) requires defining a utility function for
human workers that is consistent with, i.e., comparable to,
the utility functions indicating whether robots are suitable
for specific roles. Examples in literature suggest that such
a function can consider, among many, the time spent to
complete the activity [25, 26], the travelled distance if the
human is required to move from one workstation to another
[27], the perceived effort for the task completion [25].

One of the methods employed for modelling the col-
laborative task accounting for task features is the AND/OR
Graph (AOG) structure [28]. AOG has been introduced for
describing well-structured tasks and its decomposition into
a sequence of actions, and it is an efficient representation of
a state transition graph, with few nodes, that allows an easy
search for feasible plans. The authors of [29, 30] recently
proposed two different offline optimisation methods based
on AOG to solve simultaneously the planning and the role
allocation problems. In addition, three quantifiable indexes
were suggested in [31] to more accurately describe the
kinematic and dynamic properties of the agents, resulting
in a capability-aware allocation. The three indexes were
combined by employing a weighted sum, obtaining a proper
heuristic for the optimisation algorithm. Other methods ad-
dressing an ergonomic role allocation were proposed by
[32, 33].

However, one of the main limitations of AOG-based
approaches is that they provide the role distribution before-
hand, i.e., actions are allocated to agents before starting
the collaboration. As a result, the allocation remains fixed
for the entire teamwork, making it difficult to account for
changing human conditions. In light of these considerations,
this manuscript aims to:
i. design an HRC AOG-based strategy, accounting for a

dynamic role allocation, i.e., where the roles are not
fixed within the team but change on-the-fly according
to a specific optimisation criteria, and

ii. capitalise on human ergonomic risk model to evaluate
the suitability of an agent to the action, in order to
prevent the assignment of potentially risky actions to
human workers.

In particular, a human-monitoring system is employed to
evaluate online the ergonomic state of the worker, prof-
iting from measurements of human physical or cognitive
workload. The human monitoring system is mainly used to
perform the ergonomic assessment of the human worker,
while it does not contribute actively to action recognition,
which is out of the scope of the paper. Thus, we assume that
the worker will execute the assigned action and a mecha-
nism, to understand when the action has been completed,
is available. To integrate the ergonomic constraints into the
AOG structure, the proposed framework i) updates the AOG
arc costs on-the-fly according to the human ergonomic risk
model and ii) uses an AO* search to find iteratively the
optimal action-agent pairing. In Figure 1 a scheme of the
designed framework is shown.

We tested the functioning of our online human-robot
role allocation method in a simple assembly of lightweight
objects. Since existing standard methods provide an overall
rough evaluation of the task and do not account for the
history of body postures, as an ergonomic indicator, we
propose a custom index, named Kinematic Wear (KWear),
that embodies the subject ergonomic history, memorising
the usage of each joint during the whole execution of an
assembly task. However, the proposed framework can also
be combined with other metrics that describe human risk.

A preliminary version of this work is presented in [34]
which only sketched the ergonomic role allocation frame-
work. In this work, the details of the aforementioned frame-
work are outlined, adding novel extensive performance test-
ing and validation in a realistic scenario through multi-
subject evaluation. In particular, with respect to [34], the
novel contributions are the following:
i. an improved dynamic role allocation strategy based on

AOGs with continuous hyper-arc cost functions;
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ii. a computational complexity investigation in case of
scarcely and sequentially connected assemblies;

iii. an analysis of the suitability of KWear as metric for
the role allocation framework in predicting future er-
gonomic risk, including a comparison with a static
ergonomic metric (RULA);

iv. a subjective evaluation of the usability of our framework
in industrial contexts.
The paper proceeds by describing in detail each frame-

work block. In section 2, we explain how the AOG structure
models a collaborative task embedding workers’ features,
and in section 3, we describe the search algorithm AO* that
we implemented for inspecting the graph at each iteration.
In section 4, we illustrate the rules used for mapping the risk
index into hyper-arcs cost, and in section 5 we focus on how
ergonomics can be integrated into the proposed framework
and on the design of the KWear index. In section 6, the
computational complexity analysis of our role allocation
algorithm is presented. In section 7, we outline experimental
analysis conducted for testing KWear properties first, and
then for assessing the performance of the overall framework
with a proof-of-concept assembly involving 12 subjects.
Finally, future research directions are presented in section 8.

2. AND/OR Graphs for Role and Task
Planning
One of the approaches for representing well-structured

industrial tasks, such as assemblies, exploits AOGs. AOGs
are data structures able tomodel all the possible combination
sequences of an assembly task (or any sequential task in
general) in a compact representation.
2.1. Assembly Modelling

AOGs describe compactly all possible assembly se-
quences for a certain product, which is composed of different
atomic pieces. The advantage of using such graphs with
respect to other graph-based strategies, such as the Assembly
State Graphs, lies in having fewer nodes and a simpler
search for the optimal assembly plan guided by the weights
associated with each arc in the graph [28].

Given an assembly task P made of M pieces (P =
{p1, p2,… , pM}), a configuration Θ of P is a set of sub-
assemblies of P such that:

• each sub-assembly in Θ is formed by physically feasi-
ble and stable connections;

• each pi belongs to one sub-assembly of Θ;
• a pi cannot belong to two or more sub-assembly of Θ.

The assembly plan can be seen as a sequence of Θs, starting
from Θi = {{p1}, {p2},… , {pM}} and ending with Θf =
{{p1, p2,… , pM}}, i.e., starting from the configuration in
which all the atomic pieces are separated (each of them
is a sub-assembly), and ending with a unique final subset,
corresponding to a configuration with all the pieces assem-
bled. By considering feasible sub-assemblies as nodes and

assembly operations that describe the transition between two
configurations as edges, it is possible to find a path from ΘitoΘf using path search algorithms. The edges, called hyper-
arcs are pairs in which:

• the first element is a single node (father);
• the second element is a set of nodes (children); chil-

dren represent all the possible sub-assemblies that can
be obtained by disassembling the father node. For
assembly tasks, since most of the assembly operations
consist of joining two sub-assemblies, hyper-arcs are
modelled as two-to-one connectors.

Thus, anAOG is described by a set of nodesN = {n1, n2,… ,
n
|N|

}, and a set of hyper-arcsH = {ℎ1, ℎ2,… , ℎ
|H|

}. Each
node n ∈ N represents a sub-assembly of P , while hyper-
arcs define the assembly operations and can be characterised
by different costs [35]. Children connected by the same ℎ are
in a logical AND, while different hyper-arcs with the same
parent node are in a logical OR. In general, it is possible
to obtain a specific assembly configuration Θ̄ performing
assembly operations between different sub-assemblies. Such
sub-assemblies are in AND relation, while the different
assembly operations are represented by hyper-arcs in OR
relation. For example, as described in Figure 2, to complete
the assembly ABCDEF , it is possible to join ABC with
DEF (assembly operation described by hyper-arcℎ1) or join
AB with CDEF represented by ℎi. Thus, ABC is linked in
AND with DEF and AB with CDEF , while ℎ1 and ℎi arein a logical OR. The only node without a father is named
root. The nodes without children are identified as leaf nodes,
and they are as many as the assembly pieces.
2.2. Role Allocation

The goal of this study is to provide a formulation of
AOGs that could provide not only the sequence of assembly
operations but also the agent in charge of such assembly.
To do so, we extend the standard AOG definition with two
supplementary sets: the set of workers involved in the task
execution W = {w1, w2,… , w

|W |

} and the set of actions
that have to be performed,A = {a1, a2,… , a

|A|}. For gener-ality, actions represent proper assemblies (e.g., interlocking
two parts together) and relaxed assemblies (e.g., moving an
object on top of a table could be considered an assembly be-
tween such an object and the table). The assembly sequence
allocated to each worker is obtained by duplicating the same
hyper-arc (that describe an assembly operation) for |W |

times and assigning a cost to each ℎi ∈ H , i.e. cℎi,wj with
i ∈ [1, |H|] and j ∈ [1, |W |], that represents the suitability
of wj in performing such assembly operation. If a specific
action cannot be executed by one of the involved agent, or
results as unsafe or time-consuming, to prevent the agent
to be assigned to the action, we prune the corresponding
hyper-arc. Finally, by exploiting an optimality-based search
algorithm, the path with the minimum total cost can be
found (section 3). Unlike in [29], where costs were fixed for
the whole duration of the assembly task, in our framework
costs are updated according to the human state monitored
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Figure 2: General AOG of an assembly made up of six pieces:
A, B, C, D, E and F. Each hyper-arc has a different color
since it represents a different assembly action. Each hyper-arc
is duplicated to represent the feasibility of the action by each
agent. Each arc has a different cost according to the suitability
of each agent for performing the corresponding action.

during the cooperation, ensuring an optimal role assignment
at each assembly step. The description of the costs update
mechanism and the monitored variables can be found in
section 4 and section 5, respectively.

3. AO* for the Optimal Search
A custom AO* search is implemented to retrieve the

desired assembly sequence and the optimal action allocation.
Such an algorithm is inspired by the A* [36], which is
adapted to operate on an AOG. Unlike standard AO*, whose
objective is tominimise the path cost from the root to a single
leaf or a pair of leaf nodes [37], the goal of our algorithm is to
inspect leaf nodes, as they represent the initial configuration
Θi of the assembly. In this way, the search of our AO* does
not finish until all the leaf nodes, i.e., all the assembly pieces
in Θi, are visited and included in the path.The algorithm exploits an auxiliary tree data structure
(Z,E) that is updated during the search and contains the
explored assemblies at minimum cost. Z is the set of nodes
of the tree, where each node consists of a SearchState. Each
SearchState has the following attributes: (i) an assembly
configuration Θ, that represents the state of the assembly at
the current step of the search algorithm; (ii) a pointer to its
father assembly configuration, that represents the state of the
assembly at the previous step of the search algorithm; (iii) a
score c, that represents the cost of reaching Θ. E is the set
of edges that connects a SearchState containing an assembly
configuration at level l with its father at level l-1. A cost is
associated with each edge, that corresponds to the cost of the
transition betweenΘ and its father. Such a cost is inferred by
the AOG hyper-arc connecting the sub-assemblies inΘwith
the resultant sub-assembly in its father.

The search acts in a top-down fashion, from the Search-
State (start) containing the assembly configuration Θf ,

Algorithm 1 AO* search
Require: Θf , Θi
1: Path opt_path
2: SearchState start, goal
3: start.setState(Θf )
4: goal.setState(Θi)
5: ADD(start IN OPEN)
6: while ¬ (OPEN.empty()) do
7: curr ← MIN(Θ.c)
8: if curr == goal then
9: break
10: end if
11: for �j IN Θcurr do
12: for edge i CONNECTED to j do
13: SearchState succ
14: succ← curr
15: Θcurr ← � POINTED by i
16: succ.father← curr
17: succ.c ← curr.c + i.c
18: if succ IN OPEN ∧ succ.c < OPEN.succ.c then
19: OPEN.succ = succ
20: else if succ IN CLOSE ∧ succ.c < CLOSE.succ.c

then
21: ERASE(succ IN CLOSE)
22: ADD(succ IN OPEN)
23: else if ¬ (succ INOPEN)∧¬ (succ IN CLOSE) then
24: ADD(succ IN OPEN)
25: end if
26: end for
27: end for
28: ERASE(curr IN OPEN)
29: ADD(curr IN CLOSE)
30: end while
31: opt_path.addEdge(getEdge(curr))
32: opt_path.addNode(curr)
33: SearchState tmp = curr.father
34: while ¬ (tmp == start) do
35: opt_path.addEdge(getEdge(tmp))
36: opt_path.addNode(tmp)
37: tmp← tmp.father
38: end while
39: opt_path.addNode(start)
40: return opt_path

Algorithm 2 RecursiveAO*
Require: root, leaves
1: Path opt_path
2: goals ← leaves
3: while (goals ≠ root) do
4: opt_path = AO*(root, goals)
5: nextAction = opt_path.Node.action
6: nextAgent = opt_path.Edge.agent
7: sendAction(nextAction, nextAgent)
8: updateGoals(goals)
9: end while

which represents the state where all the pieces are assem-
bled, to the SearchState (goal) containing Θi, the leaf nodesdisconnected, that are the inputs of the algorithm. When a
SearchState (curr) is visited, the tree is expanded by creating
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Figure 3: Example of auxiliary tree for a general assembly
ABCD, highlighting the optimal path from Θf to Θi. The nodes
are the ones visited by AO*.

new SearchStates. Each of them (succ) contains a feasible
configuration Θ and curr is their father. The cost of succ
results from the cost of curr plus the edge cost that connects
curr to succ. The new SearchState curr to be visited is the
one with the minimum score (see Algorithm 1). Once the
SearchState goal is reached, the optimal path is obtained by
going backwards to the start (Figure 3). The obtained path
minimises the sum of the costs of the travelled edges.

While the optimality of the solution, with fixed costs, is
ensured, if costs change during the task execution, the search
algorithm should be invoked again. In such a case, the algo-
rithm should explore a reduced tree, from the SearchState
containing Θf to the SearchState containing the current
assembly configuration (see Algorithm 2). Therefore, each
time the AO* search is called, the configuration of the
SearchState goal Θi contains the current assembly config-
uration.

4. Hyper-arcs Cost Computation
So far, we have explained how to integrate the role

allocation into the planning of the assembly task and how the
optimal agent-to-task allocation can be retrieved. However,
such a framework is still general and could be exploited to
optimise an HRC scenario in different ways. In this context,
the design of the cost function plays a crucial role. In
particular, in this manuscript, we focus on ergonomics and,
hence, we will discuss how to embed ergonomic principles
in time-varying hyper-arcs costs. Such costs should estimate
the ergonomic risk of the human worker at every instant of
the collaboration and be able to predict the risk for future
actions, and in the case of high risks, delegate such tasks to
the robotic agents. Therefore, we propose a continuous risk
indicator V (t) ∈ (0, Vmax) for human ergonomic risk and a
prediction model using linear difference:

V̂ (tk+1) = �k+1V (tk) + �k+1 (1)
where V (tk) is the risk indicator after achieving action ak(at time tk), V̂ (tk+1) is the estimated risk indicator after
achieving action ak+1 (at time tk+1), and �k+1 and �k+1 are

the linear parameters that regulate the rise ofV (tk) over time,
depending only on action ak+1. Suitable methods to compute
V (t) and estimate the prediction parameters are explained in
detail in section 5.

Thus, after the execution of action ak, the current valueof the ergonomic risk V (tk) is available and all the V̂ (tk+1)of all the possible future assembly operations ak+1 are com-
puted according to (1). Once the predicted risk is known
for each possible future action, a rule is needed to update
the hyper-arcs cost, accounting for the changing ergonomics.
Given any ak+1 modelled by the corresponding ℎj , to exe-
cute that ak+1 will cost the human worker (wℎ):

cak+1,wℎ = cℎj ,wℎ =

{

V̂ (tk+1) if V̂ (tk+1) < Vtℎ
V̂ (tk+1) + Γ if V̂ (tk+1) ≥ Vtℎ

(2)

where Vtℎ represents a threshold value, chosen as a certain
percentage of Vmax, the maximum value that V (t) can as-
sume, and Γ > Vmax. The role of Γ is that of increasing
the hyper-arc cost such that the AO* would be discour-
aged from selecting that hyper-arc during the search for
the optimal path. As discussed in section 1, in the case of
mixed human-robot teams, the functions describing agents’
suitability for each task must be comparable. For simplicity,
as robot worker (wr) actions cost, a constant value cℎ,wr ,of the same order of magnitude of cℎ,wℎ is selected, such
that Vtℎ < cℎ,wr < Vmax + Γ. The particular choice of its
value determines the percentage of robot activity during the
collaboration: the lower cℎ,wr the higher such percentage,
and vice-versa.

5. Ergonomic Assessment
The proposed framework is not coupled with any spe-

cific metric; therefore, the choice of the ergonomic index
for evaluating the human state during their performance is
task-oriented. As discussed in section 1, the description of
the human physical state can be kinematic (by considering
only body postures), dynamic (evaluating also the effect of
the overloading forces), or cognitive (evaluating attention,
stress levels, etc.). For example, in the case of handling,
lifting, and transporting heavy objects, assessment methods
based on human dynamics are more capable of capturing
the ergonomic risk compared to kinematic methods. In this
context, muscle [38] and joint [21, 31] fatigue models, that
depend on muscle activation and overloading torques, repre-
sent suitable computational models for V (t). Alternatively,
if tasks require a high focus level and expertise, it might be
relevant to also monitor physiological stress and workers’
attention. For instance, in [23] an estimate of cognitive load
risk based on gaze direction, head orientation, and body
language activities such as self-touching, is proposed. In-
stead, in the case of assembly tasks involving a large number
of lightweight pieces, a kinematic index that intrinsically
evaluates work frequency can capture potentially damaging
situations more precisely. Other potentially relevant factors,
such as the weight of the objects to be manipulated, the lay-
out and organisation of the work, are considered less relevant
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for the risk assessment in the depicted scenario. Most of the
standard risk assessment methods either evaluate the joint
configuration only at the current instant, independently of
task duration, repetitions, and past activities [13, 11], or adds
many factors (action frequency, recovery periods, excerpted
forces) which results accurate only if the task execution is
well known a priori, e.g. OCRA [10]. Instead, using the
linear prediction previously introduced (1), it is possible
to predict the ergonomic risk for future assembly actions,
even if the other factors are not known. In light of this, we
designed a new risk indicator, KWear (subsection 5.1), an
index able to combine human posture with action duration.
In particular, it focuses on how past activities, as well as
repetitions of the same activity, influence the ergonomic
assessment of future actions.
5.1. Kinematic Wear Index

The idea behind the KWear design consists of hav-
ing an index able to not only describe the current risk by
measuring the current body configuration but also convey
information about the past posture hazard, and, indirectly,
the repetition of sequences of actions, providing a more
accurate description than the traditional kinematic indexes
such as RULA/REBA [13, 11]. Note that this index does
not explicitly address other potentially relevant risk factors,
which are neglected in our assessment.
Modelling the Kinematic Wear The KWear index at the
joint level is modelled as an RC circuit:

dVi(t)
dt

=

{

(1 − Vi(t))
|Gi(q(t))|

C wear
−Vi(t)

r
C recovery

(3)

where Vi(t) ∈ [0, 1), C , r, and Gi(q(t)) are, respectively, theKWear level at instant t, the endurance capacity, the recovery
rate, and the current risk score of the i-th upper body joint
assigned by Rapid Upper Limb Assessment (RULA) [13].
Such a score is given according to the joint configuration,
represented by its rotation about the main Cartesian axes
q = [qx qy qz]. In particular, the joints evaluated by RULAtables are the shoulder, elbow, wrist, trunk, and neck, and
the values Gi(q) belong to [1, 6]. In literature, a similar
model has been exploited already to describe human muscle
activities [38] and also thermal motor usage [39]. Therefore,
at each time instant t, the KWear level is described by:

Vi(t) = 1 − (1 − Vi(t0)) e
− ∫ t0

Gi(q(�))
C d� (4)

where Vi(t0) represents the KWear level at the initial instant
t0. During action execution, the i-th joint motion produces
a variation of the RULA score Gi(q(t)), which, in turn,
increases the corresponding Vi(t), with a slope proportional
to the risk level of the new posture: the riskier the posture
the steeper the KWear trend. Besides, if the human rests, i.e.,
keeps a comfortable joint configuration, the KWear level of
each joint decreases according to the recovery function (RC
circuit discharge):

Vi(t) = Vi(t0) e
− r
C t. (5)

According to [13], in a static configuration, a subject can
apply a low force for Tmax = 240 s until feeling physical
discomfort. Therefore, the capacity value C is selected to
allow each joint wear to approach the asymptotic value
V (Tmax) = 1, starting from V (0) = 0. The value C is
retrieved by inverting (4) with Vi(t) = 0.993 = Vmax(corresponding to five time constants), and an average level
of RULA of Gavg = 3. Thus, C is the same for all the joints:

C = −Gavg
Tmax

ln(1 − Vmax)
= −3 240

ln(0.007)
. (6)

For what concerns the recovery rate r, it is obtained
by inverting (5) considering to match the recovery time
(discharge) with the wear time (charge), i.e., the joint can
fully recover in a period of Tmax. Therefore, we have:

r = − C
Tmax

ln
(

1 − Vmax
Vmax

)

, (7)

The KWear behaviour with the chosen parameters val-
ues was validated in experimental tests in subsection 7.1.
However, they can be optimised to fit subject-specific bio-
mechanic characteristics.

At this point, the KWear prediction model can be ob-
tained by combining (4) with (1):

V̂i(tk+1) = 1 − �k+1,i(1 − Vi(tk)) (8)
where

�k+1,i = e
− ∫ tk+10

Gi(�)
C d�

and
�k+1,i = 1 − e

− ∫ tk+10
Gi(�)
C d� = 1 − �k+1,i

are parameters that regulate the raise of KWear over time,
for the i-th joint. These parameters are representative of the
level of the i-th joint involvement in the action ak and henceshould be estimated offline with a calibration procedure.

Since the KWear is computed for each monitored joint
independently from the others, to recover an overall indicator
of the action-related risk, (2) becomes:

cak+1,wℎ = cℎj ,wℎ =
m
∑

i=1
i, (9)

where m is the number of monitored joints and

i =

{

V̂i(tk+1) if V̂i(tk+1) < Vtℎ,i
V̂i(tk+1) + Γ if V̂i(tk+1) ≥ Vtℎ,i.

(10)

Calibration Procedure The calibration procedure is
needed to estimate the parameters of the KWear prediction
model �k,i (and consequently �k,i) for each action ak and
each joint i which depend only on the k-tℎ task. The idea
is to record offline the joint angles (and the RULA scores) in
� executions of the same assembly action, compute �k,i andaverage them to obtain a value able to approximate a nominal
execution of the task. This implies that our method could
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not adapt online if workers change how they solve a task,
e.g., because of increasing tiredness. In this work, we assume
that the different executions of tasks are demonstrated in the
calibration procedure. To design the number of executions
� necessary to ensure at maximum the prediction error
Ṽi,des(tk+1), it is possible to adhere to the following strategy.First, the target maximum prediction error Ṽi,des(tk+1) isfixed. This value represents the level of accuracy we expect
from the system when estimating the KWear during the risk
prediction phase. Second, the action is executed �=�0 times
at null initial conditions, where �0 ≥ 2 represents the min-
imum number of repetitions that includes possible different
executions of the action. Then, the mean �k,i,� is plugged
in model (8) to obtain V̂i,�(tk+1). Such a value can be then
compared with the actual Vi,l(tk+1) values recorded for all
the � executions, where l ∈ [1, �], resulting in the prediction
errors Ṽi,l,�(tk+1). If Ṽi,l,�(tk+1) > Ṽi,des(tk+1) at least forone value of l, the computations should be performed again
with another task execution (�=�+1), until each Ṽi,l,�(tk+1)
< Ṽi,des(tk+1) or a maximum �max is reached.Please note that the calibration phase has to be repeated
when a new worker is involved in the collaboration. This
is due to the fact that the prediction parameters must be
descriptive of how each specific action is performed by
the current worker. For a more accurate risk prediction
in real-world applications where more than one worker is
assigned to the same task, it is convenient to use person-
specific model parameters. A possible solution consists of
creating a database containing all the subject-parameters
correspondences and then selecting the correct one once
the worker changes. Alternatively, the parameters could be
estimated during the online task performance and updated
through a weighted average to prioritise the �k,i computed
during the last execution of action ak. In this way, the systemwould learn how each worker is used to execute each action.

6. Computational Complexity Evaluation
The computational complexity of our role allocation

algorithmwas tested to evaluate the performances of the pro-
posed method. We carried out the simulations on a desktop
with an Intel XeonW-2245 3.9 GHz x 16-cores and 64GB of
RAM. The software architecture is based on ROS Melodic
running on Ubuntu 18.04.

The main computational blocks of our algorithm are
three: the ergonomic assessment, returning the KWear level
at each monitored joint; the hyper-arcs cost computation,
which updates actions cost of the corresponding hyper-arcs;
and the AO*, returning the instruction for the next action. In
particular, the ergonomic assessment process and the hyper-
arcs cost updating process were implemented as nodes in
Python, while the AOG library and AO* algorithm were
written as a C++ node, to speed up the heavy computations
required by the algorithm.

Unlike the first two processes, that are continuously
executed at high frequency (20 Hz) during the whole task
duration, the AO* search is called only when action ak is

completed, with hyper-arcs cost updated with the current
human ergonomic state. For this reason, to evaluate the com-
putational complexity of the framework, wewill focus on the
performance of the AO*, tested in different conditions.

To provide a comprehensive description two different
task representations are evaluated, which differ on how
pieces may be interconnected [40]:

• One case is an assembly with sequentially connected
atomic pieces in which there are N-1 interconnections
between the N pieces, with the i-th interconnection
connecting part pi and pi+1 [28]. An example of this
task model is represented by the assembly of a pen,
where each of the 4 atomic pieces (cap, ink, body, and
bottom) can be assembled equivalently with the piece
before or after within the sequence.

• The other case is an assembly with scarcely connected
atomic pieces, where all the N pieces are not directly
connected among themselves but only to a specific
sub-assembly. An example of this second category of
assembly is a table (top and 4 legs), where the legs
cannot be assembled together but only with the top.

Moreover, we tested the search by increasing:
i. leaf nodes, from 2 to 20, representing the atomic assem-

bly pieces (with a fixed number of agents equal to 2);
ii. agents involved in the cooperation, from 2 to 30 (with a

fixed number of assembly pieces equal to 10).
The results in Figure 4 (top) show different curves.

In case of sequentially connected assemblies, the trend is
exponential. In the scarcely connected case, instead, the
trend is flatter, with a log-linear complexity. This is because,
in the latter case, as the number of pieces M increases,
the nodes and the hyper-arcs increase linearly, instead of
exponentially as in the first case (see Figure 4 (bottom)).
A in-depth analysis of the completeness and complexity of
the plan generation can be found in [40]. On the other hand,
the plot in Figure 5 presents, in both cases, a linear trend.
This is due to the fact that an increase of number of pieces
causes an increase of both hyper-arcs and nodes, while an
increase of the number of agents entails only a raise of the
number of hyper-arcs. An assembly with 20 pieces and 2
agents corresponds, in the sequentially connected case, to
an AOG with more than 200 nodes and more than 2500
hyper-arcs. Therefore, the optimal search on such a graph
is a considerably large problem. On the other hand, if the
assembly belongs to the scarcely connected category, with
the same number of atomic components, nodes become 39
and hyper-arcs 38, and the AO* presents comparable results
as in the case of fewer pieces. It can be noticed that a gen-
eral assembly, made of scarcely and sequentially connected
parts, will present results in the grey area between the two
curves. This means that, for assemblies of a large number
of pieces (> 20), it is reasonable to reduce the number of
feasible assemblies to ensure that the AO* provides results at
the proper time. For instance, if an action implies a high risk
for the human workers, the related hyper-arcs can be pruned
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Figure 4: (top) AO* computational time in log scale obtained
by increasing the number of pieces to be assembled in the two
cases of sequentially and scarcely connected assembly. (middle)
Nodes complexity. (bottom) Hyper-arcs complexity.

from the AOG, ensuring that the action will be allocated to
the robot. Additionally, it should be noted that the search
algorithm acts on an AOGwith a smaller size after an action
is completed; as a result, the time to generate the solution
iteratively is rapidly decreasing.

7. Experimental Evaluation
The proposed framework was evaluated with two distinct

experiments in a collaborative proof-of-concept task: (i)

Figure 5: AO* computational time in log scale obtained by
increasing the number of agents in the two cases of sequentially
and scarcely connected assembly.

validation of the KWear, and (ii) the assessment of the er-
gonomic role allocation. In both cases, the collaborative task
was the assembly of a corner joint (J ) with three aluminium
profiles, i.e. two sides (S1, S2) and a leg (L). The profiles S1andS2 have the same length, whileL is shorter. Each of them
is interlocked in a predefined hollow of the corner joint J as
shown in Figure 6 (right). The online ergonomic assessment
was achieved by measuring the configurations of the human
main upper-body joints (trunk, neck, and shoulder, elbow,
and wrist of the dominant arm) through an inertial-based
motion-capture system (the Xsens suit).
7.1. Kinematic Wear Validation

The purpose of this experiment is to demonstrate the
KWear potential to recognise ergonomically hazardous situ-
ations based on the history of joint configurations. A single
right-handed subject was asked to perform repetitively the
aforementioned assembly task in a human-robot cooperative
scenario. The agents roles were assigned by the proposed
framework, with prediction parameters previously estimated
during a calibration phase.
Experimental Setup and Protocol The experimental
setup is shown in Figure 6 (left). The subject was asked to
wear the Xsens suit and perform 4 times (rp1, rp2, rp3, and
rp4) the assembly task. As a robot co-worker, the Franka
Emika Panda manipulator was selected, equipped with a
Robotik two-finger gripper. The fixed sequence of atomic
actions of the task were: (a1) pick the corner joint J from
its initial position and place it on the workbench closer to
the human operator; (a2) pick and insert L in the hollow
of J at the operator’s right; (a3) pick and insert S1 in the
upper hollow of J ; (a4) pick and assemble S2 in the hollow
of J at the operator’s left; (a5) pick the complete assembly
and place it on another ledge of the shelf. The rationale
behind this specific choice of actions and object positioning
is the achievement of risky posture by imposing some joints
close to the range-of-motion (RoM) limit, i.e. with a high
level of risk according to RULA. The calibration procedure
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Figure 6: (left) Experimental setup of the KWear Validation
experiment. The workstation consisted of a workbench in front
of the human operator, shared with the robotic co-worker,
and a shelf to the human’s right. The subject wore a motion-
capture system to record the joint angles. (right) The complete
assembly.

Ergonomic Risk
a1 a2 a3 a4 a5

RULA 5 3 3 4 4
Allocation Results

KWear

rp1 H H H H H
rp2 R H H H R
rp3 H H H R H
rp4 H R H H H

RULA H H H H H

Table 1
(top) Ergonomic risk score of each action computed according
to RULA tables. (bottom) Comparison between the allocation
results according to the RULA scores and the KWear values.
Since KWear can consider the risk related to the past configu-
rations, the allocation solutions change through the repetitions
rpi.

in section 5 was performed to estimate the KWear prediction
model parameters. The hyper-arcs costs were assigned as
described in section 5, with Γ = 100, Vtℎ,i = 0.8 ∀i,
chosen as the 80% of the maximum value of the KWear,
and cℎ,wr = 50. Finally, the allocation results are compared
to the ones obtained through a RULA-based role allocation,
where the ergonomic risk related to the k-th action, G(ak),is computed offline according to the standard method [13];
the scores assigned to a1, … , a5 are in Table 1(top). In
this case, actions are assigned to the robot when the action-
related score is higher than the 80% of the maximum RULA
score (Gmax=9), that is Gtℎ=7.2, analogously to the KWear
threshold.
Results By changing the steepness of the slope, the KWear
can describe different levels of risk according to the RULA
scores. In particular, in Figure 7 the KWear trend is shown
for the task actions a1, a2 and a5. The first action (a1)required the subject to raise her arm to reach object J on
top of the shelf, therefore the shoulder assumed the riskiest
configuration according to RULA tables. The second action
(a2) reported a greater involvement of the neck since the

subject had to bend it to localise and reach object L, closer
to her. The last action (a5) involved mostly the trunk since
the human was required to twist it, reaching a RULA region
with high risk.

In Table 1, we present the results in terms of agents allo-
cation during HRC for the 4 repetitions of the task. During
rp1, the ergonomic risk remained below the threshold for all
joints, thus the whole task was allocated to the worker. Con-
versely, starting from rp2, the risk level increased and some
actions began to be allocated to the robot. Notably, when an
action was allocated to the robot, the subject could rest, and
this recovery produced a decrease in KWear, reducing the
ergonomic risk baseline for future actions.

Regarding the allocation results obtained using a RULA-
based role allocation, since all the five actions present a
constant RULA value below the threshold, the whole task
is assigned to the human worker for each repetition.
Discussion The results suggest that (i) the riskier the joint
angle values, the steeper the KWear increment, and (ii) the
KWear value rises as the duration of the action increases.
Hence, the model can be used to describe joint usage over
time. For instance, a1 stressed the shoulder, a2 the neck, and
a5 the trunk (Figure 7). Although the design of such an indexis inspired by the charge-discharge behaviour of muscle
fatigue, the carried information is radically different from
these biomechanical models. However, the results highlight
the potential of the proposed indicator in evaluating in-
stantaneous ergonomic risk and in predicting future ones,
intending to prevent possible worker harm.
7.2. Multi-Subject Assessment

The goal of this experiment is to test the complete frame-
work through an extensive multi-subject human study. 12
healthy subjects (2 females and 10 males, 28±3 years, right-
handed) were asked to execute the assembly both by them-
selves (H only) and in cooperation with the robot (HRC).
While 10 subjects had already experienced human-robot
interaction applications, all of the subjects were naive with
respect to the goal of the experiment. All experiments were
performed at the Human-Robot Interfaces and Physical In-
teraction (HRII) laboratory, Istituto Italiano di Tecnologia
(IIT), and the protocol was approved by the ethics committee
of Azienda Sanitaria Locale (ASL) Genovese N.3 (Protocol
IIT_HRII_ERGOLEAN 156/2020).
Experimental Setup and Protocol The experimental
setup is shown in Figure 8. The subjects wore the Xsens suit
and executed the assembly 10 times for each condition, H
only andHRC in collaboration with the Franka Emika Panda
manipulator. To avoid biases, half of the subjects started
with the HRC modality, the other half with the H only one.
The five actions necessary to conclude a repetition were:
(a1) pick and place J in the assembly area; (a2) pick and
insert L in the upper hollow; (a3) pick and insert S1 in the
left hollow; (a4) pick and insert S2 in the right hollow; (a5)move away the entire assembly. In particular, the last action
envisioned the handover of the entire assembly to another
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Figure 7: The KWear trend for all the monitored joints during the performance of a1, a2, a5, starting from zero initial conditions
(top); a frame of the correspondent action showing the higher involvement of a specific joint (bottom).

human operator, who was in charge of disassembling the
final product and repositioning the pieces at their original
sites to simulate an industrial conveyor roller. The positions
of the assembly pieces to be handled by the robot and the
handover position (chosen to make the handover as natural
as possible) were pre-planned. In terms of ergonomic risk
evaluated through RULA tables, action a2, since it requiresgrasping the object positioned in the furthest location from
the human, and inserting it in the upper hollow of J , exposes
the shoulder to a higher risk for its whole duration (G(a2) =
5), while actions a3 and a4 required to handle objects close
to the worker (G(a3) = G(a4) = 3), therefore they are less
risky. Actions a1 and a5 have scores G(a1) = G(a5) = 4.
Before the experiment, the calibration procedure explained
in section 5 was performed. The subjects were asked to
repeat each action of the task �=3 times, which ensured
Ṽi,des(tk+1) < 10−3, selected according to the explained
strategy with �0=2. To replicate the time constraints of
production lines, typical of industrial settings, we introduced
the takt time, i.e., the total time in which the assembly
has to be completed according to the process demand. In
this experiment, we set Ttakt=38s according to the average
time the robot took to execute the whole assembly with a
conservative speed of 0.05 m∕s.

Unlike the previous experiment, the sequence of actions
was not fixed. Only actions a1 and a5 were fixed as the first
and last of the assembly sequence, while the order of the
other three actions was decided online by the AO*. Each
action could be assigned either to the human or the robot,
except for the last one, which is always assigned to the
human. The hyper-arcs costs were updated as described in
section 5, while the cost of robot hyper-arcs was tuned to
balance the human and robot activity within the collabora-
tion, in particular, cℎ,wr=2.5.In theHRC, the human completed the task with the robot
aid according to the instructions shown on the allocation
monitor (see Figure 8). If the action was allocated to the

human, they picked and placed the indicated object (see Fig-
ure 9(top)). Otherwise, the robot grasped and handed over
that object to the human counterpart (see Figure 9(bottom)).

In H only, the human had to perform the 10 repetitions
without the robot help, also choosing the assembly plan by
picking one piece at a time. To comply with the takt time
constraint, the human monitored a chronometer to start the
new repetition after every Ttakt.At the end of each execution, subjects answered the
NASA Task Load Index (NASA-TLX) questionnaire [41],
one per modality, which includes a section to estimate the
relevance of each aspect in the completion of the task. To
evaluate if some significant difference occurs between the
two task modes, we also performed the Wilcoxon signed-
rank statistic test, a non-parametric statistical hypothesis test
[42]. Based on the number of subjects and the chosen level
of significance � = 0.05, the resultant critical value of
such a test is Wcrit = 13. Finally, we conducted a post-hoc
power analysis using G* power [43]: the rule-of-thumb is
that the statistical power should be higher or equal than 80%
to ensure that the test correctly rejects the null hypothesis,
i.e., there is no difference between the two modalities.

Moreover, volunteers rate a custom 7-point Likert-scale
questionnaire (from "Not at all" −3 to "Extremely" 3) to
assess the three main aspects of our HRC framework, i.e.,
the efficiency of the role allocation algorithm, the perceived
ergonomics conditions, and the usability of the presented
method in industrial environments. The statements to be
graded follow:

1. I was glad to take a break when the task was allocated
to the robot.

2. The robot was hindering me in the task accomplish-
ment.

3. It was easy to understand when I had to take action.
4. When I was tired, the robot was not able to intervene.
5. I feel safe when collaborating with the robot.
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Figure 8: Experimental Setup. The assembly pieces were placed
on the operator’s left, as well as the robot co-worker; in front
of the human, the assembly area and the monitor to read the
allocations were located. The human wore a motion-capture
system to record the joint angles.

6. The robot can correctly choose which action is too
demanding for me.

7. I would suggest using the robot for this kind of tasks.
8. The robot help makes me feel less fatigued at the end

of the task.
9. I had to wait for the system to inform me about the

next task.

Results The results of role allocation are the following:
given a total of 480 actions to be allocated (12 subjects × 10
repetitions per subject × 4 actions per repetition), 179 were
allocated to the robot (38%), while 301 to the worker (62%).
In particular, by considering each action individually, a1 wasallocated to the robot 51% of the times, a2 78%, a3 and a4
10%.

The results of the subjects’ responses to the NASA
TLX questionnaire are shown in Figure 10, H only in blue,
and HRC in orange. The percentage above each column
represents how much subjects consider that specific aspect
relevant to task accomplishment. Overall, in the two experi-
ments, these scores are comparable.

Physical Demand (PD) is higher for the H only mode.
Moreover, the difference between the two conditions was
found to be statistically significant according to theWilcoxon
signed-rank test. The p-value returned by the comparison for
PD in the two experimental conditions is p < 0.01, while
the test statistic is Wstat = 1.5. Since Wstat < Wcrit, wehave statistically significant evidence. The statistical power
is 94%. Concerning the Performance (P), since the task was
simple, all the subjects were satisfied with their work in both
conditions (the lower the bar, the higher the performance).
Anyway, to reach the same level of performance, subjects
retained to have worked harder for the task accomplishment
in theHonlymode, as reported by the statistically significant
results in the Effort (E) columns (p < 0.01, Wstat =
7.5, statistical power 78%). The aspects slightly penalised
during the collaborative mode are Mental Demand (MD)
and Temporal Demand (TD). However, the disparity is not

Figure 9: (top) Pick and place object J action assigned to
the human worker. (bottom) Pick and place object J action
assigned to the robot.

statistically significant. In particular, a similar score for TD
was expected, since we fixed the takt time Ttakt for the twoexperimental conditions. Finally, the level of Frustration (F)
was higher for the H only mode.

The results of the custom questionnaire, in Figure 11,
reveal that the framework was perceived as beneficial in
terms of ergonomics (questions n.1-4-6-8) and usability
(questions n.2-3-5-7). Subjects did not report high waiting
times due to the algorithm computational time (question n.9)
or complications in task execution due to the presence of the
robot (questions n.2-4-5-6-7-8).
Discussion The statistical difference found for both Phys-
ical Demand and Effort aspects, according to which the H
only condition was rated worse, together with the recurrent
allocation of the most demanding action a2 (78% of the
time), suggests that our framework has the potential to
improve human ergonomics. Moreover, the power analysis
confirms that evaluating the performance of 12 subjects
is sufficient for highlighting the differences between the
two experimental modalities in terms of Physical Demand
(94% > 80%) and almost enough in terms of Effort (78% ≈
80%). Also, from the examination of the custom question-
naire results, it emerges that subjects were glad to take a
break when the task was allocated to the robot. This suggests
that the fatigue level at the end of the task might be lower
than in completely manual operations. A single subject felt
more productive in the H only mode due to the simplicity of
the task and the limited number of repetitions. We believe
that in a real industrial assembly, composed of a larger
number of pieces and prolonged executions, the benefits of
the proposed framework would be more significant.

TheMental Demand factor was slightly penalised during
the HRC mode. According to subjects’ experiences, the
monitor-based user interface has limitations in providing
intuitively the results of the allocated tasks. However, it
could be possible to adopt more intuitive interfaces, e.g.,
based on Augmented Reality [44]. In any case, how to
communicate the allocation results to humans falls beyond
the primary objective of the work.
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Figure 10: Results by collecting the subjects’ answers to the
NASA (Task Load indeX) TLX questionnaire. The column
height corresponds to the mean value of the subjects’ scores
for each task aspect, while bars encode the standard deviation.
Rated aspects are: Mental Demand (MD), Physical Demand
(PD), Temporal Demand (TD), Performance (P), Effort (E),
and Frustration (F). The two matched columns are for the
experiment in H only (blue one) and HRC (red one) mode. The
percentage above each column represents how much subjects
consider that specific aspect relevant in completing the task.

The level of Frustration, on the contrary, decreases with
the robot assistance. In our opinion, this is also related
to the task timing requirements. During the HRC mode,
the assembly rhythm was marked by the robot executions,
while, without any co-worker, when the human finished the
repetition, he had to wait until Ttakt passed, to start a new
repetition. This wait could irritate or annoy subjects. On
the other hand, as expected, working at a steady rhythm
generates less frustration. Finally, the computational results,
together with subject perception about the reactivity of the
system, show that the algorithm does not introduce waiting
times in the task execution so that productivity levels remain
high.

8. Conclusions
In this manuscript, we proposed a dynamic human-robot

role allocation method for industrial assembly tasks that
integrates an online evaluation of the ergonomic risk. By
intervening in the role distribution within the human-robot
team, we aim at exploiting the robot to prevent workers’
potential harm in the repetitive execution of hard tasks.

An adapted AOG structure is used for modelling a col-
laborative assembly task by introducing, for each action, as
many hyper-arcs as the number of workers involved. All the
hyper-arcs are also characterised by a cost that encodes the
suitability of agents to the modelled actions. Our framework
provides for the dynamic updating of such costs according
to the human state changes during task performance. An
optimal allocation solution is returned by an AO* search.
The algorithm presents exponential complexity in the worst
case, but some rules to drastically reduce the taskmodel con-
nections were discussed, obtaining quasi-linear complexity.
With such simplifications, the computational time necessary
to AO* for returning a solution should allow the workers to

Figure 11: Results by collecting subjects’ answers to the
custom questionnaire. On the x-axis the question number,
and on the y-axis the average score. A positive score means
a positive answer and vice versa. Questions were designed to
evaluate the granted Ergonomics, Role Allocation efficiency,
and Usability of such a framework.

perform the task without any interruption of the workflow, in
the case of a general industrial assembly. A drawback of the
AOG-based task modelling consists of the impossibility of
introducing parallelism, i.e., the allocation algorithm cannot
return as a solution two (or many) actions to be executed at
the same time by the two (or many) agents involved.

While the framework is general and envisions the possi-
bility to employ different ergonomic indicators, in this work
Kinematic Wear was designed and exploited. Unlike most of
the traditional ergonomic indexes, it can model the history of
the human worker’s joint wear and predict future ones, using
a suitable calibration procedure. Although this kinematic
index has been proven a promising approach for evaluating
the ergonomic risk over time, it needs to be validated with
the support of physiological and clinical data, which will be
the focus of successive works.

Nevertheless, the promising results of the multi-subject
experiment showed the technological acceptability and the
potential of the framework in improving ergonomics during
repetitive industrial assemblies. Future improvements will
introduce parallelism in the task model and the possibility
for the human worker to negotiate with the robot on the
allocation.
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