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Abstract
This thesis is concerned with the problem of automatic extraction of harmonic and rhythmic

information from music audio signals using statistical framework and advanced signal process-

ing methods.

Among different research directions, automatic extraction of chords and key has always

been of a great interest to Music Information Retrieval (MIR) community. Chord progressions

and key information can serve as a robust mid-level representation for a variety of MIR tasks.

We propose statistical approaches to automatic extractionof chord progressions using Hidden

Markov Models (HMM) based framework. General ideas we rely on have already proved to

be effective in speech recognition. We propose novel probabilistic approaches that include

acoustic modeling layer and language modeling layer. We investigate the usage of standard N-

grams and Factored Language Models (FLM) for automatic chord recognition. Another central

topic of this work is the feature extraction techniques. We develop a set of new features that

belong to chroma family. A set of novel chroma features that is based on the application of

Pseudo-Quadrature Mirror Filter (PQMF) bank is introduced. We show the advantage of using

Time-Frequency Reassignment (TFR) technique to derive better acoustic features.

Tempo estimation and beat structure extraction are amongstthe most challenging tasks in

MIR community. We develop a novel method for beat/downbeat estimation from audio. It is

based on the same statistical approach that consists of two hierarchical levels: acoustic modeling

and beat sequence modeling. We propose the definition of a very specific beat duration model

that exploits an HMM structure without self-transitions. Anew feature set that utilizes the

advantages of harmonic-impulsive component separation technique is introduced.

The proposed methods are compared to numerous state-of-the-art approaches by partic-

ipation in the MIREX competition, which is the best impartial assessment of MIR systems

nowadays.
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Chapter 1

Introduction

This thesis deals with automatic extraction of harmonic andrhythmic information from raw

audio. This chapter makes an introduction to MIR, formulates the motivation, sets goals and

describes the contributions.

1.1 Content-based music information retrieval

Recent advances in digital media have allowed for extensivewide-spread growth of musical

collections. Existing storage capacities allow for havinghuge collections of media on portable

media devices. There is a continuous transformation of the way we listen to music. Going back

to the end of the 20-th century, we could observe radio broadcasting and music record stores to

be the major ways of music consumption. Nowadays, drastic popularity of social networking

has lead to the creation of web communities, changing the wayof music dissemination. Music

recommendation services, such as Last.fm1 have gained huge popularity and proposed new

facilities to access media data based on your personal preferences.

To this end, the need for effective search in large media databases is becoming critical. De-

veloping techniques for accessing content and browsing in huge music archives has become

an emerging area of research. High demand for such techniques has lead to establishing and

evolving Music Information Retrieval (MIR) community, which include academic research in-

stitutions, as well as industrial research companies. Music Information Retrieval is an inter-

disciplinary science that addresses extraction of meaningful information from music data. It

involves musicology, signal processing, machine learningand other disciplines.

In spite of growing research activities in MIR, nowadays, the most common way of media

search is accomplished through textual metadata. Lots of music download services are based

on the search by artist, album, song name. However, a number of content-based search engines,

1http://www.last.fm
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1.1. CONTENT-BASED MUSIC INFORMATION RETRIEVAL

such as Shazam2 and SoundHound3 have become available, introducing essentially novel ap-

proaches to music retrieval. Content-based concept is based on the principle of processing the

content of a given audio document and extracting the necessary information from it.

Shazam provides music identification service that is based on acoustic fingerprinting [1].

A fingerprint of each audio file from a huge music database is stored in an indexed database.

A query audio file is subjected to the same analysis and the extracted fingerprint is matched

against a large set of fingerprints from the database. A list of possible candidate songs from

the database is evaluated for the correctness of the match. For robust identification in noisy

environment, spectrogram peaks are used as feature set. A set of time-frequency points with

the highest energy in their neighboring region is extractedand constructed constellation map

is indexed. The robustness of the approach is proved by the fact that noise and distortions

usually do not change the temporal layout of the spectrogrampeaks. Shazam is considered to

be an effective tool to search for exact content match. However, slight modifications in the song

arrangement make identification impossible. For example, search query using a remix version

for a given song would fail.

However, the solution of the above-mentioned search problem, when there is no exact match

in spectral peak distribution, but high similarity in the harmonic content is proposed by Sound-

Hound. Apart from the functionality provided by Shazam, thealgorithm is so advanced that it

can confidently recognize a song from your own singing and/orhumming. On the other hand,

sometimes, the system is not capable of exact matching and can provide a remixed version of a

query song instead of the original as the final result.

Shazam and SoundHound are the solutions developed mainly for the mobile phone users.

However, there is the need for such tools on desktop computers. A possible scenario could be

the following: having a huge amount of untagged music data, organize a collection, where songs

are sorted according to a certain criteria, e. g. artist/album, style. A solution is proposed by

MusicBrainz4 project. The project is maintained by open community that collects, and makes

available to the public music metadata in the form of a relational database. The database of

MusicBrainz contains information about artists, track titles, the length of each track, and other

metadata. Recorded works can additionally store an acoustic fingerprint for each track. This

provides the facility for automatic content-based identification and subsequent tagging.

There are thousands of other possible applications of the MIR technologies. For all of them,

effective and robust algorithms for feature extraction play an essential role.

2http://www.shazam.com
3http://www.soundhound.com/
4http://www.musicbrainz.org
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CHAPTER 1. INTRODUCTION

1.1.1 High-level music descriptors

One of the largest research areas of MIR is the extraction of high-level music descriptors, or

attributes. The most important and informative attributesinclude harmony, rhythm, melody,

instrumentation and others. Effective methods for extraction such descriptors is the necessary

condition for developing robust and effective music information retrieval systems. A funda-

mental approach to the classification of musical facets was proposed by Orio [2].

In the following sections a short description of the most important high-level music descrip-

tors is provided.

Onset structure

An important characteristic of any musical excerpt is the onset structure. Onset information can

be useful for the analysis of temporal structure such as tempo and meter. Music classification

and music fingerprinting are the tasks where onset information could also be of great use [3].

The notion of onset leads to many definitions: a sudden burst of energy, a change in the short-

time spectrum of the signal or in the statistical properties. The onset of the note is a single

instant chosen to mark the temporally extended transient. In most cases, it will coincide with

the start of the transient, or the earliest time at which the transient can be reliably detected [4].

Onsets can be divided into two classes, "soft" and "hard". A hard onset is characterized by

a sudden energy change. A soft onset is usually represented by slow changes in the spectral

energy. The most straightforward methods for hard onset detection are based on the analysis

of energy-based features. Soft onsets are considered to be much more difficult to detect and

usually involves spectral analysis methods. Noise and oscillations associated with frequency

and amplitude modulation make the task of onset structure extraction challenging.

Rhythmic structure

Rhythmic structure of music plays an important role in MIR-related tasks. It is primarily repre-

sented by tempo, beat and meter structure. For example, knowing beat structure allows one to

extract musically meaningful beat-synchronous features,instead of performing frame-by-frame

analysis. It can be of great benefit to manage the tasks of music structure extraction or cover

song identification. In these tasks dealing with beat-normalized time axis is usually much more

convenient, since a tempo-invariant representation is utilized.

Rhythmic structure is strongly related to the notion of meter. Meter can be characterized by a

hierarchical structure that comprises several levels [5].Perceptually, the most important level is

the tactum-level, which is also referred to as the beat-level. It usually corresponds to the period

of foot-tapping. Bar-level structure is another importantinformation, which is characterized

by the number of tactum-level events within one musical measure. Bar-level structure is also
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1.1. CONTENT-BASED MUSIC INFORMATION RETRIEVAL

named as time signature and can be expressed in the form of a fractional number, e.g. 3/4, 2/4,

6/8. It gives information on the organization of strong (bar-level) and soft (tactum-level) events

along the time axis. An example of hierarchical rhythmic structure is presented in Figure 1.1

Figure 1.1: An example of hierarchical rhythmic structure for the beginning of George Michael’s "Care-

less Wisper"

Nowadays, beat detection is one of the most challenging tasks in the MIR community.

While processing modern rock and pop songs with rich percussive part and stable rhythm is

a nearly solved problem, dealing with non-percussive musicwith soft note onsets and time-

varying tempo, that is characteristic of classical music, is still a challenge.

Melody

Melody is amongst the most important high-level descriptors that describe the contents of music

signals. Melody extraction is highly related to the generaltask of pitch detection and tracking

that has been extensively addressed in other research areas, such as speech signal processing.

However, the task of melody extraction does not only mean estimation of the fundamental

frequency, but also the subsequent quantization using musical scale to produce a score-like

representation. As in the case of single speaker in speech processing, melody detection in the

case of monophonic signals is nearly a solved problem. However, dealing with multi-instrument

signals with the number of fundamental frequencies at a given time instant greater than one is

still a challenge. This problem becomes even harder, if accompaniment instruments have rich

spectral representation with harmonics containing significant part of spectral energy. There are

some problems one can come across when extracting melody. Some performances may contain

vibrato parts, which can lead to a sequence of notes in the final transcription, while the original

score notation contain just a single note. Another case thatis hard to manage is glissando. In

this case, rapidly changing pitch can also be transcribed asa sequence of notes.

Melody is considered to be the attribute that captures the most significant information about
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CHAPTER 1. INTRODUCTION

song. A song that needs to be recalled can be easily represented by singing or humming the

melody, since in most cases, melody is the attribute that distinguishes one piece from another.

Harmonic structure

Key and chords are the two attributes that describe tonal andharmonic properties of a musi-

cal piece. Harmony denotes a combination of simultaneouslyor progressively sounding notes,

forming chords and their progressions. Among all existing musical styles, western tonal mu-

sic, which is one of the most popular nowadays, is known for its strong basement on harmony.

Harmonic structure can be used for the purposes of content-based indexing since it is derived

from the mood, style and genre of musical composition. Harmonic structure can be described

in terms of chord sequences. A chord can be introduced as a number of notes sounding simulta-

neously, or in a certain order between two time instants, known as chord boundaries. Therefore,

the task of chord transcription includes chord type classification and precise boundary detection.

Harmony together with such features as tempo, rhythm, melody extracted from a raw wave-

form can be widely used for context-based indexing, retrieval, and navigating through large

collections of audio data.

1.1.2 MIR applications

Extracting high-level information, such as rhythm, harmony, key, melody has become a chal-

lenge. We have entered an era of complex content-based search and retrieval systems [6]. A

number of use cases, where recently developed content-based methods were successfully ap-

plied in MIR applications are addressed in this section.

Automatic music transcription and lead sheet generation

Similarly to automatic speech recognition, automatic music transcription has a lot of challeng-

ing tasks. For example, distinguishing musical instruments in a polyphonic piece of audio

can be more or less easily done by human being. Meanwhile solving this problem automati-

cally needs a lot of research effort. Actually the most daunting problem is the transcription of

polyphonic piece of music in terms of notes, which implies producing score notation for each

instrument. The subtask of this problem, which deals with the extraction of harmonic prop-

erties of audio signal, is chord recognition. Another challenging subtask is the extraction of

hierarchical rhythmic structure [5].

Recently, systems that are capable of comprehensive music transcription have become avail-

able. For example, Weil et al. [7] proposed a lead sheet generation system that aggregates

high-level music descriptors. Tempo, time signature, melody, chords, and key are extracted in

separate modules that can interact with each other. Rendered lead sheets contain the melody
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and the corresponding chord progression in a beat-synchronous fashion. State-of-the-art perfor-

mance in each constituent module is achieved, which allows for obtaining transcription results

close to musician expectations.

Accompaniment based on chord extraction

While the application area of tempo and beat descriptors is mainly indexing and segmentation,

the information on chord progressions covers more practical aspects. Opportunity to automat-

ically extract harmonic structure can be of great use to musicologists, who perform harmonic

analysis over large collections of audio data, or just to amateur musicians. A great interest

in chords can be indicated by the number of websites containing chord databases for existing

songs. Archives containing chord transcriptions are becoming more and more popular. An easy

way to accompany a singer is to play the chords extracted fromthe performed song, which can

be extracted manually by expert musicians, or in automatic fashion. For the moment, the con-

tent is generated by users manually in a time-consuming manner. The quality of the data highly

depends on the user expertise and background in music. That is why online chord databases

sometimes contain not reliable transcriptions. At the sametime, modern advanced automatic

chord extraction systems do not allow to produce 100% correct labels. The best system in the

MIREX 2011 competition performed at 83% recognition rate.

The compromise between time-consuming manual labeling andthe quality of automatic

chord transcription can be achieved in semi-automatic mode. In the first step, preliminary labels

are obtained by running automatic chord extraction system.In the final step, a number of trained

musicians work together on error correction and quality check.

Automatic accompaniment generation for vocal melody and automatic song creation

Melody and harmony are considered to be the backbone of a song. The process of song creation

for many song writers often starts with the idea about melody[8]. In this approach developing

chord progression and accompaniment patterns are the necessary steps to produce the final

version. Usually, professional musicians with the knowledge of musical structure and harmony

manage the whole process of song production. However, people with poor background in music

theory are not able to participate in such an amusing and creative activity. Recent advances in

MIR have allowed musically-untrained individuals to work on music creation. An example

of a machine-learning-based system that takes a melody as aninput and generates appropriate

chords was presented by Simon et al. [8].

Another interesting use case of song generation was proposed by Fukayama et al. [9]. Au-

tomatic song generation web-service was developed in the context of Orpheus5 project. The

5http://ngs.hil.t.u-tokyo.ac.jp/∼orpheus/cgi-bin/
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system requires only song lyrics as an input data. A user can also set up music genre, voice,

tempo and other parameters. Then the system performs text analysis, melody and harmony

generation, and produces score notation containing lyricsalong with the resultant audio file.

Recommender systems

Extreme growth of online music collections and advances in digital multimedia have allowed

us to start listening music just with a click of a button. In spite of the easy access to large

web archives, discovering new music according to our personal preferences is a hard problem.

This caused a variety of music recommender systems to come into existence. There are several

approaches to music recommendation.

Pandora6 is one of the most popular music recommendation systems. It is based on the

Music Genome Project7. Each track in the database is annotated with 400 different attributes.

Annotating is performed in a time-consuming manual fashionby professional musicians, which

makes the growth of the database dependent on the human resources.

Music recommendation system proposed by Last.fm8 is based on a different approach. They

have developed social recommenders, also known as collaborative filters. The statistics for

music tracks ever listened by a particular user forms the basis of the recommendation engine.

Each user is proposed to install an optional plug-in that monitors media player software and

builds a profile of his or her music preferences. Having a large database of user profiles, the

system finds users whose listening history is similar and makes suggestions.

Mufin9 is a music recommendation service that is purely content-based. It analyzes the

fundamental properties of a song. The recommendation is based on the similarity of the content.

The algorithm analyzes 40 characteristics of each song, including tempo, sound density, and

variety of other factors.

Other use cases

The number of possible use cases, where content-based MIR algorithms are successfully applied

is not limited to the above-mentioned applications. Artistidentification, copyright infringement

detection and protection, instrument separation, performance alignment, plagiarism detection,

composer identification are amongst the most challenging MIR tasks being addressed recently.

6http://www.pandora.com
7http://www.pandora.com/mgp.shtml
8http://www.last.fm
9http://www.mufin.com
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1.1.3 Music Information Retrieval Evaluation eXchange

Progressive and continuous evolving of MIR systems that we can observe nowadays is boosted

by the existence of Music Information Retrieval EvaluationeXchange (MIREX) [10], the most

influential, community-based evaluation framework. Direct comparison of MIR systems aimed

at solving a specific problem is sometimes impossible due to many factors. Performance of a

given system can be obtained on different datasets, using different evaluation metrics. Establish-

ing common rules of MIR system assessment has become a necessity and caused establishing

and gradual development of the MIREX framework.

Audio Classification (Train/Test) Tasks, incorporating:

Audio US Pop Genre Classification

Audio Latin Genre Classification

Audio Music Mood Classification

Audio Classical Composer Identification

Audio Cover Song Identification

Audio Tag Classification

Audio Music Similarity and Retrieval

Symbolic Melodic Similarity

Audio Onset Detection

Audio Key Detection

Real-time Audio to Score Alignment (a.k.a Score Following)

Query by Singing/Humming

Audio Melody Extraction

Multiple Fundamental Frequency Estimation & Tracking

Audio Chord Estimation

Query by Tapping

Audio Beat Tracking

Structural Segmentation

Audio Tempo Estimation

Table 1.1: MIREX 2011 tasks.

MIREX is coordinated by the International Music Information Retrieval Systems Evalua-

tion Laboratory (IMIRSEL) [11] at the University of Illinois at Urbana-Champaign. The target

of IMIRSEL is to create the necessary infrastructure for theevaluation of many different MIR

systems. The necessary condition for any kind of MIR evaluations is the music data collections

with the corresponding metadata information. Due to different copyright issues, sometimes it

is not possible to provide public access to the data. Anotherreason not to give an access to the
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test datasets for the participants is to prevent from model parameter over-fitting, which is an

important aspect of objective evaluation. To this end, participants should deliver their systems

to the MIREX team to execute using recently developed The Networked Environment for Mu-

sic Analysis (NEMA) framework [12]. The framework facilitates valid statistical comparisons

between techniques, avoiding the above-described problems by carrying out experiments that

are both carefully constructed and exactly repeatable.

The set of different tasks is defined by the community. Anyoneis free to propose a new

task, describing the evaluation metrics, and, if necessary, provide a dataset. Then, the task is

discussed on the wiki-pages by all potential participants,different approaches for the evaluation

are taken into consideration, and the final description and rules becomes available.

Starting from the MIREX of 2005 year, a lot of different taskshave been proposed. Table 1.1

contains a list of tasks for the MIREX of 2011 year.
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1.2 Motivation

Fast development of hi-tech industry allowed people havinghours of digital audio recordings

in their pockets. It caused high demand for content-based search and retrieval, known as music

recommendation. Due to the extreme growth of digital music collection, effective and robust

content-based indexing and retrieval methods have become an emerging area of research. It

boosted the demand for tools that can perform accurate extraction of high-level descriptors.

Chords, key, beat structure and tempo are among the most relevant descriptive attributes of

music information.

Given the great demand for tools that are able to perform content-based analysis, higher

level aspects of musical structure, such as harmony and rhythm are given attention, and we

contribute exploring these areas.
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1.3 Goals

This thesis encompasses a variety of research activities aimed mainly at the extraction of har-

monic and rhythmic descriptors. The main focus is concentrated on the developing compu-

tational algorithms and effective feature extraction methods for the transcription of chord se-

quences and beat structure.

The objectives of the work include the following aspects:

1. Analyze state-of-the art approaches for chord detectionand beat structure extraction.

2. Develop robust feature sets that capture essential information from audio for a given task.

3. Design and develop probabilistic frameworks for automatic chord recognition and beat/downbeat

extraction.

4. Perform large-scale evaluations and describe the behavior of the developed systems vary-

ing different configuration parameters.

5. Participate in the MIREX competition to demonstrate the competitiveness of the proposed

approaches.
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1.4 Contributions

The thesis contribute in the following areas:

1. A new feature set for chord recognition that outperforms standard chroma feature has been

proposed. It is based on the Time-Frequency Reassignment technique and incorporates

harmonic-impulsive component separation.

2. A two-level probabilistic framework for chord recognition has been introduced. It is based

on a novel approach that includes acoustic modeling layer and language modeling layer.

3. The usage of standard N-grams and Factored Language Models for automatic chord recog-

nition has been addressed. Experiments with different back-off strategies for Factored

Language Models have been carried out.

4. The performance of the proposed chord recognition systemhas been investigated using

large-scale parameter optimization.

5. A new feature set for beat/downbeat detection has been proposed. It is based on the

harmonic and impulsive part of the Time-Frequency Reassigned spectrogram.

6. A novel probabilistic approach to beat/downbeat detection has been developed. The def-

inition of a very specific beat duration model that exploits an HMM structure without

self-transitions has been introduced.

7. All the described techniques have been implemented and submitted to the MIREX [13]

competition. Our chord recognition system showed the best result in the 2011 year contest,

while our beat/downbeat estimation system was at the top of the list for the MCK dataset.
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Chapter 2

Background

This chapter is concerned with the background information on chord extraction. Among all

existing musical styles, western tonal music, which is one of the most popular nowadays, is

known for its strong relationship to harmony.

Harmonic structure can be used for the purposes of content-based indexing and retrieval

since it is correlated to the mood, style and genre of musicalcomposition. It has been suc-

cessfully used for audio emotion classification [14], coversong identification [15], audio key

estimation [16]. Chord sequence can serve as a robust mid-level representation for a variety of

MIR tasks. Among different research directions automatic chord recognition has always been

of a great interest to MIR community.

During the past few decades several approaches to chord recognition were developed. They

can be classified into template matching[17, 18], machine learning [19–21] and hybrid ap-

proaches [22, 23]. The majority of the current state-of-the-art machine learning approaches are

based on Hidden Markov Models [24], [25], [26], Dynamic Bayesian Networks (DBN) [27]

and Support Vector Machines (SVM) [28]. Submissions based on the above cited approaches

were among the top-ranked results in the MIREX competitions.

Section 2.1 introduces general information on feature vector selection and extraction tech-

niques. In Sections 2.2 – 2.3 different approaches to automatic chord recognition are presented.

2.1 Feature extraction for chord recognition

2.1.1 Feature selection

As in the case of speech recognition, one of the most criticalissues in chord recognition is the

choice of the acoustic feature set to use in order to represent the waveform in a compact way.

Chromagram has been the most successfully used feature for the chord recognition task. It

consists of a sequence of chroma vectors. Each chroma vector, also called Pitch Class Profile
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(PCP), describes harmonic content of a given frame. The amount of energy for each pitch class

is described by one component in a chroma vector. Since a chord consists of a number of tones

and can be uniquely determined by their positions, chroma vector can be effectively used for

the chord representation.

Fujishima was the first one who used the chroma feature [29] for chord extraction from

audio. The most common way of calculating chromagram is to transform the signal from the

time domain to the frequency domain with the help of short-time Fourier transform (STFT)

or constant-Q transform and subsequent energy mapping of spectral bins to chroma bins [19–

21, 30–32].

An alternative way to extract chroma was proposed by Müller [33]. The analyzed signal is

passed through a multirate IIR filter bank. In the first step, STMSP (Short-Time Mean-Square

Power) features that measure the local energy content of each filter output are extracted. Large

amount of energy indicate the presence of musical notes whose frequencies correspond to the

passband of a given filter. In the next step, chroma-based audio representation is obtained from

STMSP by summing energies that correspond to the subbands ofthe same pitch class.

Much attention has been put to the problem of higher harmonics and their impact on the

chroma vector. Several approaches proposed performing some sort of harmonic analysis in

order to reveal the presence of higher harmonic components [34–36]. All these approaches are

based on a frame-by-frame spectral analysis that is aimed atfinding all the pitches that occur in

the given time instant.

In the approach of Mauch and Dixon [34] an approximate note transcription procedure was

applied before calculation of wrapped chromagram. Experimental results showed an increase

in performance of 1%. However, their technique proved to be more advantageous when consid-

ering "difficult" chords.

Ueda et al. [26] showed the importance of harmonic filtering step for feature extraction.

Before extracting feature vectors, a harmonic/percussiveseparation is performed in order to

remove impulsive components and noise. The system based on this approach showed the best

result in the MIREX 2008 competition. Another important issue the authors addressed in this

paper is the usage of dynamic delta-features.

There were some attempts to use features derived from standard chroma vector using an

additional transform operation. Lee and Slaney [20] used tonal centroid as an alternative to

chroma vectors. In their experiments on the first two Beatlesalbums, as well as on two classical

pieces of Bach and Haydn tonal centroid showed to outperformchroma features. Another

example of feature set obtained from chroma is presented in the approach of Ueda et al. [26].

They used FFT of the chroma vectors as feature set for chord recognition system and showed

the advantage of this transform in terms of recognition rate.
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2.1.2 Beat-synchronous features

Recently, several approaches that exploit mutual dependency between harmonic progressions

and rhythmic structure have been proposed [21], [37], [38].Beat-synchronous chroma features

are used instead of frame-by-frame chroma vectors [37], [28]. Since western music is highly

structural in terms of rhythm and harmony, the basic idea that chord boundaries occur on the

beat positions is exploited.

Papadopoulos and Peeters [21] proposed a system that performs simultaneous estimation of

chord progressions and downbeats from audio. They paid a lotof attention to possible interac-

tion of the metrical structure and the harmonic informationof a piece of music. They proposed

a specific topology of HMMs that allows for modeling chords dependency on metrical structure.

Thus, their system is capable of recognizing chord progressions and downbeat positions at the

same time. The model was evaluated on a dataset of 66 Beatles songs and proved to improve

both the estimation of the chord progression and the downbeat positions.

Bello and Pickens [37] used a similar approach. The evaluation of their system showed a

significant increase in performance (about 8%) when using beat-synchronous chroma features

as opposed to frame-by-frame approach.

However, beat-synchronous features have some weak sides. Since the quality of beat-level

segmentation depends highly on the beat extraction approach, some beat location errors can

lead to incorrect segmentation.

2.1.3 Tuning

In the stage of feature extraction for chord recognition andkey estimation, a lot of attention

has been paid to tuning issues [18, 30, 31]. The necessity of tuning appears when audio was

recorded from instruments that were not properly tuned in terms of semitone scale. They can

be well-tuned relatively to each other, but, for example, "A4" note is played not at conventional

440 Hz but at 447Hz. This mis-tuning can lead to worse featureextraction and, as a result, less

efficient or incorrect classification. Several approaches to circumvent the problem have been

developed.

Harte and Sandler [18] suggested using 36 dimensional chroma vectors. The frequency

resolution in this case is one-third of a semitone. After thepeak-picking stage and computing a

histogram of chroma peaks over the entire piece of music theyfind mis-tuning deviation. And

prior to calculating 12-bin conventional chromagram they accurately locate boundaries between

semitones. The resulting 12-bin semitone-quantized chromagram is then compared with a set

of predefined chord templates. They defined 4 chord types - major, minor, diminished and

augmented for each pitch class (total 48 chord templates). Two full albums of the Beatles were

used for evaluation. The average frame-level accuracy was 62.4%.
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Peeters [31, 32] tested a set of candidate tunings, i.e. the quarter-tone below and the quarter-

tone above "A4" note. For each possible tuning the amount of energy in the spectrum is esti-

mated. After defining the global tuning center, the signal isresampled so that it becomes tuned

to 440Hz.

Mauch et al. [30] used a quite similar approach: after computing 36-bin chromagram they

pick one of three possible sets of 12-bin chromagram, relying on the maximum energy inside

candidate bins (e. g. {1, 4, 7... 34 }).

2.2 Template-matching techniques

Template matching techniques are based on the idea of introducing a set of templates for each

chord type. The template configurations are derived either heuristically or using some knowl-

edge from music theory. In the classification step, extracted feature vectors are matched against

all possible templates. The template that produces the highest correlation is used to generate

chord label for a given vector.

A most trivial example would be the definition of a binary 12-dimensional chord template

mask, where pitch classes that correspond to the constituent notes of a given chord are set to

ones, while the other pattern components are set to zeros. A binary templateT is defined as

T = [ZC , ZC#, ZD, ZD#, ZE, ZF , ZF#, ZG, ZG#, ZA, ZA#, ZB] (2.1)

whereZp denotes the mask value that corresponds to the pitch classp. For example, binary

masks for C major and D minor chords would take the following form:

TC:maj = [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0]

TD:min = [0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0]
(2.2)

Fujishima [29] proposed a real-time chord recognition system, describing extraction of 12-

dimensional chroma vectors from the Discrete Fourier Transform (DFT) of the audio signal and

introducing numerical pattern matching method using built-in chord-type templates to deter-

mine the most likely root and chord type. He introduced feature vector smoothing over time

and "chord change sensing". The system was tested on real audio and showed 94% accuracy

for the opening theme of Smetana’s Moldau.

Similarly, Harte and Sandler [18] applied binary masks to generate templates for four dif-

ferent chord classes: major, minor, diminished and augmented. Their vocabulary consisted of

48 different chords. Evaluation was performed on the first two Beatles albums, "Please, Please

Me" and "Beatles For Sale". The average frame-level accuracy they achieved was 62.4%.

Papadopoulos and Peeters [39] used more sophisticated chord templates that take into ac-

count higher harmonics of pitch notes. The ideas they rely onare based on the extension of
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PCP, Harmonic Pitch Class Profile (HPCP) that was used by Gomez [40] for key detection. In

the approach presented in [39], amplitude values of four – six higher harmonics contribute to

chord templates. An empirical decay factor for higher harmonics amplitude is set to0.6, so that

the amplitude of ah-th harmonic is set to0.6h, whereh = 0 corresponds to the fundamental.

Evaluations on the 110 songs of Beatles showed that considering six higher harmonics in chord

templates brings about 5% relative improvement.

Oudre et al. [41] proposed a template-based method for chordrecognition. They investigate

different chord models taking into account one or more higher harmonics. As in the above-

mentioned approaches, the detected chord over a frame is theone minimizing a measure of fit

between a rescaled chroma vector and the chord templates. Aninteresting investigation they car-

ried out is the influence of different measures of fit between the chroma features and the chord

templates. In order to take into account the time-persistence, they performed a post-processing

filtering over the recognition criteria, which quickly smoothes the results and corrects random

errors. Their system was evaluated on the 13 Beatles albums.The experiments showed that

chord template configurations with one and four harmonics showed better results than those

with six harmonics. They discovered that the most robust andeffective measure of fits in their

approach are the Kullback-Leibler divergence and the Euclidean distance.

A fast and efficient template-based chord recognition method was suggested in [17]. The

chord is determined by minimizing a measure of fit between thechromagram frame and the

chord templates. This system proved the fact that template-based approaches can be as effective

as probabilistic frameworks.

2.3 Machine learning techniques

HMM-based aproaches

Sheh and Ellis [19] proposed a statistical learning method for chord recognition. The Expectation-

Maximization (EM) algorithm was used to train Hidden MarkovModels, meanwhile chords

were treated as hidden states. Their approach involves statistical information about chord pro-

gressions – state transitions are identical to chord transitions. The optimal state path is found

using the Viterbi algorithm. They achieved accuracy of 23% in the chord recognition task and

75% in the forced-alignment task, which is not longer state of the art. But their work made sub-

stantial contributions in several aspects. They applied much of the speech recognition frame-

work with minimal modification. They draw an analogy betweenthe sequence of discrete chord

symbols used to describe a piece of music, and the word sequence used to describe recorded

speech. It was shown that the chromagram is superior to Mel-frequency cepstral coefficients

(MFCCs).
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Bello and Pickens [37] proposed a probabilistic model that is partially based on music the-

oretical considerations. As opposed to Sheh and Ellis [19],who used random initialization of

mean vector and diagonal covariance matrix in Gaussian distributions, they propose initialize

these values according to music theory. In order to take intoconsideration correlation between

chroma elements, they introduce full covariance matrix. They claim that pitches which comprise

the triad are more correlated than pitches which do not belong to the triad. These dependencies

are introduced when initializing covariance matrix. They propose selective model training us-

ing the standard Expectation Maximization (EM) algorithm for HMM parameter estimation as

introduced in [42]. The observation vector parameters are not re-estimated in the training phase.

The only parameters that are updated using EM algorithm is the chord transition matrix and ini-

tial distributions. The experiments were conducted using the first two Beatles albums, "Please,

Please Me" and "Beatles For Sale". The performance of their system proved to be significantly

higher when using selective model training (75%), if compared to the system configuration,

where all parameters are re-estimated in the training phase(42%).

In Western tonal music, key and chord progression are the twoartifacts that are highly de-

pendent on each other. Some approaches exploit this mutual dependency [20],[43]. The advan-

tage of such systems is the possibility of concurrent estimation of key and chord progression,

which is achieved by means of building key-dependent HMMs.

Lee and Slaney [20] described a chord recognition system that used symbolic data, taken

from MIDI1 files, to train HMMs. This allowed them to avoid a time consuming task of human

annotation of chord names and boundaries. At the same time, they synthesized audio from the

same symbolic files and extracted feature vectors. They build a key-dependent HMMs, where

chord transition probabilities are influenced by a given key. During the Viterbi decoding [42]

the HMM with the highest log-likelihood determines the global key and is used to derive chord

progression.

Hybrid approaches

Yoshioka et al. [22] presented an automatic chord transcription system, which is based on gen-

erating hypotheses about tuples of chord symbols and chord boundaries, and further evaluating

the hypotheses, taking into account three criteria: acoustic features, chord progression patterns,

and bass sounds. Thus, they first performed beat-analysis onraw audio to extract downbeat po-

sitions of a piece of music. Then, the most probable hypothesis about a chord sequence and the

key were searched. Finally, the obtained most plausible hypothesis is produced as an output. A

conventional 12-dimensional chroma feature is used as feature set. Pre-defined chord progres-

sion patterns reduce the ambiguities of chord symbol identification results. They evaluated their

1http://www.midi.org
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system on one-minute excerpts from seven popular songs, andachieved 77% average accuracy.

This approach was further developed by Sumi et al. [23]. Theymainly focused on the

interrelationships among musical elements and made an attempt to efficiently integrate infor-

mation about bass lines into probabilistic chord recognition framework. Their framework made

it possible to deal with multiple musical elements uniformly and integrate statistical information

obtained from music recordings. They particularly exploited the mutual dependency between

chord sequences and bass lines in order to improve the accuracy of chord recognition. For

pruning the search space, they define the hypothesis reliability as the weighted sum of three

probabilities: the likelihood of Gaussian Mixture Models for the observed features, the joint

probability of chord and bass pitch, and the chord transition N-gram probability. Evaluation on

150 songs from twelve Beatles albums showed the average frame-rate accuracy of 73.4%.

Some approaches used structural segmentation informationfor enhancing chord recognition

by combining information from different occurrences of thesame segment type for chroma

calculation [44].

In [27], a 6-layered dynamic Bayesian network was suggested. In this network four hidden

source layers jointly model key, metric position, bass pitch class and chord. The two observed

layers model bass and treble content of the signal. This approach shows an example of how

simultaneous estimation of beats, bass and key can contribute to the chord recognition rate.

Ni et al. [45] proposed a system for simultaneous estimationof chords, key, and bass notes.

As opposed to the approach of Mauch [46], where some expert knowledge is used to set up

system parameters, it is fully based on the machine learningapproach, where all the parameters

are estimated from training data.

Chord progression statistics

Incorporating statistical information on chord progressions into a chord recognition system is

an important issue. It has been addressed in several works through different techniques. Mauch

and Dixon [30] used one of the simplest forms ofN-grams – the bigram language model. In

the approaches of Papadopoulos and Peeters, Lee and Slaney [20, 21] chord sequence modeling

is introduced through state transition probabilities in HMM. In their case "language model" is

a part of HMM and is derived from the Markov assumption, wherechord probability is defined

by only one predecessor. A large study on the modeling of chord sequences by probabilistic

N-grams was performed by Scholz et al. [47]. Unal et al. [48] used perplexity-based scoring to

test the likelihoods of possible transcription sequences.
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Chapter 3

Feature extraction

In this chapter, a new feature set for extracting harmonic information from audio content is in-

troduced. The proposed features belong to the chroma family, which has always been a common

and well-established feature set for chord recognition. When performing feature extraction, sig-

nal in the given analysis frame is assumed to be stationary and it is also assumed that no note

transitions occur inside it. However, standard chroma extraction approaches, which are based

on Short-Time Fourier Transform (STFT) or Constant-Q transform, require frame size to be

long enough to provide reasonable frequency resolution. Transients and noise may cause en-

ergy assignment to some frequencies that do not occur in the signal. In this thesis, we investigate

on alternative solutions to feature vector extraction for chord recognition. Along with the de-

scription of traditional approaches to chroma extraction,we propose two novel methods that are

based on PQMF filter bank and Time-Frequency Reassignment respectively, and provide their

comparative characteristics.

3.1 Introduction to chroma features

Feature extraction is an important step in the majority of MIR tasks. It allows for representing a

waveform in a compact way, capturing the desired characteristics of the analyzed signal for fur-

ther processing. In chord recognition domain, chroma has always been almost unique feature.

One of the reasons, why chroma performs well, is the strong connection between the physical

meaning of chroma vector components and music theory.

Generally, chroma feature extraction consists of the following steps. At first, audio signal is

downsampled and converted to the frequency domain by means of Short-Time Fourier Trans-

form (STFT) or Constant-Q transform applying a window function with a given overlapping

factor.

After applying STFT, the power spectrum is mapped to the chroma domain, as
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n(k) = 12log2

(

fk
fref

)

+69, n ∈ℜ+, (3.1)

wherefref denotes the reference frequency of "A4" tone, whilefk andn are the frequen-

cies of Fourier transform and the semitone bin scale index, respectively. Usually, different ap-

proaches consider the range of frequencies between 100-200Hz and 1-2 kHz, mainly because

in this range the energy of the harmonic frequencies is stronger than non-harmonic frequencies

of the semitones. In order to reduce transients and noise, similarly to Peeters [32] and Mauch

et al. [30], smoothing over time using median filtering is applied. After filtering semitone bins

are mapped to pitch classes, as follows:

c(n) = mod(n, 12) (3.2)

A sequence of conventional 12-dimensional chroma vectors,known as chromagram is used

as acoustic feature set. Each element of chroma vector corresponds to the energy of one of the

12 pitch classes.

3.2 Tuning

An important parameter in Equation (3.1) that greatly influences the quality of chroma features

is the reference frequency of "A4" notefk. The task offk extraction is known as audio recording

mis-tuning estimation problem. In this section, we proposea method forfk estimation that is

based on the analysis of the spectral phase change.

In order to circumvent the problem of audio recording mis-tuning, a technique that was

formerly developed for phase vocoder [49] is utilized to estimate the reference frequency. The

proposed method allows for very precise and accurate frequency estimation of each sinusoid

by performing the analysis of the degree of phase change. Theblock diagram of the proposed

estimation scheme is depicted in figure 3.1.

The basic principle is to compute a second Fourier transformof the same signal, windowed

by the same function shifted byD samples. Letx[n] be a sequence of samples of the analyzed

signal that contains some fundamental and harmonic components. Discrete Fourier Transform

(DFT) is performed on the signal weighted by window functionw[n] as

Xw[t0, k] =
∑N−1

n=0
w[n]x[n + t0]e

−2πjnk/N (3.3)

wherek andN denote a bin number and the window size respectively.

Peak extraction algorithm is applied to the obtained magnitude spectrum, which results in

a list of possible candidates. The main problem of accurate frequency detection based just on

the magnitude information is that the main lobe of low frequency harmonics is wider than the
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Figure 3.1: Block diagram of precise frequency estimates.

spectral resolution (and sometimes than a semitone distance). In such cases the energy of a

harmonic component is distributed between adjacent bins, which represents an obstacle in the

way of an accurate frequency estimation.

To cope with the above-mentioned problem, a second DFT is applied on the signal weighted

by the same window, shifted byD samples, from which the difference of the two given phases

divided by the time interval ofD samples is calculated as follows:

ω(D,N, t0) =
argXw[t0 +D, k]− argXw[t0, k]

D
(3.4)

The time intervalD is chosen so that the phase change for the maximum frequency is less

than2π. Analyzing the obtained spectra in terms of phase-change allows for determining fre-

quencies of harmonic components in a more accurate way, since all the adjacent bins containing

the energy of a single harmonic have the same degree of phase change (see fig. 3.2).

Now, information obtained from peak-search algorithm is combined with phase-change

spectrum in order to provide the final estimation. Positionsof all possible candidates are

checked in terms of the flatness of the corresponding frequency intervals in the phase-change

spectrum.

A set of detected harmonics is compared to the table of nominal frequencies. Mean value and

standard deviation of closest log-distance (based on a semitone metric) to the nearest nominal

frequency are calculated in order to determine the mis-tuning and the consequent consistency

of the estimate. Once this procedure has been applied, a new value is assigned to the reference

frequency, which is subsequently used for feature extraction. For example, frequency of "A4" is

set to 443Hz and frequencies of all the other notes are determined according to equally tempered

intervals.
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Figure 3.2: Magnitude and Phase-change spectrum.

3.3 PQMF-based chroma features

This section describes a novel approach to chroma extraction, which is based on the Pseudo-

Quadrature Mirror Filters (PQMF) filter bank.

Chroma features can be extracted from audio in several different ways. The first option,

which is the most common is to transform the audio to the frequency domain by means of

Short-Time Fourier Transform (STFT) or Constant-Q Transform and subsequent assigning en-

ergy from different spectral bins to chroma bins [19, 21]. When performing chroma extraction

using transform to frequency domain, the signal in a given analysis frame is assumed to be

stationary and it is also assumed that no note transitions occur inside it. Transients and noise

may cause energy assignment to some frequencies that do not occur in the signal. Due to this

assumptions, the analysis frame should be short enough. At the same time, frame size should

be long enough to provide reasonable frequency resolution.A trade-off between frequency res-

olution and stationarity should be made for a particular task. The most common frame lengths

for capturing spectral content to form chroma vectors are 96ms - 360ms. As a rule, to provide

smoothed feature sequence a high overlap ratio (50% – 90%) with subsequent median filter-

ing or averaging is applied. However, using such window lengths introduces inaccuracies with

rapidly changing notes. On the other hand, short window lengths do not provide reasonable

frequency resolution.

An alternative way to extract chroma is to pass the analyzed signal through a multirate

filter bank [33], [50]. In [50], IIR multirate filter band is proposed to derive chroma features.

The filter bank is designed so that the passband of each filter is equal to a semitone width and

corresponds to a certain note. Energies from different filters that correspond to the same pitch

class are summed up resulting in chroma representation.

26



CHAPTER 3. FEATURE EXTRACTION

In this section, we propose a novel method that is based on multirate PQMF filter bank

and subsequent periodicity estimation in the output of eachfilter. As opposed to the approach

of Müller [33], passband of each filter is greater than semitone distance. We propose sample-

by-sample periodicity estimation technique that can reflect close to instant frequency changes.

Feature extraction process starts from passing the signal through a multirate filter bank. An ac-

curate periodicity estimation is then performed on each filter output. It is assumed that features

derived from this periodicity analysis reflect harmonic properties of the signal in a better way.

In the following sections, PQMF filter bank configuration is introduced and the proposed

periodicity estimation technique is briefly described.

3.3.1 PQMF filter bank

(a) Pitch class profile extracted with the help of DFT of length

182 msec and 50% ovelap.

(b) Pitch class profile extracted with the help of suggested ap-

proach with the frame length analysis of 23 msec.

Figure 3.3: Comparison of DFT chroma and PQMF-based chroma features.

Quadrature Mirror Filters (QMF) is a class of perfect reconstruction filter banks that divide

frequency range into 2 channels. In practical applicationssometimes more channels than 2 are

needed. One of the possible decisions is to build a QMF-tree or to use alternative filter banks.

A Pseudo-QMF solution, an extension of QMF, is a near perfectreconstruction filter bank

that was developed and successfully used for encoding audioin MPEG layer I and II formats. It

consists ofN filters with equal passband bandwidths. In PQMF filter bank aliasing cancellation

occurs only between adjacent bands [51].

In our approach a PQMF solution with 32 filters is adopted. Each filter has 512 taps. The

impulse response of the prototype filterh[n] is shown in figure 3.4. Filter coefficientshk[n] for

k−th filter can be obtained as shown below:
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Figure 3.4: Impulse response of the PQMF prototype filterh[n].

hk[n] = h[n] cos

[(

k +
1

2

)

(n− 16)
π

32

]

(3.5)

Filterbank configuration

The proposed novel approach for chroma extraction with the help of filter bank analysis is based

on high-precision periodicity estimates in the output of each channel. There are some conditions

to be met when designing a filter bank. Passband bandwidth of the selected channels should

be compared to the frequency distance between adjacent semitones. It is desirable to have

filters with narrow passband bandwidth to perform better separation of the harmonics. Since

the semitone distance increases exponentially with the frequency and passband bandwidth is

constant in all PQMF channels, a multirate filter bank was designed. In a multirate filter bank

different channels are operated at different sampling rates. Thus, starting from a prototype filter

one can design a filter bank with the desirable channel passband properties.

Audio analysis starts with downsampling and filtering through a number of channels. PQMF

channels, sampling frequencies and passband bandwidths are presented in Table 3.1. Magnitude

responses of the first 14 filters are depicted in Figure 3.5.

The outputs of all the filters are synchronized by taking intoaccount the delay time of each

output. In the next stage, each channel output is analyzed for periodicities as described in the

following section.

3.3.2 PQMF-based chroma

In this section, a new chroma vector calculation method is outlined. It is based on the analysis

of the output of PQMF filter bank described in section 3.3.1. As was shown in Table 3.1, the
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Sampling frequency (Hz) Channel number Start frequency (Hz) End frequency (Hz)

800 4 50 62.5

800 5 62.5 75

800 6 75 87.5

800 7 87.5 100

1600 4 100 125

1600 5 125 150

1600 6 150 175

1600 7 175 200

3200 4 200 250

3200 5 250 300

3200 6 300 350

3200 7 350 400

6400 4 400 500

6400 5 500 600

6400 6 600 700

6400 7 700 800

16000 3 750 1000

16000 4 1000 1250

16000 5 1250 1500

16000 6 1500 1750

16000 7 1750 2000

Table 3.1: Filter bank configuration
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Figure 3.5: Magnitude response of the first 14 PQMF filters.

passband of output channels is greater than a semitone distance. In order to derive chroma

representation, further analysis is needed. Output of eachfilter is analyzed for periodicities in

order to estimate the frequency that corresponds to the dominant amount of energy in a given

subband.
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3.3. PQMF-BASED CHROMA FEATURES

There are a lot of different approaches to periodicity estimation proposed in the litera-

ture [52]. They are based on time-domain or frequency-domain analysis. In our approach

we utilize time-domain analysis that is based on accurate sample-by-sample periodicity estima-

tion. Normalized Cross-Correlogram (NCC) is obtained and analyzed for periodicities, which

proved to be effective for pitch extraction from speech signals [53].

Cross-correlogram basics

A variety of time domain methods for pitch estimation of speech signals were presented in [52].

Chung and Algazi [54] described the usage of auto-correlation and cross-correlation functions

for the task. Our approach is based on the works of Medan et al.[53] and De Mori and Omol-

ogo [55]. The above mentioned works aimed at extracting pitch from speech pronounced by a

single speaker. Here we adapt this methodology to multi-pitch context. This is achieved by split-

ting the frequency bandwidth of the signal into several subbands as described in section 3.3.1,

and applying cross-correlation analysis on each channel separately.

Let x(n) be a discrete signal in the time domain sampled at a sampling frequencyFs. For

each time instantt0 = n0 · Fs two vectors of samples are defined as follows:

lN,n0
(n) = x(n−N + n0), 0 < n ≤ N (3.6)

rN,n0
(n) = x(n + n0), 0 < n ≤ N (3.7)

Here lN,n0
(n) and lN,n0

(n) denote left and right contexts of lengthN samples at the time

instantn0. Figure 3.6 shows an example of right and left contexts of different lengthsN1, N2

andN3.

Let us assume that in the given intervals the signal is periodic with periodP . In the general

case,P is a fractional number of samples that can be expressed asP = T
Fs

whereT is a period

in seconds. Due to the fact that we operate on the filtered signal the potential periodicity range

can be determined by the frequency values that lie inside thepassband interval of the given

channel:

fL < f < fR (3.8)

P =
1

f · Fs
(3.9)

HerefL andfR are the left and the right frequencies that define passband bandwidth of the

filter.
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Figure 3.6: Example of left and right contexts of different lengths at the time instantn0.

The normalized cross-correlation coefficient between the left and the right contexts is com-

puted as follows:

S (N, n0) =
lN,n0

(n) · rN,n0
(n)

|lN,n0
(n)| · |rN,n0

(n)|
(3.10)

Instantaneous periodP ′ at the time instantn0 can be estimated as:

P ′ = argmax
N

{S(N, n0)} (3.11)

High values of normalized cross-correlation can be observed in the multiples of the period.

In figure 3.6 one can see that the context lengths ofN2 andN3 samples provide high cross-

correlation coefficient between the left and the right contexts, while using the context lengths of

N1 samples results in lower cross-correlation value. Due to the fact that we have limited range

of possible period values defined by Equations (3.8) and (3.9), the ambiguity in the multiples of

the period is avoided.

Figure 3.7 shows a cross-correlogram visual representation of one of the filter bank channels

output. The first part of the cross-correlogram (0s – 3s) regards a strongly periodical signal with

the period of 23.4 samples. In the second part (3s – 6s) the period is 18.9 samples. While in

the interval from 6s to the end of the excerpt detected periodicity has evident peak in the 5-th or

6-th multiple of the period.
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Figure 3.7: Crosscorrelogram for one of the filterbank channels.

3.3.3 From cross-correlogram to chroma representation

For a given frame, once estimated the periodicity valuePj for each samplej, the obtained data

are used to derive chroma vector. For a window sized and for each framei, the frequencyfi
and the RMS energyErmsi are computed as shown below:

fi =

j′′
∑

j=j′

Fs

Pj

j′′ − j′ + 1
(3.12)

Ermsi =

j′′
∑

j=j′
x(j)2

j′′ − j′ + 1
(3.13)

wherej′ = ⌈i · d · Fs⌉ andj′′ = ⌊(i+ 1) · d · Fs⌋. TheErmsi portion of energy is added

to the chroma binc(fi) that corresponds to the detected frequencyfi based on the following

equation:

c(i) = 12log2

(

fi
fref

)

+ 69 (3.14)

wherefref is the reference frequency of the A4 note.

This operation is applied to all the filter bank outputs, and as a result a chroma representation

is obtained, where a 12-bin chroma vector corresponds to each framei.

Figure 3.8a shows the example of standard chroma using DFT computed on a window length

182ms with 50% overlap. The given window length in some casesdoes not allow for precise

capturing the harmonic properties, since inside such a longwindow analysis some note transi-

tions are likely to occur. This leads to the distribution of spectral energy among adjacent chroma

bins.

32



CHAPTER 3. FEATURE EXTRACTION

(a) Standard chroma of length 182 msec and 50% ovelap

(b) Standard chroma of length 46 msec and 50% ovelap

(c) PQMF-based chroma of length 23 msec and 0% ovelap

Figure 3.8: Unwrapped chroma vectors extracted from a shortnote passage by means of different ap-

proaches.

Figure 3.8b depicts chroma for the same same signal, but extracted with the help of DFT

of 46 msec with 50% overlap. In this case the analysis window size provides the necessary

time-domain resolution for capturing rapid note changes, but on the other hand, low spectral

resolution causes wide lobes of the spectral components that leads to spectral leakage.

The proposed approach to chroma feature vectors extractionis based on PQMF filtering

and subsequent periodicity detection, and in general does not introduce the above-mentioned

drawbacks. Chroma vectors extracted with the new techniqueare displayed in Figure 3.8c.
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3.4 Time-frequency reassigned chroma features

In the past few years a lot of different techniques for accurate and relevant feature extraction

in automatic chord recognition have been proposed. In this section we propose another method

for chroma extraction that is based on the Time-Frequency Reassigned spectrum.

Feature extraction process is aimed at transforming a givenwaveform into a representation

that captures desirable properties of an analyzed signal. Alot of acoustic features is derived

from some kind of time-frequency representations, which can be obtained by mapping audio

signal from one-dimensional time domain into two-dimensional domain of time and frequency.

Spectrogram is one of the most widely spread time-frequencyrepresentations that has been

successfully used in a variety of applications, where spectral energy distribution changes over

time.

Time-frequency reassignment technique was initially proposed by Kodera et al. [56]. The

main idea behind TFR technique is to remap spectral energy ofeach spectrogram cell into an-

other cell that is the closest to the true region of support ofthe analyzed signal. As a result,

"blurred" spectral representation becomes "sharper", that allows one to derive spectral features

from reassigned spectrogram with much higher time and frequency resolution. Some papers

have already investigated the usage of reassigned spectrogram in different tasks, such as sinu-

soidal synthesis [57], cover song identification [58] and many others.

Now some mathematical foundations for the TFR technique areprovided. Letx(n) be a

discrete signal in the time domain sampled at a sampling frequencyFs.

At a given time instantt, STFT is performed on the signal weighted by a window function

w(n) as in the following

X(t, k) =
∑M−1

n=0
w(n)x(n + t)e−2πjnk/M , (3.15)

wherek andM denote a bin number and the window size respectively. Spectrogram is

derived from (3.3) as shown in (3.16).

P (t, k) = |X(t, k)|δ (3.16)

whereδ is equal to 2. The majority of chromagram extraction techniques uses this repre-

sentation for mapping spectral energies to chroma bins, ignoring phase information as in the

following

n(k) = 12log2

(

fk
fref

)

+69, n ∈ℜ+, (3.17)

wherefref denotes the reference frequency of "A4" tone, whilefk andn are the frequencies

of the Fourier transform and the semitone bin scale index, respectively.
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On the other hand, the result of STFTX(t, k) can be presented in the following form:

X(t, k) =M(t, k)ejφ(t,k), (3.18)

whereM(t, k) is the magnitude, andφ(t, k) the spectral phase ofX(t, k). As was shown

in [59], reassigned time-frequency coordinates(t̂, ω̂) can be calculated as

t̂(t, ω) = −
∂φ(t, ω)

∂ω
(3.19)

ω̂(t, ω) = ω +
∂φ(t, ω)

∂t
(3.20)

Efficient computation of̂t(t, ω) and ω̂(t, ω) in the discrete-time domain was proposed by

Auger and Flandrin [60] and takes the following form:

t̂(t, ω) = t− ℜ

{

XT w(t, ω) ·X∗(t, ω)

|X(t, ω)|2

}

(3.21)

ω̂(t, ω) = ω + ℑ

{

XDw(t, ω) ·X
∗(t, ω)

|X(t, ω)|2

}

(3.22)

whereXDw is the STFT of the signal weighted by a frequency-weighed window function,

XT w is the STFT of the signal weighted by a time-weighed window function ([59]). Reallo-

cating spectral energy from spectrogram coordinate(t, w) to (t̂, ω̂) concludes the reassignment

operation. As a result more precise estimates of spectral energy distribution are obtained. How-

ever, reassigned spectrogram can be noisy. A random energy can be located in points where

there are no obvious harmonic or impulsive components. The principle of the reassignment

technique is to reallocate energy from the geometrical center of the analysis window to the

"center of gravity" of the spectral component this energy belongs to. Meanwhile, in some spec-

tral regions, where there are no dominant components, largeenergy reassignment both in time

and frequency can be observed. In order to obtain a better spectral representation and to refine

the spectrogram keeping the energy of harmonic components and deemphasizing that of noisy

and impulsive components, the following condition should be met [61]

∣

∣

∣

∣

∂2φ (t, ω)

∂t∂ω
+ 1

∣

∣

∣

∣

< A (3.23)

whereA is the tolerance factor, which defines the maximum deviationof the acceptable

spectral component from a pure sinusoid. The optimal value of A depends on a particular task

and can be empirically determined. Fullop and Fitz reportedin [62] that 0.2 is often a reasonable

threshold for speech signals.
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As for the impulsive part of the spectrogram, the filtering condition takes the following form:
∣

∣

∣

∣

∂2φ (t, ω)

∂t∂ω

∣

∣

∣

∣

< A (3.24)

Efficient computation of∂φ
2(t,ω)
∂t∂ω

is given in [59] and can be expressed as follows

∂2φ (t, ω)

∂t∂ω
= ℜ

{

XT Dw(t, ω)X
∗(t, ω)

|X(t, ω)|2

}

−ℜ

{

XT w(t, ω)XDw(t, ω)

X2(t, ω)

}

(3.25)

whereXT Dw(t, ω) is the STFT of the signal weighted by time-frequency-weighed window

function ([59]).

Comparison of spectrogram, reassigned spectrogram and "refined" reassigned spectrogram

for an excerpt from "Girl", the Beatles is provided in Figure3.9. All spectrograms are computed

using Hanning window of 192 ms with 90% overlapping.

(a) Spectrogram

(b) Reassigned spectrogram

(c) Harmonic reassigned spectrogram with tolerance factorset to 0.4

Figure 3.9: Time-Frequency representation of an excerpt from "Girl", the Beatles. All spectrograms are

computed using Hanning window of 192 ms with 90% overlapping.
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3.5 Towards reducing dimensionality

In this section we try to explore the advantage of the dimensionality reduction on the feature

space. We consider two different approaches to dimensionality reduction. The first approach

is based on the computation of Tonal Centroid (TC), a 6-dimensional feature that proved to be

quite effective for the problem of dividing audio into harmonically homogeneous segments [63,

64]. Some attempts were made to use TC for chord recognition [20]. The second approach is

based on the idea of transforming feature vectors of chroma family by Inverse Discrete Cosine

Transform (IDCT).

3.5.1 Tonal centroid

Tonal centroid was first introduced by Harte et al. in [63], who proposed to use it to detect

harmonic changes in audio.

In chord recognition domain the usage of TC was investigatedby Lee et al. [20]. They

showed that using TC as feature set instead of conventional chroma leads to a significant in-

crease in recognition rate. The experiments were carried out on the first two Beatles albums

as well as on a short set of classical excerpts by Bach and Haydn. Another application of TC

for chord recognition was suggested by Harte et al. in [64], where the algorithm of detect-

ing harmonic changes introduced in [63] was utilized as a pre-processing step to determine

chord boundaries. Obtained segmentation information is used in the next step to obtain average

chroma vector for each segment and perform classification bytemplate matching.

Conceptually, TC is based on Tonnetz, a harmonic network, where notes with closer har-

monic relations have smaller distance. Tonnetz plane is infinite. However, some music-related

tasks, e. g. chord recognition, assume enharmonic and octave equivalence. The computation of

TC is based on the transformation on chroma vector into 6-D space, where three pairs of coor-

dinates assume projection onto three different circles: major thirds, minor thirds and fifths [63].

The computation is performed by multiplying of chroma vector cn and transformation matrixΦ

as follows:

ςn(d) =
1

‖cn‖1

11
∑

l=0

Φ(d, l)cn(l) 0 ≤ d ≤ 5, 0 ≤ l ≤ 11 (3.26)

Here‖cn‖1 is theL1 norm ofcn and matrixΦ is
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0 ≤ l ≤ 11 (3.27)

3.5.2 Application of Inverse Discrete Cosine Transform

Another technique for reducing dimensionality we investigated is the Inverse Discrete Cosine

Transform (IDCT). It proved to be quite effective in speech processing domain [65]. IDCT

coefficientsψ(n) are obtained as

ψ(n) =

N−1
∑

k=0

x(k) cos

(

πk (2n+ 1)

2N

)

1 ≤ n ≤ Nc (3.28)

wherex(k) is the input vector,N is the number of bins inx(k) andNc is the number of

output IDCT coefficients.

We set up experiments withNc = 16 and we use combined chroma vectorccom as the input

vector for IDCTx(k). ccom is comprised of basscb and treblect chroma vectors and has 24

dimensions. In order to investigate influence of the chroma components order insideccom we

build two different input vectorsccom1 andccom2.

ccom1(k) =
[

cb(0) cb(1) ... cb(11) ct(0) ct(1) ... ct(11)
]

(3.29)

ccom1(k) =
[

cb(0) ct(0) cb(1) ct(1) ... cb(11) ct(11)
]

(3.30)

We also investigate system performance using mean subtraction technique, that proved to

provide more robust features in speech processing [66]. Mean subtraction is a post-processing

step, which includes the following actions. At first, mean value of feature vectors extracted

from the whole piece of audio is estimated . Then, the obtained mean value is subtracted from

each feature vector. In the experimental section we will investigate the efficiency and usefulness

of mean vector subtraction for IDCT features in the chord recognition task.
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Chapter 4

System architecture

This chapter is concerned with the proposed statistical methods to automatic extraction of

chords from audio. The structure of the chapter is as follows: Section 4.1 introduces acoustic

modeling approach adopted here. Section 4.2 describes language modeling techniques. Appli-

cation of standard and factored language models is outlined. Finally, general overview of the

proposed chord recognition system is given.

4.1 Acoustic modeling using multi-stream HMMs

This section refers to the acoustic modeling mechanisms applied here for chord recognition.

Acoustic modeling part is based on HMMs and is quite similar to the one described in [67]

and [25]. However, these approaches are extended to the usage of a more general version of

HMMs with multi-stream observation layer. A similar technique was used in [27], where a

dynamic Bayesian network was configured to contain bass and treble observable layers.

As in the case of a single-stream HMM, a multi-stream HMM consists of a number of states

N , Each statej characterized by its observation probability distribution bj(ot) that defines the

probability to emit observation symbolot at time instantt. An important parameter is the tran-

sition matrixaij that determines the probability of transition from statei to statej. Continuous

density models are used in which each observation probability distribution is represented by

a mixture of multivariate Gaussians. In the multi-stream HMM, the related observation layer

consists of multiple streams andbj(ot) can be expressed as

bj(ot) =

S
∏

s=1





Mjs
∑

m=1

cjsmN (ost;µjsm,Σjsm)





γs

, (4.1)

whereMjs denotes the number of mixture components in statej for streams, cjsm is the

weight of them-th component andN (ost;µjsm,Σjsm) is a multivariate Gaussian with mean

39



4.1. ACOUSTIC MODELING USING MULTI-STREAM HMMS

vectorµ and covariance matrixΣ. Each Gaussian componentN
(

ost;µjsm,
∑

jsm

)

can be

expressed as

N (o;µ,Σ) =
1

√

(2π)n |Σ|
exp

(

−
1

2
(o− µ)′Σ−1(o− µ)

)

(4.2)

wheren is the dimensionality of observationo. The termγs is a stream weight. Varying this

parameter allows one to emphasize or deemphasize the contribution of a particular stream.

Figure 4.1 depicts a typical structure of multi-stream HMM with three hidden emitting states

andS observation streams.

1q 2q 3q 4q 5q

Stream 1

Stream S

11o 12o 13o 14o 15o

5So4So3So2So1So

12a

22a

23a

33a

34a

44a

45a

2 1( )b o 2 2( )b o

3 3( )b o 3 4( )b o 4 5( )b o

13a
24a

.

.

.

.

Figure 4.1: Structure of multi-stream HMM with three hiddenemitting states

Training is performed for each chord type from the predefineddictionary, resulting in a

separate left-to-right HMM. A chord type represents chordswith a given set of intervals between

constituent notes regardless of the root note, e.g. major, minor. Each model consists of 1 –

3 emitting hidden states. Observation probability distributions are learned from data in the

training stage. Feature vector components are assumed to beuncorrelated with one another, so

the covariance matrix has a diagonal form.

Trained multi-stream HMMs are then connected as shown in figure 4.2. An insertion penalty

is introduced to influence the transition probability between chords. Varying the insertion

penalty allows for obtaining labels with different degreesof fragmentation, as typically done

in speech recognition tasks. As was shown in [25], the insertion penalty (or self-transition

probability in [68]) can have a significant impact on the overall performance.
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Cmaj

Begin End

BmagC#maj

Dmaj

Bmin

Insertion penalty

Figure 4.2: Connection scheme of trained models for decoding.

In the experimental part two different HMM configurations are evaluated – baseline and

multi-stream one. The former configuration includes one observation stream, where emitted

symbols are chroma vectors. In the latter case, an additional observation bass chroma stream is

added.

4.2 Language Modeling

A lot of different statistical language models have been proposed over years. The most suc-

cessful among them appeared to be finite state transducers. In Natural Language Processing N-

grams are used for word prediction. GivenN−1 predecessors, they can provide the probability

of N-th element appearing. Language models have a variety of applications such as automatic

speech recognition and statistical machine translation. The main goal of language modeling can

be explained as follows: having a sentence, which consists of K words (w1, w2, ...wK), generate

a probability modelp(w1, w2, ...wK). In most common cases it can be expressed as

p(w1, w2...wK) =
∏

t

p(wt|w1, w2...wt−1) =
∏

t

p(wt|ht) (4.3)

whereht is the history sufficient for determining the probability ofwt word. In standard

N-gram models the history consists of the immediately adjacentN − 1 words. For example, in

3-gram model the probability of current word can be expressed as:p(wt|wt−1, wt−2).

While estimating language model parameters, there exists the problem of sparse data. It is

caused by the impossibility of producing maximum likelihood estimate of the model, because

all combinations ofN-word sequences are unlikely to be found in the training corpus. Since

any training corpus is limited, some acceptable sequences can be missing from it, which leads

to setting zero probability to plenty ofN-grams. In order to cope with the problem, different

techniques, such as back-off, smoothing and interpolationare used [69–71]. The main principle

of back-off is to rely on lower-order model (e.gp(wt|wt−1)) if there is zero evidence for higher-

order (e.g. p(wt|wt−1, wt−2)) model. The order of dropping variables is known as back-off
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Figure 4.3: Chord Duration Histogram.

order. In the case of standard language models it is obvious that information taken from older

predecessor will be less beneficial and it should be dropped prior to other predecessors.

In the proposed approach we draw a direct analogy between a sentence in speech and a part

of a song. The above-described strategy can be successfullyused in chord sequences modeling.

In this case a chord is the equivalent of a word and the sequence of chords can be modeled by

means of the same technique.

4.2.1 Factored language models

Western music is known to be highly structural in terms of rhythm and harmony. In order

to take advantage of mutual dependency between these two phenomena, we have studied the

interrelationship between beat structure and chord durations. The number of occurrences as a

function of chord duration in beats histogram is shown in figure 4.3. It is clearly seen that a

large part of chord durations is correlated to the metrical structure (2, 4, 8, 12, 16, 24, 32 beats),

which suggests that including also chord durations in the language model is more convenient

than analyzing just a sequence of chord symbols. This can be easily done with the help of

factored language models (FLMs), which treat a word (chord)as a set of factors. FLMs have

been recently proposed by Bilmes and Kirchoff [72] and showed promising results in modeling

highly inflected languages, such as Arabic [73].

In a Factored Language Model, a word (chord) can be represented as a bundle of factors:
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CHAPTER 4. SYSTEM ARCHITECTURE

wt = {f 1
t , f

2
t , ..., f

K
t }. The probability for FLM is given in (4.4), whereπ(fk

t ) is a set of

variables (parents), which influence the probability offk
t . In our case to model chord sequences

we use two factors: chord labelCt and chord durationDt: wt = {Ct, Dt}.

p(wt|ht) =
∏

k

p(fk
t |π(f

k
t )) (4.4)

As opposed to standard language models, where older predecessors give less relevant infor-

mation at the given time instant, in FLMs there is no obvious order to drop parentsπ(fk
t ). There

are a lot of possibilities to choose less informative factors to drop among the others. Moreover,

keeping some factors of older predecessors can be of greaterbenefit than keeping the value of

some other factors, which are more relevant to the given timeinstant. One of the possible solu-

tions is to use "generalized parallel back-off", which was initially proposed and well described

by Bilmes and Kirchoff [72]. The main idea is to back-off factors simultaneously. The given set

of back-off paths is determined dynamically based on the current values of the variables. (For a

more detailed description, see [72]).

1, 1 2 2( | , , )t t t t tP C C D C D− − − −

2tD −

1, 1 2( | , )t t t tP C C D C− − −

2tC −

1, 1( | )t t tP C C D− −

1tD −

1( | )t tP C C−

1tC −

( )tP C

1, 1 2 2( | , , )t t t t tP C C D C D− − − −

2tD −

1, 1 2( | , )t t t tP C C D C− − −
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1( | )t tP C C−
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1( | )t tP C D−

a) b)

Figure 4.4: Standard back-off (a) and parallel back-off (b)graphs for tri-gram LM.

43



4.3. SYSTEM OVERVIEW

At the experimental stage we explore the standard back-off (a) and the parallel back-off (b)

techniques, whose graphs are presented in figure 4.4. In bothcases the chronological order

is kept, while in the standard back-off case a higher priority to the factor of chord symbol is

assigned. The arrows are marked with the factor being dropped at the current back-off step;

blocks include the variables that influence the probabilityof chord label being estimated.

4.3 System overview

MISTUNING ESTIMATOR

FEATURE VECTOR EXTRACTION

WAVEFORM

REFERENCE 
FREQUENCY

...

FEATURE
VECTOR

STREAMS

Figure 4.5: Feature extraction block diagram

This section is concerned with an overview of the proposed chord recognition system. Fig-

ures 4.5 and 4.7 show the two main blocks of the chord recognition system. Feature extraction,

including mistuning estimation, produces feature vector streams that are subsequently processed

by decoder. A fundamental step regards model training basedon the application of Baum-Welch

algorithm as depicted in Figure 4.6.

In the proposed chord recognition system chroma features are used to model emission prob-

abilities, while HMMs are used to model chord progressions.Three main blocks can be empha-

sized, feature extraction (Figure 4.5), training (Figure 4.6), and testing (Figure 4.7).

4.3.1 Mistuning estimation

In the general case, chroma feature is obtained by summing all the spectral energies corre-

sponding to a given semitone bin. Central frequencies for a specific bin are calculated using the

information on the reference frequencyfref of "A4" note and the mapping itself is performed

as shown in the Equation (3.1). The problem of the reference frequency estimation arises in
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several cases. Sometimes all the instruments that participate in the music performance can be

well tuned to each other and a listener would not notice any audible artifacts. However, the

reference frequencyfref can slightly deviate from the conventional 440Hz, which will cause

incorrect mapping of the spectral energy into semitone binsand, as a result, it will lead to less

accurate acoustic features. Another possible scenario could happen during the process of con-

verting vinyl LP records and tapes from analog to digital. A slight deviation of the moving

mechanism speed leads to shifting all the frequencies to a certain degree.

The importance of thefref estimation is evident [67, 74] and is an essential part of the

feature extraction step. A detailed description of the detuning estimation approach is given in

Section 3.2. The obtained valuefref is subsequently used for the creation of the semitone bin

frequency ranges.

4.3.2 Model training

In the training stage, features extracted from waveforms are first segmented according to the

ground-truth labels so that each segment contains one chord. The circular permutation proce-

dure is then applied in order to discard root information. Atthis point, a number of feature

vector segments is collected for each chord type that are subsequently used to train HMMs. Fi-

nally, in order to obtain model parameters for all possible chords for a given chord type, another

circular permutation on the mean vectors and covariance matrix of multivariate Gaussians is

performed.

N-GRAMS

...

TRAINING 
FEATURE
VECTOR

STREAMS

CHORD
LABELS

C:maj G:maj … F:7
…

A:min E:7 … D:min

C:maj

...

C#:maj

D:maj

D#:maj

E:maj

B:min

ACOUSTIC MODELS

FACTORED LANGUAGE 
MODELS

BEAT 
SEGMENTS

+
CHORD LABELS

[C:maj;2beats] 
[G:maj;4beats] … 

[F:7;2beats]
…

Figure 4.6: Training phase block diagram. Baum-Welch algorithm for HMM training and n-gram model

parameter estimation using ground-truth labels.

In order to prevent the lack of training data (some chord types can appear only few times
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in the training corpus) only two models are trained: C-majorand C-minor. For this purpose,

all chroma vectors obtained from labeled segments are mapped to the C-root using circular

permutation. After that, mean vectors and covariance matrices are estimated for the two models.

All the other models can be obtained by a circular permutation procedure.

At the same time, chord labels from training corpus are used as an input for language model

parameter estimation. Language model training includes training either standard LMs or FLMs.

For training standard LMs chord sequences taken from the training labels are used as input. For

building text for FLM the information combined from beat extraction module and the train-

ing labels is used. Beat extraction algorithm used here was introduced by Dixon [75] and is

exploited as a separate module, calledBeatRoot1. For each chord symbol from ground-truth

labels we estimate the duration in beats and produce an output in the form: "C-(chord type):D-

(duration)". To minimize the problem of sparse data, all duration values are quantized by a

relatively-small set of or integer values. Our codebook consists of the following values: 1, 2, 3,

4, 6, 8, 12, 16, 24 and 32 beats. The suggested codebook is supposed to be well-suited for the

pop songs. This assumption is made on the basis of metrical analysis of the Beatles data (see

fig. 4.3). The suggested scheme however might not be sufficient while modeling jazz or other

genres.

In order to make our system key invariant, a key transformation technique is proposed here.

In fact, the training corpus might not contain some type of chords and chord transitions due

to the fact that keys with a lot of accidentals are much less widespread (G#:maj, Ab:min).

Moreover, while estimating chord transition probabilities the relative change in the context of

the given key (e.g. tonic – dominant – subdominant) is more relevant than exact chord names.

For training data we have ground-truth table of keys for eachsong, while for test data we

estimate key in the key detection module. Then, similar to training HMMs, by applying circular

permutation, features and labels are converted to the Cmaj (in case of major key) or to Amin (in

case of minor key). After the decoding procedure in order to produce final labels (in the original

key of the analyzed song) obtained labels are converted backusing the same scheme.

4.3.3 Decoding step

General block-scheme of decoding process is depicted in Figure 4.7.

The system can output labels in two different ways. The first option is to directly use the

output of the Viterbi decoder, which is the optimal path through the hidden states of the HMMs.

However, this system configuration does not use statisticalmodeling of chord sequences. All

the chords have the same probability to be generated. We refer to this system as "No-LM"

configuration. Dashed arrow in Figure 4.7 shows the process of direct deriving of chord labels

1http://www.elec.qmul.ac.uk/people/simond/beatroot/index.html
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Figure 4.7: Test phase block diagram.

after Viterbi decoding.
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Figure 4.8: An example of a lattice.

The second system configuration involves statistical modeling of chord progressions. It will

be referred to as "LM" configuration. Similar to the approachof multiple-pass decoding, which

has been successfully used in speech recognition [71], the decoding procedure consists of two

steps. During the first step, bigram language model is applied in the stage of Viterbi decoding,

producing a lattice. A lattice can be represented by a directed graph, where nodes denote time

instants and arcs are different hypotheses. Since latticescontain the information on the time

boundaries, it is possible to make an estimation of durationin beats for each hypothesis. During

the second step the obtained lattice is rescored applying more sophisticated language models
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Figure 4.9: Test phase block diagram using FLMs.

(trigram and higher) on the reduced search space.

System configuration with FLMs, which will be referred to as "FLM" configuration, requires

the same beat extraction procedure as in the model training step. The modified version of

the decoder that makes use of FLMs is shown in Figure 4.9. The decoding scheme is also

based on Viterbi decoding and subsequent lattice rescoring. Nodes in a lattice contain the time

information on possible chord boundaries. Beat information is used to assign the duration factor

for each chord hypothesis. The "LM" system configuration does not take into account duration

factor at all. The advantage of FLM is that when applying the language model weight in the

stage of lattice rescoring, chord durations contribute to the probabilities of different hypotheses

in the lattice.

Standard LMs are manipulated using HTK2 tools, while FLMs are managed using SRILM

[76] toolkit, since HTK does not support this type of language models.

2http://htk.eng.cam.ac.uk/
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Chapter 5

Experimental results

This chapter is concerned with the evaluation of chord recognition system introduced in chap-

ter 4. At first, datasets and evaluation metrics are presented. Impact of different configuration

parameters on the chord recognition performance is investigated. Then, we explore the use of

Factored Language Models and compare them to the standard N-grams. Another portion of

experimental results regards different feature vector solutions. We carefully examine and com-

pare the performance of standard chroma and PQMF-based chroma introduced in Section 5.4.

Then, we perform comprehensive evaluation of TRF-based chroma features that are introduced

in Section 3.4. Finally, experiments with with multi-stream HMM configuration described in

Section 4.1 are carried out.

5.1 Description of the dataset and evaluation metrics

5.1.1 Evaluation metrics

Chord recognition system evaluation

For evaluation, the recognition rate measure was used, which in the given case corresponds

to the total duration of correctly classified chords dividedby the total duration of chords, as

reported in the following

RR =
|recognized_chords| ∩ |ground− truth_chords|

|ground− truth_chords|
(5.1)

Evaluation was performed on a frame-by-frame basis, as it was done under the MIREX

competition. The system can distinguish 24 different chordtypes (major and minor for each of

12 roots). 7th, min7, maj7, minmaj7, min6, maj6, 9, maj9, min9 chords are merged to their root

triads; suspended augmented and diminished chords are discarded from the evaluation task.The
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percentage of duration of discarded chords results to be 2.71% of the whole material. The

proposed chord dictionary will be referred to as "maj-min" configuration.

In order to determine, whether the results produced by different systems are significantly

different from each other, a Tukey’s HSD (Honestly Significant Difference) test is performed.

HSD test is an easy and frequently used pairwise comparison technique. HSD test finds what

means are significantly different from one another. Detailed description of HSD test is provided

in [77].

Chroma quality evaluation

One of the main goals of this work is to compare the effectiveness of the proposed acoustic

feature set and compare the ability to carry relevant information for chord discrimination. The

most obvious way to evaluate it is the chordrecognition rate (RR)as given in the previous

section. However, here we propose two additional estimatesto evaluate the quality of a chroma

vector –ratio (R)andcosine measure (CM), they are are computed as proposed in [78].

Let c(n) be an unwrapped chroma vector extracted from a chord sample that was generated

from a set of notese. TheRestimate is the ratio of the power in the expected semitone bins, over

the total power of that frame. The expected semitone bins include the bins of the fundamentals

and 3 partials for every note from sete.

To estimateCM a chroma templatey(n) is built so that its values are set to 1 in the chroma

bins that correspond to the fundamentals and to 0.33 in the chroma bins that correspond to the

first 3 partials. TheCM estimate is then computed asCM = 〈y·c〉
‖y‖‖c‖

, where〈·〉 is the inner

product and‖·‖ is theL2 norm.

5.1.2 Datasets

Chord recognition datasets

Audio collections with the corresponding ground-truth labels of high quality have always been

an essential condition for any MIR system assessment. Th proposed approach to chord recog-

nition described in the previous chapter includes trainingblock, which is necessary to perform

model parameter estimation. This fact requires the datasetto be split into training and test parts.

Here we utilize standard N-fold cross validation approach,where all the data is divided into N

parts. Evaluation procedure is executed N times, each time one part is used as test material,

while the rest of the collection is used for training purposes. Our evaluation setup, similarly

to MIREX1, performs 3-fold or 5-fold cross-validation, which means that all the songs were

randomly divided into three or five folds.

1http://www.music-ir.org/mirex/2010/index.php/Main_Page
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Data collections used for evaluation consist of the commonly used Beatles data set and

additional 45 songs of Queen, Zweieck, and Carol King. The corresponding labels were kindly

provided by C. Harte[79] and M. Mauch [27]. Two datasets are introduced. The first one, which

will be referred to as "Beatles dataset", consists of 180 Beatles songs. Album names are given

in Table A.1. The second one, which will be referred to as "Beatles-Queen dataset" consists

of the "Beatles dataset" enriched with the songs of Queen, Zweieck, and Carol King. Songs of

Queen, Zweieck, and Carol King are listed in Table A.2.

Chroma quality evaluation datasets

For this set of evaluations, we used a large set of recordingsof individual notes collected at the

University of Iowa2. This dataset contains high-quality note samples recordedfrom different

instruments.

We used this data for generating chord waveforms. For a givenchord type, the recordings

of three constituent notes are chosen from three random instruments. Then these samples are

mixed together, producing a waveform of 2 seconds duration.The proposed schema of gen-

erating data results in 200 waveforms with the corresponding ground-truth information on the

notes.

The obtained material is then used to evaluate the quality ofdifferent chroma features as

was described in section 5.1.1. For theRR measure, half of the generated material was used as

training set, the other half was used for testing purposes.

5.2 Baseline configuration: impact of tuning

In this section, we evaluate the baseline configuration of our system. This configuration exploits

standard chroma features that were introduced in Section 3.1. "No-LM" system configuration

described in Section 4.3.3 is investigated. It allows us to assess the performance of the chosen

feature set and evaluate the effectiveness of the proposed acoustic modeling.

5.2.1 Results

The first set of experiments considers different window lengths. Varying insertion penalty al-

lows for obtaining output labels with different degree of fragmentation. The recognition ac-

curacy as a function of insertion penalty, introduced in Section 4.1, for Hanning window is

displayed in figure 5.1. For each window size, there is an optimal value of insertion penalty,

which produces labels with a fragmentation rate very close to the ground-truth. Fragmenta-

2http://theremin.music.uiowa.edu/MIS.html
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tion rate is another important characteristic of the transcribed chord labels, which is defined as

relative number of chord labels [30].
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Figure 5.1: Recognition rate as a function of insertion penalty using Hanning window of different lengths.

In order to find the best windowing function, a set of tests were carried out involving window

lengths of 1024(92.8 ms), 2048(185.7 ms), 4096(371.5 ms), 8192(743.0 ms), for Blackman,

Hamming and Hanning window types (with 50% overlapping and the optimal insertion penalty).

The results for the first fold are reported in table 5.1.

1024 2048 4096 8192

Blackman 57.05 68.92 68.67 64.36

Hamming 60.24 69.00 67.91 64.18

Hanning 59.76 68.51 68.40 63.63

Table 5.1: System performance obtained with different windowing configurations on the first fold.

The highest performance (69.00 %) was achieved with Hammingwindow of length 2048

samples, while other window types showed results that are very close to this value. Window

length of 2048 samples appeared to be a reasonable trade-offbetween the stationarity of the

analysed frame of signal and frequency resolution. Taking the best configuration from the

above-described experiments (Hamming window of length 2048 samples) the system perfor-
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mance was conducted by including the tuning procedure. Different window delaysD were

explored in terms of recognition rate. The results are givenin Table 5.2. By increasing the

delayD, a very small increase in accuracy can be noticed, which can be due to a different un-

certainty in frequency that is obtained for the given windowlength [80]. Besides this aspect,

applying the tuning procedure leads to a higher recognitionrate.

delay (samples) recognition rate

1 71.37

2 71.42

4 71.41

10 71.52

12 70.60

15 69.06

Table 5.2: Recognition rate obtained using the tuning procedure.

In order to estimate the increase of performance introducedby the tuning procedure, a 3-

fold cross-validation was accomplished on the "Beatles" data set. The results are shown in table

5.3, which show that about 2.5% and 1% improvements are obtained on the reduced and on the

whole data sets, respectively.

data
baseline with tuning

rec.rate frag. rec.rate frag.

fold1 69.00% 0.80 71.52% 0.81

fold1, fold2, fold3 67.47% 0.84 68.28% 0.84

Table 5.3: Recognition rates and fragmentation rates on thereduced and on the complete test data set.

5.2.2 Conclusion

In this section, the results of a set of chord recognition experiments have been outlined which

are based on exploring different windowing solutions as well as on the adoption of a tuning

procedure to make this task less dependent on possible instrument mis-tuning effects. A novel

approach for tuning introduced in section 3.2 that is based on concurrent analyzing magnitude

and phase-change spectrum proved to be effective. Experimental results showed an increase

in performance using the database of Beatles songs, for which an average recognition rate of

68.28% has been obtained.
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5.3 Factored language models

In this set of experiments we evaluate "LM" and "FLM" system configurations introduced in

Section 4.3.3. 5-fold cross-validation on the "Beatles" dataset is adopted. The use of stan-

dard and factored 3-gram and 4-gram language models is investigated. While working with

FLMs, we exploited standard and generalized parallel back-off strategies (see Figure 4.4; 4-

gram graphs have the same structure and can be obtained from 3-gram graphs by adding one

level).

5.3.1 Results

Applying different language model weights on the stage of lattice rescoring, one can obtain

different recognition rates. Figure 5.2 indicates how recognition rate depends on the LM weight.

In this case, the curves correspond to the "LM" and "FLM" system configurations; experiments

were conducted on the fold 1 with 4-gram configuration.

69.48

69.98

70.48

70.98

71.48

71.98

72.48

1 3 5 7 9 11 13 15 17 19

lm

flm

Figure 5.2: Recognition rate as a function of LM weight.

The recognition rates are shown in Table 5.4. Here "No-LM" isthe baseline system, "3lm"

"3flm" "3flmgpb" are trigram configurations for standard LM, FLM, and FLM with generalized

parallel back-off respectively, "4lm" "4flm" "4flmgpb" are corresponding 4-gram configura-

tions. For any of the given configurations, an average standard deviation of about 15% was also

observed, which was derived from the recognition rates computed on a song-by-song basis.

Experimental results showed that introducing language modeling increases the performance

of the system, while generalized parallel back-off strategy for FLM did not show any advantages

over standard back-off for the chord recognition task. Meanwhile, using FLM show very slight
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data No-LM 3lm 3flm 3flmgpb 4lm 4flm 4flmgpb

fold 1 70.81 72.22 72.55 72.56 72.39 72.53 72.27

fold 2 70.23 70.78 71.15 71.51 71.09 71.38 71.25

fold 3 65.87 66.81 66.59 67.01 67.22 66.89 67.17

fold 4 66.20 67.15 67.60 67.61 67.64 67.62 67.51

fold 5 66.19 69.73 69.72 68.55 68.55 69.72 69.77

average 67.86 69.34 69.52 69.45 69.38 69.63 69.59

Table 5.4: Recognition rates for "No-LM", "LM", and "FLM" configurations.

improvement (0.25 %) in comparison with the standard LM.

5.3.2 Conclusions

In this section a set of experiments on chord recognition task including language modeling

functionality as a separate layer has been conducted. The experimental results in a 5-fold cross-

validation were conducted on the "Beatles" dataset. Factored language models were compared

with standard language models and showed small increase in performance for the task. Com-

paring back-off techniques, we can assume that using generalized parallel back-off for the chord

recognition task does not result in better performance.

In general, experimental results showed that utilizing language models leads to an increase

in accuracy by about 2%. This relatively small difference inperformance may be due to the size

of vocabulary for the chord recognition task in comparison with that of many speech recognition

applications. The performance of chord recognition systems is perhaps influenced primarily by

relevance and accuracy of the extracted features and related acoustic modeling. A deeper study

on different model smoothing and selection techniques as those addressed by Scholz et al. [47]

could be reprised in further investigations.

5.4 PQMF-based chroma features

The next set of experiments investigates the performance ofPQMF-based chroma features de-

scribed in Section 3.3. Evaluation was performed in 3-fold cross-validation fashion on the

"Beatles" dataset. "LM" system configuration is adopted here, where language models are rep-

resented by standard 3-grams.
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5.4.1 Results

In order to compare the proposed PQMF-based chroma feature extraction technique with the

standard one, a set of experiments with standard chroma werecarried out. Frame lengths used in

the experiments for the standard chroma were 185.76, 92.88 and 46.44 ms with the overlapping

factor of 50%. For the PQMF-based chroma no overlapping was used. In order to operate at the

same frame rate, the corresponding frame lengths of 92.88, 46.44 and 23.22 ms were used.

Figure 5.3 depicts the recognition rates of standard and PQMF-based chroma configurations

as a function of insertion penalty. Different curves in the graphs correspond to different number

of Gaussians in the mixtures for modeling emission probabilities in the HMMs.

Table 5.5 shows the evaluation results. The recognition rates in each row are the best among

possible configurations (penalty, number of Gaussians) fora specified frame length.

frame size (ms) best result (%)

PQMF chroma 23.22 69.37

PQMF chroma 46.44 69.43

PQMF chroma 92.88 68.31

Standard chroma 46.44 (50% overlap) 52.39

Standard chroma 92.88 (50% overlap) 64.53

Standard chroma 185.76 (50% overlap) 69.53

Table 5.5: Evaluation result summary. Best recognition rates for different frame lengths and feature

extraction methods.

5.4.2 Conclusions

The experimental results show that chroma extraction basedon PQMF filter bank analysis and

subsequent periodicity detection does not outperform the standard approach for the analysis

frame length of 182 ms. However, when taking into consideration short-term analysis with

frame lengths of 46 ms and 92 ms the proposed approach significantly outperforms the applica-

tion of standard chroma feature vector extraction. The proposed technique could be of great use

in the music transcription tasks where it is necessary to capture harmonic content of the signal

with very high time resolution. To this end, new specific tasks will also be devised in the future

activities.

One of the main disadvantages of the filter bank approach can be the very high computa-

tional load if compared to the standard chroma extraction. Although, the issue of complexity

will be subject of future investigation. In spite of the factthat each filter has passband bandwidth
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(a) Standard chroma with frame length of 46 ms.
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(b) Standard chroma with frame length of 92 ms.
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(c) Standard chroma with frame length of 185 ms.
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(d) PQMF-based chroma with frame length of 46 ms.
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(e) PQMF-based chroma with frame length of 92 ms.
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(f) PQMF-based chroma with frame length of 185 ms.

Figure 5.3: Recognition rates for different system configurations as a function of insertion penalty.
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wider than semitone distance, PQMF-based chroma features showed comparable performance

to the standard chroma features.

It is worth noting that alternative filter bank configurations (e.g. with more channels) can

be utilized. In the above-described configuration, the width of each channel of the filter bank is

approximately equal to 2 – 3 units of the semitone distance. However, introducing filters with

narrower bandwidth can cause the substantial increase in the lengths of the filters, therefore

causing a further increase of the computational load.

Another wide area of research may regard different alternative techniques for the periodicity

detection. In fact, periodicities computed in the previousframes can be exploited for a more

effective computation of the periodicity in the actual frame.

5.5 Time-frequency reassigned chroma features

In this section, we carry out experiments with TFR-based chroma features. Similarly to the

previous experimental setup, "LM" system configuration with standard 3-grams is adopted here.

"Beatles-Queen" collection is utilized as the evaluation dataset.

5.5.1 Chroma quality evaluation

Initial set of experiments is aimed at comparing standard chroma feature with the RC and HRC

features introduced in Section 3.4. Chroma quality evaluation was performed using the met-

rics described in Section 5.1.1. Chroma features were extracted with 185 ms window lengths,

overlapping factor of 90% and Hanning windowing. The evaluation results for three different

chroma features are given in Figure 5.4.
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Figure 5.4: Chroma quality estimates.

In all the cases,HRCandRC significantly outperformSTDfeature. In particular, theratio

measurements proved the ability ofHRC to deemphasize noise and impulsive components,

which frequently occur during the note onsets.
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5.5.2 Chord recognition system evaluation

Baseline system configuration

As a baseline system we define a single-stream HMM with standard chroma feature and "LM"

decoder. Previous experiments provided in Section 5.2 showed that optimal window length

for standard chroma is 185 ms. As starting point, we observe 70.62% recognition rate on the

"Beatles-Queen" dataset. In the following sections different window lengths will be used for

the STD feature leading to different results. The baseline system configuration does not contain

tuning block. Tuning issues will be addressed later in this section.

Time-frequency reassigned chroma features with reassignment constraints

In this set of experiments, we introduce the RC feature set and investigate its behavior applying

reassignment constraints. In order to estimate the impact of the time-frequency reassignment

operation, statistical information on the energy reallocation distance in time-frequency coordi-

nates has been collected.

For window length of 96 ms,∆f and∆t distributions can be approximated with a Gaussian

with zero-mean and standard deviations of 15.68 Hz and 143 msrespectively.
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Figure 5.5: Semitone change distribution

Frequency shift (in semitones) -3 -2 -1 0 1 2 3

Percentage of energy reassignment0.14 0.43 4.28 90.23 4.33 0.37 0.19

Table 5.6: Semitone change distribution

The statistics about the frequency reassignments that leadto energy moving to another semi-

tone bin is given in Table 5.6 and Figure 5.5. This table showsthat about 9.7% of all the re-

assignments result in moving energy to an adjacent semitonebin, which makes an impact on
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5.5. TIME-FREQUENCY REASSIGNED CHROMA FEATURES

the chroma energy distribution. This preliminary statistical study shows the importance of the

time-frequency reassignment operation. Reallocating a substantial amount of energy between

different chroma components can improve the accuracy.

In order to estimate the efficiency of the time-frequency reassignment operation, other eval-

uation tests that impose reassignment restrictions were carried out. In these experiments, a

time-frequency rectangular window is defined as shown in Figure 5.6 and all the energy reas-

signments are constrained to remain inside this window. Otherwise, the reassignment operation

is not performed and original time-frequency coordinates are preserved. In practice,∆f and

∆t are limited to small values for the energy reassignment shift to be allowed. Two examples

of time-frequency rectangular window are given in Figure 5.6. In this schema, window width is

represented by a maximum allowed reassignment in the time domain, and height is represented

by that in the frequency domain.

f0

t0

f

t

1f∆ 2f∆

1t∆

2t∆

Figure 5.6: Schema of time-frequency reassignment window constraints

Experiments with different combinations of∆f and∆twere carried out. Figure 5.7 displays

chord recognition rates applying various reassignment constraints∆f and∆t. Results showed

that a minimum constraint of 100Hz-1sec is necessary to approach the performance provided

by the unconstrained reassignment with the best recognition rate. The difference between the

proposed TFR-based features and standard ones turned out tobe about 6%.

Some results from Figure 5.7 are given in Table 5.7. For this set of results, a Tukey’s

HSD test was also run. Figure 5.8 proves the fact that enlarging∆f and∆t results in system

configurations with statistically significant differencesin chord recognition rates.
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Figure 5.7: Evaluation results with time-frequency reassignment constraints as a function of∆f . Differ-

ent∆t are represented by different curves.
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Figure 5.8: Tukey’s HSD test.
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std 5_0.05 20_0.1 100_1 reas

65.38 66.65 73.79 76.02 76.70

Table 5.7: A subset of evaluation results with time-frequency reassignment constraints.

Alternative settings

Since the time-frequency reassignment technique used hereincludes weighting an analyzed

signal with a window function, an impact of different windowtypes on the performance was

investigated. The results for the STD (using 192 ms window length) and RC (using 96 ms

window length) feature are provided in Table 5.8.

From these results, it is shown that system performance doesnot vary greatly with differ-

ent window types. Blackman, Hanning and Hamming windows showed quite similar results.

Similar behavior was observed in the experiments describedin Section 5.2.

STD RC

hanning 70.62 76.70

hamming 70.5 76.63

blackman 70.41 76.56

kaiser(alpha=8) 70.36 76.82

Table 5.8: Performance of STD and RC feature with different window types.

A number of different configurations is involved for optimizing such parameters as spectrum

type (energy or magnitude), number of Gaussians to model emission probabilities and insertion

penalty.

Figure 5.9 depicts recognition rates using RC feature with different window lengths and

number of Gaussians. Hanning window is assumed here and later on. For each configuration

the best insertion penalty is assumed.

These results showed that for the RC feature optimal window length appeared to be 96 ms,

as opposed to the STD feature, for which such a short window length results in a much lower

performance. This fact is coherent with a more accurate energy localization in time for the

TFR-based features.

Figure 5.10 presents further investigation on the impact ofthe spectral energy rateδ intro-

duced in Equation ( 3.16). In the case of magnitude spectrumδ value is set to 1, for power

spectrum it is set to 2. An optimal parameter setting from theprevious experiments is here

assumed (RC feature, 96 ms Hanning window). The optimal value for the given dataset and

approach is around 0.75.

An important step in the feature extraction process is the estimation of the deviation of the
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Figure 5.9: Recognition rates using the RC features for different window lengths and Gaussian numbers
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Figure 5.10: Recognition rate for RC feature as a function ofδ.

63



5.5. TIME-FREQUENCY REASSIGNED CHROMA FEATURES

A4 note from 440 Hz and subsequent compensation for mis-tuning [67]. Since a considerable

amount of data used for the evaluation purposes was recordedseveral decades ago, the tuning

problem should be taken into careful consideration. Here wereprise the experiments that show

the impact of tuning block. Results with the STD and RC features with and without tuning are

provided in table 5.9.

STD STD tuning RC RC tuning

70.33 71.29 76.70 77.29

Table 5.9: Influence of tuning on STD and RC feature performance

The experimental results showed that the tuning operation plays an important role and leads

to an increase in performance of about 0.6% for the RC feature, similarly to what was observed

in Section 5.2.

A large-scale parameter optimization performed here lead to interesting results. Different

window types showed similar performance, RC feature showedthe best results with 96 ms

window length. Taking magnitude spectrum instead of energyleads to better performance.

Moreover, usingδ value of 0.75 leads even to a better performance. The usage oftuning block

proved to be reasonable.

Harmonic reassigned chroma

In order to improve the quality and robustness of the RC feature, and take an advantage of

possible harmonic filtering of the reassigned spectrogram introduced in section 3.4, the adoption

of the HRC features is here explored.
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Figure 5.11: Recognition rate for HRC as a function of the tolerance factor
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Figure 5.12: Recognition rate as a function of the number of Gaussians

First of all, the impact of the tolerance factorA introduced in (3.23) was investigated. As

shown in Figure 5.11. The optimal value ofA for the chord recognition task turned out to be

0.4 with recognition rate of 78.28%, although small deviations on this parameter seem to have

a minor impact in terms of loss of performance.

The next set of experiments aimed to compare HRC, RC and STD features. Figure 5.12

depicts recognition rates for different number of Gaussians. For each configuration the best

insertion penalty is assumed.

In all the three cases, the obtained results indicate good choice of the number of Gaussians

equal to 2048. Higher values do not bring significant improvement, while increasing compu-

tational load drastically. This trend may also depend on thetraining material size. As a result,

the HRC feature proved to be advantageous over RC with the optimal value ofA to be 0.4 with

chord recognition rate improved to 78.28%.

Chroma and bass-chroma in multi-stream HMMs

Having shown the advantage of the HRC features, in the next sections we will adopt them for

further investigations. The next step is based on the modelswith multi-stream observation layer

introduced in section 4.1. This set of experiments involvedthe technique of splitting frequency

range used for chroma calculation into two parts: chroma andbass-chroma. For computing

bass-chroma, frequencies that correspond to the MIDI rangebetween 24 (32.7 Hz) and 54 (185

Hz) notes are used. For chroma feature extraction frequencyinterval between 54 (185 Hz) and
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96 (2093 Hz) MIDI notes is employed. For these experiments, we used HRC feature based on

the spectrum calculated with Hanning window of 92 ms and tolerance factor set to 0.4. The

obtained chord recognition rate turned out to be equal to 80.26%, i.e., multi-stream HMMs

provided a further improvement of about 2%.

Thus, this bunch of experimental results proved the fact that splitting frequency region into

2 bands is reasonable and leads to a significant increase of chord recognition rate.

Chroma and bass-chroma weights

In order to take further advantage of using the two chroma streams, a careful evaluation of the

system performance was performed setting different streamweights in the Viterbi recognizer.
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Figure 5.13: Recognition rate (%) as a function of differentweights for chroma and bass-chroma observ-

able streams

Important parameters here are the weights of each stream. Figure 5.13 depicts recognition

rate as a function of bass-chroma weight and chroma weight. The self-test experiments, when

the training material was used as a test set, were also conducted. The obtained results, shown

in Figure 5.14, suggested the optimal stream weights for thegiven data corpus.

The experiments of this section proved that assigning different importance factors to differ-

ent feature streams by applying stream weights in the recognizer is effective. It was shown that

using weights 1, 0.7, for the chroma and bass-chroma streams, respectively, leads to the best

performance of 81.58%.
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Figure 5.14: Self-test recognition rate (%) as a function ofdifferent weights for chroma and bass-chroma

observable streams

Number of emitting states in HMM

A series of experiments involving more than 1 emitting states was conducted. Table 5.10 pro-

vides the summary of recognition rates as a function of Gaussian number for different number

of states (1 - 3). using 2 or 3 emitting states in HMM does not bring any improvement.

2 8 32 128 512 2048

1 state 72.6 75.15 77 78.89 79.91 81.58

2 states 71.96 74.88 77.6 78.55 79.74 81.22

3 states 71.93 74.59 77.22 79.03 79.87 80.82

Table 5.10: Recognition rates as a function of Gaussian number for different number of states in HMM

Chord confusions

Finally, in order to understand in detail chord misclassifications statistics, information about

typical errors was collected. The confusion pie charts for the baseline and best system configu-

rations are presented in figures 5.15.

The relation between detected chord and ground-truth chordis denoted by Roman numerals.

Lower-case numerals are used to indicate minor triads and upper-case for major ones. For

example, wrongly detectedG instead ofC is indicated asVI .

Major chord confusions of the baseline and the best system configurations do not show any

significant difference of the error statistics. At the same time, number of "parallel" errors for
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i 13%

III 5%

iii 2%

v 5%
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(a) Baseline formajor chord

i 11%

III 6%

iii 2%

v 3%

VI 22%

vi 2%
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(b) Best configuration formajor chord

I 28%

IV 21%

VI 8%

vi 6%

VIII 5%

viii 4%
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other 11%

(c) Baseline forminor chord

I 40%

IV 18%

VI 7%
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VIII 5%

viii 5%

IX 6%

XI 6%

other 7%

(d) Best configuration forminor chord

Figure 5.15: Chord confusion statistics.
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Minor increases to a considerable extent from 28% in the baseline system to 40% in the final

configuration. Significantly reduced the number ofXI confusions from 11% to 6%. However,

other error type statistics are similar for the baseline andbest system configurations.

Conclusions

In this section we proved the fact that accurate spectral analysis for feature extraction can sig-

nificantly improve chord recognition accuracy. RC feature performed significantly better than

standard chroma. Large-scale evaluations of chord recognition system with different parame-

ter configurations pointed out the optimal feature, which isHRC chroma with tolerance factor

set to0.4. Multi-stream HMM configuration, where the two observable streams correspond to

chroma and bass-chroma proved to be effective and showed better performance in comparison

with a single-stream HMM configuration. A substantial improvement over the baseline system

has been obtained with the final result of 81.58% recognitionrate.

5.6 Chroma features with reduced dimensionality

This section is concerned with the evaluation of chroma features with reduced dimensionality

introduced in Section 3.5. Tonal centroid as well as different IDCT features are evaluated.

Experimental setup used here is the same as described in Section 5.5.2.

The experimental results are given in Table 5.11. Here "2 chroma streams" is the best

configuration obtained using bass and treble chroma streamswith the corresponding stream

weights of 0.7 and 1.0. "Unique chroma vector" configurationutilizesccom1 vector as feature

set. "2 tonal centroid streams" is the 2-stream configuration with bass and treble tonal centroids

weighted by 1.0 and 1.0 correspondingly. In "Tonal centroidtreble" and "Chroma treble" we

investigate the advantages of tonal centroid over standardchroma. And finally "IDCTccom1"

and "IDCTccom1" are the IDCT features given in ( 3.29) and (3.30), while "IDCT ccom1 subtract

mean" shows system performance using mean subtraction technique.

Experimental results showed that tonal centroid did not show any advantage over standard

chroma features, neither in a single-stream, nor in a multi-stream configuration. Using IDCT

transform that is considered to be established technique inspeech processing did not prove its

effectiveness in chord recognition. Mean subtraction did not show any advantages, conversely,

it proved to decrease the performance drastically.
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Configuration Dimensionality Recognition rate

2 chroma streams 12+12 81.581

Unique chroma vector 24 79.339

2 tonal centroid streams 6+6 79.753

Tonal centroid treble 6 74.408

Chroma treble 12 76.691

IDCT ccom1 16 77.624

IDCT ccom1 16 77.211

IDCT ccom1 subtract mean 16 71.573

Table 5.11: Experimental results using feature dimensionality reduction

5.7 MIREX evaluations

In this section we present the results of the proposed chord recognition systems that partici-

pated in MIREX competitions. We compare the performance with other submitted systems and

analyze statistically significant differences in the results.

5.7.1 MIREX 2008

The first time audio chord recognition was included in the list of MIREX subtasks was in 2008.

At that time several approaches to chord recognition existed, but comparison of the output

results was difficult, because different measures were usedto assess the performance. MIREX

2008 established common rules and methodology for chord recognition systems evaluation.

Test set, which included 176 songs of Beatles, was defined. Atthat time it was the largest and

probably the only publicly available labeling dataset of ground-truth chords kindly provided by

C. Harte. The audio was in WAV format in at a sampling rate of 44.1 kHz and a bit depth of

16 bit. Ground-truth to audio alignment was done automatically with the script provided by

C. Harte. Audio chord detection task was divided into two subtasks, which are "train-test" and

"pretrained". In the "pretrained" subtask participants were supposed to submit systems that are

ready to perform chord transcription. All the parameters are set up in advance and no model

training is needed. In the "train-test" subtask the processof system evaluation consisted it two

steps. At first, model parameters are estimated using training data. In the last step, the trained

system is evaluated on the test data. 3-fold cross validation was adopted, where album filtering

was applied on each train-test fold. That means that songs from the same album can not appear

in both train and test sets simultaneously.

Two different measures were used. The first measure, that wascalled "Overlap score", is

the "recognition rate" measure introduced in Section 5.1.1. It is calculated as ratio between the
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duration of correctly identified chords and total duration of ground-truth chords. The second

measure, that is "Overlap score merged" is calculated in a similar manner. The only difference is

the fact that only chord roots from output labels are matchedagainst ground-truth. For example,

A:maj is considered to be correct if there is A:min in the ground-truth.

Participants from different teams are presented in Tables 5.12 and 5.13. The results for

"pre-trained" and "train-test" subtasks are given in Figure 5.16. Tukey-Kramer HSD tests for

statistical significance are depicted in Figure 5.17.

Team ID Authors

BP J. P. Bello, J. Pickens

KO M. Khadkevich, M. Omologo

KL1 K. Lee 1

KL2 K. Lee 2

MM M. Mehnert

PP H.Papadopoulos, G. Peeters

PVM J. Pauwels, M. Varewyck, J-P. Martens

RK M. RyynÃd’nen, A. Klapuri

Table 5.12: Team legend for MIREX 2008 pretrained subtask.

Team ID Authors

DE D. Ellis

ZL X. Jhang, C. Lash

KO M. Khadkevich, M. Omologo

KL K. Lee

UMS Y. Uchiyama, K. Miyamoto, S. Sagayama

WD1 J. Weil

WD2 J. Weil, J.-L. Durrieu

Table 5.13: Team legend for MIREX 2008 train-test subtask.

KO system that participated in both subtasks is described in Section 5.2 of experimental

results. Standard chroma features that were introduced in Section 3.1 were used as a front-end.

"No-LM" system configuration described in Section 4.3.3 wasadopted. At that time, out chord

recognition system did not include language modeling functionality. Parameter estimation for

the "pretrained" system configuration was performed using the "Beatles" dataset. The difference

in performance between our systems in "pretrained" and "train-test" subtasks appeared to be

about 8%. It seems to be due to a small bug in the chroma computation module and the fact that

"pretrained" system had seen the test material before, since it was previously used for model
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Figure 5.16: MIREX 2008 results in audio chord detection.

(a) Pretrained subtask (b) Train-test subtask

Figure 5.17: Tukey-Kramer HSD test for MIREX 2008 results.

parameter estimation.

In the "pretrained" subtask the system of Bello and Pickens showed the best performance.

However, the winner of the competition is undoubtedly the system of Uchiyama, Miyamoto,

and Sagayama. It showed 72% overlap ratio with statistically significant difference from all

other systems, as shown in Figure 5.17. The system of Ellis with the overlap score of 70% also

showed the results that are significantly better than all therest of the systems.
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5.7.2 MIREX 2009

MIREX 2008 audio chord recognition contest had attracted the attention of many people work-

ing in the MIR area. 15 systems were submitted from 11 different researchers and research

groups. Rules and methodology of evaluation in MIREX 2009 were derived from MIREX

2008. However, the test material was enlarged and comprisednot only the Beatles collection,

but 38 additional songs of Queen and Zweieck donated by Matthias Mauch.

Participants from different teams are presented in Tables 5.14 and 5.15. The results for

"pre-trained" and "train-test" subtasks are given in Figure 5.18. Tukey-Kramer HSD tests for

statistical significance are depicted in Figure 5.19.

Team ID Authors

CH C. Harte

DE D. Ellis

KO1 – KO2 M. Khadkevich, M. Omologo

MD Matthias Mauch, Katy Noland, Simon Dixon

OGF1 – OGF2 L. Oudre, C. Fëvotte, Y. Grenier

PP H. Papadopoulos, G. Peeters

PVM1 – PVM2 Johan Pauwels, Matthias Varewyck,Jean-Pierre Martens

RRHS1 – RRHS3 T. Rocher, M. Robine, P. Hanna, R. Strandh

Table 5.14: Team legend for MIREX 2009 pretrained subtask.

Team ID Authors

RUSUSL J.T.Reed,Yushi Ueda,S.Siniscalchi,Yuki Uchiyama,Shigeki Sagayama,C.H.Lee

WEJ1 – WEJ4 Adrian Weller, Daniel Ellis, Tony Jebara

Table 5.15: Team legend for MIREX 2009 train-test subtask.

KO1 andKO2 system was submitted to partcipate in the "pretrained" subtask. In compar-

ison with the systemKO that was submitted to MIREX 2008, several minor improvements in

the feature extraction block were made. Mistuning rate estimator was added, which improved

the front-end.KO2 system was equipped with the language modeling block. The configuration

is derived from the "LM" system described in Section 4.3.3.

Both systems,KO1 andKO2, showed good results. The difference in overlap score between

KO2 and the best submission in the "pretrained" subtask, which is MD , appeared to be only

0.3%. The best system showed 71.2% of overlap score. The nextresult was produced by the

systemOGF2 with the overlap score of 71.1%, which is extremely close to the highest result.

There is no surprise that HSD test did not show significant differences between the bestsix re-
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Figure 5.18: MIREX 2009 results in audio chord detection.

sults, as shown in Figure 5.19.KO1 andKO2 systems showed 69.7% and 70.8% overlap ratios

respectively. It is worth noting that inKO1 no statistical information about chord transitions

was used. Transition probabilities between each chord pairare equal and classification is based

solely on acoustic features. Including language modeling in KO2 showed a slight increase in

performance.

The leader in the "train-test" subtask is the submissionWEJ4 of Weller et al. with the over-

lap ratio of 74.2%. The algorithm is based on the applicationof SVM [81] and outperformed

the best system from the "pretrained" subtask.

5.7.3 MIREX 2010

MIREX 2010 gave a new perspectives on large scale evaluationof MIR systems. NEMA

MIREX DIY infrastructure was developed to facilitate the process of automatic processing the

results. In contrast to the previous years, evaluation metrics changed. Instead of "overlap ratio

merged", "weighted average overlap ratio" metric was introduced. "Weighted average overlap

ratio" was calculated as the average overlap ratio calculated on the song basis. Dataset remained

the same as in MIREX 2009. Starting from MIREX 2010 "pretrained" and "train-test" subtasks

are merged together in a single "audio chord detection" task.

Participants from different teams are presented in Table 5.16. The results are given in Ta-

ble 5.17. Tukey-Kramer HSD tests for statistical significance are depicted in Figure 5.20.

Two different systems were submitted. They areKO1 andMK1 . Recently developed RC

features were used as the front-end. Multi-stream HMM were utilized for acoustic model-

ing, where frequency range for chroma calculation was splitinto two parts: chroma and bass-
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(a) Pretrained subtask

(b) Train-test subtask

Figure 5.19: Tukey-Kramer HSD test for MIREX 2009 results.

chroma. "LM" system configuration was adopted. WhileMK1 system needed training,KO1
system was submitted with all the model parameters estimated in advance.

MIREX 2010 competition in chord detection showed significant increase in performance
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Team ID Authors

CWB1 T. Cho, R. Weiss, J. Bello

EW1 – EW4 D. Ellis, A. Weller

KO1 M. Khadkevich, M. Omologo

MD1 M. Mauch, S. Dixon

MK1 M. Khadkevich, M. Omologo

MM1 M. Mauch

OFG1 L. Oudre, C. Fëvotte, Y. Grenier

PP1 H. Papadopoulos, G. Peeters

PVM1 J. Pauwels, M. Varewyck, J.-P. Martens

RRHS1 – RRHS2 T. Rocher, M. Robine, P. Hanna, R. Strandh

UUOS1 Y. Ueda, Y. Uchiyama, N. Ono, S. Sagayama

Table 5.16: Team legend for MIREX 2010 audio chord detectioncontest.

Algorithm Chord Overlap ratio Chord weighted average overlap ratio

MD1 0.8022 0.7945

MM1 0.7963 0.7855

CWB1 0.7937 0.7843

KO1 0.7887 0.7761

EW4 0.7802 0.7691

EW3 0.7718 0.7587

UUOS1 0.7688 0.7567

OFG1 0.7551 0.7404

MK1 0.7511 0.7363

EW1 0.7476 0.7337

PVM1 0.7366 0.727

EW2 0.7296 0.7158

RRHS1 0.7263 0.7128

PP1 0.7023 0.6834

RRHS2 0.5863 0.5729

Table 5.17: MIREX 2010 results in Audio Chord Detection.

in comparison with the previous years. The best "overlap ratio" of 80.2% showed the system

MD1 of Mauch and Dixon. In comparison with MIREX 2009, where the best achieved result

was 74.2%, a significant increase of 6% was observed. Needless to mention the fact that the

average performance of the submitted systems is significantly higher than a year before.KO1
andMK1 systems showed 78.9% and 75.1% overlap ratios respectively. In comparison with the

MIREX 2008, where the difference in performance between our"pretrained" and "train-test"

systems was about 8%, here we can observe only 3.8%.
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(a) Overlap ratio

(b) Weighted average overlap ratio

Figure 5.20: Tukey-Kramer HSD test for MIREX 2010 results.

5.7.4 MIREX 2011

MIREX 2011 contest in audio chord detection is an exact replica of MIREX 2010 in terms of

evaluation metrics and datasets.

Participants from different teams are presented in Table 5.18. The results are given in Ta-

ble 5.19. Tukey-Kramer HSD tests for statistical significance are depicted in Figure 5.21.

Our chord detection systems are marked asKO1 andKO2. As opposed to our submissions

to MIREX 2010, where RC features were used as the front-end, HRC features were adopted.

The same multi-stream HMM configuration as in MIREX 2010 was utilized. Similarly to the

previous year, we submitted two systems.KO1 system was submitted pretrained, whileKO2
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Team ID Authors

BUURO1 – BUURO5 I. Balazs, Y. Ueda, Y. Uchiyama, S. Raczynski, N. Ono, S. Sagayama

CB1 – CB3 T. Cho, J. P. Bello

KO1 – KO2 M. Khadkevich, M. Omologo

NM1 Y. Ni, M. Mcvicar

NMSD1 – NMSD3 Y. Ni, M. Mcvicar, R. Santos-Rodriguez, T. De Bie

PVM1 J. Pauwels, M. Varewyck, J.-P. Martens

RHRC1 T. Rocher, P. Hanna, M. Robine, D. Conklin

UUOS1 Y. Ueda, Y. Uchiyama, N. Ono, S. Sagayama

UUROS1 I. Balazs, Y. Ueda, Y. Uchiyama, S. Raczynski, N. Ono, S. Sagayama

Table 5.18: Team legend for MIREX 2011 audio chord detectioncontest.

Algorithm Chord Overlap ratio Chord weighted average overlap ratio

NMSD2 0.976 0.9736

KO1 0.8285 0.8163

NMSD3 0.8277 0.8197

NM1 0.8199 0.8114

CB2 0.8137 0.8

CB3 0.8091 0.7957

KO2 0.7977 0.7822

CB1 0.7955 0.7786

NMSD1 0.7938 0.7829

UUOS1 0.7689 0.7564

PVM1 0.7396 0.7296

RHRC1 0.7289 0.7151

UUROS1 0.3429 0.3386

BUURO3 0.3427 0.3385

BUURO1 0.2361 0.2313

BUURO4 0.1898 0.1853

BUURO2 0.1675 0.1616

BUURO5 0.1264 0.1215

Table 5.19: MIREX 2011 results in Audio Chord Detection.

system was submitted for 3-fold cross-validation.

The highest overlap ratio showed systemNMSD2 of Ni et al. Almost perfect chord tran-

scription was demonstrated with the overlap ratio of 97.6%.However, it is probable that the sys-

tem used ground-truth labels along with some song identification algorithm, assigning ground-

truth chord progression to the identified song. This can be guessed from the fact that the ma-

jority of the transcribed songs had 100% overlap ratio. For the songs that the system could not

identify properly we can observe inconsistencies in the duration of output labels, for example,

the output labels for an audio file of 120 seconds could be 170 seconds.

Among the rest of the systems that are based solely on the audio content analysis,KO1
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(a) Overlap ratio

(b) Weighted average overlap ratio

Figure 5.21: Tukey-Kramer HSD test for MIREX 2011 results.

showed the highest overlap ratio of 82.85%. The next resultsare pretty much close to this value

and do not show statistically significant differences as shown in Figure 5.21. We can observe

further improvement of chord recognition system performance in comparison with MIREX

2010.
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Chapter 6

Conclusions

This chapter summarizes contributions of the first part of the thesis. Possible directions for

future work are outlined.

6.1 Summary of the contributions

In Chapter 2 we reviewed state-of-the-art approaches to automatic chord recognition. Classi-

fication into template-matching, statistical, and hybrid approaches was provided. General in-

formation on feature vector selection and extraction techniques for automatic chord recognition

was given. The importance of mistuning estimation problem was highlighted.

Chapter 3 was concerned with different frond-end configurations. Phase-change based

method for mistuning rate estimation was proposed. A new class of chroma features that is

based on the PQMF filter bank and Time-Frequency Reassigned spectrogram was introduced.

Detailed description of feature vector extraction using the proposed methods was provided. The

main contribution of this chapter is the introduction of twonovel chroma features.

In Chapter 4 we presented a probabilistic approach to automatic chord recognition and intro-

duced two-level system architecture. Acoustic modeling approach base on multi-stream HMMs

was described. Application of standard and factored language models was outlined. Finally,

general overview of the proposed chord recognition system was given.

In Chapter 5 we performed a systematic evaluation of different system configurations. We

investigated the influence of different parameters on the system performance. The experimental

results show that chroma extraction based on PQMF filter bankanalysis and subsequent period-

icity detection does not outperform the standard approach for the analysis frame length of 182

ms. However, when taking into consideration short-term analysis with frame lengths of 46 ms

and 92 ms the proposed approach significantly outperforms the application of standard chroma

feature. The TFR technique proved to be effective for producing more accurate chroma features

that outperformed the traditional one. A novel approach forharmonic component separation in
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the spectral domain that was used for generating HRC chroma feature showed the best perfor-

mance. Tolerance factor impact on the HRC feature performance was addressed and an optimal

choice has been individuated. Another interesting investigation was carried out in the acoustic

modeling. The multi-stream HMM structure for chord recognition system, where the two ob-

servable layers represent harmonic content of two frequency regions was evaluated and showed

better performance in comparison with the single-stream HMM structure. Experimental results

showed that assigning different weights to different feature streams influences the recognition

rate. We proved the fact that accurate spectral analysis forfeature extraction can significantly

improve chord recognition accuracy. Large-scale evaluations of chord recognition systems with

different parameter configurations pointed out the optimalsettings, which imply HRC chroma

feature with multi-stream HMM, where the two observable streams correspond to chroma and

bass-chroma. A substantial improvement over the baseline system has been obtained with the

final result of 81.58% recognition rate. The proposed systemshowed the highest overlap ratio in

MIREX 2011 competition among chord recognition systems, which are based solely on audio

content analysis.

6.2 Future work and perspectives

MIREX competitions during the past 4 years show a notable trend to continuous improvement

of different submitted chord recognition systems. Starting from 72% of the best overlap ratio in

2008, we can observe an increase of about 10% nowadays.

The most straightforward possible improvement can be brought to the system by including

probabilistic modeling of temporal structure. This can be done by introducing an additional hid-

den layer in HMMs, where hidden states correspond to different beat phases. Additional feature

vector stream for modeling observation probabilities of beat events will be introduced. An inter-

esting research could be carried out in the area of possible interaction and mutual dependencies

of different hidden layers in HMMs.

Another interesting direction of future work considers further improvement of the feature

vectors quality. Careful analysis of higher harmonics can be performed using the proposed TFR

technique. Applying higher harmonic subtraction can lead to even better performance, as was

shown in [34, 35].
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Part II

Beat structure extraction
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In this part of the thesis we suggest an approach that performs simultaneous estimation of

beats and downbeats. It consists of two hierarchical layers, which include acoustic modeling

and beat sequence modeling, and proposes a novel schema to model periodic metrical structure.
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Chapter 7

Background

Extracting different types of semantic information from music data has become an emerging

area of research in Music Information Retrieval (MIR) community. Tempo estimation and

beat/downbeat tracking are amongst the most challenging tasks in MIR community. While

processing modern rock and pop songs with rich percussive part and stable rhythm is a nearly

solved problem, dealing with non-percussive music with soft note onsets and time-varying

tempo, that is characteristic of classical music, is still achallenge.

As opposed to tempo estimation, where only the periodicity of beats is looked for, beat/downbeat

tracking implies also producing correct time positions corresponding to rhythmical events. A

notion of beats can be defined as time instants, when human being taps his or her foot trying to

follow the music. From the musicological viewpoint, downbeat position is defined as the first

beat in a bar. Classification of rhythmical events into beatsand downbeats brings a portion of

useful information about metrical structure, that can be used as high-level feature in many MIR

tasks.

There are lots of different approaches for beat/downbeat extraction. Most of them are based

on searching for periodicities in some kind of Onset Detection Function (ODF) [82], [83]. The

most common periodicity detection methods are based on autocorrelation [84], [85], bank of

comb filter resonators [86], or short-time Fourier transform of the ODF [84]. All the methods

aim at revealing periodicities in the onset-energy function, from which beat positions and tempo

can be derived. The intensities of the estimated periodicity are not constant over time and can

be visually represented by means of spectrogram-like representations called rhythmogram [87].

However, estimating beat structure for non-percussive sounds, especially with soft note onsets,

becomes a more complex problem due to the noisy ODF. In order to circumvent this, more

sophisticated methods that are based on pitch [88] and groupdelay [89] analysis were proposed.

A lot of attention has been paid to the problem of downbeat tracking. Most approaches are

based on some prior knowledge, extracted on previous steps or given to the system as input

parameters [90].
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Dixon [91] proposed a system that is able to estimate the tempo and the beat locations in

expressively performed music. His system can manage eithersymbolic data such as MIDI, or

raw audio. The processing is performed off-line to detect the salient rhythmic events. Then,

different hypotheses about the tempo at various metrical levels are generated. Based on these

tempo hypotheses, a multiple hypothesis search was appliedto find beat locations that fit to the

rhythmic events in the best way. In his approach, multiple beat agents compete with each other

in the prediction of beat events. His system was tested on a dataset containing songs belonging

to different musical styles.

Ellis and Poliner [92], [58] proposed a beat-tracking system that is based on global tempo

estimation. The global tempo is extracted using the autocorrelation of ODF function. Then they

apply dynamic programming to locate beat positions in the whole song so that beats are placed

at the time instants with high ODF values, at the same time keeping spaces between beats that

correspond to the global tempo.

Goto [5] described another multiple agent-based beat tracking system that recognizes a hier-

archical beat structure. His system is capable of real-timeprocessing. The analysis is performed

on several layers: beat, half-bar, and bar. The proposed system can manage audio data with and

without drums. Onset times, chord changes, and drum patterns are used to derive hierarchical

beat structure. Onset positions are represented by seven-dimensional onset-time vector, where

dimensions correspond to the onset times across seven parallel frequency sub-bands. Tempo

is estimated using the autocorrelation of the onset sequence. For half-bar and bar detection,

bass drum and a snare drum events are detected and matched against drum templates. For non-

percussive sounds a measure of chord change probability is used. The underlying ideas are

supported by the fact that chord changes occur most commonlyon bar positions.

Recently, several HMM-based approaches have been proposed. Peeters in [93] proposed

used reverse Viterbi algorithm which decodes hidden statesover beat-numbers, while beat-

templates are used to derive observation probabilities. YuShiu and C.-C. Jay Kuo used periodic

HMM structure to extract beat locations [94], based on the tempo information obtained on the

previous step.
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Chapter 8

Feature extraction

The efficiency of many MIR systems depends highly on the choice of acoustic features. Each

task has its distinctive characteristics, and appropriatefeature selections plays an important role.

This chapter introduces acoustic features for effective and accurate beat/downbeat positions

extraction. Three different features are proposed. The first dimension is represented by On-

set Detection Function (ODF) that is based on the impulsive part of the reassigned spectro-

gram. The second and the third dimensions are introduced to model the dynamics of harmonic

changes. In order to model fast and slow changes, Chroma Variation Function (CVF) is calcu-

lated for short and large context windows. The choice of CVF as a feature vector component

is based on the assumption that most harmonic changes that occur inside a piece of music are

located on the bar positions.

8.1 Onset detection function

There are several approaches to compute Onset Detection Function in the literature [82], [83].

Some studies have addressed the usefulness of signal decomposition into several frequency

bands and subsequent independent analysis in each band. Goto and Muraoka [95] split the

spectrogram into several strips and recognizes onsets by detecting sudden changes in energy.

Extracted seven-dimensional onset-time vectors are then processed by a multi-agent system.

An example of onset-time vector used in their approach is depicted in Figure 8.1

Scheirer [96] implemented a bank of six elliptic filters. Thefiltering was performed in time

domain. In the next step, tempo is extracted using another bank of comb-filters.

Alonso et al. [82] used decomposition of the analyzed signalinto several frequency sub-

bands. Decomposition is performed using a bank of 150th order FIR filters with 80 dB of

rejection in the stop band. They also suggest to perform harmonic+noise decomposition of the

signal, which aims at separating sinusoidal components from residual noise. In the next step,

Musical Stress Profile (MSP), which is an analogue of ODF, is extracted. MSP calculation is
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Figure 8.1: Onset-time vector in the approach of Goto and Muraoka.

based on the extraction of Spectral Energy Flux (SEF). The choice to use SEF is based on gen-

eral assumption that the appearance of an onset in an audio stream leads to a variation in the

signal’s frequency content.

In this work, we propose a novel method to derive onset detection function. It is based on

the impulsive part of the reassigned spectrogram.

ODF extraction process starts with transforming audio signal into spectral domain using

TFR technique described in Section 3.4. Time-frequency reassigned spectrogram is computed

applying impulsive component filtering as shown in Equation(3.24). Having filtered impulsive

energy components from the spectrum, onset detection function is obtained by summing all the

spectral components in the given frame.

ODF (t) =
∑

k

Simp(t, k) (8.1)

whereSimp(t, k) is the impulsive spectrogram. Spectral energy sum of the impulsive com-

ponents acts as the first dimension in the feature vector space.
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(a) Waveform

(b) Impulsive part of reassigned spectrogram

(c) Onset detection function

Figure 8.2: Onset detection function of an accending note passage.

8.2 Chroma variation function

Discrimination between beats and downbeats is particularly challenging and often needs a richer

feature set, rather than a single ODF. Davies [90] used spectral difference between band-limited

beat synchronous analysis frames as a robust downbeat indicator. In this work we propose to use

Chroma Variation Function. The main concept here on which webase our ideas is the fact that

harmonic (chord) changes occur very frequently on the downbeat positions. CVF reflects the

discrepancies between mean chroma vectors of two adjacent segments. This technique was used

in [97] and [98], where spectral variation function features were used in for speech recognition

and automatic segmentation purposes. It was shown that using variable context lengths along

with mean subtraction leads to more robust features. In thispaper we adopt a similar approach.

Let c(k) be a chromagram is extracted from the harmonic part of the reassigned spectrogram

Sharm(k, n) introduced in [59]. LeftclL(k) and rightcrL(k) contexts of lengthL correspond to

the bins with indexes[k − L, ..., k] and[k, ..., k + L] respectively.

CV F (k) =
1−min(Mleft,Mright)

2
(8.2)
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8.2. CHROMA VARIATION FUNCTION

where:

Mleft = min
1≤j≤L

(ρ(clL
′(k), crj

′(k))) (8.3)

Mright = min
1≤j≤L

(ρ(clj
′(k), crL

′(k))) (8.4)

In these equationsclj
′(k) andcrj

′(k) are the left and the right contexts with subtracted mean

value over timem(k) of the context that corresponds to the bins with indexes[k−L, ..., k+L].

clj
′(k) = clj (k)−m(k) (8.5)

crj
′(k) = crj (k)−m(k) (8.6)

whenρ(cl, cr) is the normalized inner product between the two context means:

ρ(cl, cr) =
< c̄l, c̄r >

|c̄l||c̄r|
(8.7)

The meaning ofCV F (k) can be interpreted as a cosine of an angle between the two mean

chroma vectors with subtractedm(k) value. In order to identify the highest (i.e., most signif-

icant) chroma variations, given the left and the right contexts, minimum values in Equations

(8.3) and (8.4) are used. Varying context lengthL allows one to set up the ability to detect

smooth or fast harmonic changes.

An example of ODF and CVF features extracted from George Michael’s "Careless Wisper"

are shown in Figure 8.3. Plot 8.3a depicts ground-truth labels for the analyzed excerpt. Thick

vertical lines correspond to downbeat positions, while thin lines show beat locations. Onset

Detection Function extracted from the excerpt is shown in Figure 8.3b. In the next two plots,

Chroma Variation Functions with context lengths of 0.4 and 2sec are depicted. Vertical dotted

lines correspond to the time instants, where there is a localpeak in CVF.
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(a) Ground-truth labels

(b) ODF extracted from waveform

(c) CVF with context length of 400 ms.

(d) CVF with context length of 2000 ms.

Figure 8.3: Different feature components extracted from George Michael’s "Careless Wisper".
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Chapter 9

System architecture

This chapter describes the proposed statistical approach to automatic extraction of beat sequence

from audio. A system architecture that consists of two hierarchical levels, acoustic modeling

and beat sequence modeling is introduced. As opposed to deterministic approaches, where beat

locations are obtained by periodicity analysis and subsequent beat locating using the tempo

information extracted on the previous step, no prior information is needed in the proposed

scheme. A specific dictionary and unit alphabet for applyinglanguage model approaches are

introduced.

The proposed system is capable of simultaneous extraction of beat and downbeat rhyth-

mic events. A dictionary of beat words is introduced, where different words represent time

segments between two adjacent beat events. Similarly to speech recognition, a unit-based tran-

scription of each beat word from the dictionary is provided.The alphabet includes 5 units (beat

pre-attack/attack, downbeat pre-attack/attack, no-beat) and beat words are then defined by ag-

gregating units. Each beat word is then characterized by a given duration. In order to model the

periodicity of beat events, language modeling block is utilized. Beat word sequence statistics

extracted from ground-truth material are used to train N-gram language models.

Section 9.1 introduces acoustic modeling approach adoptedhere. Section 9.2 is devoted

to language modeling techniques. The overview and detaileddescription of the proposed

beat/downbeat extraction system is then presented in Section 9.3.

9.1 Acoustic modeling

This section describes the process of building acoustic models for beat/downbeat detection. Two

different approaches are introduced. In both approaches ananalogy between beat/downbeat

detection and speech recognition is drawn, based on the following relationship: phoneme, word,

and sentence in speech correspond to unit, beat word, and beat sequence respectively. Figure 9.1

depicts different description levels for a speech sentenceand a beat sentence respectively. Two
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9.1. ACOUSTIC MODELING

beat word classes are introduced, which are beats and downbeats. Each beat word from the beat

dictionary is characterized by type and duration. The next level of word segmentation is the

phoneme-based or unit-based level. At this level, different units that comprise beat words are

modeled by a number of hidden states in HMMs.

���� � ����	

�� � �


 � �

�

HMM level

Phoneme (unit) level

Word level

(a) Speech sentence

����

������ �����������������

� � �
HMM level

Unit level

Word level������������

(b) Beat sequence

Figure 9.1: Description levels for a speech sentence and a beat sequence.

In the following sections we introduce two different approaches to acoustic modeling. The

first approach is based on word-level modeling, while the second approach takes advantages of

unit-based acoustic modeling.

9.1.1 Word-based acoustic modeling

The first approach is based on using a dictionary consisting of the two words: beat (BT) and

downbeat (DBT). In the training stage audio data is segmented according to the ground-truth

labels so that each segment contains time interval between two adjacent beat markers. Two sepa-

rate left-to-right HMMs that correspond to BT and DBT modelsare trained using feature vectors

extracted from the training material. Each model consists of 3 hidden states. They are supposed

to model beat/downbeat attack, sustain and pre-attack phase of the next beat/downbeat. How-

ever, no unit-level segmentation information is used in thestep of training. All the emission
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CHAPTER 9. SYSTEM ARCHITECTURE

probabilities are learned from the data using Baum-Weltch algorithm. In the test stage trained

HMMs are used by Viterbi decoder to output beat sequences. The block diagram of the de-

scribed system is depicted in Figure 9.3. HMM training and model connection is schematically

represented in Figure 9.2.
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Figure 9.2: Word-level acoustic modeling.
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Figure 9.3: Block diagram of beat transcription system.

An output example of the above-described system is shown in Figure 9.4. The first results

revealed the fact that the problem of producing periodic output exists and the need for adapting

the structure of HMMs is evident. As opposed to the speech recognition task, where word

durations can vary significantly and do not influence the overall performance, beat/downbeat

detection has some distinctive features. One of the most serious problems one can come across,

when trying to use HMM for decoding highly periodical events, is the problem of keeping
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9.1. ACOUSTIC MODELING

periodicity in the output labels. Self-transitions in the states of an HMM allow the model to

remain in the same state for quite a long period of time. At thesame time, some intervals with

numerous note onsets can produce quite dense estimated beatoutput, as shown in Figure 9.4.

(a) Ground-truth and output labels

(b) Onset detection function

Figure 9.4: An example of the transcription output of GeorgeMichael’s "Careless Wisper".

9.1.2 Unit-based acoustic modeling

Word-based acoustic modeling that was described in the previous section outlined the prob-

lem of periodicity in the output labels. There were some attempts to address this problem in

HMM-based approaches. Y. Shiu et al. [94] proposed periodicleft-to-right model that produces

periodic output. However, a prior information on the tempo is required.

The solution proposed here is to take advantage of unit-based acoustic modeling, to discard

all self-transitions in HMMs, and to add an additional beat sequence modeling layer to the sys-

tem architecture. In this approach, a unit dictionary is constructed, where different units model

the following events: beat pre-attack (BTp), beat attack (BTa), downbeat pre-attack (DBTp),

downbeat attack (DBTa) and "no beat" (NB). We draw an analogybetween a unit in the beat

extraction task and a phoneme in speech recognition as was shown in Figure 9.1b.

All the units, apart from NB, are represented by a left-to-right HMM with a numberNst

of hidden states and no self-transitions. The NB unit has only one emitting state. The number

of statesNst imposes a duration constraint and corresponds to the necessary number of time

frames to output the unit.
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CHAPTER 9. SYSTEM ARCHITECTURE

Model parameter estimation utilizes training material with ground-truth markers, labeled

manually. Extracted feature vectors are segmented according to the ground-truth labels so that

each segment containsNst frames corresponding to a specific unit. All the emission probabili-

ties are learned from the training data using Baum-Welch algorithm.

In such a way, different units model different phases of beat/downbeat event, at the same

time following the duration constraint. The proposed training schema rules out the possibility

to stay in any state for more than one frame. Figure 9.5 depicts an example of acoustic modeling,

whereNst = 4 andn(i) is the number of frames used to train the NB unit ini-th ground-truth

beat segment.
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Figure 9.5: Unit-level acoustic modeling.

9.2 Language modeling

Unit-based acoustic modeling approach that was described in the previous section needs high-

level language modeling to aggregate units in beat words andto introduce beat duration factor.

Language modeling layer is an essential part in the proposedbeat detection system. Its

main target is to provide statistical information about beat sequences and beat periodicity. The

dictionary for the beat/downbeat tracking task consists oftwo word classes: beat and downbeat

words. Each word from the dictionary is characterized by theduration information.

For each word a unit-level transcription is provided. It consists of a pre-attack unit, followed

by an attack unit and a numberdb of NB units that define the duration factor. The first 7 words

of the dictionary are provided in Table 9.1.

Having ground-truth annotations for both beats and downbeats, one can collect the statistics

on possible beat word sequences. Language model training starts with the extraction of beat

sequences from the ground-truth labels. Each beat sequenceis composed of beat words defined
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Table 9.1: Dictionary for the beat/downbeat tracking task

Word Unit transcription

beat20 BTp BTa 20NB

downbeat20 DBTp DBTa 20NB

beat21 BTp BTa 21NB

downbeat21 DBTp DBTa 21NB

beat22 BTp BTa 22NB

downbeat22 DBTp DBTa 22NB

beat23 BTp BTa 23NB

as described above. The duration information for each beat word is extracted from the time

instants corresponding to the boundaries of the segment.

In order to take into account all possible tempo variations,scaling factorsf in the range

[0.8 − 1.2] with the step of0.05 are applied. Let us assume a ground-truth beat sequence that

consists of only three beat words that are downbeat50, beat50, beat50. The durationdb of each

beat word is equal to 50 frames. After applying scaling procedure with different scaling factors

sf , a number of beat sentences are obtained. Durationdf(i) of beat words ini-th sentence is

defined asdf(i) = dbsf (i). As a consequence, a number of beat sequences is extracted from

each ground-truth song. An example of the training materialextracted from a short song is

given in Table 9.2. Symbols< s > and< /s > denote the beginning and the end of a musical

piece respectively. Extracted material is given as an inputto trainN-gram language models.

Table 9.2: Text extracted from the ground-truth labels

< s > downbeat52 beat52 beat52 beat52 downbeat52 ... beat52< /s >

< s > downbeat54 beat54 beat54 beat54 downbeat54 ... beat53< /s >

< s > downbeat56 beat55 beat56 beat55 downbeat55 ... beat55< /s >

< s > downbeat57 beat57 beat57 beat57 downbeat57 ... beat57< /s >

...

< s > downbeat94 beat94 beat94 beat94 downbeat94 ... beat94< /s >

< s > downbeat96 beat96 beat96 beat96 downbeat95 ... beat95< /s >

< s > downbeat98 beat97 beat98 beat97 downbeat97 ... beat97< /s >

The proposed approach, which includes acoustic and language modeling impose duration

constraints and solves the problem of keeping periodicity in the output labels. For example,

in order to output beat23 word in the process of decoding it isnecessary for the system to

start in BTs unit model, remain there for the time corresponding to Nst frames, continue in

BTa unit model, remain there for anotherNst frames, and finally switch to 23 successive NB

unit models. The absence of self-transitions in HMMs allowsfor defining duration constraints.

Such an explicit duration modeling allows one to have as an output labels with stable duration.

The proposed language modeling approach is flexible and N-gram models can be trained on

many musical styles. For example, while working with modernpop and rock music, one can
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CHAPTER 9. SYSTEM ARCHITECTURE

observe stable tempo. However, when dealing with other musical styles such as classic one can

observe frequent tempo changes. The main advantage of the proposed approach is the absence

of imposed deterministic rules. All the system parameters are estimated using the training data.

9.3 Beat/downbeat detection

The process of beat structure extraction starts with feature vector extraction for a given test song

as described in Section 8. Extracted feature vectors are then passed to the decoder. Similarly to

the approach of multiple-pass decoding, which has been successfully used in speech recogni-

tion [71], the decoding procedure consists of two steps. In the first step, time-and-space efficient

bigram language model is applied in the stage of Viterbi decoding, producing a lattice. Lattice

nodes denote time instants and lattice arks denote different hypotheses about beat and downbeat

events. In the second step, the obtained lattice is rescoredapplying more sophisticated 4-gram

language models on the reduced search space. Finally, the obtained transcription labels are

matched against ground-truth. A block-diagram of the system is presented in figure 9.6.

Training data

audio labels

Test data

audio

Feature extraction 
module

Training HMMs

Feature extraction 
module

Viterbi decoder

Output labels
Training LMs Lattice rescoring

bi
gr

am

Figure 9.6: Block diagram of the modified beat transcriptionsystem.
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9.4 Reference system

For the sake of objective evaluation, we compare the proposed beat detection system with a

reference system. The reference system we used is the Sonic Annotator software1 with Bar and

Beat TrackerQM Vamp plug-in2. It will be referred to as "Davies". The plug-in first calculates

an Onset Detection Function using the "Complex Domain" method described in [99]. Extracted

ODF is processed twice, first to estimate the tempo, and then to estimate beat locations. In

the stage of tempo extraction, ODF is segmented into frames of 6 second duration with 75%

overlapping. The autocorrelation function of each segmentis computed, and then it is passed

through a perceptually weighted comb filter bank [99]. Matrix of periodicity observations is

produced by the output of the filter bank. In the final step, Viterbi decoder is used to estimate

the best path of periodicity through the observations. Given the extracted tempo, beat locations

are localized by applying the dynamic programming algorithm described in [85]. Recursive

cumulative score function of the ODF is calculated and backtraced on the next step. The cu-

mulative score indicates the likelihood of a beat existing at each sample of the onset detection

function input, and the backtrace gives the location of the best previous beat given this point in

time. Stark et al. [100] proposed real-time implementationof the above-described beat track-

ing algorithm. In order to extract bar locations, the third pass processing is performed. The

audio signal is down-sampled to 2.8kHz and segmented into beat synchronous frames. Spectral

content from each frame is extracted. Spectral difference between adjacent frames is calculated

using Kullback-Leibler divergence [90]. Bar locations arethen obtained by the analysis of the

most consistent spectral change between beats.

1http://omras2.org/SonicAnnotator
2http://www.vamp-plugins.org
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Chapter 10

Experimental results

This chapter is devoted to the evaluation of beat/downbeat detection system introduced in chap-

ter 9. Datasets and evaluation metrics are described in Section 10.1. Experimental results with

different feature vector solutions are presented in Section 10.2. Performance of the proposed

beat/downbeat extraction system is compared to the reference system introduced in Section 9.4,

as well as to other state-of-the-art systems submitted to the MIREX 2011 competition in Audio

Beat Tracking.

10.1 Datasets and evaluation metrics

10.1.1 Datasets

Three different datasets were used to evaluate beat extraction system. Each excerpt is man-

ually annotated by expert musicians. The annotations can contain beat annotations only, or

accompanying downbeat information.

The first dataset, which consists of 72 modern pop songs, was used for evaluation purposes

inside the Quaero project in 2010. The corresponding ground-truth labeling contain two layers,

beat and downbeat. Description of the tracks included in thedataset is given in Table A.3.

The second dataset we used is the well-known Hainsworth’s dataset. It contains 180 short

tracks of different styles, including jazz, folk, and classic. The labels for this dataset contain

only beat-level markers, which does not allow us to test downbeat estimation on this dataset.

The third dataset is the ubiquitous Beatles dataset, which contains 172 songs from 12 al-

bums. The corresponding ground-truth annotations were made at Queen Mary University of

London. Labels contain both beat and downbeat positions, which makes this dataset suitable

for our test purposes.

103



10.2. BEAT/DOWNBEAT EXTRACTION

10.1.2 Evaluation metrics

Following MIREX evaluations, the scoring methods were taken from the beat evaluation tool-

box and are described in [101]. Here we provide a short description of each metric used for

evaluation.

F-measure is based on the standardPrecision andRecall. Ground-truth annotations are

matched against the transcription labels. A precision window of 70 ms is defined. Annotated

beat label is considered to be correct if it is located in the interval of[bt − pw; bt + pw], where

bt is the ground-truth beat location andpw is the precision window length.

Apart from fixed precision window length of 70 ms, as done under MIREX, we also address

an adaptive approach to the calculation of precision window. The precision window is set to

10% of the distance between two successive beat positions inthe ground-truth labels. The same

evaluation schema is utilized for downbeat evaluation, where precision window is set to 10% of

the distance between two successive downbeat positions.

Cemgil - beat accuracy is calculated using a Gaussian error function with 40ms standard

deviation as reported in [102].

Goto - binary decision of correct or incorrect tracking based on statistical properties of a

beat error sequence.

McKinney’s PScore - McKinney’s impulse train cross-correlation method as described

in [103].

CMLc, CMLt, AMLc, AMLt - continuity-based evaluation methods based on the longest

continuously correctly tracked section as introduced in [104].

D, Dg - information based criteria based on analysis of a beat error histogram as described

in [101].

10.2 Beat/downbeat extraction

In this section large-scale evaluation of the proposed beat/downbeat detection system is carried

out. Different feature vector configuration that are evaluated are given in Table 10.1.

1dimMSP MSP - -

1dim ODF - -

2dim ODF CVF 0.4s window -

3dim ODF CVF 0.4s window CVF 2s window

Table 10.1: Feature vector configurations.

In the first part of the experiments, MSP feature that was described in Section 8.1 is com-

pared with the proposed ODF feature. Experiments with 2dim and 3dim feature vector config-
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urations are given in Section 10.2.2.

10.2.1 Onset detection function

In the first set of experiments we compare the performance of the proposed ODF with the MSP

feature described in Section 8.1. The experiments were conducted on the "Quaero" dataset and

the results are given in Table10.2.

Algorithm F-Measure Cemgil Goto McKinney P-score CMLc CMLt AMLc AMLt D (bits) Dg (bits)

ODF 0.7820 68.92 55.56 74.00 40.48 57.25 59.54 86.63 3.03 1.84

MSP 0.7172 66.67 50.00 67.61 37.37 54.16 61.41 85.52 3.00 1.89

Table 10.2: MIREX-based evaluation results for ODF and MSP features on the Quaero dataset.
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(a) Beat estimation results with MSP feature
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(b) Downbeat estimation results with MSP feature
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(c) Beat estimation results with ODF feature
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(d) Downbeat estimation results with ODF feature

Figure 10.1: Evaluation of MSP and ODF features on the Quaerodataset.
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We also estimated precision, recall and F-measure as a function of the precision window

length using adaptive approach to the calculation of precision window as was described in

Section 10.1.2. The plots are given in Figure 10.1.

The proposed ODF feature turned out to be quite effective forthe accurate estimation of

beat positions in comparison with the MSP for the given dataset. However, the performance

of downbeat estimation is quite poor. This can be explained by the presence of ODF only in

the feature set. ODF or MSP itself cannot model harmonic changes in the signal, which is an

essential information for meter estimation.

10.2.2 Chroma variation function

In order to address the problem of poor downbeat estimation performance with a single ODF,

CVF vector components with context lengths of0.4 seconds and2 seconds were added to the

feature set. The results for 2dim and 3dim configurations, aswell as for the reference system,

are given in Table 10.3.

Algorithm F-Measure Cemgil Goto McKinney P-score CMLc CMLt AMLc AMLt D (bits) Dg (bits)

2dim 0.8653 81.35 86.11 84.81 74.71 78.68 81.16 85.61 3.05 2.29

3dim 0.8532 80.22 84.72 83.84 72.75 77.10 79.32 84.16 3.00 2.32

DAVIES 0.8723 77.45 80.56 84.15 73.94 76.94 85.11 89.46 3.26 2.24

Table 10.3: MIREX-based evaluation results for 2dim, 3dim and Davies systems on the Quaero dataset.
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(a) 2dim feature vector configuration
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(b) 3dim feature vector configuration

Figure 10.2: Evaluation results with 2dim and 3dim feature vectors

Figure 10.2 shows the behavior of precision, recall and F-measure for 2dim and 3dim feature
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vector configurations as a function of insertion penalty. The optimal value of the insertion

penalty in the given system configuration is3. It shows precision, recall, and F-measure values

to be close to each other.

F-measure for downbeat position reached 54% in the case of 2dim feature vector configu-

ration and 10% adaptive precision window. 3dim configuration showed 61.8% F-measure for

downbeats. The results for beat estimation indicate that the proposed method with2dimsfeature

vector configuration reached the F-measure score very closeto the reference system by Davies.

However, in evaluation metrics proposed by Cemgil and Goto it achieves better results for the

Quaero dataset. Adding CVF feature component with the context length of 0.4 sec to a sin-

gle ODF shows a significant increase in performance for both beats and downbeats estimation.

However, downbeat F-measure is further improved by adding the third feature vector dimen-

sion, which is CVF with the context length of 2 sec. Needless to mention a slight decrease in

the beats F-measure estimate in comparison with the2dimsconfiguration. Nevertheless, these

two features do improve the downbeat estimation results forthe proposed method.

The next series of experiments were conducted on the "Hainsworth" and "Beatles" datasets.

The results are given in Table 10.4 and Table 10.5 respectively. Figures 10.3 and 10.4 depict

precision, recall and F-measure as a function of the precision window length using adaptive

approach introduced in Section 10.1.2. Summary results from these plots for 10% adaptive

precision window are given in Tables 10.7 and 10.6.

Algorithm F-Measure Cemgil Goto McKinney P-score CMLc CMLt AMLc AMLt D (bits) Dg (bits)

3dims 0.7756 65.05 67.96 77.80 65.24 68.46 74.49 78.19 2.19 1.15

DAVIES 0.7593 61.73 66.85 76.87 62.87 69.46 78.00 87.31 2.31 0.99

Table 10.4: MIREX-based evaluation results for 3dim and Davies systems on the Hainsworth dataset.

Algorithm F-Measure Cemgil Goto McKinney P-score CMLc CMLt AMLc AMLt D (bits) Dg (bits)

3dims 82.31 62.88 73.41 83.79 64.61 73.26 72.59 83.81 2.79 1.09

DAVIES 77.03 55.68 61.85 77.22 60.01 68.72 75.48 86.37 3.00 1.18

Table 10.5: Experimental results for 3dim and Davies systems on the "Beatles" dataset.

Beat F-measure Downbeat F-measure

3dim 0.8600 0.6082

DAVIES 0.7971 0.6165

Table 10.6: F-measure using 10% adaptive precision window for 3dim and Davies systems on the "Bea-

tles" dataset.

3dim system configuration showed better F-measure for beatsthan the reference system on

the "Hainsworth" collection as shown in Table 10.4, while onthe "Beatles" dataset the differ-
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(a) Beat estimation results for 3dim system
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(b) Beat estimation results for Davies system

Figure 10.3: Evaluation of 3dim and Davies systems on the Hainsworth dataset.

Beat F-measure Downbeat F-measure

3dim 0.8001 -

DAVIES 0.7906 -

Table 10.7: F-measure using 10% adaptive precision window for 3dim and Davies systems on the

"Hainsworth" dataset.

ence in beat F-measures is quite small as shown in Table 10.5.Evaluations with 10% adaptive

precision window provided in Tables 10.7 and 10.6 show better F-measure on both datasets for

3dim system. Downbeat F-measures for Davies and 3dim systems on the Beatles dataset are

almost equal.

Experimental results showed that the introduced approach to beat/downbeat estimation is

effective. The proposed method for ODF extraction proved tobe appropriate. It is indicated by

the performance of 1dim system for beat extraction. The advantage of additional CVF features

is obvious. Experiments showed that the proposed two- and three-dimensional feature vector

configurations outperform 1dim system in both, beat and downbeat estimation.
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(a) Beat estimation results for 3dim system
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(b) Downbeat estimation results for 3dim system
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(c) Beat estimation results for Davies system
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(d) Downbeat estimation results for Davies system

Figure 10.4: Evaluation of 3dim and Davies systems on the Beatles dataset.
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10.3 MIREX 2011

Participation in MIREX 2011 audio beat tracking contest is an excellent opportunity to compare

the performance of the developed system with many other systems.

Two different datasets were used. The first dataset, which will be referred to as "MCK",

contains 160 30-second excerpts in WAV format used for the Audio Tempo and Beat contests

in 2006. Beat locations have been annotated in each excerpt by 40 different listeners. Audio

recordings have rather stable tempo that does not significantly change over time. Some exam-

ples contain changing meters. The second collection consists of 367 Chopin Mazurkas and will

be referred to as "MAZ". In comparison with the "MCK" dataset, most part of the "MAZ"

dataset contain tempo changes. MIREX 2011 contest in audio beat tracking does not evaluate

downbeat locations estimation.

Participants from different teams are presented in Table 10.8. The results for "MCK" and

"MAZ" datasets are given in Tables 10.9 and 10.10 respectively.

Team ID Authors

FW1 F.-H. F. Wu

GKC2, GKC5 A. Gkiokas, V. Katsouros, G. Carayannis

GP2 – GP5 G. Peeters

KFRO1 – KFRO2 M. Khadkevich, T. Fillon, G. Richard, M. Omologo

SB3 – SB4 S. Böck

SP2 S. Pauws

Table 10.8: Team legend for MIREX 2011 audio beat tracking contest.

Algorithm F-Measure Cemgil Goto McKinney P-score CMLc CMLt AMLc AMLt D (bits) Dg (bits)

SB3 0.5269 39.92 19.73 57.08 20.83 29.96 37.45 53.64 1.60 0.26

SB4 0.5086 38.55 8.89 54.64 14.18 23.92 24.15 41.64 1.28 0.21

KFRO1 0.5067 38.60 18.23 54.75 20.04 27.55 37.27 52.74 1.54 0.26

KFRO2 0.5045 38.45 20.00 55.30 24.44 31.33 46.25 57.85 1.70 0.35

GP5 0.5032 37.27 21.18 56.56 23.97 33.69 49.27 66.45 1.81 0.31

GKC2 0.5010 37.83 19.03 55.16 25.81 32.94 51.05 64.23 1.71 0.33

GP4 0.5009 37.00 20.22 56.18 23.26 32.30 48.58 64.89 1.81 0.30

GP3 0.4956 36.65 20.86 56.06 23.36 32.99 47.51 64.89 1.77 0.28

GP2 0.4929 36.38 20.00 55.68 22.85 31.99 46.71 63.47 1.75 0.27

GKC5 0.4854 36.77 15.68 52.83 21.88 29.22 47.55 62.29 1.67 0.31

FW1 0.4784 35.58 6.65 52.36 13.25 22.88 22.64 41.75 1.26 0.18

SP2 0.4353 32.90 8.86 48.16 16.19 23.32 38.96 54.32 1.53 0.26

Table 10.9: MIREX 2011 Results in audio beat tracking contest for MCK dataset.

We have submitted two different systems that are KFRO1 and KFRO2. KFRO1 corresponds

to the 2dim feature vector configuration, while KFRO2 correponds to the 3dim one. Model
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Algorithm F-Measure Cemgil Goto McKinney P-score CMLc CMLt AMLc AMLt D (bits) Dg (bits)

FW1 0.6756 57.16 0.31 62.15 7.13 32.92 9.71 40.66 1.46 0.81

SB4 0.5117 42.28 0.00 49.65 4.26 27.85 4.32 28.60 0.54 0.28

GP4 0.4912 37.71 0.31 50.55 3.35 23.89 6.46 34.12 0.49 0.23

GP5 0.4702 36.06 0.00 48.70 3.08 21.24 6.17 31.83 0.43 0.20

GKC2 0.4218 33.50 0.00 41.63 2.21 15.58 5.07 25.98 0.37 0.18

GP2 0.4180 31.56 0.00 44.32 2.52 18.62 4.67 27.13 0.30 0.10

SB3 0.4029 32.70 0.00 40.31 3.27 19.80 3.97 22.79 0.34 0.14

GP3 0.4016 30.35 0.00 42.72 2.29 16.99 4.81 26.54 0.27 0.09

GKC5 0.3731 29.21 0.00 34.85 1.31 7.80 6.21 26.06 0.32 0.15

KFRO2 0.3504 28.99 0.31 35.39 2.04 9.45 5.30 20.93 0.31 0.13

SP2 0.3103 24.90 0.00 32.85 1.72 9.77 3.19 16.11 0.22 0.07

KFRO1 0.2927 23.15 0.00 29.77 2.16 7.62 4.43 17.49 0.22 0.05

Table 10.10: MIREX 2011 Results in audio beat tracking contest for MAZ dataset.

parameters were estimated using "Quaero" dataset.

Experimental results showed that both systems performed well on the "MCK" dataset, show-

ing F-measure value very close to the top result. However, performance on the "MAZ" dataset

turned out to be quite poor. This can be explained by the fact that the systems were trained on

a different musical style, which is mostly pop and rock songs. Using classical pieces for model

parameter estimation can lead to a better performance on the"MAZ" dataset.

10.4 Tempo estimation based on beat extraction

Tempo is an important piece of information that is coherent with mood or style of a musical

excerpt. The most common way of tempo extraction is to analyze ODF for periodicities and

estimate the dominant period [82], [105].

This section is devoted to a bottom-up approach to tempo estimation that is based on the

above-described beat extraction system. In the first stage,beat/downbeat extraction is per-

formed using 3dim feature configuration, resulting in output labels, from which statistics on the

beat lengths is extracted. Since the output transcription may contain segments with different

tempos, K-means clustering is performed and the center of the cluster that has the highest num-

ber of beats is used to derive the tempo. The approach of Alonso et al. [82] was chosen as a

reference system. It will be refereed to as "Alonso".

The test set used for tempo extraction evaluations consistsof 961 song excerpts of different

musical genres. Each excerpt contains 15-25 seconds of audio of a relatively constant tempo.

Part of the collection was used for evaluation purposes in the ISMIR 2004 Tempo Induction

Contest. Musical style and tempo are the ground-truth information. The only metric used

for evaluation is the percentage of songs with correctly identified tempo. Tempo is treated as

correctly identified if estimated value lies within 5% interval of the ground-truth tempo.
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The results are presented in Table 10.11.

Genre Alonso Bottom-up

1.-Classic 91.1 % 55.2 %

2.-Jazz 96.6 % 83.0 %

3.-Latin music 91.3 % 86.1 %

4.-Pop 97.9 % 92.7 %

5.-Rock 95.6 % 82.4 %

6.-Reggae 100.0 % 100.0 %

7.-Soul 100.0 % 87.5 %

8.-Rap 100.0 % 100.0 %

9.-Techno 98.2 % 87.5 %

0.-Others 96.9 % 83.7 %

1.-Greek 77.9 % 61.4 %

Total 92.50% 76.60%

Table 10.11: Tempo detection results.

The experimental results showed that the proposed bottom-up approach did not succeed and

the difference in performance in comparison with the reference system is significant. Tempo

estimation based on periodicity analysis of MSP turned out to be more effective. One of the

possible reasons for the observed difference in performances could be the fact that parameters

of the proposed tempo extraction were estimated on the training material taken from the Quaero

corpus, which consists mostly of pop music. That could be thereason for very low performance

in classic or Greek part of the test data. However, the proposed bottom-up approach to tempo

estimation showed promising performance of 76.60%, which could be improved by training the

system on a larger set of songs from different genres.
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Chapter 11

Conclusions

In this chapter we summarize the main contributions of the second part of the thesis. Possible

future work is discussed.

11.1 Summary of the contributions

Chapter 7 was concerned with existing approaches to beat estimation. Different state-of-the-art

systems were reviewed. In Chapter 8 acoustic feature set foreffective and accurate beat/downbeat

extraction was proposed. A novel approach to the calculation of Onset Detection Function was

introduced. It is based on the impulsive part of the reassigned spectrogram. In order to model

dynamics of harmonic changes, the usage of CVF feature that is based on the harmonic part of

the reassigned spectrum was suggested.

Chapter 9 was devoted to the description of the proposed beat/downbeat extraction system.

Two-layered system architecture that comprises acoustic modeling and beat sequence modeling

was introduced. Similarities and differences between speech recognition and beat/downbeat

extraction are outlined. A specific dictionary and unit alphabet for beat/downbeat extraction

was introduced.

Chapter 10 regards the experimental part. Different feature vector configurations were com-

pared with each other, as well as with a reference system using three different datasets. Exper-

imental results showed that the proposed probabilistic approach to simultaneous estimation of

beat/downbeat positions from audio is effective. The introduced explicit modeling of beat seg-

ment duration in the beat sequence modeling layer proved to be effective for solving the output

labels periodicity problem. Participation in MIREX 2011 Audio Beat Tracking context proved

the effectiveness of the proposed approach, showing performance very close to the top result on

the "MCK" dataset.

A bottom-up approach to tempo estimation that is based on thedescribed beat extraction

system was introduced. Evaluations on a large dataset containing music belonging to different
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genres showed performance that is significantly lower than that obtained with a reference sys-

tem. However, these first results could be improved by training the system on a larger dataset.

11.2 Future work and perspectives

One of the possible improvements to the beat/downbeat estimation performance could be con-

sidering genre-specific training material. The results of MIREX 2011 showed that our systems

did not perform well on the "MAZ" dataset. Training genre-specific models and introducing

genre classification block in the system architecture can lead to interesting results.

Another interesting research direction could be in featureselection and adaptation. ODF

feature extraction for instruments that are characterizesby soft note onsets can be reprised.

Further improvement could also be gained by incorporating tempo estimation into the model

and utilizing high-level features to enhanced downbeat estimation. Another interesting investi-

gation can be conducted in the area of application of multi-stream HMMs, as was shown in the

first part of the thesis. Splitting feature vector into a number of separate streams and assigning

different stream weights could be effective for beat/downbeat estimation.
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Appendix A

Datasets

Table A.1: Beatles dataset.

CD Album name

1 Please Please Me

2 With the Beatles

3 A Hard Day’s Night

4 Beatles for Sale

5 Help!

6 Rubber Soul

7 Revolver

8 Sgt. Pepper’s Lonely Hearts Club Band

9 Magical Mystery Tour

10CD1 The Beatles

10CD2 The Beatles

11 Abbey Road

12 Let It Be

Table A.2: Song list of Queen, Zweieck, and Carol King.

Artist Track

Zweieck Mr Morgan

Zweieck Akne

Zweieck Zuhause

Zweieck She

Continued on next page
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Artist Track
Zweieck Duell

Zweieck Erbauliche Gedanken Eines Tobackrauchers

Zweieck Santa Donna Lucia Mobile

Zweieck Tigerfest

Zweieck Blass

Zweieck Ich Kann Heute Nicht

Zweieck Rawhide

Zweieck Liebesleid

Zweieck Jakob Und Marie

Zweieck Zu Leise Für Mich

Zweieck Es Wird Alles Wieder Gut, Herr Professor

Zweieck Andersrum

Zweieck Spiel Mir Eine Alte Melodie

Zweieck Paparazzi

Queen Somebody To Love

Queen Another One Bites The Dust

Queen Play The Game

Queen I Want To Break Free

Queen Hammer To Fall

Queen Bicycle Race

Queen Fat Bottomed Girls

Queen Good Old

Queen Friends Will Be Friends

Queen You’re My Best Friend

Queen A Kind Of Magic

Queen Crazy Little Thing Called Love

Queen We Are The Champions

Queen Who Wants To Live Forever

Queen Seven Seas Of Rhye

Queen We Will Rock You

Queen Bohemian Rhapsody

Queen I Want It All

Queen Don’t Stop Me Now

Queen Save Me

Continued on next page
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APPENDIX A. DATASETS

Artist Track
Carole King I Feel The Earth Move

Carole King It’s Too Late

Carole King Beautiful

Carole King You’ve Got A Friend

Carole King Home Again

Carole King Way Over Yonder

Carole King So Far Away

Table A.3: Quaero Dataset.

Artist Album Track
A ha Take On Me

Patrick Hernandez Born to be alive

George Michael Careless Whisper

Dolly Parton Coat Of Many Colors Travelling Man

Run DMC It’s like

Eminem The Eminem Show Cleanin Out my Closet

Enya Shepherd Moons Caribbean blue

Shack HMS Fable Natalies Party

CoCo Lee Just No other Way Do You Want My Love

Vangelis Conquest of Paradise

Mariah Carey Without you

The Beatles Magical Mystery Tour Baby Youre A Rich Man

Phil Collins Another Day in Paradise

The Beatles Abbey Road Sun King

Bananarama Venus

Offspring Smash Come out and play

FR David Words

La Bouche Be My Lover

Ace of Base All that she wants

Queen A Night at the Opera Lazing on a sunday afternoon

Dusty Springfield Dusty in Memphis Son of a Preacher Man

Cher Believe

Continued on next page
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Artist Album Track
Santa Esmeralda Don t Let Me Be Misunderstood

Aqua Barbie Girl

Culture Beat Mr Vain

Whitney Houston I Will Always Love You

Kiss I Was Made For Loving You

Enigma Sadeness

Sean Kingston Sean Kingston Take You There

Jordin Sparks Jordin Sparks No Air

4 Non Blondes Whats up

Crash Test Dummies Mmm Mmm Mmm Mmm Mmm

Lil Mama Voice of the Young People Shawty Get Loose

Outkast Aquemini Chonkyfire

George Michael Careless Whisper

Kylie Minogue Cant Get You Out Of My Head

Leona Lewis Spirit Bleeding Love

Soul Asylum Runaway train

DAngelo Brown Sugar Higher

East 17 Its Alright

Dillinger Cocaine I Thirst

Nickelback How You Remind Me

Puff Daddy Feat Faith Evans I’ll Be Missing You

Pop Tops Mamy Blue

The Beatles A Hard Days Night Tell Me Why

Bobby McFerrin Dont worry Be happy

Chris Brown Exclusive Forever

U2 The Joshua Tree With or without you

Womack and Womack Teardrops

Twenty Fingers Short Dick Man

Rolling Stones Angie

Spice Girls Wannabe

The Beatles Beatles For Sale I’m A Loser

Bon Jovi Its My Life

Will Smith Men In Black

Mariah Carey E MC2 Touch my body

Continued on next page
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Artist Album Track
Shakira Whenever Wherever

Mamas and Papas Dream a Little Dream of Me

Carl Douglas Kung Fu fighting

Metallica Nothing Else Matters

Eminem Without Me (Radio Edit)

Nirvana In Utero Rape me

The Beatles Abbey Road Maxwell’s Silver Hammer

Nena 99 Luftballons

Haddaway What is love

Harold Faltermeyer Axel F

Modern Talking You re My Heart You re My Soul

Enya Orinoco Flow

Fall out boy Infinity on High this aint a scene its an arms race

Xzibit X

The Beatles Magical Mystery Tour Your Mother Should Know

Ricky Martin The Cup Of Life

Fools Garden Lemon Tree
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