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This paper proposes an innovative approach to control phased arrays. Starting from the 
adaptive array theory, a particle swarm strategy is used to tune the phase coefficients of 
the array in order to adaptively minimize/avoid the effects of interfering signals at the 
receiver. The effectiveness of the proposed approach is assessed through a comparison 
with state-of-the-art methods. 

 
Introduction 

In the last years there has been a growing interest in the design and application of 
reconfigurable phased-array antennas. In the scientific literature (see [1][2] and the 
references cited therein), several methodologies for the adaptive phase-array control have 
been proposed. However, to limit the cost of the hardware equipment, there is the need of 
operating in the digital domain by only acting on the phase terms of the array elements. 
Within such a framework, effective approaches have been proposed. The problem has 
been reformulated in an optimization one and it has successively solved through an 
evolutionary strategy based on a Genetic Algorithm (GA) [3]-[6]. Recently, a new 
stochastic algorithm called particle swarm optimizer (PSO) [7] has been shown to be a 
valuable addition to the electromagnetic design engineer's toolbox [8]. One advantage of 
the PSO over the GA is its algorithmic simplicity. Moreover, another key-issue for the 
application of a PSO-based procedure to the phased-array real-time tuning lies in its 
ability to control the convergence of the optimization as well as its stagnation. As pointed 
out in [9] and detailed in [8], although crossover and mutation rate can affect the 
convergence of the GA, the PSO allows a more significant level of control by decreasing 
the inertial weight during the optimization process. To evaluate the effectiveness of the 
PSO in dealing with the real-time control of planar array, this paper proposes a 
computational approach based on a binary version of the PSO. 
 

Mathematical Formulation 
Let us consider an array whose M elements are arbitrarily located on the  plane at ( yx, )

),,( mmmm zyxr = ,  that generates the following radiation pattern: 1,...,0 −= Mm
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where , ( )mmm jww φexpˆ= 1,...,0 −= Mm  are the array weights, λπ /2=k , and ),,( svur =  
indicates the direction of arrival (DOA) of the desired signal being ϕθ cossin=u , 

ϕθ sinsin=v , and θcos=s . 
Under the assumption of narrowband conditions and co-channel interference (i.e., the 
desired and interfering signals are centered on the same working frequency), according to 
Applebaum’s theory [1], the SINR can be defined as follows 
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where  is the undesired covariance matrix uΦ niu ΦΦΦ +=  ( and  being the interference 
and noise covariance matrices, respectively). 

iΦ nΦ

As pointed out in [1][4], the computation of (2) is not possible since  is an unknown 
quantity and it cannot be directly measured. Nevertheless, it has been demonstrated [4] 
that the  maximization is equivalent to the maximization of the following cost 
function 
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where  is given by ( , being the desired signal covariance matrix) and can 
be easily computed at the receiver. In order to maximize (3), a suitable PSO-based 
strategy is adopted as described in following Section. 
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PSO-Based Adaptive Control Strategy 

The PSO is a multiple-agents optimization algorithm developed by Kennedy and 
Eberhart [7]. A standard PSO implementation considers a swarm of P trial solutions 
(called particles) that fly in the solution space by improving their positions according to 
suitable updating equations. To deal with phase-only adaptive arrays control, the PSO-
based approach can summarized as follows. 
Step 0 - Coding. Since the m-th element of the array is controlled through a L-bits digital 
phase shifter, the p-th binary trial solution is { }MmLllp

m
p ,...,1;,...,1;, === ϕζ  where 

 is the binary bit at the l-th place along the gene corresponding to the  parameter. 
At each “position” vector 
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Step 1 - Initialization. At 0=k , the positions of the P particles of the swarm 

{ }Ppp ,...,1;00 ==Ξ ζ  as well as their velocities { }PpvV p ,...,1;00 ==  are randomly 
generated according to the following rules 
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Step 2 - Fitness evaluation. At each iteration the cost function values are computed:  
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maxarg  are stored. To improve the “reaction” of 

the algorithm to environmental changes occurring between consecutive timesteps, 
optimal particles are stored ckc −= ςγ , Cc ,...,1=  (C being the buffer length). The iteration 
index is updated, . 1+= kk
Step 3 - Termination criterion. If the maximum number of iterations K (admissible in a 
timestep t) is reached ( ) or if the optimal fitness is under a given threshold Kk = η , then 
the optimization process is stopped and kς  is assumed as the problem solution. 
Otherwise, the Step 4 is done. 
Step 4 - Velocity updating. The velocity of each particle is updated according to the 
following relation: 
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where  is a constant clamping value [7] generally set at 4.0 and similar to the 
mutation rate in GAs. Moreover,  
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uniform distribution with a predefined upper limit often set so that ;  and 
 are constants called cognition and social acceleration [7], respectively. Moreover, 
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is the inertial weight [8].  
Step 5 - Position updating. The particle position is then updated as follows 
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Then go to Step 2. 
 

Numerical Assessment and Comparative Analysis 
The proposed approach has been evaluated by considering a planar array of elliptical 
geometry ( ) shown in Fig. 1(a) and working in a realistic scenario characterized 
by a background Gaussian noise of 30 dB below the desired signal (coming from 

160=M

°= 0dθ ) and interferences of amplitudes 30 dB above the desired signal uncorrelated 
with each other, the desired signal, and the noise. The directions of jamming signals have 
been modeled as in [5]. For comparison purposes, the obtained results have been reported 
with those obtained with other state-of-the-art procedures: (a) the Applebaum’s approach 
[1], (b) the Applebaum's approach with quantized phases (DPA), (c) the customized 
GAs-based strategy [6] (CGA), and (d) the Least-Mean-Square algorithm [2] (LMS). The 
array weights have been set to , 0.1ˆ =mw Mm ,...,1= , while the phase coefficients have 
been iteratively tuned making use of digital phase shifters characterized by  bits as 
in [4]. Concerning GAs and PSO, a population of 

6=L
MP =  trial solutions has been 

considered and . The PSO control parameters have been set to: , 
, and 

20=K 0.221 == aa
( 10/PC = ) χ  linearly varying from 0.9 to 0.4 over the course of the optimization 

run. On the other hand, the same parametric configuration chosen in [6] has been adopted 
for the GA-based procedure. 
As a representative result of the comparative study, Fig. 1(b) shows the behavior of the 
average SINR (computed by calculating a running average over 50 past timesteps) during 

 timesteps. As can be noticed, the PSO-based approach generally outperforms 
other techniques since, starting from the quiescent pattern shown in Fig. 1(c), the PSO-
based procedure is able to place nulls exactly in correspondence with interfering signals 
(as pictorially shown in Fig. 1(d) where an example of the synthesized beam patterns – 
computed at t=205 – is displayed), while other methodologies (without considering the 
optimal synthesis) generally make an error of some degrees compared with the correct 
position or reduce the null depth. 

250=T
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Figure 1. Eliptical array layout ( ) (a). (b) Running average of the SINR versus t obtained with 
the Applebaum's method (solid line), the DPA method (dashed line), the LMS approach (point-
dashed line), the CGA-based technique (dotted line), and the PSO strategy (small dashed line). (c) 
Quiescent beam pattern. (d) Sample of the synthesized beam pattern (

160=M

205=t ). 
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