Supplementary Material

3a-(4-Chlorophenyl)-1-methyl-3a,4-dihydroimidazo[1,5-*a*]quinazolin-5(3*H*)one: Synthesis and In Silico Evaluation as a Ligand in the μ-Opioid Receptor

Contents

Figure S1. ¹HNMR spectrum of title compound recorded in CDCl₃ at 400MHz.

Figure S2. ¹³CNMR and APT spectra of title compound recorded in CDCl₃ at 75.43 MHz.

Figure S3. ESI(+)-MS spectrum of title compound and data from MS/MS fragmentation experiment on the $[M+H]^+$ ion at m/z 312.

Table S1. Energy values and interactions with μ -opioid receptor obtained by docking calculation using the Autodock Vina tool of title compound enantiomers (*S*)-5 and (*R*)-5 and the known opioids BU72, morphine and fentanyl, each of them considered in both neutral and protonated forms.

Figure S4. WLOGP-*versus*-TPSA in Brain Or IntestinaL EstimateD permeation method (BOILED)-Egg visualization for title compound **5**, morphine, fentanyl and BU72 evaluated by using Swiss-ADME software. Blue dots for P-glycoprotein (P-gp) substrates (PGP+) and red dots for P-gp non-substrate (PGP-).

Figure S1. ¹HNMR spectrum of the title compound recorded in CDCl₃ at 400MHz.

Figure S2. ¹³CNMR and APT spectra of the title compound recorded in CDCl₃ at 75.43 MHz.

Figure S3. ESI(+)-MS spectrum of title compound and data from MS/MS fragmentation experiment on the [M+H]⁺ ion at *m*/z 312.

Compound	Energy	H-	π	VdW interactions	Charge-charge
	(kcal/mol)	bond	interactions		interactions
BU72	-12.1	-	Val300, His297	Ile144, Ile296, Ile322	Asp147
BU72	-12.6	His54	Ile144, His297, Val300,	Ile322, Ile296	Asp147
protonated			Тгр318,		
Morphine	-8.8	Tyr326	Tyr148, Met151	Ile296, Val300,	
			His297	Ile322	
Morphine	-8.9	Asp147 Tyr326	Tyr148, Met151, His297	Ile296, Ile322	His297
protonated					
			Val143, Ile144, Met151,		
Fentanyl	-8.8	-	Cys217, Ile296, His297,	Ile296, Val300	-
			Ile322, Tyr326		
Fentanyl	-8.9	-	Val143, Ile144, Val236, Ile296	Ile322	Asp147, His54
protonated			Trp293, Val300, Tyr326,		
(<i>R</i>)-5	-9.1	Tyr148	His54, Ile296, His297,	Lys233, Val236,	
			Val300, Trp318	Val300	-
(R)-5	-9.0	-	Asp147, Ser55, Trp293,	Ile296, Ile322	Asp147
protonated			Ile296, Ile322, Tyr326		
(<i>S</i>)-5	-9.0	-	Tyr148, Val236, Ile296,	Lys233, Val236,	6,
			Ile322, Val300, Tyr326,	Val300, Ile322	-
(S)-5 protonated	-9.1	His54	Tyr148, Met151, Ile236,	Lys233, Val236, Val300, Ile322	Asp147
			Ile296, Val300, Ile322,		
			Tyr326		

Table S1. Energy values and interactions with μ -opioid receptor obtained by docking calculation using the Autodock Vina tool of title compound enantiomers (*S*)-**5** and (*R*)-**5** and the known opioids BU72, morphine and fentanyl, each of them considered in both neutral and protonated forms.

Figure S4. WLOGP-*versus*-TPSA in Brain Or IntestinaL EstimateD permeation method (BOILED)-Egg visualization for title compound **5**, morphine, fentanyl and BU72 evaluated by using Swiss-ADME software. Blue dots for P-glycoprotein (P-gp) substrates (PGP+) and red dots for P-gp non-substrate (PGP–). Swiss ADME. Available online: http://www.swissadme.ch/ (accessed on 4 March 2023).