
Near-sensor processing, System Identification, Vibration Analysis

Speeding up System Identification Algorithms on a Parallel RISC-V MCU for
Fast Near-Sensor Vibration Diagnostic

Amirhossein Moallemi*, Riccardo Gaspari, Federica ZonziniLuca De Marchi*, Davide Brunelli1**,
and Luca Benini3**

Dept. of Electrical, Electronic and Information Engineering, University of Bologna, Italy
1Dept. of Industrial Engineering, University of Trento, Italy
2Dept. of Information Technology and Electrical Engineering, ETH Zürich, Switzerland
*Member, IEEE
**Senior Member, IEEE
***Fellow, IEEE

Abstract—Structural Health Monitoring (SHM) systems currently utilize a combination of low-cost, low-energy sensors and
processing units to monitor the conditions of target facilities. However, utilizing a dense deployment of sensors generates
a significant volume of data that must be transmitted to the cloud, requiring high bandwidth and consuming substantial
power, particularly when using wireless protocols. To optimize the energy budget of the monitoring system, it is crucial to
reduce the size of the raw data near the sensors at the edge. However, existing compression techniques at the edge suffer
from a trade-off between compression and accuracy and long latency resulting in high energy consumption. This work
addresses these limitations by introducing a parallelized version of an unconventional data reduction method suited for
vibration analysis based on System Identification models. Our approach leverages the unique capabilities of GAP9, a multi-
core RISC-V MCU based on the parallel ultra-low power (PULP) architecture. Compared to the sequential implementation,
we achieve a maximum execution time reduction of ≈ 60× and power consumption of just 48.3 mW while preserving the
spectral accuracy of the models.

Index Terms—Embedded Systems, RISCV architecture, System Identification, Vibration analysis

I. INTRODUCTION

The safety of large-scale civil infrastructures, aerospace vehicles,
and industrial machines has raised the government’s attention in
the last decades to tackle the environmental impacts affecting such
complex systems [1], [2]. Structural Health Monitoring (SHM)
explores techniques to continuously monitor the conditions of
technical facilities, which are susceptible to various damaging
phenomena [3]. Vibration-based monitoring, in particular, is the most
effective technique for inspecting structures in the dynamic regime,
i.e., structures that are completely characterized by frequency-related
quantities [1], [4].

Current SHM systems are composed of sensor nodes distributed
over the target structure, each of which embeds several low-cost
sensors and a computational unit that is able to sense and outsource
data to the cloud, where information is stored and further processed
to assess the level of structural integrity [5]. This sensor-to-cloud
continuum generates a big volume of information, in the range of
hundreds of MB per day for a single structure, leading to expensive and
non-scalable solutions that barely adapt to large-scale scenarios [6].
Moreover, this continuous flow of long-time series requires large
bandwidths and grid-based powering since the transmission phase is
very expensive in energy consumption and can rapidly exhaust the
capacity provided by battery-operated supplies.

To address these challenges, a new generation of smart SHM
systems based on edge processing has emerged. In this paradigm,
raw data is processed near the sensors, reducing network traffic
between the edge sensor and the cloud. Implementing data reduction
techniques at the sensor level is crucial to minimize the amount of data
transmitted, resulting in shorter transmission times and negligible
impact on sensor energy budgets [7]. Different reduction techniques
for vibration data were successfully implemented onboard, spanning
from Principal Component Analysis (PCA) to Compressed Sensing

Corresponding author: A. Moallemi (e-mail: amirhossein.moallem2@unibo.it).

(CS). For example, in [8] and [7], authors’ embedded lightweight
versions of PCA in microprocessors, reaching a compression level
of 1.4× and 15×, respectively. In [9], an adapted version of CS has
been presented to handle vibration data showing good performances
for reduction levels up to 6×. However, all these strategies present
some drawbacks, such as the fact that they need training data for the
optimal definition of compression parameters, along with the limited
compression level they can allow for to ensure a sufficient quality
in the retrieved structural properties [9].

Alternatively, System Identification (SysId) has been proposed in
[10] as an unconventional but promising data compression method for
vibration data processing, allowing up to 50× dimension reduction,
which is at least an order of magnitude higher than the ones
mentioned above. SysId is a signal-processing technique that builds
a mathematical model of a dynamic system based on a linear
time-invariant filter, whose taps, also called model parameters (Θ),
can reproduce the observed system dynamics. By knowing model
parameters, the power spectrum can be computed, from which all the
frequency-related properties of the structure (e.g., natural frequencies)
can be extracted. The advantage of SysId is that just a dozen of
model parameters are sufficient to accurately replicate the observed
system response, even for the most complicated geometries [11].
Thus, by transmitting Θ instead of raw data, which usually amounts
to thousands of samples, one can reach very large compressing factors.

However, implementing SysId algorithms involves computationally
and memory-intensive operations. Few attempts have been made in
the literature to implement SysId in near-sensor scenarios. One of
the very first implementations can be found in [12], in which authors
succeeded in porting SysId filters on the Imote sensor platform;
nonetheless, the limitations on storage constraints of this board forced
the adoption of input-output correlation-based schemes, which are
not compatible with the execution of output-only solutions as the
ones of real interest for on-condition maintenance where the exciting
stimulus is always non-measurable. These issues were overcome
in a more recent work [10] by resorting to advanced algebraic

procedures taken from the big data processing framework, which
allowed to fit output-only models on a prototype sensor equipped with
an STM32L5 based on an ARM Cortex-M33 microcontroller unit
(MCU). Nevertheless, the implementation offered in [10] suffers from
one crucial limitation, which is the long execution time (greater than
120 s in the most cumbersome scenario) due to the sequential nature
of the computational workflow forced by the single-core architecture
of the computing processor. Eventually, this evidences the lack of
on-sensor SysId implementations compatible with continuous and
real-time diagnostic functionalities.

In this work, we offer a significant step forward in the deployment
of SysId as an effective data compression technique for extreme edge
sensors by tackling the challenges related to long latency and high
power consumption. We reach this goal by:

• Moving to parallel implementation of output-only SysId al-
gorithm on a multi-core RISC-V MCU, GAP9, achieving a
maximum worst-case execution time of 1.65 s @110 MHz clock
system, with an energy consumption of 80.1 mJ.

• Compared with single-core MCU implementations, we achieved
a speed-up close to 60× while maintaining the same spectral
accuracy.

The rest of this paper is organized as follows. In Sec. II, the main
contribution is presented, in which we introduce the parallelization
steps toward the SysId algorithm. Further, the multi-core MCU,
GAP9, the platform used to embed the parallel version of SysId, is
introduced. Then, Sec. III examines the precision of SysId performed
on the GAP9 platform. Further, it assesses the model in terms of
execution time, energy consumption, and memory footprint. Finally,
Sec. IV concludes this work.

II. SOFTWARE & HARDWARE FRAMEWORK

A. Output-only SysId models for vibration analysis

Two output-only SysId models have been implemented on the
target platform since they are among the most effective for
processing ambient-excited vibration data: the Autoregressive (AR)
and Autoregressive with Moving Average (ARMA) [13]. Given an
𝑁-long discrete time-series sampled at regular intervals 𝑘𝑇𝑠 (𝑘 being
the generic time index), the mathematical formulation of the AR and
ARMA models are described by Eq. (1) and (2), respectively:

𝑠[𝑘] +
𝑞∑︁
𝑖=0

\𝑖𝑠[𝑘 − 𝑖] = 𝑒[𝑘] (1)

𝑠[𝑘] +
𝑞∑︁
𝑖=1

\𝑖𝑠[𝑘 − 𝑖] = 𝑒[𝑘] +
𝑝∑︁

𝑠=0

𝛾𝑠𝑒[𝑘 − 𝑠] (2)

In these expressions, 𝑁𝑝 = 𝑝 + 𝑞 + 1 is defined as the model order,
while 𝑒[𝑘] is assumed equal to a zero–mean white noise Gaussian
term with prescribed variance, serving as a proxy of the unknown
input force. The length 𝑁 is conveniently selected proportionally to
𝑁𝑝 according to 𝑁 = 𝑁𝑝𝑁𝑠/1𝑝 , 𝑁𝑠/1𝑝 being the number of time
samples necessary to identify one single model parameter accurately.
Therefore, SysId aims at computing the 𝑁𝑝 model parameters, a task
that can be fulfilled by means of ordinary least-squares (OLS) applied
to the linear regression form of Eq. (1) and (2), which generically
reads as

𝑌 = ΨΘ (3)

P-TSQR-based SysId
Spectral
Analysis

𝒀 = 𝚿𝚯 𝚯 = 𝑹𝟏𝑳
−𝟏𝑸𝑻𝒀𝑨 = 𝚿 = 𝑸𝑹 𝐏𝐒𝐃(𝐟)

P-TSQR

GAP9

Fig. 1: Workflow of the proposed P-TSQR-based SysId approach
proposed in this work.

with 𝑌 ∈ R𝑁×1 and Ψ ∈ R𝑁×𝑁𝑝 being the measured vibration
response and the regression matrix, respectively1.

B. Parallel tall-skinny QR for SysId

Factorizing the regression matrix via QR decomposition, i.e., Ψ =

𝑄𝑅, is required to reduce the phenomena of numerical instability
and rounding effects of the OLS algorithm employed in conventional
SysId solutions. This yields the solution of Eq. (3) to be computed
as

Θ = 𝑅−1𝑄𝑇𝑌 (4)

However, the memory requirements for standard QR decomposition
make it inapplicable in most of the extreme-edge computing domains.
To overcome this issue, the parallel tall-skinny QR decomposition
(P-TSQR), a different QR decomposition algorithm suited for big
data processing frameworks [14], is proposed in this work. P-TSQR
has to be preferred over other QR decomposition methods since its
parallel implementation scheme (doable for a multi-core processing
framework) allows to significantly speed up the computation time
over sequential (S-TSQR) variants, such as those exploited in [10]
to accomplish the same task.

Given a generic input matrix 𝐴 ∈ R𝑀×𝑁 (𝑀 ≫ 𝑁) to be
decomposed and supposing that 𝑁𝑐 chunks (or cores) are available
for parallelization, P-TSQR follows a binary tree implementation
requiring 𝐿 = log2 𝑁𝑐 iterations. The latter is depicted in Fig. 1 and
can be described as:

• stage 1: 𝐴 is divided into 𝑁𝑐 partitions of dimension 𝑍 = 𝑀/𝑁𝑐 .
For each 𝑖-th chunk 𝐴𝑖1 ∈ R𝑍×𝑁 , the QR decomposition is
computed independently, leading to 𝐴𝑖1 = 𝑄𝑖1𝑅𝑖1, with 𝑅𝑖1 ∈
R𝑁×𝑁 and 𝑄𝑖1 ∈ R𝑍×𝑁 the factorizing matrices.

• next stages: at generic stage 𝑙 ∈ [2, . . . , 𝐿], the 𝑅𝑖1 matrices are
vertically concatenated two-by-two into 𝑁𝑐/𝑙 matrices 𝐴𝑖𝑙 =

[𝑅𝑖 (𝑙−1) 𝑅(𝑖+1) (𝑙−1)] ∈ R2𝑁×𝑁 which are then decomposed by
a new step of QR factorization.

The whole computation ends for 𝑙 = 𝐿 resulting in a single 𝑅𝐿1 ∈
R𝑁×𝑁 matrix, that is indeed the 𝑅 matrix that would have been
obtained by directly decomposing the whole initial matrix 𝐴, and a
certain number of 𝑄𝑖𝑙 matrices, that can reconstruct the original 𝑄
matrix.

1For the definition of Ψ, see [10]

C. Hardware Platform

The GAP9 MCU [15] was exploited since it is an ultra-low-
power multi-core microprocessor targeted for IoT applications at
the extreme edge. GAP9 features 9 compute RISC-V cores and
a single-core fabric controller based on the PULP (Parallel Ultra
Low Power) instruction-set architecture (ISA) extensions [16]. The
nominal frequency processor can be increased up to 370 MHz while
keeping the power consumption in the nominal operating mode below
50 mW. Conversely, other multi-core RISCV-based MCUs (such as
GAP8) or dual-core ARM Cortex devices provide less cores with the
same or smaller clock frequency. Indeed, although multi-core devices
such as the 𝑆𝑇𝑀32𝐻745𝑍𝐼𝑇6 runs at the same frequency as the
GAP9 (i.e., 400 MHz), less current consumption and more number of
cores make GAP9 a suitable MCU for the parallelizable applications.
GAP9 speeds up the execution of Digital Signal Processing (DSP)
algorithms and has a dedicated floating point unit (FPU) with 8,16,
and 32 precision, whereas other MCUs are either not able to support
FPU, e.g., GAP8 or provide a single precision FPU unit. GAP9 has
a hierarchical memory architecture with 512 kB of fast L1, as well
as L2-SRAM with 1.5 MB and an L2 non-volatile memory of 2 MB.
Compared to its former version, i.e., GAP8 with 80 kB (6.4× less) of
L1 and only 512 kB (≈ 3× less) of L2-SRAM, GAP9 provides more
capacity for memory-hungry algorithms. Conversely, the STM32L5
exploited in [10] for the same task is limited to only 256 kB (≈ 6×
less) of RAM and 512 kB (≈ 4× less) of flash.

III. EXPERIMENTAL VALIDATION

A. Experimental Setup

Vibration data collected from a four-storey frame structure under
white noise base excitation (sampling rate equal to 50 Hz) were used
for testing. All the possible combinations of 𝑁𝑝 and 𝑁𝑠/1𝑝 values
were explored by varying the former quantity between 9 and 57 (step
size equal to 8), whereas the latter was swept between {25, 30, 35}.
The search space for 𝑁𝑝 has been selected to model a wide range of
target structures, considering that the number of parameters typically
settles below a couple of dozens, even for the most complicated
systems [11]. Besides, the choice for 𝑁𝑠/1𝑝 , which is responsible
for the length of time series to be processed, has been selected
to meet the storage capabilities of the computing unit even in the
most cumbersome configurations. We show in Sec. III-B that the
selected upper boundaries are large enough for robust modelling of
the PSD of the input signal, which is, however, large enough for
robust modelling.

B. Structural validation

The Itakura Saito Spectral Divergence (ISD) has been exploited
to evaluate the level of spectral superimposition between the Power
Spectral Densities (PSD) obtained via built-in MATLAB utilities
(𝑃𝑆𝐷𝑀𝐴𝑇 (𝑓)) and the one estimated from the GAP9 coefficients
(𝑃𝑆𝐷𝐺𝐴𝑃9 (𝑓)):

𝐼𝑆𝐷 =
1
𝑁

𝑁∑︁
𝑓 =1

[
𝑃𝑆𝐷𝐺𝐴𝑃9 (𝑓)
𝑃𝑆𝐷𝑀𝐴𝑇 (𝑓)

− log
(
𝑃𝑆𝐷𝐺𝐴𝑃9 (𝑓)
𝑃𝑆𝐷𝑀𝐴𝑇 (𝑓)

)
− 1

]
(5)

PSD curves can be easily computed by moving Eq. (1) and (2) in
the frequency domain, depending on the selected AR/ARMA model.
ISD ranges between 0 and 1, with 𝐼𝑆𝐷 = 0 meaning a perfect match
between the two curves.

Results are reported in Table 1 in the ISD column block. As can
be observed, all the values are stably below 1.05 · 10-2 even for the

10 20 30 40 50
Np

10

20

30

40

50

60

G
ai

n
[a

.u
.]

ARMA

Ns/1p
25
30
35

10 20 30 40 50
Np

10

20

30

40

50

60

G
ai

n
[a

.u
.]

AR

Ns/1p
 25
 30
 35

Fig. 2: Time gain achieved by moving from sequential to parallel
implementation.

worst-performing configuration, proving the spectral accuracy of the
deployed SysId models. Additionally, it is worth observing that these
results compare favorably with respect to the benchmark solution
in [10], in which a maximum ISD of 0.93 · 10-2 was scored when
working with the same time series.

C. Hardware Profiling

1) Execution Time: Minimizing the algorithmic latency is funda-
mental to deploying near-sensor streaming data analysis. Accordingly,
the execution time necessary to process one batch of SysId model
parameters has been quantified by measuring the number of cycles
𝑁𝑐𝑦𝑐𝑙𝑒𝑠 given the operating frequency 𝐹𝑐𝑘 of the processor, i.e.,
Exe. Time = 𝑁𝑐𝑦𝑐𝑙𝑒𝑠/𝐹𝑐𝑘 . In order to perform a fair comparison
with the setup in [10], GAP9 was clocked at 𝐹𝑐𝑘 = 110 MHz. Results
are summarized in Table 1.

As expected, the highest computational time is associated with the
maximum 𝑁𝑝 = 57 and 𝑁𝑠/1𝑝 = 35 parameters, i.e., those yielding
to the longest vector to be processed (corresponding to 1995 time
samples). More in detail, the largest AR and ARMA model requires
0.83 ms and 1.65 ms, respectively, which are almost 47× and 24×
smaller than the time taken to acquire the input signal, the latter
amounting to 1995/50Hz ≈ 40 s. Consequently, the devised pipeline
proves to be compatible with the real-time execution of SysId at the
sensor level.

More importantly, these outcomes significantly outperform the
sequential SysId implementation in [10], characterized by worst-
case execution times of 52.80 s and 99.12 s for the same parameters.
Evidence is proved in Fig. 2, which showcases the time gain when
moving from the sequential to the parallel implementation, expressed
as the ratio between the execution time required when running in the
STM32L5 board with respect to the one scored by the GAP9 platform.
Independently from the considered 𝑁𝑠/1𝑝 , the gain achieved by the
parallel solution follows a linear trend, moving from a minimum of
5.44× (𝑁𝑝 = 9, 𝑁𝑠/1𝑝 = 25) to a maximum of 60.11× (𝑁𝑝 = 57,
𝑁𝑠/1𝑝 = 35) in case the ARMA model is considered. The same
speed-up ranges from 6.75× to 63.85× for the AR counterpart. Three
main reasons can motivate this important improvement: i) hardware
accelerators for matrix multiplication embedded in GAP9, ii) switch
of paradigm from the sequential implementation of QR decomposition
to the parallel version of it, i.e., moving from one core to 8 cores
deployment, and iii) in the case of sequential implementation, a large
matrix should be segmented to multiple chunks to execute a matrix
multiplication, whereas the large L2 memory in GAP9 (compared

Table 1: Performance indicators for varying 𝑁𝑝 and 𝑁𝑠/1𝑝 when parallelizing the AR and ARMA SysId models on the GAP9 platform.

ISD [a.u.] E [mJ] Memory [KBytes] Execution time [ms]
𝑁𝑠/1𝑝 𝑁𝑠/1𝑝 𝑁𝑠/1𝑝 𝑁𝑠/1𝑝

25 30 35 25 30 35 25 30 35 25 30 35

A
R

M
A

9 2.18e-05 3.21e-05 8.07e-06 0.74 0.82 0.75 18.44 22.46 26.88 15.80 17.50 16.00
17 5.33e-03 9.04e-04 2.43e-03 2.75 3.21 3.18 70.80 86.58 103.93 58.60 68.10 67.70
25 1.36e-03 2.39e-05 9.30e-03 6.94 8.29 8.77 157.19 192.46 231.25 147.00 176.00 186.00
33 5.29e-04 4.76e-03 1.13e-02 13.80 16.30 17.20 277.61 340.11 408.86 290.00 345.00 360.00
41 1.05e-02 8.79e-04 9.25e-03 25.90 28.40 30.40 432.07 529.53 636.75 545.00 600.00 635.00
49 2.93e-03 5.64e-03 6.42e-03 41.20 46.00 51.50 595.71 733.06 884.46 863.00 965.00 1070.00
57 9.8e-04 4.55e-03 3.03e-03 62.90 69.50 80.10 843.07 1033.65 1243.38 1300.00 1440.00 1650.00

A
R

9 2.68e-04 2.41e-04 3.70e-05 0.33 0.43 0.40 15.18 17.93 20.88 6.80 9.10 8.40
17 8.74e-04 9.20e-04 8.02e-04 1.26 1.50 1.70 57.74 68.44 79.93 26.80 31.80 36.10
25 8.23e-04 7.88e-04 7.12e-04 3.41 4.52 4.71 127.80 151.65 177.25 72.10 95.90 100.00
33 5.51e-04 5.42e-04 4.71e-04 7.03 8.28 8.76 225.36 267.55 312.86 148.00 175.00 183.00
41 13.40e-04 11.70e-04 1.16e-04 12.70 13.60 15.30 350.43 416.15 486.75 264.00 286.00 320.00
49 9.13e-04 1.63e-04 3.72e-04 20.80 24.30 25.60 502.99 597.44 698.93 434.00 508.00 535.00
57 1.35e-04 3.87e-04 3.87e-04 32.60 34.30 39.40 683.05 811.43 949.38 681.00 721.00 827.00

with a maximum of 256 KBytes of RAM for the STM32L522 board)
allows for the large matrix multiplications to be executed without
chunking.

2) Memory footprint: The precision of SysId routines increases
when working with longer time series; however, when dealing with
memory-constrained devices, limitations have to be respected. Hence,
the memory footprint of the models has been evaluated to find
the maximum SysId configuration (𝑁𝑝 ,𝑁𝑠/1𝑝) compatible with the
available GAP9 storage capabilities. The memory column in Table 1
specifies the space occupied in the L2 memory for each combination,
showing that the ARMA model utilizes, in general, nearly 1.3×
more memory than the corresponding AR model. This result is
coherent with the inherently more complex nature of the ARMA
routines [10]. Further, Table 1 reports that 𝑁𝑝 = 57 and 𝑁𝑠/1𝑝 = 35
put a tight constraint for embedding the ARMA model in GAP9
when precision is set to float32, as this configuration requires
1.2 MBytes. Nevertheless, this hardware constraint is compatible with
the majority of civil and industrial facilities [11].

3) Energy Consumption: Low energy consumption plays a crucial
role in a sustainable battery-based system in long-term monitoring.
Table 1 reports energy consumption for one run of the SysId deploying
AR and ARMA model. Noticeably, the energy demanded by ARMA
is averagely double the one consumed by AR due to the two-step
nature of the adopted ARMA algorithm. This is mainly due to the
longer execution time of the ARMA models; however, notice that
since both models computationally use merely matrix multiplication,
they yield similar power consumption of 48 3mW.

IV. CONCLUSION

This work presented a parallelized implementation of a vibration
compression algorithm based on SysId, necessary to decrease the
volume of data transmitted to the cloud, using an ultra-low-power
multi-core platform, namely GAP9, as the computing platform. We
showed that by shifting the paradigm from sequential to parallel
implementation, an improvement up to ≈ 60× could be attained
in terms of execution time, which is fundamental to avoid the long
latency of the sequential version and enables the in-field deployment of
the SysId algorithm for streaming vibration data processing. Further,
we showed that the most power-hungry deployment of the model
consumes 48.3 mW per each run of the algorithm, making it suitable
for long-term self-sustainable battery-based monitoring systems.

ACKNOWLEDGMENT
This research was partially funded by PNRR – M4C2 – Inv. 1.3,

PE00000013 – “FAIR” project – Spoke 8 “Pervasive AI,” funded by

the EU under the NextGeneration EU programme. Further, this work
was supported by the Italian Ministry for University and Research
(MUR) under the program “Dipartimenti di Eccellenza (2023-2027)".

REFERENCES

[1] S. S. Saidin, S. A. Kudus, A. Jamadin, M. A. Anuar, N. M. Amin, A. B. Z.
Ya, and K. Sugiura, “Vibration-based approach for structural health monitoring of
ultra-high-performance concrete bridge,” Case Studies in Construction Materials,
vol. 18, p. e01752, 2023.

[2] A. Sabato, C. Niezrecki, and G. Fortino, “Wireless mems-based accelerometer
sensor boards for structural vibration monitoring: a review,” IEEE Sensors Journal,
vol. 17, no. 2, pp. 226–235, 2016.

[3] P. F. Giordano, S. Quqa, and M. P. Limongelli, “The value of monitoring a structural
health monitoring system,” Structural Safety, vol. 100, p. 102280, 2023.

[4] A. Kamariotis, E. Chatzi, and D. Straub, “A framework for quantifying the value
of vibration-based structural health monitoring,” Mechanical Systems and Signal
Processing, vol. 184, p. 109708, 2023.

[5] F. Di Nuzzo, D. Brunelli, T. Polonelli, and L. Benini, “Structural health monitoring
system with narrowband iot and mems sensors,” IEEE Sensors Journal, vol. 21,
no. 14, pp. 16 371–16 380, 2021.

[6] H. X. Nguyen, S. Zhu, and M. Liu, “A survey on graph neural networks for
microservice-based cloud applications,” Sensors, vol. 22, no. 23, p. 9492, 2022.

[7] A. Burrello, A. Marchioni, D. Brunelli, S. Benatti, M. Mangia, and L. Benini,
“Embedded streaming principal components analysis for network load reduction
in structural health monitoring,” IEEE Internet of Things journal, vol. 8, no. 6,
pp. 4433–4447, 2020.

[8] Q. Chen, J. Cao, and Y. Xia, “Physics-enhanced pca for data compression in edge
devices,” IEEE Transactions on Green Communications and Networking, vol. 6,
no. 3, pp. 1624–1634, 2022.

[9] F. Zonzini, M. Zauli, M. Mangia, N. Testoni, and L. De Marchi, “Model-
assisted compressed sensing for vibration-based structural health monitoring,”
IEEE Transactions on Industrial Informatics, vol. 17, no. 11, pp. 7338–7347,
2021.

[10] F. Zonzini, V. Dertimanis, E. Chatzi, and L. De Marchi, “System identification
at the extreme edge for network load reduction in vibration-based monitoring,”
IEEE Internet of Things Journal, vol. 9, no. 20, pp. 20 467–20 478, 2022.

[11] E. N. Chatzi and C. Papadimitriou, Identification methods for structural health
monitoring. Springer, 2016, vol. 567.

[12] J. Kim and J. P. Lynch, “Autonomous decentralized system identification by markov
parameter estimation using distributed smart wireless sensor networks,” Journal
of Engineering Mechanics, vol. 138, no. 5, pp. 478–490, 2012.

[13] E. Reynders, “System identification methods for (operational) modal analysis:
review and comparison,” Archives of Computational Methods in Engineering,
vol. 19, pp. 51–124, 2012.

[14] G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H. D. Nguyen, and E. Solomonik,
“Reconstructing householder vectors from tall-skinny qr,” in 2014 IEEE 28th
International Parallel and Distributed Processing Symposium. IEEE, 2014, pp.
1159–1170.

[15] G. Technologies. (2014) GreenWaves Technologies gap9 official description.
[Online]. Available: https://greenwaves-technologies.com/gap9_processor/

[16] D. Rossi, F. Conti, M. Eggiman, A. Di Mauro, G. Tagliavini, S. Mach, M. Guermandi,
A. Pullini, I. Loi, J. Chen et al., “Vega: A ten-core soc for iot endnodes with dnn
acceleration and cognitive wake-up from mram-based state-retentive sleep mode,”
IEEE Journal of Solid-State Circuits, vol. 57, no. 1, pp. 127–139, 2021.

