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Abstract
The experiment lets investors interact in portfolio choices involving different risky 
assets, one for each state of the world. Probabilities of random states are commonly 
known. All assets pay the same dividend when their state is realized and becomes 
worthless otherwise. Whereas evolutionary stability and equilibrium behavior predict 
equal expected profits across assets, impulse balancing (Selten and Buchta, Games and 
human behavior: essays in the Honor of Amnon Rapoport, 1999) equalizes the expected 
regret. Thus, impulse balancing seems to capture tendencies of cyclical direction learn-
ing. In addition to analyzing whether and when behavior converges to impulse balanc-
ing or to equilibrium portfolios, we categorize portfolio adaptation by path dependence 
and sensitivity to state-specific probabilities. We show that portfolio choices are driven 
mainly by probability matching, but the effect becomes weaker over time. Furthermore, 
most portfolio adjustments are not compatible with directional learning.

Keywords  Impulse balancing · Probability matching · Regret · Portfolio 
management · Experiment

JEL Classification  D81 · C91 · G11

1  Introduction

Our paper experimentally investigates portfolio investment choices. We deal with 
this issue of vast empirical relevance within an evolutionary framework. Evolution 
relies on path dependence, e.g., on the average past success or fitness of the available 
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options, and is usually justified by assuming an infinite population of short-lived 
actors who are randomly matched to interact with finitely many others. Optimal 
adaptation is also predicted by equilibrium behavior whose justification is, however, 
relying on forward-looking rational deliberations of all the interacting parties. Here, 
we explore whether mutual best responding could be learned. Based on the litera-
ture on phenotypical learning, one can distinguish learning in the form of best-reply 
dynamics, i.e., interacting agents best respond to the most recent constellation of 
circumstances beyond their own control like stochastic costs and others’ choices, or 
regret-driven behavioral adaptation.

We focus essentially on the distinction of equilibrium learning and (regret) 
impulse balancing since, for the setup given, evolutionary stability implies equi-
librium behavior. Both concepts allow for static equilibria, based on the common 
knowledge assumptions of strategic equilibria, but differ in what the interacting par-
ties are supposed to optimise, namely maximize expected profits or minimize regret, 
across assets. Our experimental scenario modifies Blume and Easley (1992)’s evo-
lutionary model of financial portfolio survival which, under quite strong assump-
tions, predicts that the share of capital, invested proportionally to the stationary 
positive probabilities of the various states, eventually converges to 1. Specifically, 
the state-specific assets pay (the same) positive dividend when their state is realized 
and become otherwise worthless. Thus, to preserve wealth across time, one has to 
engage in all assets and to invest proportionally to the state-specific probabilities, as 
predicted by probability matching.

Like Blume and Easley (1992), we let investors periodically determine their 
expenditure shares for the various assets and, due to constant supply of assets, this 
allows to derive the market-clearing prices. Whereas the past average profits are the 
driving forces of evolutionary selection, as in Blume and Easley , our experiment 
instead substitutes evolutionary selection by letting participants adapt their portfo-
lio composition across time in light of feedback. Actually, the evolutionarily sta-
ble portfolio composition, namely that expenditure shares are proportional to asset 
probabilities, can also be justified as strategic equilibrium behavior, which requires 
commonly known rationality. Thus our experimental analysis confronts the joint 
hypothesis of evolutionarily stable or equilibrium behavior1 with that of impulse 
balancing, capturing in a quantitative way phenotypical learning via the average 
choice probabilities of cyclic directional learning (Selten and Buchta 1999).

Both approaches provide a static and dynamic justification (see Table  1) 
where, of course, the dynamics generally do not have to converge. Instead, the 
static interpretations rely on mutual best responses by equalizing expected profits 

Table 1   The Blume and Easley 
’s model and our contribution

Blume and Easley (1992) Our experiment

Static Strategic equilibrium Impulse balancing
Dymanic Evolutionary stability Direction learning

1  Since evolutionary stability requires to be best adapted to one’s habitat, it is not unusual that the results 
of evolutionary selection and game-theoretic equilibrium analysis coincide (see, for instance, Weibull 
1997; Samuelson 2002).
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(strategic equilibrium) and expected regret (impulse balancing). Thus, our study 
confronts static concepts, based on common knowledge (the top row of Table 1), 
and their dynamic justifications (the bottom row of Table  1). The former are 
imported from evolutionary biology; the latter predict phenotypical learning but 
differ in their driving forces: past average profits (evolutionary stability) or retro-
spective analysis of own past choices in the light of individual experiences (direc-
tion learning).

Furthermore, we will categorize portfolio adaptation in the light of feedback 
information on past states, past prices, and own investment success. Is portfolio 
adaptation shaped by both anticipating its likely consequences (the shadow of the 
future, as in consequentialist logic) and learning from the past (the shadow of the 
past, as in learning and evolutionary theory)? In view of impulse balancing, we 
will specifically pay attention to alternative measures of regret (e.g., Avrahami 
et al. 2005).

The theoretical and empirical study of financial portfolio choice and adaptation 
has important real-world implications, even when based on stylized setups. For 
instance, one could easily weaken the assumption of stationary state probabilities 
by allowing for rare shocks, after which probabilities become stationary again till 
the next shock applies. The prediction of Blume and Easley (1992) would then 
still predict the drift in portfolio adaptation in phases of constant probabilities. 
Whether and how at best boundedly rational participants anticipate such shocks 
seem so far only exploratively analyzed.

Regarding the comparison of equilibrium behavior and impulse balancing, the 
experimental evidence so far mainly rests on experimental games with (mostly 
unique) equilibria in completely mixed (all possible strategies are used with posi-
tive probabilities) strategies. Here, the evidence speaks quite in favor of impulse 
balancing as its mixing predictions are based on payoffs of the mixing players, 
whereas strategic equilibrium mixing is based on rendering other players indiffer-
ent and therefore depends on others’ payoffs.

To assess our conclusions robustly, we vary the vector of stationary state prob-
abilities, the number of assets, and the market size by doubling the number of 
interacting traders. We will describe how we disentangle between learning from 
the past and anticipation of changes in crucial parameters after introducing the 
market model with its benchmark solutions and stating hypotheses.

Altogether our data reveal strong anchoring of portfolio design on the success 
probabilities, in line with the intuition of probability matching. However, this 
behavior is less prominent in later rounds and when fewer options are available. 
Furthermore, reacting to own individual past success in the spirit of direction 
learning becomes less important over time. Among those who respond to past 
outcomes, different sources of regret seem to be relevant.

Section 2 describes the market model that is the basis of our experimental set-
ting and offers the benchmark solutions for assessing actual behavior. Section 3 
states some hypotheses, and Sect. 4 provides details of the experimental imple-
mentation. After the data analysis of Sect.  5, we discuss and summarize our 
results in the concluding Sect. 6.
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2 � The market model and its benchmark solution

Let m(≥ 2) denote the number of assets j = 1,… ,m , whose positive success prob-
abilities are stationary, and n(≥ 2) the number of investors i = 1,… , n . The same 
n investors face this stationary market environment repeatedly. In the evolution-
ary analysis, the focus is on the final wealth shares of stationary, e.g., genetically 
or phenotypically determined portfolio composition types. Reaching the end result 
of evolution may require infinitely many periods by any selection (see Blume and 
Easley 1992). However, in the experiment, the horizon of this repeated interaction, 
the “shadow of the future”, is captured by a finite number of successive investment 
periods.

Assets are state-specific: for each asset j = 1,… ,m , there is a random state with 
positive probability wj(> 0) . Evolutionary selection assumes repeated application 
of these stationary and state-specific probabilities, but does not require investors to 
know them. To allow for immediate or quick convergence to equilibrium behavior, 
the experiment, however, induces common knowledge of probabilities, respectively 
of their changes.2 An asset j is only rewarded with return rate R(> 0) when state j is 
realized; otherwise, asset j becomes worthless. Specifically, it will be assumed, and 
experimentally induced, that vector w = (w1,… ,wm) is commonly known. Actually, 
w and m and n will be the conditions varied in our experimental analysis.

The only possibility to save wealth from one period to the next is by investing 
it, since what is not invested is lost. For all investors i = 1,… , n , let E(i) denote the 
wealth of investor i which i can invest in the m assets by choosing portfolio shares 
s(i) = (s1(i),… , sm(i)) , with 0 ≤ sj(i) ≤ 1 for j = 1,… ,m and s1(i) +⋯ + sm(i) = 1 , 
i.e., sj(i)E(i) is the amount which i invests in asset j = 1,… ,m.3

For each of the m assets, there exists a constant supply of S = 100 units. Thus, the 
market-clearing price pj for asset j = 1,… ,m is determined by pjS =

∑n

i=1
sj(i)E(i) . 

At this price, pj investor i buys according to i’s hyperbolic demand function sj(i)E(i)
pj

 

units of asset j which pay him, in case of state j being selected, �j(i) = R ⋅

sj(i)E(i)

pj
 and 

become worthless otherwise.4 The expected payoff of choice s(i) by investor i is ∑m

j=1
wj�j(i) for j = 1,…m.

The equilibrium benchmark s for this interactive portfolio choice is portfolio 
s∗ = (s∗

1
,… , s∗

m
) with s∗

j
= wj for j = 1,… ,m and s∗(i) = s∗ for i = 1,… , n . In addi-

2  When different predictions like evolutionary stability and equilibrium behavior rely on differences in 
(common) knowledge, it may be possible to discriminate between them experimentally, even when they 
predict the same benchmark outcome. However, since we want to compare equilibrium and learning con-
cepts, this is not exploited here, and we chose to implement a scenario to which all concepts may apply.
3  In the experiment, only integer percentages are allowed for portfolio shares so that 
sk(i) ∈ {0%, 1%,… , 99%, 100%} for k = 1,… ,m and i = 1,… , n.
4  Such demand functions can be rationalized by suitable utility functions and have been frequently esti-
mated econometrically in the past (for an earlier application of so-called linear expenditure systems, see 
Stone (1954).)
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tion to its obvious prominence as the only possible anchor for participants in the 
experiment, the equilibrium benchmark can be justified by evolutionary stability.5

If E(i) = E for all interacting investors i = 1,… , n , as experimentally imple-
mented, common reliance on benchmark behavior s(i) = s∗ for i = 1,… , n implies 
the equilibrium prices pj =

nE

S
wj for j = 1,… , n and expected payoffs RS/n. Thus, 

investors would earn in expectation less when only n increases, but would earn the 
same when both, s and n, increase, such that S/n remains constant. The effect of 
increasing R is obvious.

In their innovative evolutionary justification, Blume and Easley assume each 
investor i = 1,… , n to be only once positively endowed. Therefore, in later peri-
ods, one’s endowment is positive only when having positively invested in all previ-
ous winning states. In the experiment, we deviate from this to keep all participants 
“alive” in the sense of maintaining them as active investors. Specifically, we endow 
participants repeatedly in each period and also allow them to change their portfo-
lio composition, i.e., to adapt their portfolio choice from period to period. Never-
theless, the intuition of the evolutionarily stable portfolios s∗ = w provides a useful 
benchmark prediction about how portfolio choices might converge with more and 
more experience. We predict learning to let average portfolio choices s(i) converge 
to s∗ = w , eventually.

Evolutionarily stable choices often coincide with equilibrium behavior in a game-
theoretic sense, i.e., when the game and rationality of all investors are commonly 
known.6 The normative justification, based on common(ly known) rationality and 
risk neutrality, does not require learning or evolution, but is purely based on con-
sequentialist forward-looking deliberation (the shadow of the future).7 Crucially, 
observing convergence to s∗ choices only after learning would support the evolution-
ary or learning rather than the normative s∗ justification.

Even when participants frequently rely on s∗ already initially, this may not neces-
sarily support the equilibrium justification of s∗ , as initial reliance on s∗ is predicted 
by anchoring in the form of probability matching. Actually, w = (w1,… ,wm) is the 
only numerical anchor provided by the instructions. If at all, the only alternative 
anchor, namely sj(i) = 1∕m for j = 1,… ,m and i = 1,… , n , the so-called 1/m-heu-
ristic (Benartzi and Thaler 2001) (often referred to as the Golden Mean, 1/m), is 
only implicitly provided.

However, neither the static equilibrium concept nor anchoring predict whether 
and how participants will question its recommendation after receiving feedback 
information. If, by chance, the first randomly selected states are rather unexpected, 
e.g., by being very unlikely, one might question anchoring on w. Similarly, when fre-
quently experiencing a state j with wj exceeding 1/m considerably, the 1/m-heuristic 

5  For a derivation under partly different assumptions, see Blume and Easley (1992).
6  It is one advantage of the evolutionary justification that it does not require common knowledge 
assumption, as only nature has to be aware of what is fitness-enhancing.
7  Risk neutrality for the evolutionary analysis follows from randomly forming oligopoly markets with n 
investors each in each period, based on an infinite population, i.e., on infinitely many such markets, so 
that fitness is measured by average success.
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might lose its appeal. Furthermore, when allowing subjective probability adaptation 
to past realizations of states in spite of the independent repeated application of w, 
one may engage in best-reply dynamics to past results, for instance, due to the gam-
bler’s fallacy.

An alternative equilibrium concept presupposes regret balancing, for instance, 
impulse balance equilibria (Selten and Buchta 1999; Ockenfels and Selten 2005) 
capturing the average choice probabilities of cyclical direction learning. In our 
context, this means to balance the possible regret when investing in the m different 
assets. Here, we measure regret via investment shares rather than by expected mone-
tary returns, which depend on market prices and others’ behavior. Specifically, when 
asset j was drawn, agent i regrets everything not invested in asset j. This occurs with 
probability wj and amounts to the expected regret of wj(1 − sj(i)) . When asset j was 
not drawn, i regrets everything invested in j, i.e., the portfolio share 1 − sj(i) . This 
occurs with probability (1 − wj) , amounting to (1 − wj)sj(i) . Balancing these two 
amounts results in sj(i) = wj , so that, in the case of monomorphic s∗ = w-behavior, 
no investor would suffer from unbalanced regret. In the analysis of our experimen-
tal data, we also present other, more behaviorally motivated measures of regret and 
explore their relationship to dynamic portfolio adjustment (see Sect. 5.3.3).

When considering only their final predictions, all four approaches8—evolution, 
equilibrium, w-anchoring, and impulse balancing—predict the same portfolio com-
positions, i.e., s∗ = w , whereas the 1/m-heuristic predicts, at least initially, w-insen-
sitivity. For the experimental analysis, the research questions, therefore, concern 
more the dynamics, i.e., the individual adaptation of portfolio composition, than the 
final choices.

•	 Will the same final s∗-predictions be confirmed by monotonic adaptations, pos-
sibly by moving away from sj(i) = 1∕m choices, towards s∗

–	 already initially,
–	 only after learning,
–	 not at all?

•	 Will portfolio adaptation be cyclic as suggested by direction learning (Selten 
2004)?

•	 Will the experimentally observed adaptation steps allow to distinguish between 
the static (anchoring, equilibrium, and impulse balancing) or dynamic (evolu-
tionary, learning, e.g., qualitative direction learning) s∗-justification?

8  Confounded justifications of the same benchmark behavior is rare in experimental research (one usu-
ally employs a design separating predictions of different "solution" ideas), but seems important and 
interesting as off-benchmark behavior is the rule rather than the exception. Our setup illustrates that off-
benchmark behavior can be the only way to distinguish between "solution" ideas.
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3 � Hypotheses

From a behavioral perspective, (expected) regret may not be purely restricted to 
investment, but is probably also affected by wealth effects that depend on market-
clearing prices. Therefore, for example, impulse balancing, the underlying intuition 
of directional learning, provides a clear hypothesis of adaptive behavior: when i has 
invested sj(i)E(i) in asset j whose state j is not selected, we expect a likely sj(i)
-decrease in the next period. The effect should be regret related via (1 − sj)

sj(i)E(i)

pj
 or 

via sk
sj(i)E(i)

pk
 , where k denotes the actually selected state in the past period. The first 

specification does not presuppose that one could have guessed correctly the actually 
realized state j; the second assumes that one could have guessed right. Of course, in 
the case of two states only, m = 2 , which we also explore, the two specifications 
coincide.

The evolutionary analysis by Blume and Easley does not rely on the individual 
adaptation of portfolios but on individual wealth. To capture this intuition and test 
it by experimental data, one could explore whether, across time those investors with 
past choices closer to s∗ have on average also earned more. This would, at least 
qualitatively, confirm the intuition of the evolutionary selection driving the result 
of Blume and Easley . For the static justifications of s∗ , one may at best observe 
some initial effects, e.g., when by chance the first random realizations differ consid-
erably from w. Will this induce adaptation of subjective beliefs away from w, or will 
anchoring at w persist and be revealed by constant portfolio choices close to w?

In our view, the multi-dimensional action space for choosing s(i) and the rather 
fine grid, imposed by integer percentages from 0% to 100% when selecting sj(i) , pro-
vide an interesting setup for studying and comparing learning in a rather rich setup.

Behaviorally, we cannot hope for the same portfolio selection by all individuals, 
which renders the anticipation of market-clearing prices questionable. When analyz-
ing how portfolios are adapted, one can use past instead of anticipated prices. From 
an evolutionary perspective, one may, for instance, rely on wj∕pj , with pj denoting 
the past price of asset j = 1,… ,m to compare what a marginal token would achieve 
in different states j.

Concerning impulse balancing, we rely on the dynamic intuition of direction 
learning (see Selten and Buchta 1999) to investigate whether and how participants 
react to feedback information after each period. This implies conditioning on just 
the past state k, so that sk(i) will not be increased when state k had not been drawn 
and that sk(i) should not be decreased when state k was realized. Of course, how 
one reacts to (non) realized states may also depend on past prices due to impulses 
sj(i)E(i)∕pj and sk(i)E(i)∕pk , a quantitative aspect of impulse balancing but not of 
purely qualitative direction learning.9

Participants may over-or under-estimate the probability of observing the same 
state in successive rounds, resulting in frequent restructuring of portfolios, which 

9  Impulses sj(i)E(i)∕pj and sk(i)E(i)∕pk have a broader meaning that in our justification of the s∗−impulse 
balance equilibrium in Sect. 2.
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may question (convergence to) s∗-behavior. Behaviorally, participants may be influ-
enced by past prices pi and state-specific wi in other ways than predicted by impulse 
balancing or equilibrium (evolution). As postulated by reinforcement learning, path 
dependence may also be based on longer memory length than just one round as sup-
posed by direction learning.

The theoretical predictions do not depend on endowments and differences in indi-
vidual endowments. Furthermore, probabilities of the m states can be rather simi-
lar and very different, which will be explored experimentally by varying the prob-
abilities of the m states. If, for instance, the probabilities of the m different states 
do not differ much, this should enhance the support for the so-called “1/m” heuris-
tic (Benartzi and Thaler 2001) predicting equal portfolio shares for all m assets. In 
the case of substantially different probabilities, even investors, fearing the risk of 
neglecting low probability assets, should learn to invest significantly less in substan-
tially less likely states.

4 � Experimental design and procedures

Participants i are asked to allocate 100 tokens to the available assets or prospects by 
choosing s(i), repeatedly. When a prospect is selected, its returns are positive; oth-
erwise, its returns are null. Specifically, the returns from the prospect are given by 
€0.10 × the number of units purchased of the selected prospect.10

Overall, four different sets of prospects are considered, with either m=2 or m=4 
states (see Table 2).

The experiment consists of two parts (see Fig. 1): Part 1 and Part 2. In Part 1, 
participants are matched together in groups of 4, while in Part 2, they are matched 

Table 2   Probability of success 
for each prospect ( wj)

Prob (%) Prospect 1 Prospect 2 Prospect 3 Prospect 4

Set 1 43.8 56.3 – –
Set 2 25.0 75.0 – –
Set 3 12.5 21.9 28.1 37.5
Set 4 12.5 15.6 34.4 37.5

Fig. 1   Experimental structure (Part 1 (2): 4 (8) investors)

10  See the translated instructions in Appendix A for more details
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together in groups of 8. Each part has four phases: Phase 1, Phase 2, Phase 3, and 
Phase 4. In each phase, participants choose how to invest in the available prospects, 
facing one of the four sets in Table 2 over seven successive rounds. Which set is dis-
played in which phase is randomly defined at the matching group level, but all sub-
jects see all sets, and within a phase, the set is kept constant. In Part 1, when groups 
are made of two participants, individuals interact in matching groups of size 8. In 
part 2, the matching groups include 16 subjects each. The composition of the group 
does not change within a phase, but is randomly redefined from phase to phase.

Overall, participants face 56 successive decision tasks. The final payment in the 
experiment is given by randomly drawing one round from each of the four phases in 
Part 1 and one round from each of the four phases in Part 2.

The experiment was run at the laboratory of the Max Planck Institute Jena, Ger-
many. The experiment was programmed and conducted using zTree software (Fis-
chbacher 2007). A total of 128 participants took part in the experiment over four 
experimental sessions. In total, we collected 7168 individual portfolio choices, s(i).

5 � Results

First, we analyze decision times for completing the task to understand how par-
ticipants familiarize themselves with the task. Then, we present investment choices 
and their deviation from probability matching behavior. In Sect. 5.3, we investigate 

Period

Se
co

nd
s

0
10

20
30

40

1 8 15 22 29 36 43 50

Fig. 2   Decision time
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investment dynamics with specific attention to alternative regret measures. Finally, 
regression analysis provides us with a general assessment of our main results.

5.1 � Decision times

The graph (Fig. 2) represents the distribution of median decision times in seconds in 
each round of the experiment.

Participants become much faster in choosing as they familiarize themselves with 
the task, testified by the polynomial fitting of the data (dashed line). Spikes cor-
respond to periods 1 + 7x with x ∈ [0, 7] and highlight the adjustment needed when 
a new experimental condition, a new probability vector w and/or a larger number of 
investors, is announced and portfolios are adjusted what, as such, indicates forward-
looking inclinations. A Wilcoxon signed-rank test comparing choice times in the 
first and in the last period shows that choice times significantly decrease over time (p 
value< 0.001).

Thus, our data show that proficiency in the task increases over rounds as meas-
ured by time to choose. Time spent in the choice is generally higher in the first round 
after announcing a new experimental condition.

5.2 � Investment choices

Figure 3 displays how deviations from probability matching are distributed for each 
prospect whose probability is given below. The symbol “x” denotes the average 
deviations and medians are indicated by bold lines.

The graphs show that median choices are generally close to probability match-
ing. However, the distribution of tokens is widely dispersed, and several outliers are 
present in each condition of choice. Choices clearly reveal that commonly known 
numerical probabilities provide a much stronger cognitive anchor than potential 
alternatives, like the Golden Mean or the 1/m-heuristic, especially in the case of 
the prospect sets with probabilities differing considerably from 1/m. From this, one 
may infer that the 1/m-heuristic may require ambiguity of success probabilities to 
emerge.

A series of non-parametric tests shows that the central tendency of the token dis-
tribution in the prospect with the lowest probability is significantly different from 
probability matching, at the conventional 5% level, for Set 2 and 3 when the group 
size is equal to 4 and for Set 1 when the group size is equal to 8. When pooling data 

Fig. 3   Deviations from probability matching ▸
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irrespective of set and group size, a (positive) statistically significant difference is 
registered (p value<0.001).11 In terms of investment dynamics, no significant differ-
ences are observed in token allocations, when comparing the first and the last round 
in each block with seven successive choices (all p values ≥ 0.152 ). Table 3 presents 
a few summary statistics of absolute deviations from equilibrium prices in each set 
and for each group size.

Individual heterogeneity in token allocation does not average out in terms of mar-
ket prices. Actually, prices, a measure of group behavior, are far from their equilib-
rium levels in each set and for each group size. Furthermore, standard deviations 
are quite sustained in all experimental conditions. Deviations are generally larger 
for larger group sizes, as confirmed by a series of Wilcoxon rank-sum tests compar-
ing averages at the matching group levels across the two group sizes (all p values 
≤ 0.019).

As a complement of the "static" analysis presented above, Fig. 4 provides us with 
a representation of the evolution of probability matching over rounds. The graph 
reports the average absolute difference between the share of tokens invested in a 
prospect by a participant ( sj(i) ) and the probability of the prospect ( wj(i) ), over the 
seven rounds.

According to Fig.  4, the average distance from probability matching tends to 
increase over time. A Wilcoxon signed-rank test confirmed this, showing that 
choices in the first and the last round are significantly different (p value< 0.001 , test 
on averages at the matching group level).

5.3 � Investment dynamics

5.3.1 � Individual‑level changes in drawn asset

Figure 5 shows the average variations at the individual level in the share of tokens 
allocated to the prospect drawn in the previous period (Δs

k̂
) . A positive (negative) 

value denotes individuals who, on average, increase (decrease) the amount allocated 
to the winning asset of the previous round. The vertical dashed line captures the 
average change.

According to Fig. 5, the average change is negative but small: most of the changes 
(78.1%) lie in the interval -0.05/+0.05. Non-parametric tests show that the central 
tendency of the distribution is negative, either when conditioning the tests at the 

11  The tests take into account differences between tokens allocated to and probability of the asset with 
the lowest probability of realization (s1(i) − w1) . This approach was chosen in light of the nature of the 
choices at hand. Choosing only one allocation allows us to compare prospects with m = 2 and m = 4 , 
using a common reference value. Furthermore, considering deviations for all assets would just make 
the test irrelevant as deviations cancel out ( 

∑m

j
(sj(i) − wj) = 0 ). At the same time, absolute differences 

(|(s1(i) − w1)|) would bias the test by rendering it heavily asymmetric around the null hypothesis. Finally, 
to preserve statistical independence, the Wilcoxon signed-rank tests whose p values are reported in the 
text are run on median choices at the matching group level.
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matching group level or at the individual level (p value= 0.001 and p value< 0.001 , 
respectively).

The pattern emerging from Fig.  5 suggests that more investors tend to be dis-
couraged from investing in the previously drawn prospect, whereas only the oppo-
site adjustment (or no adjustment at all) is compatible with the notion of directional 
learning. The observed adjustment may relate to a well-known bias in decision-mak-
ing under uncertainty, i.e., the gambler’s fallacy, which denies the independence of 
successive iid-chance moves.

5.3.2 � Directional learning

Figure 6 presents the change in the share invested in the winning prospect k̂ of the 
previous round: Δs

k̂
(i) = st

k̂
(i) − st−1

k̂
(i) , where st

k̂
(i) is the share of tokens invested by 

subject i at time t in the winning asset k̂ at time t − 1 and st−1
k̂

(i) is the share of tokens 
at time t − 1.12 A change in the share invested in the previously drawn prospects is 
compatible with directional learning if the share allocated at time t is increased rela-
tive to the share at time t − 1 . White bars capture adjustments compatible with direc-
tional learning,13 i.e., when the change is positive ( Δs�k(i) > 0 ), light gray bars when 
there is no change ( Δs

k̂
(i) = 0 ), and dark gray bars capture negative changes 

( Δs�k(i) < 0).
Overall, the majority of changes from round to round are not compatible with 

directional learning. For the groups of size 4, the average frequency of posi-
tive changes is 26.43%; the average frequency of negative changes is 29.82%; the 
remainder 43.75% is due to inertia. A similar pattern emerges for group size 8, with 

Table 3   Deviations from 
equilibrium prices

Set Mean Median SD

Size = 4
1 0.621 0.500 0.453
2 0.699 0.500 0.577
3 0.356 0.276 0.268
4 0.324 0.256 0.237
Size = 8
1 0.811 0.620 0.698
2 1.284 1.050 1.018
3 0.610 0.497 0.358
4 0.607 0.498 0.374

12  All measures are computed separately for experimental treatments differing in terms of prospect sets 
and group size. Accordingly, for each condition, six observations are available at the individual level.
13  Unlike Selten and Buchta, we do not view inertia, Δsk̂(i) = 0 as support of directional learning, but 
rather compare only the changes in the predicted direction with those in the opposite direction.
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positive changes covering 22.59% of the observations, negative changes 27.08%, 
and absence of change 50.33%. Altogether, no adjustment dominates and increases 
its share as rounds progress. It seems that over time participants appreciate the true 
randomness of winning chances and become less sensitive to the last random event.

Concerning the evolution of changes over rounds, a series of non-parametric tests 
find a significant decrease in positive variations from the first available round to the 
last one, both for group size 4 and 8, as shown by Wilcoxon signed-rank tests at the 
matching group level (p value=0.021 and p value=0.014, respectively). At the same 
time, inertia significantly increases across rounds, both for group size 4 and 8 (p 
value=0.017 and p value=0.014, respectively). Furthermore, the difference between 
the share of negative changes in the first and last round is statistically significant for 
group size 8 (p value=0.014) but not for group size 4 (p value=0.417). Altogether, 
the general tendency is a progressive shift from active change, in both directions, to 
the invariance of choices.

5.3.3 � Regret analysis

To better understand the adaptation dynamics of token allocation, we distinguish 
four alternative sources of regret which may correlate with a positive change in the 
token allocation to the winning asset k̂ in the previous round ( Δs�k > 0 or Δ+s

k̂
 , see 

above). The analysis relies on 1506 out of the 6144 available observations (24.5%).
The first measure we adopt is regret_payofft(i) = R

1

1+
∑

j≠i s
t−1

k̂
(j)

− R
st−1
k̂

(i)
∑n

j=1
st−1
k̂

(j)
 , the 

difference between the payoff individual i would have earned had she invested all her 
resources in the previously drawn asset k̂t−1 and the amount actually earned by i in 
period t − 1 . Second and third we adopt regret_tokenst(i) = 1 − st−1

k̂
(i) , capturing the 

share not invested in the drawn asset, and regret_otherst(i) =
1

n−1

∑n

j≠i
st−1
k̂

(j) − st−1
k̂

(i) , 
the difference between the average amount invested by the others in one’s (market) and 
share invested by individual i in the drawn asset.14 The fourth measure is 
regret_probabilitiest = wt−1

k̂
− st−1

k̂
(i) , the difference between the exogenously given 

probability wk̂ and share invested in the drawn asset.
According to Table  4, all regret measures are positively and significantly cor-

related to changes in token allocation to the last drawn assets �+s
k̂
 , except for 

regret_payoff  . Table 4 also highlights strong correlations among alternative regret 
measures. In particular, regret_others and regret_probabilities are strongly corre-
lated (rho=0.922). This is most likely due to the fact that the mean investment in a 
prospect is very close to the probability of the winning prospect (see Fig. 3).

14  In principle, past asset price information allows to infer which token amounts were invested in total by 
others, but inverting the price equations is cognitively demanding and very unlikely. Nevertheless, par-
ticipants may still qualitatively infer others’ average behavior from price vector information.
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5.4 � Regression analysis

The multivariate regression analysis of Table 5 provides a more refined picture of 
the relative impact of the alternative regret sources. To corroborate results emerg-
ing from the analysis reported above, we present four regression estimates with 
different model specifications, both in terms of dependent and independent vari-
ables as well as in terms of sample size. Regressions (1), (2), and (4) of Table 5 
report the outcome of linear mixed models (LMM). Regression (3) is a logit gen-
eralized linear mixed model (GLMM Logit). All models are estimated with ran-
dom effect intercepts at individual and matching group levels.

In Regression (1), the dependent variable is the absolute difference between 
the share of tokens invested in a prospect by a participant ( sj(i) ) and the probabil-
ity of the prospect ( wj(i) ), which we interpret as a direct measure of probability 
matching.

1 2 3 4 5 6 7

Round

M
ea

n
s j(

i)
−
w

j(i)

0
2

4
6
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10

12

Fig. 4   Average distance from probability matching over rounds



	 Evolutionary and Institutional Economics Review

1 3

In Regression (2), the dependent variable is the expected payoff of a partici-
pant in each round of choice, given the actual choices of the others in the group 
( �[Π] =

∑m

1
wj�j , where m is the number of prospects in a set and �j are the earnings 

in prospect j). This measures the expected profitability of one’s allocation strategy.
In Regression (3), the dependent variable I(Δ+s

k̂
(i) is equal to 1 if the difference 

between the amount invested at time t and at time t − 1 in the last winning prospect k̂ 
( Δs

k̂
(i) = st

k̂
(i) − st−1

k̂
(i) ) is strictly positive and thus compatible with directional 

learning. Otherwise, the dependent variable is 0, i.e., if Δs
k̂
(i) = st

k̂
(i) − st−1

k̂
(i) ≤ 0.

In Regression (4), the dependent variable is the difference between the amount 
invested at time t and at time t − 1 in winning asset k̂  at round t − 1 . 
( Δs

k̂
(i) = st

k̂
(i) − st−1

k̂
(i) ). The dependent variable captures the investment reaction 

to the previous random event, k̂  in t-1. Only positive adjustments are considered, 
to shed light on regret balancing.

∆sk̂
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en

si
ty
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Fig. 5   Changes in allocation to drawn prospect
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As explanatory variables, experimentally controlled manipulations are 
employed across all three model specifications: Round captures the period of 
choice; Size8 is a dummy variable taking value 1 when the group size is 8 and 
value 0 when it is 4; Seti with i ∈ {1, 2, 3, 4} is a dummy variable equal to 1 when 
choices are from set i and equal to 0 otherwise.

In Regression (2), a measure of absolute relative deviation from probability 
matching for each portfolio of choices is computed ( Abs_Rel_Diff =

|sj(i)−wj(i)|
wj(i)

 ). In 
Regression (4), a few additional controls are added to capture alternative sources 
of potential regret related to choices in the previous period. A detailed descrip-
tion of these measures is provided above (see Sect. 5.3).

Regression (1) reveals that the distance from probability matching tends to 
increase over rounds. Interestingly, in Set 2, for which the 1/m-heuristic is much 
closer to probability matching, the shares are further away from probability match-
ing than in Set 1. Furthermore, a Linear Hypothesis test shows that deviations are 
statistically larger in Set 3 than in Set 4 (Chi-square test, p value= 0.037).

Regression (2) shows that payoffs in Set 1 are lower than those in other sets. 
Furthermore, a larger distance from probability matching implies a considerable 
decrease in expected payoffs.

Our findings of the relevance of probability matching are summarized in the fol-
lowing result:

Result 1  Overall, probability matching seems to provide a strong anchoring for 
investments decisions. However, deviations from probability matching increase over 
rounds and are larger for smaller sets of options. This has an impact on outcomes, 
as larger deviations from probability matching impact expected payoffs negatively.

Regression (3) confirms that the likelihood of adjusting in line with directional 
learning decreases over rounds. The tendency towards directional learning is weaker 
in larger groups than in smaller ones ( Size8 ). Furthermore, sets with more invest-
ment options are less likely to induce behavior compatible with directional learning 
( Set3 and Set4).

Our findings of the relevance of directional learning are summarized in the fol-
lowing result:

Result 2  Overall, directional learning is not a main behavioral driver, and its 
strength is even weaker in later rounds, for larger groups, and larger sets of options.

Regression (4) highlights the impact of alternative regret measures on chang-
ing one’s allocation: both the amount of tokens not invested in the drawn prospect 
( regret_tokens ) and the distance between the probability of the drawn asset and the 
share invested in it ( regret_probabilities ) positively affect how much is invested 
in the drawn asset. Interestingly, the distance from the behavior of others, which 
has to be inferred from past market-clearing prices, has no significant impact, what 
had to be expected, since such inference is cognitively demanding. The difference 
between the payoff that one would have obtained by investing in the drawn asset 
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and the actual payoff ( regret_payoff  ) negatively impacts on behavior what seems 
compatible with the intuition of directional learning. However, these results must 
be taken with caution because of the strong correlation between regret_probabilities 
and regret_others (see Table 4) and the potential issue of multicollinearity.

Our findings of the relevance of alternative regret measures are summarized in 
the following result:

Result 3  Regret related to foregone payoffs impacts portfolio adjustments, in line 
with directional learning. Furthermore, the distance of the investment from the prob-
ability of the drawn asset and the distance from entirely investing in it also impact 
portfolio adjustments.

6 � Discussion

Our analysis investigates the choice behavior of enormous field relevance, namely 
how to invest in different financial assets. But then, we seem to lose all field rel-
evance, partly in line with the theoretical finance literature, by presupposing and 
experimentally inducing numerically specified and commonly known winning 
chances. If at all, winning chances in the field are ambiguous, and many professional 
investors claim individual superiority in knowing them. Interestingly, the evolution-
ary justification of the benchmark s(i) = s∗ for i = 1,… , n only does require suffi-
cient stationarity of winning chances to allow for evolutionary selection.

In our view, it is surprising that investors’ awareness of numerical winning 
chances wj for j = 1,… ,m seems to crowd out heuristics like, for instance, the 
Golden Mean (1/m). Although this appears like an obvious default in case of con-
siderably blurred winning chances, it is even more astonishing that this crowding 
out is immediate. The 1/m anchoring is substituted by w-anchoring, at least when w 
is commonly known. But then, the common knowledge and cognitive demands of 
the two equilibrium justifications of s(i) = s∗-behavior for all i = 1,… , n question 
seriously their behavioral relevance, especially its psychological validity. Could the 
average choice tendencies in our data, which are quite in line with this behavior, be 
due to reaction to myopic regret? This means to retrospectively analyze what would 
have been best, or at least better, choice behavior in the last period and to assess how 
much one has actually lost compared to this in the last period. Obviously, the latter 
can never exceed the former, and a positive difference measures a loss, assessed via 
a retrospective choice analysis when knowing the last winning asset.

Compared to other investment scenarios, our setup is simple via its block-wise 
stationary vector of state-specific probabilities across all seven periods of a phase 
but also much more complex than usual portfolio-choice experiments, since inves-
tors endogenously determine the market-clearing prices for markets with 4, respec-
tively 8, interacting agents. The initial steep decline in decision times reveals that 
the task is at least initially cognitively demanding. The prominent role of probability 

Fig. 6   Round-to-round changes in allocation to drawn prospect ▸
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matching in explaining investment choices, for instance, vis-a-vis the 1/m or Golden 
mean heuristic, via allocating wealth shares questions that one changes one’s port-
folio in the light of myopic feedback information about the most recent results as, 
for instance, postulated by direction learning. Apparently participants develop more 
stable investment behavior after more experiences with random success, revealed by 
increasing inertia across time. Less myopic path dependence, as in reinforcement 
learning, could account for such increasing inertia share. In our regret analysis, we 
restricted ourselves to myopic path dependence but, as in direction learning, dis-
tinguished several obvious and direct regret measures whose effects on portfolio 
adjustments in the light of only the most recent results could be confirmed.

Altogether, our results support the prominent and outstanding theoretical pre-
diction of w-homogeneity in investing—a prediction supported by evolutionary 

Table 4   Potential regret sources of behavioral adaptation (Pearson’s product–moment)

�
+s

k̂
regret_payoff regret_others regret_probabilities

regret_payoff 0.018
regret_others 0.517∗∗∗ 0.242∗∗∗

regret_probabilities 0.530∗∗∗ 0.222∗∗∗ 0.922∗∗∗

regret_tokens 0.232∗∗∗ 0.782∗∗∗ 0.585∗∗∗ 0.537∗∗∗

Table 5   Mixed models estimations (random effect intercepts at individual and matching group levels)

∗∗∗p < 0.001 , ∗∗p < 0.01 , ∗p < 0.05 , ⋅p < 0.1

(1) (2) (3) (4)
|sj(i) − wj(i)| �[Π] =

∑m

j
wj�j I(Δ+s

k̂
(i)) Δ+s

k̂
(i)

(Intercept) 0.117 (0.007)∗∗∗ 2.577 (0.008)∗∗∗ −0.591 (0.141)∗∗∗ 0.074 (0.018)∗∗∗

Round 0.003 (0.000)∗∗∗ 0.004 (0.001)∗∗∗ −0.105 (0.018)∗∗∗ 0.000 (0.002)
Size8 0.001 (0.004) −1.247 (0.008)∗∗∗ −0.233 (0.110)∗ 0.001 (0.006)
Set2 0.030 (0.002)∗∗∗ 0.056 (0.005)∗∗∗ 0.015 (0.086) 0.007 (0.008)
Set3 −0.054 (0.002)∗∗∗ 0.030 (0.005)∗∗∗ −0.318 (0.089)∗∗∗ −0.072 (0.010)∗∗∗

Set4 −0.051 (0.002)∗∗∗ 0.042 (0.005)∗∗∗ −0.243 (0.088)∗∗ −0.080 (0.009)∗∗∗

Abs_Rel_Diff −35.313 (0.626)∗∗∗

regret_payoff −1.936 (0.552)∗∗∗

regret_others 0.032 (0.049)
regret_probabilities 0.251 (0.046)∗∗∗

regret_tokens 0.160 (0.037)∗∗∗

Model LMM LMM GLMM Logit LMM
Num. obs. 21504 7168 6144 1506
Num. indiv. 128 128 128 123
Num. groups 24 24 24 24
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stability, strategic equilibrium, anchoring, and regret balancing. It captures the main 
tendencies even after block-wise changing probability vectors, but does not account 
for the persistent heterogeneity, which we could at least partly explain by myopic 
regret effects.

In conclusion, our stylized setup offers insights into policy interventions in real 
financial markets. Therefore, one might pool all available information and provide it 
publicly and enhance thereby block-wise stationarity of winning chances. It would 
also render the assumption that all investors rely on the same winning chances, a 
crucial assumption of our setup, more realistic and could render financial markets 
less perilous by limiting exploitation by privately informed traders.

Appendix

A. Translated instructions

General instructions

[HERE SOME STANDARD ABOUT THE EXPERIMENT AND THE SHOW-UP 
FEE]

If you have any question, please raise your hand and we will answer to it pri-
vately. Before the experiment starts, you are asked to answer a few questions check-
ing the understanding of these instructions. The experiment will start only when all 
participants have correctly answered the control questions.

Your choice task

Prospects

During the experiment, you are going to make choices involving prospects.
A prospect has a certain probability of being selected by the computer and when 

a prospect is selected by the computer, it generates some positive returns. Other-
wise, it generates nothing.

Distinct prospects are represented on the screen of your computer via bars of var-
ying length, indicating their likelihood of being selected. The following figure pro-
vides you with an example of a situation in which there are two prospects, Prospect 
1 and Prospect 2. The number of prospects can change during the experiment and 
can be either equal to 2 or to 4.
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The length of the bar graphically represents the numerical probability that a pros-
pect is selected by the computer and generates positive returns. The longer the bar, 
the higher the probability that the corresponding prospect is selected. The numerical 
probability is also provided in correspondence to each bar.

The procedure adopted by the computer to select a prospect is as follows:

•	 an integer number in the range from 1 to 64 is randomly drawn with all numbers 
from 1 to 64 being equally likely. The same number is drawn for all participants.

•	 when the number “falls” in a bar representing prospect probabilities, the prospect 
associated with the bar is selected and generates positive returns.

For the figure above, the numbers from 1 to 40 select Prospect 1, whereas all num-
bers from 41 to 64 select Prospect 2. Thus, exactly one prospect can be selected to 
generate positive returns.

Tokens

During the experiment, you are matched with other participants to form a group. 
The size of the group can change during the experiment and can be either equal to 4 
or to 8.

You and every other member of your group are endowed with 100 tokens.
Your task is to allocate the 100 tokens to the available prospects. You and the 

other in your group must allocate all 100 tokens to the available prospects.

Prospects bought

For each prospect i, there are 100 units to be bought by you and the others in your 
group.

The number of units of prospect i you buy ( ui ) is given by the proportion between 
the tokens allocated to the prospect by you ( ti ) and the total tokens allocated to the 
prospect by your group ( Ti).

In formal terms, the number of units of prospect i you buy is given by ui = 100
ti

Ti
 . 

It will be possible to buy non-integer units of prospects.

Returns

When a prospect is selected by the computer ( i∗ ), it generates positive returns.
Your returns R from the selected prospect i∗ are equal to €0.10 multiplied by the 

number of units of the selected prospect you bought ( ui∗).
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In formal terms, the returns from the selected prospect are given by R = ui∗× 
€0.10. Units of non-selected prospects become worthless.

Parts, phases, and rounds

The experiment is made of 2 parts: Part 1 and Part 2.
Each part is made of 4 phases: Phase 1, Phase 2, Phase 3, and Phase 4. Prospects 

may change between phases, but not within a given phase.
Each phase consists of seven rounds. In each round, you will be endowed with 

100 tokens and asked to allocate your tokens to available prospects.
Overall, you will face 56 rounds.
Throughout a phase, you are matched with the same participants, but between 

phases the composition of the group is randomly changing.
Detailed information about the prospects and the size of your group are given to 

you on the computer screen. You are also constantly informed about the Part, Phase, 
and Round you are in.

Final payment

The final payment is determined by randomly picking one round from each of the four 
phases in Part 1 and one round from each of the four phases in Part 2.

Thus, your final earnings in the experiment are the sum of your earnings in the 8 
rounds randomly chosen by the computer. You will learn which rounds have been cho-
sen only at the end of the experiment.

Example

This example illustrates the procedure of the experiment, but is not meant to give you 
any indication about how to behave in the experiment.

Consider the prospects in the figure above.
Assume you allocate 50 tokens to Prospect 1 ( t1 = 50 ) and 50 tokens to Prospect 2 

( t2 = 50).
Now, assume that the total number of tokens allocated by the four in your group (you 

included) to Prospect 1 and Prospect 2 is T1 = 250 and T2 = 150 , respectively. Accord-
ingly, you succeed in buying 100 ∗

50

250
= 20 units of Prospect 1 and 100 ∗

50

150
= 33.3 

units of Prospect 2.
If a number smaller than or equal to 40 is randomly drawn, Prospect 1 is selected 

by the computer and you earn € .10 × 20 = €2.0. If a number larger than 40 is selected, 
Prospect 2 would be chosen and you would earn € 0.10 × 33.3 = €3.3.
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