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Abstract. The C*-algebraic construction of QFT by Buchholz and one of
us relies on the causal structure of space-time and a classical Lagrangian.
In one of our previous papers, we have introduced additional structure
into this construction, namely an action of symmetries, which is related to
fixing renormalization conditions. This action characterizes anomalies and
satisfies a cocycle condition which is summarized in the unitary anoma-
lous Master Ward identity. Here (using perturbation theory) we show
how this cocycle condition is related to the Wess–Zumino consistency
relation and the consistency relation for the anomaly in the BV formal-
ism, where the latter follows from the generalized Jacobi identity for the
associated L∞-algebra. In addition, we give a proof that perturbative
agreement (i.e., independence of a perturbative QFT on the splitting of
the Lagrangian into free and interacting parts) can be achieved by finite
renormalizations.

1. Introduction

One of the most interesting features of quantum physics is the fact that sym-
metries of the classical theory are, in general, not straightforwardly transferred
to the corresponding quantum theory. Instead, often the symmetries are mod-
ified by anomalies. These satisfy the Wess–Zumino consistency relations [1],
and the arising new structures have a crucial impact on the quantum theory,
e.g., on the formulation of the standard model of particle physics.

In perturbative algebraic quantum field theory (pAQFT), the anomalies
can be obtained in terms of the anomalous Master Ward Identity (AMWI)
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[2–4], and it was shown by Hollands [5] that in Yang–Mills theory these anom-
alies satisfy a consistency relation which allows one to apply the homological
methods of the BRST-BV formalism, where the key information about the
theory is encoded in a certain differential. In [6,7], this result was generalized
to arbitrary theories with local gauge symmetries and an infinite-dimensional
rigorous version of the Batalin–Vilkovisky (BV) formalism was formulated,
without the use of path integral or any regularization scheme (in contrast to
[8]). One of the crucial results of that work was to describe the difference
between classical symmetries and their quantized counterparts in terms of
deformation of the classical BV differential to the quantum BV differential.
This deformation is induced by the deformation of the pointwise product of
the classical theory to the renormalized time-ordered product. In particular, a
renormalized BV Laplacian was introduced, and its action on the BV algebra
could be understood in terms of the anomaly [7]. Recently, Fröb [9] has suc-
ceeded in proving that the arising algebraic structure is that of an L∞-algebra.
The Wess–Zumino consistency relation has also been applied recently in [10]
in the treatment of global anomalies. Another insight concerns the difference
between consistent anomalies, i.e. , those that satisfy the Wess–Zumino con-
ditions, and the so-called covariant anomalies [11]. We do not enter into this
in our paper and refer the reader to the literature [12].

In a previous paper [13], we investigated the action of symmetries in the
C*-algebraic construction of scalar quantum field theories proposed in [14].
In that construction, the algebras are generated by S-matrices which describe
local interactions within compact regions of space-time. Subject to a causality
condition and a unitary version of the Schwinger–Dyson equation, one obtains
a net of C*-algebras satisfying the Haag–Kastler axioms, generalized to generic
globally hyperbolic space-times according to the principles of locally covariant
QFT [15]. Starting from the free Lagrangian and admitting only linear interac-
tions, one obtains the well-known Weyl algebra of the free field. If one includes
more general interactions, the arising algebra possesses automorphisms which
act nontrivially only in a compact subregion. The existence of such internal
symmetries violates the time slice axiom which states that observations in the
neighborhood of some Cauchy surface determine all other observables, i.e. ,
the algebra associated with this neighborhood is already the algebra of the
whole space-time.

Therefore, we introduced in [13] an additional axiom for these C*-algebras:
the “unitary anomalous Master Ward Identity (UAMWI).” It characterizes
how symmetries of the classical configuration space, which are not necessar-
ily symmetries of the Lagrangian, are modified in the quantum theory. The
symmetries considered form a group Gc of transformations with compact sup-
port, generated by affine field redefinitions and point transformations.1 Their
action on observables is modified by a map (the anomaly term) ζ from Gc

to a group Rc of transformations of functionals. In perturbation theory, the
elements of Rc relate different choices of time-ordering prescriptions which

1We remark that none of the considered Lagrangians is invariant under such transformations.
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not necessarily satisfy covariance conditions. According to Stora’s Main The-
orem of Renormalization [16,17], these transformations form a subgroup of
the Stüeckelberg–Petermann renormalization group [18]. This subgroup is de-
termined by the conditions Action Ward Identity, Field Equation and Field
Independence on the time ordering and the requirement of compact support.
It should be distinguished from other subgroups related to covariance condi-
tions. Actually, the intersection with such subgroups is typically trivial. Most
importantly for this paper, ζ satisfies a cocycle relation. We also showed that
this cocycle ζ exists in the perturbative version of the model where it can be
determined up to equivalence and yields the known anomalies.

Building on these results, in the present paper we explore further the
cocycle condition, focusing on perturbation theory. Since the nontriviality of
this cocycle is related to the existence of anomalies, it is reasonable to expect
that it should be related to the Wess–Zumino consistency condition. The lat-
ter has been originally derived in the context of the effective action and it
reflects to the way in which this action transforms under infinitesimal gauge
symmetries. In Sect. 3, we review that original derivation, following essentially
[19]. Although it is clear that the Wess–Zumino consistency condition has to
be related to the action of the Lie algebra of the group of symmetries of the
theory, the precise statement of this fact in the framework of [13,14] has not
been known. While addressing this question, the present work also makes con-
nections with another statement of the Wess–Zumino consistency condition,
namely the one present in the BV formalism.

Concretely, we show that, considering the infinitesimal symmetry trans-
formations, the cocycle ζ induces a corresponding map Δ : LieGc → LieRc

which is a Lie algebraic cocycle, and that this cocycle is the anomaly map ap-
pearing in the AMWI (Theorem 10.3 in [13] and Theorem 5.1 in this paper).
This provides a link between the notions of anomalies used in perturbation
theory [2] and anomalies in the nonperturbative formulation of [13]. In Sect. 4,
in Theorem 4.1, we give another derivation of the cocycle relation for Δ: We
show that the anomaly Δ of the AMWI satisfies a consistency condition, which
is precisely the cocycle relation for Δ, and which we call the extended Wess–
Zumino consistency condition, as it reduces to the standard Wess–Zumino
condition for quadratic interactions.

Finally, we discuss the relation to the BV formalism. In [6], two of us
have shown that the anomaly in the AMWI is in fact related to the renor-
malized BV Laplacian, so it is natural to expect that the algebraic properties
of the BV Laplacian would be reflected also in the cocycle condition. This is
indeed the case, as we prove in Sect. 6 that the extended cocycle condition for
Δ follows directly from the nilpotency of the BV operator, when applied to
those infinitesimal symmetries which arise from affine field redefinitions g ∈ Gc

(Prop. 6.7).
There is another structure which is often studied in perturbation theory,

namely the principle of perturbative agreement [20–22], which requires that
the perturbative construction should not depend on the way the Lagrangian is
split into free and interacting part. We prove that this principle can be satisfied
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by finite renormalizations and clarify its relation to the UAMWI (subsection
2.3).

2. The Framework

2.1. Perturbative Algebraic Quantum Field Theory (pAQFT)

We use the same setting for pAQFT as in [13, Sect. 10 and App. C]; for the
convenience of the reader, we repeat here in a somewhat sketchy way the
notations, definitions and results being relevant for this paper.

We consider an n-component real scalar field Φ on a globally hyperbolic
curved space-time M of dimension larger than 2. The classical configuration
space E (M, Rn) is the space of smooth functions on M with values in R

n. The
basic field Φ(x) is the evaluation functional

Φ(x) : E (M, Rn) → R
n; Φ(x)[φ] = φ(x). (2.1)

Observables are elements of the space F (M) of functionals F : E (M, Rn) → C

which are polynomial in φ and have the form

F [φ] =
m∑

k=0

〈fk, φ⊗k〉 (2.2)

with compactly supported distributional densities fk on Mk satisfying suitable
conditions on their wave front sets [18,23]. The latter ensures the existence of
the star product of the free theory (which is given in terms of the free La-
grangian L, see below) as a map � : F (M) × F (M) → F (M). This star
product is an �-dependent deformation of the (commutative) pointwise prod-
uct: F ·G[φ] .= F [φ]G[φ] for F,G ∈ F , φ ∈ E (M, Rn), see [24] or [25, Chap. 2].
The (functional) support of a functional F as above is the smallest closed set
K ⊂ M such that supp fk ⊂ Kk for all k (where supp f0 = ∅ is understood).

The subspace of local functionals F ∈ Floc(M) is defined by the addi-
tional conditions that F is R-valued and of the form F [φ] =

∫
F̂ (x, jx(φ)),

with a smooth density-valued function F̂ on the jet space of E (M, Rn) with
compact support in x.

The Lagrangian L is the usual Lagrangian of the free theory,

L(x)[φ] =
1
2
(
g−1(dφ(x), dφ(x)) + m2(φ(x), φ(x))

)
dμg(x)

where we use the canonical metric on R
n; L(x) is a density with values

in the local functionals and we write L(f) .=
∫

M
L(x)f(x) ∈ Floc(M) for

f ∈ D(M, R). The �-product is given in terms of a Hadamard function H,i.e.,
a bisolution of the associated Euler–Lagrange operator, the Klein–Gordon op-
erator K,

F � G[φ] = e〈 δ
δφ ,H δ

δφ′ 〉F [φ]G[φ′]|φ′=φ. (2.3)

H is of positive type, its antisymmetric part is i
2 (ΔR −ΔA) with the retarded

(R) and advanced (A) Green operator of K, and its wave front set satisfies the
microlocal spectrum condition [26,27]. There is no unique Hadamard function,
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but different choices differ by smooth bisolutions and lead to equivalent �-
products.

To construct the time-ordered product, we use an off-shell version of the
Epstein–Glaser method2 [28], generalized to globally hyperbolic space times
[23,29,30]. We furthermore use the fact that the k-fold pointwise product of
local functionals which vanish at the zero configuration is injective and thus
isomorphic to its image, the k-local functionals3 F ∈ Fk loc(M). Identifying
the onefold product with the identity and the 0-fold product with the map
R � c 	→ Fc with the constant functional Fc[φ] = c, we can describe the
time-ordered product as a linear map

T : F• loc(M) → F (M) (2.4)

where F• loc(M), the space of multilocal functionals, is the direct sum of the
spaces Fk loc(M) of k-local functionals, k ∈ N0 [6]. We can then equip the
space TF• loc(M) with the commutative and associative product

F ·T G
.= T ((T−1F ) · (T−1G)). (2.5)

On local functionals T is the identity. In the sense of formal power series,
we can then characterize T by its action on exponentials of local functionals
S(F ) = TeiF ≡ eiF

·T , the formal S-matrices. They are unitaries with respect to
the �-product and have to satisfy the condition of causal factorization

S(F + G) = S(F ) � S(G) if suppF ∩ J−(suppG) = ∅ (2.6)

where J− denotes the causal past of a space-time region and F,G ∈ Floc(M).
The time-ordered product is further restricted by renormalization conditions:
As explained in Introduction, we do not impose any covariance conditions;
besides the Action Ward Identity which is implicit in our formalism since the
time-ordered products depend only on the functionals but not on the way
they are obtained as integrals over functions of the fields, we only require field
independence

δ

δφ
T (F ) = T

(
δ

δφ
F

)
, F ∈ F• loc(M), (2.7)

and the off-shell field equation4

T
(
F · 〈Φ, f〉) = T

(〈F ′, EFf〉) + T (F ) · 〈Φ, f〉 f ∈ D(M,Rn), F ∈ F• loc(M),

(2.8)

where EF = H+iΔR is the Feynman propagator associated with the Hadamard
function H and F ′ is the first derivative of F . Time-ordered products satisfying

2Epstein and Glaser consider Fock space operators of the form
∑

k〈fk, :ϕ⊗k :〉 with the

normal ordered products of the free field ϕ. This corresponds to a restriction of functionals
to the space of solutions of the free field equation (on-shell formalism).
3Note that Floc(M) = F0 loc(M) + F1 loc(M).
4In [21], this renormalization condition is called “free field factor axiom.”
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these axioms exist, and according to Stora’s Main Theorem of Renormalization
[16,17], any two formal S-matrices S and Ŝ are related by

Ŝ = S ◦ Z (2.9)

where Z is a formal power series

Z(F + c) = c +
∞∑

n=1

1
n!

Zn(Fn) (2.10)

with linear maps Zn : Fn loc(M) → Floc(M), F ∈ F1 loc(M), c ∈ R. The
Stüeckelberg–Petermann renormalization group R0 is defined to be the set of
maps Z ≡ (Zn)n∈N appearing in (2.9), and one proves that this set is indeed
a group [16]. For a direct definition of R0, see [16,18] or [25, Chap. 3.6]. We
recall that Z commutes with the addition of constant functionals, Z(F + c) =
Z(F ) + c, and that it acts on quadratic functionals V by adding a constant:
Z(V ) = V + c for some c ∈ C depending on V .

We immediately see that Z(0) = 0 and Z1 = id. To include also possible
changes of the Feynman propagator which is unavoidable in a generally covari-
ant formalism [30], we generalize the definition of R0 by admitting nontrivial,
but still invertible Z1 which describe the change of the normal ordering and
thus the action of the time-ordering operator T̂ on 1-local functionals. For con-
venience, we continue to use a time-ordering operator T which is the identity
on local functionals and obtain the more general time orderings by composition
with the renormalization group map Z as in equation (2.9).

We do not add conditions on covariance to our renormalization condi-
tions, since we want to have the freedom to add quite general external fields
to our system. Covariance under certain symmetries then becomes visible in
the triviality of the corresponding cocycles.

2.2. Unitary Anomalous Master Ward Identity

In pAQFT, the unitary anomalous master Ward identity (UAMWI) describes
the behavior of the time-ordered product under the group Gc(M) of compactly
supported automorphisms of the affine bundle M×R

n. This group is generated
by the following transformations g : E (M, Rn) → E (M, Rn):

• Point transformations, i.e. , smooth and compactly supported diffeomor-
phisms ρ : M → M inducing the transformation gρ : φ 	→ gρ(φ) .= φ ◦ ρ.

• Affine field redefinitions g(A,ψ) with A ∈ D(M,GL(n, R)) and ψ ∈ D(M,
R

n) which act on configurations by

g(A,ψ)(φ)(x) .= φ(x)A(x) + ψ(x). (2.11)

where φ(x) and ψ(x) are considered as row vectors.
The action of Gc(M) on a functional F ∈ Floc(M) is defined by

g∗F [φ] .= F [g (φ)] (2.12)

and the free Lagrangian L is transformed by

((gρ)∗L)(f) .= (gρ)∗(L(f ◦ ρ)) ((g(A,ψ))∗L)(f) .= (g(A,ψ))∗(L(f)) (2.13)
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with f ∈ D(M, R). Note that (gh)∗ = g∗h∗ for g , h ∈ Gc(M), that is, Gc(M) �
g 	→ g∗ is a representation of Gc(M) by maps on Floc(M).

The group Gc(M) acts on the full Lagrangian, and hence on the interac-
tion by an L-dependent action on Floc(M)

(g , F ) 	→ gLF
.= δgL + g∗F where δgL

.= g∗L(f) − L(f) (2.14)

with f ∈ D(M, R) such that f |supp g = 1. Obviously eL = idF loc(M,L) for the
unit e ∈ Gc(M), and one verifies that (gh)L = gL ◦ hL.

The unitary anomalous master Ward identity (UAMWI) relates the trans-
formations induced by the action g → gL to renormalization group transfor-
mations ζg ∈ R0 with supp ζg = supp g . Here the support of Z ∈ R0 is
the smallest closed subset N of M such that Z(F + G) = F + Z(G) for all
F,G ∈ Floc(M) with suppF ∩N = ∅. The subgroup Rc of R0 of renormaliza-
tion group maps Z with compact support was discussed in [13, Appendix C].

We will now discuss the UAMWI in pAQFT. To allow for an off-shell
description, we introduce “sources.” Let q ∈ Edens(M, Rn) be a smooth density
and we define Lq

.= L−〈Φ, q〉. In pAQFT, the UAMWI states that there exists
a map (called “anomaly ma”)

ζ : Gc(M) → Rc, satisfying ζe = idF loc(M), supp ζg ⊂ supp g
(2.15)

and the cocycle relation5

ζgh = ζh h−1
L ζg hL g , h ∈ Gc(M) (2.16)

such that for every smooth density q ∈ Edens(M, Rn)

S ◦ gLq
(F )[φ] = S ◦ ζg (F )[φ] for φ solving

δL

δφ
[φ] = q (2.17)

with g ∈ Gc(M), F ∈ Floc(M) arbitrary. As shown in Theorem 10.3 in [13],
the UAMWI follows6 from the anomalous master Ward identity (AMWI) [2]
(recalled below in (2.25) or (2.27)), which is its infinitesimal version, formulated
in terms of the respective Lie algebras.

The Lie algebra LieRc is defined as follows (compare [13, Appendix C]):
It is the space of formal power series z(F ) =

∑∞
n=1

1
n!zn(Fn), with linear maps

zn : Fn loc(M) → Floc(M), with the properties
(P1) id + λz1 is invertible for λ sufficiently small,
(P2) z(F + G) = z(F ) + z(G) for suppF ∩ suppG = ∅, F,G ∈ Floc(M),

5Note that all the maps in the cocycle relation are nonlinear, and we use juxtaposition to
denote composition of maps. For the composition of a renormalization group transformation
Z with gL, this means in terms of the linear maps Zn for F ∈ F1 loc(M)

Z ◦ gL(F ) = gL(F )[0] +
∑

n

1

n!
Zn

(
(gL(F ) − gL(F )[0])n

)
.

6In [13], only the case q = 0 was treated. The generalization to arbitrary densities q relies
on the fact that ζ does not change under adding a source term −〈Φ, q〉 to the Lagrangian,
see Theorem A.1 in appendix 7. In particular, the proof of that Theorem explicitly shows
that the cocycle relation (2.16) is a necessary condition for the UAMWI (2.17).
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(P3) z(F + 〈Φ, ψ〉) = z(F ) for ψ ∈ D(M, Rn),
(P4) δ

δφz(F ) = 〈z′(F ), ( δ
δφF )〉,

(P5) the support of z is compact, where supp z is the smallest closed subset N
of M such that z(F+G) = z(G) for all F,G ∈ Floc(M) with suppF∩N =
∅.

The action of Gc(M) on the configuration space (considered as an affine
space) induces an action of the Lie algebra LieGc(M) with values in the asso-
ciated vector space,

E (M, Rn) × LieGc(M) � (φ,X) 	→ φX. (2.18)

To determine the Lie bracket, it is convenient to describe the Lie algebra
LieGc(M) in a faithful representation of the group. Since Gc(M) acts from the
right on field configurations, we write it in terms of a matrix multiplication
from the right on the space E (M, Rn) ⊕ R in the form

g : (φ, c) 	→ (φ, c)
(

A 0
ψ 1

)
◦

(
ρ 0
0 id

)
(2.19)

with g = (A,ψ, ρ), from which we get

X : φ 	→ (φ, 1)

(
a+

←
∂ μ vμ 0
p 0

)
= (φa + vμ∂μφ + p, 0) .= (φX, 0)

(2.20)

with the Lie algebra element X = (a, p, v), a ∈ D(M, gl(n, R)), p ∈ D(M, Rn)
and a smooth vector field v with compact support. The Lie bracket

[(a, p, v), (b, q, w)] = ([a, b] + wν∂νa − vν∂νb, pb − qa + wν∂νp

−vν∂νq, wν∂νv − vν∂νw) (2.21)

can directly be obtained from above the matrix representation. Note the un-
usual sign of the Lie bracket of vector fields due to the action of derivatives to
the functions on the left, indicated by the upper left arrow.

The action of LieGc(M) on field configurations yields a representation
X 	→ ∂X on the space of local functionals with

∂XF [φ] = 〈F ′[φ], φX〉 ≡
∫

δF

δφa(x)
[φ](φX)a(x), (2.22)

where we use the usual summation conventions over the components of φ,
a = 1, . . . , n; and the functional derivative is naturally identified with a density.
In particular, we have

[∂X , ∂Y ] = ∂[X,Y ]. (2.23)

For the Lagrangian, we set

∂XL
.= ∂XL(f) with f ∈ D(M, R) satisfying f |suppX = 1. (2.24)

To formulate explicitly the above statement that the AMWI is the infin-
itesimal version of the UAMWI, let X ∈ LieGc(M) be the tangent vector at



Unitary, anomalous Master Ward

λ = 0 of a smooth curve λ 	→ gλ ∈ Gc(M) with g0 = e. Starting with the
UAMWI (2.17), we substitute gλ for g and apply d

dλ |λ=0; this yields

T
(
eiF · (

∂XF + ∂XLq − ΔX(F )
))

[φ] = 0 for φ solving
δL

δφ
[φ] = q (2.25)

with X ∈ LieGc(M), F ∈ Floc(M) and where

Δ : LieGc(M) � X 	→ ΔX
.=

d

dλ

∣∣∣
λ=0

ζgλ ∈ LieRc. (2.26)

Indeed, (2.25) agrees with the AMWI; thus, ΔX(F ) coincides with the uniquely
determined anomaly in the AMWI (see [2, Thm. 7], [31, Thm. 5.2] and [25,
Chap. 4.3]). The AMWI (2.25) may also be written in the equivalent form

eiF
T ·T

(
∂XF + ∂XL − ΔX(F )

)

=
∫ (

eiF
T ·T (∂XΦ(x))a

) δL(f)
δφa(x)

, f ≡ 1 on suppX (2.27)

where δL(f)/δφa(x) is understood as a density. We observe that the map
X 	→ ΔX is linear and that supp ζg ⊂ supp g implies supp ΔX ⊂ suppX.
Moreover, there is a common locality of ΔX(F ) in X and F derived in [2,
Thm. 7], see also [25, Thm. 4.3.1]:

Lemma 2.1. The anomaly map Δ of the AMWI satisfies

supp ΔX(F ) ⊂ suppF ∩ suppX. (2.28)

and

ΔX(F ) = 0 if suppF ∩ suppX = ∅. (2.29)

2.3. Perturbative Agreement

Within perturbation theory, the change of the Lagrangian by a symmetry
operation of the configuration space can also be treated by the principle of
perturbative agreement [21] (see also [20,22]). This principle amounts to the
invariance of the theory under different decompositions of the Lagrangian into
a free and an interacting part. It is not clear how this principle can be incor-
porated into the C*-algebraic construction. In a perturbative construction, it
can be formulated as follows.

Let L0, L be second-order Lagrangian densities which differ only within
some compact region and have normally hyperbolic Euler–Lagrange deriva-
tives K0Φ − q0 and KΦ − q, with metrics g0, g for which M is globally hy-
perbolic and densities (sources) q0, q, respectively. Let V =

∫
(L − L0) be the

interaction. Local functionals of this form are called admissible interactions
for the Lagrangian L0; likewise, (−V ) is an admissible interaction for L. Let
Ω : E (M, Rn) → E (M, Rn) denote the retarded Møller map [20],

K0Ω(φ) − q0 = Kφ − q supp (Ω(φ) − φ) ⊂ J+(suppV ) (2.30)

i.e. , Ω(φ) = φ + ΔR
0 ((K − K0)φ + q0 − q) with the retarded Green operator

ΔR
0 for K0. We choose �-products �0, � with Hadamard functions H0 and H
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such that

Ω′H(Ω′)t = H0. (2.31)

with the derivative Ω′ = 1 + ΔR
0 (K − K0) of Ω. Then the two star products

are related by

F �0 G[Ω(φ)] = (F ◦ Ω � G ◦ Ω)[φ]. (2.32)

Let now S0 and S be perturbative S-matrices which satisfy the causality
condition and the dynamical condition for the respective Lagrangians and
�-products. We then use S0 to define a second S-matrix Ŝ for L by

Ŝ(F )[φ] =
(
S0(V )−1 �0 S0(V + F )

)
[Ωφ] .= SV (F )[Ωφ]. (2.33)

The (given) pair (S, S0) satisfies perturbative agreement iff S = Ŝ. For linear
functionals F , the perturbative S-matrices Ŝ and S coincide as a consequence
of the dynamical relation for S (see, e.g. , [32]). For more general functionals,
we find

Lemma 2.2. Ŝ satisfies the conditions for L with �-product �.

Proof. We start with the dynamical condition: Since V +δL(ψ) = V ψ+δL0(ψ),
the dynamical relation for S0 reads:

S0

(
V + F ψ + δL(ψ)

)
= S0(V + F ) �0 S0

(
δL0(ψ)

)
= S0

(
δL0(ψ)

)
�0 S0(V + F ).

(2.34)

By using this relation and, in a later step, the same relation with F = 0, we
obtain

Ŝ
(
Fψ + δL(ψ)

)
[φ] =

(
S0(V )−1 �0 S0

(
V + Fψ + δL(ψ)

))
[Ωφ]

=
(
S0(V )−1 �0 S0

(
δL0(ψ)

)
�0 S0(V ) �0 S0(V )−1 �0 S0(V + F )

)
[Ωφ]

=
(
S0(V )−1 �0 S0

(
V + δL(ψ)

)
�0 S0(V )−1 �0 S0(V + F )

)
[Ωφ]

=
(
SV

(
δL(ψ)

)
�0 SV (F )

)
[Ωφ]

=
(
Ŝ

(
δL(ψ)

)
� Ŝ(F )

)
[φ].

(2.35)

Proceeding analogously one verifies also that Ŝ
(
Fψ+δL(ψ)

)
= Ŝ(F )�Ŝ

(
δL(ψ)

)
.

For the causality condition, it suffices to check the 2-factor relation. Let
suppF ∩ J−(suppG) = ∅. We have

Ŝ(F + G)[φ] = (S0(V )−1 �0 S0(V + F + G))[Ωφ]

= (S0(V )−1 �0 S0(V + F ) �0 S0(V )−1 �0 S0(V + G))[Ωφ]

= (SV (F ) �0 SV (G))[Ωφ]

= (Ŝ(F ) � Ŝ(G))[φ]

(2.36)
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where we used (2.32) in the last step. �

By the Main Theorem (2.9)–(2.10), we conclude that again the two S-
matrices S and Ŝ are related by a renormalization group transformation ζ, but
now the condition of compact support has to be weakened to past compact
support.

To indicate the dependence on V and on the action [L] corresponding to
the Lagrangian L, we introduce the notations

S = S[L], S0 = S[L0] = S[L]−V and Ŝ = SV
[L] (2.37)

as well as

KV = K0, qV = q0 and Ω = ΩV (2.38)

and we shall use the factorization

ΩV +W = ΩV
W ◦ ΩV with KV +W ΩV

W (φ) − qV +W = KV φ − qV (2.39)

where (−W ) is an admissible interaction for [L] − V (hence −(V + W ) is
admissible for [L], cf. [13, Sect. 2.1]). We define the renormalization group
elements ζ

[L]
V and ζ

[L]−V
W by

SV
[L] = S[L]ζ

[L]
V SW

[L]−V = S[L]−V ζ
[L]−V
W (2.40)

note in particular that ζ
[L]
V (0) = 0 (and similarly for ζ

[L]−V
W ).

Proposition 2.3. The renormalization group elements (2.40) which character-
ize the obstruction to perturbative agreement satisfy the cocycle relation

ζ
[L]
V +W (F ) = ζ

[L]
V

(
ζ
[L]−V
W (V + F ) − ζ

[L]−V
W (V )

)
. (2.41)

Remark 2.4. Writing R0([L]) .= R0 to make visible the dependence of the
Stüeckelberg–Petermann RG on the underlying free Lagrangain L, we point
out that the cocycle relation and ζ

[L]
V , ζ

[L]
V +W ∈ R0([L]) imply that

(
ζ
[L]−V
W (V +

•) − ζ
[L]−V
W (V )

) ∈ R0([L]) (in contrast to ζ
[L]−V
W ∈ R0([L] − V )).

Proof. By definition (in particular (2.33)), we obtain

S[L]ζ
[L]
V +W (F )[φ] = SV +W

[L] (F )[φ]

=
(
S[L]−V −W (V + W )−1 � S[L]−V −W (V + W + F )

)
[ΩV +W φ]

=
(
S[L]−V −W (V + W )−1 � S[L]−V −W (W ) � S[L]−V −W (W )−1

� S[L]−V −W (V + W + F )
)
[ΩV +W φ]

(2.42)

We use the splitting ΩV +W = ΩV
W ◦ ΩV and get

(
S[L]−V −W (W )−1 � S[L]−V −W (V + W + F )

)
[ΩV +W φ]

= SW
[L]−V (V + F )[ΩV φ] = S[L]−V ζ

[L]−V
W (V + F )[ΩV φ] . (2.43)

as well as the corresponding expression for F = 0. (Note that in the formulas
written so far, “�” belongs to the free theory given by [L] − V − W and the
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upper index (−1) denotes the inverse w.r.t. that star product.) We then take
into account that for the second-order functional V renormalization group
elements Z just add a constant, Z(V ) = V + c; hence,

S[L]−V ζ
[L]−V
W (V ) = S[L]−V (V + c) (2.44)

and

S[L]−V ζ
[L]−V
W (V + F ) = S[L]−V

(
ζ
[L]−V
W (V + F ) − ζ

[L]−V
W (V ) + V + c

)
.

(2.45)

By inserting these relations into (2.42) and using (2.32), (2.33), (2.40) and
S[L]−V (G + c) = S[L]−V (G) eic (for all G ∈ Floc(M)), we obtain the
claim. �

The cocycle characterizing the obstruction to perturbative agreement is
trivial, in agreement with the arguments in [20,21]:

Proposition 2.5. Let S̃[L]−V
.= S[L]−V ZV with ZV (F ) .= (ζ [L]

V )−1(F − V ) −
(ζ [L]

V )−1(−V ) for all admissible second-order interactions −V of the action
[L]. Then S̃[L]−V satisfies the condition of perturbative agreement, i.e. , for
all admissible second-order perturbations −W of the action [L] − V we have
S̃W
[L]−V = S̃[L]−V .

Proof. By using (2.33), (2.40) and S[L]−V −W (G + c) = S[L]−V −W (G) eic, we
get

S̃W
[L]−V (V + F )[φ] =

(
S̃[L]−V −W (W )−1 � S̃[L]−V −W (V + W + F )

)
[ΩV

W φ]
(2.46)

=
(
S[L]−V −W (ZV +W (W ))−1 � S[L]−V −W (ZV +W (V + W + F ))

)
[ΩV

W φ]

(2.47)

=
(
S[L]−V −W (W )−1 � S[L]−V −W (ZV +W (V + W + F )

− ZV +W (W ) + W )
)
[ΩV

W φ] (2.48)

=
(
SW
[L]−V (ZV +W (V + W + F ) − ZV +W (W ))

)
[φ] (2.49)

= S[L]−V ζ
[L]−V
W

(
ZV +W (V + W + F ) − ZV +W (W )

)
[φ] (2.50)

= S[L]−V ζ
[L]−V
W

(
(ζ [L]

V +W )−1(F ) − (ζ [L]
V +W )−1(−V )

)
[φ]. (2.51)

The expression in the last line is equal to S[L]−V ZV (V +F ) = S̃[L]−V (V +F );
this follows from the cocycle relation, as shown in the following lemma. �

Lemma 2.6. The cocycle relation (2.41) implies the identity

(ζ [L]
V +W )−1(F ) − (ζ [L]

V +W )−1(−V ) = (ζ [L]−V
W )−1

(
(ζ [L]

V )−1(F ) − (ζ [L]
V )−1(−V )

)
.

(2.52)
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Proof. The cocycle relation implies that the inverse of ζ
[L]
V +W is obtained by

solving the equation

F = ζ
[L]
V

(
ζ
[L]−V
W (V + G) − ζ

[L]−V
W (V )

)
(2.53)

for G; hence,

(ζ [L]
V +W )−1(F ) + V = (ζ [L]−V

W )−1
(
(ζ [L]

V )−1(F ) + ζ
[L]−V
W (V )

)
. (2.54)

For F = −V , we get an identity for c-numbers,

(ζ [L]
V +W )−1(−V ) + V = (ζ [L]−V

W )−1
(
(ζ [L]

V )−1(−V ) + ζ
[L]−V
W (V )

)
. (2.55)

We subtract this equation from the equation for generic F , use again the fact
that renormalization group elements commute with the addition of c-numbers
and obtain the equation in the lemma,

(ζ [L]
V +W )−1(F ) − (ζ [L]

V +W )−1(−V )

= (ζ [L]−V
W )−1

(
(ζ [L]

V )−1(F ) + ζ
[L]−V
W (V ) − (ζ [L]

V )−1(−V ) − ζ
[L]−V
W (V )

)

= (ζ [L]−V
W )−1

(
(ζ [L]

V )−1(F ) − (ζ [L]
V )−1(−V )

)
. (2.56)

�

We specialize now to the case that the interaction is of the form V = δgL
for g ∈ Gc(M). In this case, we have (see [22], Prop. 2.10)

Proposition 2.7. ΩV (φ) = g (φ) for on-shell configurations φ (with respect to
the Lagrangian g∗L).

Proof. By construction of ΩV , ΩV (φ) satisfies the field equation for L, KΩV (φ)
= q. By assumption, φ satisfies the field equation for g∗L, g tKg (φ) = g tq. But
then g (φ) satisfies also the field equation for L. Since g (φ) coincides with
ΩV (φ) outside of J+(supp g ), both configurations coincide everywhere. �

For the inverse Møller map, we find Ω−1
V (φ) = g−1(φ) .= g∗φ, for on-

shell configurations with respect to L. We observe that (2.32) yields a further
isomorphism γg between the theories for L and g∗L, γg

(
S[L](F )

)
= S[L](F ) ◦

ΩV , 7 in addition to the isomorphism

αg : S[L](F ) 	→ S[g∗L](g∗F )

and the inverse isomorphism

βg : S[g∗L](F ) 	→ S[L](δgL)−1 � S[L](δgL + F ).

Perturbative agreement means γgβg = id on the theory given by g∗L, as we
see by comparing

γgβg
(
S[L](F )

)
=

(
S[L](δgL)−1 � S[L](δgL + F )

) ◦ ΩV

with (2.33), whereas the UAMWI deals with the automorphism βgαg on the
theory given by L (see [13, Sect. 5]). If perturbative agreement holds, we have

7In particular, note that causal factorization of S[L](F ) with respect to �[L] implies causal

factorization of γg
(
S[L](F )

)
with respect to �[g∗L], due to (2.32).
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βgαg = γg−1αg ; thus, we get from the on-shell UAMWI (by using ζg (0) = 0)
the identity

S[L](ζg (F ))[φ] =
(
S[L](ζg (0))−1 � S[L](g∗F + δgL)

)
[φ] (2.57)

=
(
S[L](δgL)−1 � S[L](g∗F + δgL)

)
[φ] (2.58)

= S[g∗L](g∗F )[g∗φ] (2.59)

for on-shell configurations φ. Hence, the anomaly refers directly to a possible
discrepancy between the action of the symmetry on the time-ordered products
and on the Lagrangian. As a simple example, one may look at the scaling
transformation for the massless free theory. There the Lagrangian is invariant,
but the renormalized time-ordered products are not invariant, in general. In
cases where such a discrepancy can be excluded, i.e., it holds that

S[g∗L](g∗F )[g∗φ] = S[L](F )[φ] (2.60)

perturbative agreement implies the absence of anomalies, and one can derive
the existence of conserved currents. This was used, e.g. , in [21] to prove the
covariant conservation law for the energy momentum tensor on the basis of
a generally covariant renormalization prescription for time-ordered products,
and analogously, in [22] for the covariant conservation law of currents for gauge
symmetries. In these references, there is an obstruction to fulfill perturbative
agreement. Actually, as our analysis shows, in the presence of nontrivial anom-
alies, perturbative agreement and covariance in the sense of (2.60) cannot both
be satisfied. This also motivates not to postulate covariance a priori.

3. Review of the Wess–Zumino Consistency Relations

Following [19], we concentrate here on the subgroup Go ⊂ Gc of orthogonal
field redefinitions φ 	→ gφ where g : M 	→ SO(n, R) is smooth and compactly
supported and φ is written as a column vector. An orthogonal field redefini-
tion may be interpreted as a gauge transformation. It transforms the trivial
connection on the vector bundle M × R

n to an equivalent one which may be
considered as an external gauge field A which is a pure gauge, i.e. , A = g−1dg
for some g ∈ Go. We consider Lagrangians LA,

LA(φ) =
1
2
〈(d + A)φ, (d + A)φ〉, (3.1)

which depend on a compactly supported external gauge field A, considered
as a so(n, R)-valued 1-form, in symbols A ∈ Ω1

c(M, so(n)). The bracket here
combines the space-time metric on 1-forms together with the canonical inner
product on R

n. We have

(g∗LA)(φ) = LA(g−1φ) = LAg (φ), (3.2)

where Ag = g (dg−1)+gAg−1 is the gauge transformed gauge field. Let V (A) .=∫
(LA − L) denote the interaction induced by A. Then

V (Ag ) = gLV (A), (3.3)
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where gL refers to the action of Go on φ defined in (2.14). One now considers
the effective action, i.e. , the Legendre transform of the generating functional
of connected Green’s functions,

Γ(A,ϕ) .= 〈ϕ, J〉 − i log
(
S(V (A) + 〈Φ, J〉)[φ = 0]

)
ϕ ∈ D(M, Rn) (3.4)

where J(ϕ,A) is the solution of

ϕ = −i
δ

δj
log

(
S(V (A) + 〈Φ, j〉)[φ = 0]

)∣∣
j=J

. (3.5)

Since LA is a quadratic functional of φ, we have the explicit solution

J = �Aϕ (3.6)

with the d’Alembertian �A for an external gauge field A. Thus,

Γ(A,ϕ) =
∫

LA(ϕ) − i log
(
S(V (A) + 〈Φ,�Aϕ〉)[φ = 0]

)
. (3.7)

In the absence of anomalies, Γ should be gauge invariant. The action
of the gauge group on gauge fields A 	→ Ag and matter fields ϕ 	→ gϕ in-
duces a corresponding representation X 	→ ∂A,ϕ

X of the Lie algebra, acting by
derivations on functions K of these fields,

∂A,ϕ
X K(A,ϕ) .=

d

dλ

∣∣
λ=0

K(Agλ , gλϕ) (3.8)

with gλ = exp (−λX); in particular, [∂A,ϕ
X , ∂A,ϕ

Y ] = ∂A,ϕ
[X,Y ] holds. One defines

the anomaly by

G(X,A) .= ∂A,ϕ
X Γ(A,ϕ). (3.9)

Even though Γ is nonlocal and depends on ϕ, the anomaly is a local functional
of A and independent of ϕ. These two statements are well known from the
literature (see, e.g., [33]), but for completeness we give independent proofs
below. An immediate consequence of the definition (3.9) is the Wess–Zumino
consistency relation

∂A
XG(Y,A) − ∂A

Y G(X,A) = G([X,Y ], A) (3.10)

where we write ∂A
X instead of ∂A,ϕ

X when acting on a functional not depending
on ϕ. The consistency relation is a nontrivial restriction on the structure of
anomalies, although it is an obvious consequence of the fact that anomalies
are defined directly through a Lie algebra action.

Next we show how this consistency relation can be derived directly from
the UAMWI. For g ∈ Go, we have that

V (Ag ) + 〈Φ,�Ag (gϕ)〉 = gL

(
V (A) + 〈Φ,�Aϕ〉). (3.11)

Using the UAMWI, we get

S
(
V (Ag ) + 〈Φ,�Ag (gϕ)〉)∣∣

φ=0
= S

(
ζg

(
V (A) + 〈Φ,�Aϕ〉))∣∣

φ=0
. (3.12)

Using parts (i) and (iii) of Prop. 4.14 in [13], we obtain
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ζg
(
V (A) + 〈Φ, �Aϕ〉) = ζg

(
V (A)

)
+ 〈Φ, �Aϕ〉 = V (A) + 〈Φ, �Aϕ〉 + G(g , A),

(3.13)

with a functional G which depends on g and A but does neither depend on
the field ϕ nor on the field configuration φ. Moreover, G is local in the sense
that for x �= y

δ2G

δA(x)δA(y)
= 0 ,

δ2G

δg (x)δA(y)
= 0 and

δ2G

δg (x)δg (y)
= 0. (3.14)

This follows from G(g , A) = ζg (V (A)) − V (A) (3.13) and the following
proposition:

Proposition 3.1. Let ω, ω1, ω2 ∈ Ω1
c(M, so(n)), g , g1, g2, h ∈ G0 such that

suppω1 ∩ suppω2 = ∅, suppω ∩ supp g = ∅ and supp g1 ∩ supp g2 = ∅.Then
(1) ζh

(
V (A + ω1 + ω2)

)
= ζh

(
V (A + ω1)

) − ζh
(
V (A)

)
+ ζh

(
V (A + ω2)

)

(2) ζgh
(
V (A + ω)

)
= ζh

(
V (A + ω)

) − ζh
(
V (A)

)
+ ζgh

(
V (A)

)

(3) ζg1g2h
(
V (A)

)
= ζg1h

(
V (A)

) − ζh
(
V (A)

)
+ ζg2h

(
V (A)

)
.

Proof. (1) From V (A) =
∫

(LA − L), we see that V is a local functional of
A; hence,

V (A + ω1 + ω2) = V (A + ω1) − V (A) + V (A + ω2) (3.15)

and supp (V (A + ωi) − V (A)) ⊂ suppωi, i = 1, 2. Since ζh satisfies the
additivity relation

ζh (F + G + H) = ζh (F + G) − ζh (G) + ζh (G + H) (3.16)

for F,G,H ∈ Floc(M) with suppF ∩ suppH = ∅, we get

ζh
(
V (A + ω1 + ω2)

)
= ζh

(
(V (A + ω1) − V (A)) + V (A) + (V (A + ω2) − V (A))

)

= ζh
(
V (A + ω1)

) − ζh
(
V (A)

)
+ ζh

(
V (A + ω2)

)
.

(3.17)

(2) From the cocycle relation, we have ζgh = ζhζ
h
g with ζhg

.= h−1
L ζg hL ∈ Rc

[13, Lemma 5.4]. In the first step, we show that supp ζhg ⊂ supp ζg .
Let F,G ∈ Floc(M) and suppG ∩ supp g = ∅. With supp h∗G =

suppG, we get

ζhg (F + G) = h−1
L ζg (hLF + h∗G)

= h−1
L

(
ζg (hLF ) + h∗G

)

= ζhg (F ) + G.

(3.18)

Then supp
(
ζhg (V (A)) − V (A)

) ⊂ supp ζhg ⊂ supp g (see [13, Prop.
4.14(ii)]) and we find that

ζgh
(
V (A + ω)

)
= ζhζ

h
g
(
(V (A + ω) − V (A)) + V (A)

)

= ζh
(
ζhg (V (A)) + V (A + ω) − V (A)

)
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= ζh
((

ζhg (V (A)) − V (A)
)

+ V (A) +
(
V (A + ω) − V (A)

))

= ζhζ
h
g
(
V (A)

) − ζh
(
V (A)

)
+ ζh

(
V (A + ω)

)
. (3.19)

(3) In the first step, we show that for g , h ∈ Go with disjoint supports (i.e.,
supp g ∩ supp h = ∅) the following relation holds for F ∈ Floc(M):

ζhg (F ) = h−1
L ζg hL(F )

= h−1
L ζg

(
(hLF − F ) + F

)

= h−1
L (hLF − F + ζg (F ))

= F − h−1
L F + h−1

L ζg (F )

= F − h−1
L F + h−1

L

(
(ζg (F ) − F ) + F

)

= F − h−1
L F + ζg (F ) − F + h−1

L F

= ζg (F ).

(3.20)

Here we used that supp (hLF − F ) ⊂ supp h and supp (ζg (F ) − F ) ⊂
supp g . We now compute

ζg1g2h (F ) = ζhh−1
L ζg2ζ

g2
g1 hL(F )

= ζhh−1
L ζg2ζg1hL(F )

= ζhh−1
L ζg2

(
(ζg1hL(F ) − hL(F )) + hL(F )

)

= ζhh−1
L

(
(ζg1hL(F ) − hL(F )) + ζg2hL(F )

)

= ζh
(
ζhg1(F ) − F + ζhg2(F )

)

= ζh
(
(ζhg1(F ) − F ) + F + (ζhg2(F ) − F )

)

= ζhζ
h
g1(F ) − ζh (F ) + ζhζ

h
g2(F )

= ζg1h(F ) − ζh (F ) + ζg2h (F ).

(3.21)

In the last step, we were able to apply the additivity of ζh (3.16) since
supp (ζhgj

(F ) − F ) ⊂ supp gj . Inserting F = V (A) yields the claim in the
proposition.

�

We now insert (3.13) into (3.12) and find

S
(
V (Ag ) + 〈Φ,�Ag (gϕ)〉)∣∣

φ=0
= S

(
V (A) + 〈Φ,�Aϕ〉)∣∣

φ=0
eiG(g ,A).

(3.22)

Hence, using (3.7) and (3.2), we obtain the following action of Go on the
effective action:

Γ(Ag , gϕ) = Γ(A,ϕ) + G(g , A). (3.23)
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Since (Ah )g = Agh and G(g , Ah) does not depend on ϕ, we immediately see
that G satisfies the cocycle relation

G(gh , A) = G(g , Ah) + G(h , A). (3.24)

The Wess–Zumino consistency relation is just the infinitesimal version of this
cocycle relation with

G(X,A) =
d

dλ

∣∣∣
λ=0

G(exp(−λX), A). (3.25)

This follows from the fact that Go acts on Γ as an antirepresentation. To see
it directly, we compute

∂A
XG(Y, A) − ∂A

Y G(X, A)

=
∂2

∂λ∂μ

∣∣∣
λ=μ=0

(
G

(
exp(−μY ), Aexp(−λX)) − G

(
exp(−λX), Aexp(−μY )))

=
∂2

∂λ∂μ

∣∣∣
λ=μ=0

(
G

(
exp(−μY ) exp(−λX), A

) − G
(
exp(−λX) exp(−μY ), A

))

(3.26)

where we used the cocycle condition (3.24) and the fact that the terms which
depend only on one of the variables, λ or μ, do not contribute to the deriva-
tive. We use now the following consequences of the Baker–Campbell–Hausdorff
formula:

exp(−λX) exp(−μY ) = g+(λ, μ) exp
(

1
2
λμ[X,Y ]

)
(3.27)

and

exp(−μY ) exp(−λX) = g−(λ, μ) exp
(

− 1
2
λμ[X,Y ]

)
(3.28)

where g+ and g− coincide up to second order. Inserting this into the previous
formula and using again the cocycle condition, together with G(e, A) ≡ 0, we
find

∂
A
XG(Y, A) − ∂

A
Y G(X, A) =

∂2

∂λ∂μ

∣∣∣
λ=μ=0

(
G

(
g−(λ, μ), A

exp(− 1
2

λμ[X,Y ]))

+ G
(
exp(− 1

2λμ[X, Y ]), A
) − G

(
g+(λ, μ), A

exp(+ 1
2

λμ[X,Y ])) − G
(
exp( 1

2λμ[X, Y ]), A
))

= G([X, Y ], A)

(3.29)

since the terms involving g+ and g− cancel.

4. Consistency Relation for the Anomaly of the AMWI

We return to the more general framework introduced in Sect. 2. We aim at a
derivation of a consistency relation for the anomaly map X 	→ ΔX (2.26) of
the AMWI (2.25) which holds for general interactions (i.e., any F ∈ Floc(M)
is admitted), by using only the AMWI. For this purpose, we consider two
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paths gλ and hμ in Gc(M) with tangent vectors X and Y at 0, respectively.
We compute

∂2

i∂λ∂μ

∣∣∣
λ=μ=0

(
S

(
(gλhμ)Lq

F
) − S

(
(hμgλ)Lq

F
))

= S(F ) ·T ∂[X,Y ](F + Lq)

(4.1)

by using (2.23). According to the AMWI (2.25), it coincides for configurations
φ with δL

δφ [φ] = q with

S(F ) ·T Δ[X,Y ](F ). (4.2)

Instead we can also use the AMWI after the first derivative and obtain on
those configurations φ

∂

i∂λ

∣∣∣
λ=0

S
(
(gλhμ)Lq

F
)

= S(hμ
Lq

F ) ·T ΔX(hμ
Lq

F )

=
d

idt

∣∣∣
t=0

S
(
hμ

Lq
(F + t(hμ

∗ )−1ΔX(hμ
LF ))

)
,

(4.3)

where we used that ΔX is invariant under addition of an affine function of
the field Φ. (This follows from the defining properties (P3) and (P5) of ΔX ∈
LieRc, cf. Footnote 8.) Taking now the derivative with respect to μ and using
again the AMWI, we obtain

∂2

i∂λ∂μ

∣∣∣
λ=μ=0

S
(
(gλhμ)Lq

F
)

=
d

dt

∣∣∣
t=0

S(F + tΔX(F )) ·T
(
ΔY (F + tΔX(F ))

− t∂Y (ΔX(F ) + t〈(ΔX)′(F ), ∂Y (F + L)〉
)

= S(F ) ·T
(
iΔX(F ) ·T ΔY (F ) + 〈ΔY ′(F ), ΔX(F )〉

− ∂Y (ΔX(F )) + 〈(ΔX)′(F ), ∂Y (F + L)〉
)

(4.4)

on the above-mentioned configurations. We finally arrive at a consistency re-
lation which does no longer depend on the source q and therefore holds for all
configurations φ.

Theorem 4.1. The anomaly Δ of the AMWI satisfies the consistency relation

Δ([X,Y ])(F ) = 〈(ΔY )′(F ),ΔX(F )〉 − 〈(ΔX)′(F ),ΔY (F )〉
+ ∂X(ΔY (F )) − ∂Y (ΔX(F ))

− 〈(ΔY )′(F ), ∂X(L + F )〉 + 〈(ΔX)′(F ), ∂Y (L + F )〉
(4.5)

for X,Y ∈ LieGc(M).

We call (4.5) the “extended Wess–Zumino consistency condition,” be-
cause for quadratic functionals F , it reduces to the Wess–Zumino condition
(3.10). Namely, for those functionals, ΔX(F ) is a constant functional (see
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part (iii) of [13, Prop. 4.14]). Then ∂Y ΔX(F ) and8 〈ΔY ′(F ),ΔX(F )〉 vanish
for X,Y ∈ LieGc(M), and the Wess–Zumino relation is obtained by using the
identifications

G(X,A) = −ΔX(V (A)) (4.6)

and

∂A
XG(Y,A)

(4.6)
= − d

dλ

∣∣∣
λ=0

ΔY
(
V (Agλ

)
)

(3.3)
= − d

dλ

∣∣∣
λ=0

ΔY
(
gλ
LV (A)

)

= 〈ΔY ′(V (A)), ∂X

(
L + V (A)

)〉 , (4.7)

where gλ .= exp (−λX) as in (3.8).

5. Consistency Condition of the AMWI as a Cocycle for Lie
Algebras

The consistency relation for Δ derived in the previous section actually shows
that Δ is a Lie algebraic cocycle. This can be most easily seen by starting from
the UAMWI with its group theoretical cocycle ζ. The cocycle ζ intertwines two
actions of Gc(M) on Floc(M), namely (g , F ) 	→ gLF and (g , F ) 	→ gLζ−1

g (F ).
They induce representations R and P on the space of functions K on Floc(M)
by

(R(g )K)(F ) = K(g−1
L F ) (P (g )K)(F ) = K(ζg g−1

L F ) (5.1)

The relation R(g1g2) = R(g1)R(g2) relies on (g1g2)L = g1,L g2,L; to obtain
P (g1g2) = P (g1)P (g2), we additionally use our crucial input: the cocycle rela-
tion for ζ (2.16).

The corresponding representations r and p of LieGc(M) act by derivations
on smooth functions on Floc(M), i.e. ,

r(X)K(F ) = 〈K ′(F ),−∂XF − ∂XL〉 p(X)K(F ) = 〈K ′(F ),−∂XF

−∂XL + ΔX(F )〉, (5.2)

where we used (2.26). Representations r and p differ by the linear map X 	→
q(X) = p(X) − r(X) with q(X)K(F ) = 〈K ′(F ),ΔX(F )〉. Since p and r are
representations, q satisfies the relation

q([X,Y ]) = [q(X), q(Y )] + [r(X), q(Y )] − [r(Y ), q(X)] (5.3)

It remains to compute the commutators of these derivations. We obtain
(q(X)(q(Y )K))(F ) =

d

dλ

∣∣∣
λ=0

(q(Y )K)(F + λΔX(F ))

=
d

dλ

∣∣∣
λ=0

〈K′(F + λΔX(F )), ΔY (F + λΔX(F ))〉
= 〈K′′(F ), ΔX(F ) ⊗ ΔY (F )〉 +

〈
K′(F ), 〈(ΔY )′(F ), ΔX(F )〉〉

(5.4)

8The defining property (P5) of ΔY ∈ LieRc implies that ΔY (F + c) = ΔY (F ) for all
F ∈ Floc(M), c ∈ R.



Unitary, anomalous Master Ward

hence
[q(X), q(Y )]K(F ) =

〈
K ′(F ), 〈(ΔY )′(F ),ΔX(F )〉 − 〈(ΔX)′(F ),ΔY (F )〉〉

= 〈K ′(F ), [ΔY,ΔX]LieRc
(F )〉 (5.5)

where we use the explicit formula for the Lie bracket in LieRc derived in [13,
App. C]. Proceeding analogously to (5.4)-(5.5), we get

[r(X), q(Y )]K(F ) =
〈
K ′(F ),−〈(ΔY )′(F ), ∂XF + ∂XL〉 + ∂X(ΔY (F ))

〉

=
〈
K ′(F ), (∂XΔY )(F )

〉 (5.6)

with the representation X 	→ ∂X ,

(∂Xz)(F ) .= ∂X(z(F )) − 〈z′(F ), ∂X(F + L)〉 (5.7)

of LieGc(M) by derivations on LieRc.9 We also have the analogous relation
with X and Y interchanged, so combining the two, we arrive at precisely the
same consistency condition for the anomaly Δ of the AMWI as in Theorem
4.1 which now assumes the form:

Theorem 5.1. The cocycle relation (2.16) for the anomaly ζ of the UAMWI
implies the following Lie algebraic cocycle relation for the corresponding anom-
aly Δ of the AMWI (i.e., Δ is obtained from ζ by (2.26)):

Δ([X,Y ])(F ) = − [ΔX,ΔY ]LieRc
(F ) + (∂XΔY )(F ) − (∂Y ΔX)(F )

(5.8)

for X,Y ∈ LieGc(M).

It is instructive to see how the seemingly different derivations in sections 4
and 5 lead to the same consistency relation for Δ. In the preceding section, we
solely used the definition of Δ in terms of the AMWI (2.25); here, we solely
used the expression of Δ in terms of ζ (2.26).

6. Infinitesimal Cocycle Condition from the Nilpotency of the
BV Operator and Relation to L∞-Algebras

In this section, we will derive the infinitesimal cocycle condition (5.8) within
the BV formalism. The crucial insight is that the infinitesimal renormalization
group transformation ΔX, applied to a local functional F , can in fact be iden-
tified with the renormalized BV Laplacian �F for the interaction F , applied
to the vector field ∂X ,

ΔX(F ) = i�F (∂X) X ∈ LieGc(M), F ∈ Floc(M) (6.1)

where ∂X is the vector field on E (M, Rn) induced by X – see [6]. We rederive
this result below in (6.24) and (6.27). The operator �F can be expressed by
means of a generalization of the AMWI (see (6.23)), so the derivation of the
anomaly consistency condition (4.5) given in the current section is essentially

9To see that X → ∂X is indeed a representation, note that it is the infinitesimal version of
the representation D of Gc(M) on the space of maps K : Floc(M) → Floc(M) defined by

D(g)K(F ) = g∗K(g−1
L F ).
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equivalent to the previous derivation in Sect. 4. Phrasing it in terms of the
BV language, however, is important for showcasing the underlying algebraic
structures naturally associated with the space of multivector fields and allows
us to make connection with the literature, in particular [5,9].

The BV formalism gives an interpretation of the space of functionals on
the solutions to equations of motion in the language of homological algebra.
It also allows one to reformulate the deformation of the pointwise product of
functionals into their time-ordered product as a deformation of a certain dif-
ferential. We will review the main results concerning the application of this
formalism in pAQFT, while presenting it in a slightly different way, emphasiz-
ing the geometric interpretation.

We start by observing that functions and vector fields on E can be con-
sidered as elements of a larger algebra, namely the graded commutative alge-
bra BV(M) of multivector fields. This space has an interpretation as a space
of functions on a graded manifold, namely the (−1)-shifted cotangent bun-
dle T ∗[−1]E (M, Rn) over the configuration space. The latter is just identified
with E (M) ≡ E (M, Rn) ⊕ Edens(M, Rn)[−1], where the number −1 in square
brackets indicates that elements of this space are to be seen as odd variables
of degree −1.

More concretely, we identify δ
δφ with degree −1 generators Φ‡, called

antifields, so

Φ‡
r(x)[dF [φ]] =

δF

δφr(x)
[φ] F ∈ F (M) (6.2)

and the elements F ∈ BV(M) are of the form

F =
∑

n,m

〈fnm,Φ⊗n ⊗ (Φ‡)⊗m〉 (6.3)

where the compactly supported distributions fn,m are symmetric in the first
n and antisymmetric in the last m arguments. If fnm = 0 for m �= 1, the
element F can be identified with a vector field on E (M, Rn). The wave front set
conditions on f are the same as for the distributions characterizing elements of
F (M). Analogously as for the functionals on the original configuration space,
we introduce the spaces BVloc(M), BVn loc(M) and BV• loc(M).

The algebra BV• loc(M) is equipped with a graded Poisson bracket, the
Schouten bracket, also known as antibracket. For a functional F ∈ F• loc(M)
and a vector field X ∈ BV• loc(M), it is given by the action of the vector field
on the functional as a derivation: {X , F} .= XF . For two vector fields, we have
{X ,Y} = [X ,Y], i.e. , the Lie bracket of vector fields, and for general elements
F ,G ∈ BV• loc(M), we invoke the graded Leibniz rule.

In this notation, the antibracket takes the form:

{F ,G} =
〈

δrF
δφ

,
δlG
δφ‡

〉
−

〈
δrF
δφ‡ ,

δlG
δφ

〉
(6.4)

where δr and δl signify right and left derivatives, respectively. We will use
the convention that if no superscript is present, then the derivative is to be
understood as the left derivative (see [6] for more detail).
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The physical information about the equations of motion and symmetries
of the classical theory with Lagrangian L+F (both now map into BV• loc(M)),
is encoded in the classical BV operator. For a compactly supported multivector
field X ∈ BV• loc(M), we define

sFX .= {X ,L(f) + F(f)}, (6.5)

where f ≡ 1 on suppX . To simplify the notation, we will often just write
{X ,L+F}, unless we want to indicate a particular choice of the test function.
To avoid signs, in what follows we will assume our Lagrangians and observables
to be of the form X =

∑
ηiXi, Xi ∈ BVloc(M) and ηi elements of a multiplier

Grassmann algebra such that X is even.10

In the absence of interaction, we consider the free classical BV operator:

s0X .= {X ,L}, (6.6)

We say that the theory satisfies the classical master equation (CME) if

{L(f) + F(f),L(f) + F(f)} = 0.

In order to ensure that this equation holds exactly (rather than up to terms
supported within the support of df), it might be necessary to make some
particular choices of the smearing function f (see, e.g., [35]). As a consequence
of this equation and the graded Jacobi identity for the Schouten bracket, sF
is a differential,

(sF )2(X ) = {{X ,L + F},L + F} =
1
2
{X , {L + F ,L + F}} = 0 (6.7)

The space of on-shell functionals is encoded in the 0-th cohomology of the
differential sF , and the first cohomology gives the space of nontrivial (i.e., not
vanishing on shell) symmetries.

Quantizing the theory corresponds to the deformation of the BV differ-
ential. For the free theory, we define

ŝ0
.= T−1 ◦ s0 ◦ T (6.8)

where the time-ordering operator T is extended to multilocal functionals of
fields and antifields, F ∈ BV• loc(M), by treating antifields as classical sources.
(They are not affected by T and the � product defined in (2.3) is extended
to antifields as the pointwise product.) Since T is linear and s0 is linear and
nilpotent, ŝ0 is linear and nilpotent.

Operator ŝ0 has a particularly nice expression on the space of polynomi-
als of linear local functionals. These are called regular functionals BVreg(M) ⊂
BV• loc(M) and their functional derivatives at all orders at all points are
smooth. We compute

ŝ0(F) = (s0 − i�)(F) (6.9)

10For the use of external multipliers from Grassmann algebras (the η-trick [25]), see, e.g. ,
[34]. In particular, note that, if η is odd, then ηφ‡ = −φ‡η.
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with the BV Laplacian

� =
∫

M

δ2

δφ(x)δφ‡(x)
. (6.10)

Following [6], we define the renormalized BV Laplacian in the absence of in-
teraction by

�0
.= i(ŝ0 − s0). (6.11)

In the presence of an interaction F ∈ BVloc(M), there are two nat-
ural ways to define the quantum BV operator. Assume first that F ,X ∈
BVreg(M).11 On the one hand, we define

ŝF (X ) .= e−iF ŝ0(eiFX ) (6.12)

On the other hand, we set:

s̃F (X ) .= R−1
F ◦ s0 ◦ RF (X ) (6.13)

where

RF (X ) .= (TeiF )−1 � T (eiFX )

is the retarded Møller operator, which maps functionals to interacting quan-
tum observables. This differential is more natural than ŝF , since it is the
obvious deformation of ŝ0 when passing from the free quantum theory with
the star product � to the interacting quantum theory with the star product
on BVreg(M)[[�]], defined by:

X �F Y .= R−1
F (RFX � RFY).

Both operators are nilpotent and s̃F is in addition a derivation with respect
to �F (since s0 is a derivation w.r.t. �). A short calculation, relying on the fact
that s0 is a derivation with respect to �, shows that the relation between the
two operators is given by:

s̃F (X ) = R−1
F ◦ s0((TeiF )−1 � T (eiFX ))

= R−1
F

(
s0((TeiF )−1) � T (eiFX ) + (TeiF )−1 � s0(T (eiFX ))

)

= R−1
F

(−(TeiF )−1 � s0(TeiF ) � (TeiF )−1 � T (eiFX )

+ (TeiF )−1 � T (eiF ŝF (X ))
)

= R−1
F

(−RF ◦ ŝF (1) � RF (X ) + RF (ŝF (X ))
)

= ŝF (X ) − ŝF (1) �F X ,

so they coincide if ŝF (1) = 0, which can also be expressed as

s0(TeiF ) = 0, (6.14)

and is the condition that the formal S-matrix is invariant under s0 [6]. It is
equivalent to

{L,F} +
1
2
{F ,F} − i�(F) = 0. (6.15)

11This assumption is valid until (6.16).
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This equation follows if L and L+F satisfy the usual quantum master equation
(QME) [36], i.e.,

1
2
{L + F ,L + F} − i�(L + F) = 0,

1
2
{L,L} − i�(L) = 0. (6.16)

Typically, we assume that L does not depend on antifields, so the latter condi-
tion is trivially satisfied. In the following, we will assume that L satisfies both
the QME and the CME.

Now we generalize the above discussion to the situation where F is lo-
cal, which amounts to renormalization. The effects of renormalization can be
understood by the AMWI which was extended to local multivector fields by
Hollands and takes the form [5, Prop. 3]:

s0(TeiF ) = iT
((

1
2{L + F ,L + F} + A(F)

)
eiF

)
, (6.17)

where A characterizes the anomalies and replaces the ill-defined BV Laplacian
−i� in equation (6.15). (One assumes that L satisfies the CME.) It is of the
form

A(F) =
∞∑

n=0

1
n!

An(Fn) F ∈ BV1 loc(M) even , (6.18)

where An : BVn loc(M) → BVloc(M) are linear maps, which reduce the anti-
field number by 1; hence, A(F) is odd. In particular, for F ∈ Floc(M) we see
that A(F ) = 0.

The renormalized quantum BV operator ŝF is still given by (6.12), so
that the generalized AMWI (6.17) can equivalently be written as

ŝF (eiX ) = i eiX
(

1
2
{X + F + L,X + F + L} + A(F + X )

)
. (6.19)

We introduce the interaction-dependent BV Laplacian by

�F
.= i(ŝF − sF ). (6.20)

On regular functionals, �F = �0 = �, but due to renormalization, the oper-
ators differ in general. Since ŝ0 is linear, also ŝF and �F are linear. From (6.7)
and (6.8), we immediately see that (ŝ0)2 = 0; hence, by (6.12), also (ŝF )2 = 0.

The renormalized version of the QME is again (6.14). By using (6.17), it
is equivalent to

− �F (1) =
1
2
{L + F ,L + F} + A(F) = 0. (6.21)

For F satisfying QME (6.21), the AMWI (6.19) simplifies to

ŝF (eiX ) = i eiX
(

{X ,L + F} +
1
2
{X ,X} + A(F + X ) − A(F)

)
. (6.22)

The relation between A and �F is obtained from (6.20) and (6.22) by
using that sF is a derivation:

− i�F (eiX ) = i eiX
(

1
2
{X ,X} + A(F + X ) − A(F)

)
. (6.23)
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Taking into account that �F is linear, this formula implies

�F (X ) = −i
d

dλ

∣∣∣
λ=0

�F (eiλX ) = i〈A′(F),X〉 (6.24)

for F satisfying QME.
Note that for X = ∂Xη (where η is Grassmann odd in order that X is

even) the original AMWI (2.27) (or (2.25)) is obtained from the generalized
AMWI (6.22) as the coefficient of η. Namely, we get

T
(
eiF ŝF (∂X)

)
[φ] = s0 ◦ T

(
eiF ∂X

)
[φ] = T

(
eiF ∂X〈Φ, q〉)[φ] (6.25)

with F ∈ Floc, L used in the definition of the free theory not depending on
antifields and φ satisfying q = ∂L

∂φ [φ]. This is similar to the result of [6], with the
difference that here we introduced the external source q. In the last formula on
the right-hand side, q can be pulled out from under the time-ordering operator,
and after one sets q = ∂L

∂φ [φ], one obtains the same relation between ŝF and
s0 as in [6].

Now, applying AMWI (2.25) to the right-hand side, we obtain

T
(
eiF ŝF (∂X)

)
[φ] = T

(
eiF

(
∂X(L + F ) − ΔX(F )

))
[φ]. (6.26)

Since A(F ) = 0, this coincides with the corresponding term for the right-hand
side of (6.22), i.e., d

dλ |λ=0T
(
ei(F+λX )

(
λ{X , L+F}+ λ2

2 {X ,X}+A(F +λX )
))

,
with the identification 〈A′(F ), ∂Xη〉 = −ΔX(F ) η, that is,

ΔX(F ) = − dr

dη

∣∣∣
η=0

A(F + ∂Xη) .= −〈A′(F ), ∂X〉 (6.27)

hence by (6.24) we indeed obtain the announced relation (6.1) between ΔX
and �F .

Within the BV formalism, the anomaly consistency condition is a conse-
quence of the nilpotency of the BV operator, in particular, in the context of
pAQFT, this was discussed already in the work of Hollands [5]. It is shown
in [5, Prop.5] that the nilpotency of ŝ0, i.e., ŝ20 = 0, (or, as observed in [6],
the nilpotency of ŝF ) induces a consistency condition for the anomaly term
in (6.19). We recall this result in Proposition 6.2 and provide an alternative
(shorter) proof using a result of Fröb [9], which also highlights the L∞-structure
underlying the BV quantization.

It was shown by Fröb [9] that there is an L∞-structure on BV1 loc(M)
coming from the AMWI (6.19). The brackets [•, . . . , •]Fn : BV1 loc(M)n →
BV1 loc(M) are linear and graded symmetric maps, given in terms of the gen-
erating function (for even X ) by

[eiX ]F ≡
∞∑

n=0

in

n!
[X , . . . ,X ]Fn

.= e−iX ŝF (eiX ). (6.28)

Note that [eiX ]F is odd. Obviously, with this definition, the AMWI (6.19) can
be written as

[eiX ]F = i
(
1
2{L + F + X ,L + F + X} + A(F + X )

)
. (6.29)
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Crucially, we verify here (streamlining the argument of [9]) that the brackets
defined by the formula (6.28) satisfy the generalized Jacobi identity.

Proposition 6.1. The brackets defined by (6.28) satisfy the generalized Jacobi
identity:

[eiX , [eiX ]F ]F = 0. (6.30)

Proof. The result follows directly from the nilpotency of ŝF and the fact that
ŝF (eiX ) is odd. To see this, first note that, for G ∈ BV1 loc(M) even, we obtain

[eiX ,G]F =
d

i dλ

∣∣∣
λ=0

[ei(X+λG)]F
(6.28)
= −e−iX G ŝF (eiX ) + e−iX ŝF (eiX G).

(6.31)

Inserting G = η [eiX ]F = η e−iX ŝF (eiX ) (with η an odd Grassmann variable)
and omitting in the resulting formula the factor η, we get

[eiX , [eiX ]F ]F = −e−i2X (
ŝF (eiX )

)2 + e−iX ŝ2F (eiX ) = 0.

�

From (6.28), we see that the 0-bracket is

[−]F0 = ŝF (1),

so vanishes identically if F satisfies the QME (6.14) or (6.21), and that the
1-bracket is given by

[X ]F1 = ŝF (X ) = sF (X ) − i�F (X ). (6.32)

From (6.29), we obtain for the 2-bracket

[X ,X ]F2 = −i
({X ,X} + 〈A′′(F),X ⊗ X〉) (6.33)

and for the n-bracket (with n > 2)

[X , . . . ,X ]Fn = (−i)n−1〈A(n)(F),X ⊗n〉. (6.34)

Hence, we have an L∞ structure, provided L + F satisfies the QME. Now we
can come back to [5, Prop.5].

Proposition 6.2. The anomaly A(F) defined by the generalized AMWI (6.19)
satisfies the relation

0 = {L + F , A(F)} + 〈A′(F),
(
1
2{L + F ,L + F} + A(F)

)〉. (6.35)

Proof. We prove this proposition by verifying that the generalized Jacobi iden-
tity (6.30) for the particular value X = 0 is precisely the consistency condition
(6.35) (which is not surprising since both rely on ŝ2F = 0). To verify this, we
use the fact that

[1,G]F =
dr

i dλ

∣∣∣
λ=0

[eiGλ]F
(6.29)
= {L + F ,G} + 〈A′(F),G〉 (6.36)
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for G ∈ BV1 loc(M) odd and λ an odd Grassmann parameter, and applying
again the AMWI (6.29), we obtain

0 = −i [1, [1]F ]F
(6.29)
= [1,

(
1
2{L + F ,L + F} + A(F)

)
]F

(6.36)
= {L + F , A(F)} + 〈A′(F),

(
1
2{L + F ,L + F} + A(F)

)〉,
where we also used the graded Jacobi identity for the antibracket; hence, we
arrive at (6.35). �

Note that the vector fields ∂X , X ∈ LieGc(M) are of at most first order
in φ. For these vector fields we have 〈A′′(F ), ∂X ⊗∂Y 〉 = 0 (see [9] for a related
result).

To show this, we start with the following lemma.

Lemma 6.3. Let F ∈ T (BV• loc(M)) and X ∈ BV1 loc(M) depend at most
linearly on φ. Then

s0(F ·T X ) = s0(F) ·T X + F ·T1 s0(X ) + i{F ,X}. (6.37)

with the first-order time-ordered product

A ·T1 B
.= A · B + 〈A′, EFB′〉 A,B ∈ T (BV• loc(M)). (6.38)

Proof. First note that F ∈ T (BV• loc(M)) implies s0(F) ∈ T (BV• loc(M)),
due to the generalized AMWI (6.17), and that TX = X , since X is at most
linear in φ. We use the off-shell field equation (2.8) and the fact that s0 is
a derivation for the pointwise product. The derivative with respect to φ is
denoted by ′. We have

s0(F ·T X ) = s0(F · X + 〈F ′, EFX ′〉)
= s0(F) · X + F · s0(X ) + 〈s0(F ′), EFX ′〉 + 〈F ′, EFs0(X ′)〉

= s0(F) ·T X + F ·T1 s0(X ) + 〈s0(F ′) − s0(F)′, EFX ′〉
+ 〈F ′, EF

(
s0(X ′) − s0(X )′)〉

(6.39)

But with s0 = −〈 δL
δφ , δ

δφ‡ 〉 and
∫

dy EF(z, y)
δ2L

δφ(y)δφ(x)
= iδ(z, x) (6.40)

it holds for any G ∈ BV(M)

EF(s0(G ′) − s0(G)′) = i
δG
δφ‡ . (6.41)

Hence, the last two terms in (6.39) form the antibracket i{F ,X} and we obtain
the statement in the lemma. �

Next, we show that for elements of first order in φ, �F acts as the
unrenormalized BV Laplacian, up to an extra term of the form �F (1)XY.
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Proposition 6.4. Let X ,Y ∈ BV1 loc(M) be of first order in φ and even (we
multiply the usual vector fields with Grassman generators – the η-trick), F ∈
BV1 loc(M) even and L independent of antifields. Then

�F (XY) = (�FX )Y + X (�FY) + {X ,Y} − �F (1)XY. (6.42)

Proof. Since �F = i(ŝF − sF ) and sF is a derivation, the statement is equiv-
alent to

ŝF (XY) = ŝF (X )Y + X ŝF (Y) − i {X ,Y} − ŝF (1)XY. (6.43)

Taking into account that ŝF (X ) = e−iFT−1s0(TeiFX ), this is equivalent to

s0(TeiFXY) = s0(TeiFX ) ·T Y + X ·T s0(TeiFY) − i T (eiF{X ,Y})

−s0(TeiF ) ·T X ·T Y (6.44)

by applying (2.5) and that T−1X = X (and similarly for Y). Since also
T−1{X ,Y} = {X ,Y}, it remains to show that for G ∈ T (BV• loc(M)) it holds
that

s0(G ·T X ·T Y) − s0(G ·T X ) ·T Y − s0(G ·T Y) ·T X
+s0(G) ·T X ·T Y
= iG ·T {X ,Y}. (6.45)

For this purpose, we use Lemma 6.3. We get

s0(G ·T X ·T Y) − s0(G ·T X ) ·T Y − s0(G ·T Y) ·T X + s0(G) ·T X ·T Y
= s0

(
(G ·T X ) ·T Y) − s0(G ·T X ) ·T Y − (G ·T X ) ·T1 s0(Y)

+
(
G ·T1 s0(Y) + s0(G) ·T Y − s0(G ·T Y)

) ·T X + Z

= i{G ·T X ,Y} − i{G ,Y} ·T X + Z

(6.46)

where

Z
.= −X ·T1

(
G ·T1 s0(Y)

)
+

(X ·T1 G
) ·T1 s0(Y) = −〈s0(Y)′′, EFX ′ ⊗ EFG ′〉.

(6.47)

But Z is just the correction to the derivation property of the antibracket with
respect to the time-ordered product, that is, the r.h.s. of (6.46) is indeed equal
to iG ·T {X ,Y}. To wit, we have

{G ·T X , Y} − {G , Y} ·T X − G ·T {X , Y}
= {〈G ′, EFX ′〉, Y} − 〈{G , Y}′, EFX ′〉 − 〈G ′, EF{X , Y}′〉
= 〈{G ′, Y}, EFX ′〉 + 〈{X ′, Y}, EFG ′〉 − 〈{G , Y}′, EFX ′〉 − 〈G ′, EF{X , Y}′〉
= −〈{G , Y ′}, EFX ′〉 − 〈{X , Y ′}, EFG ′〉

= −
∫

dxdydz
δ2Y

δφ(x)δφ‡(y)
EF(x, z)

( δX
δφ(z)

δG
δφ(y)

+
δX

δφ(y)

δG
δφ(z)

)

(6.48)
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and, by using (6.40), this coincides with iZ since

s0(Y)′′(x, y) = −
∫

dz
( δ2L

δφ(x)δφ(z)
δ2Y

δφ(y)δφ‡(z)
+

δ2L

δφ(y)δφ(z)
δ2Y

δφ(x)δφ‡(z)

)
.

(6.49)

�

Remark 6.5. Note that if, in addition, the quantum master equation (6.14)
holds, then �F (1) = 0 and we obtain the more familiar relation:

�F (XY) = (�FX )Y + X (�FY) + {X ,Y}. (6.50)

The result on A′′ follows now directly from Proposition 6.4.

Proposition 6.6. Let A be the anomaly appearing in the AMWI. Let F ∈
BV1 loc(M) even, L independent of antifields and let X ,Y ∈ BV1 loc(M) be
at most linear in φ. Then

〈A′′(F),X ⊗ Y〉 = 0. (6.51)

Proof. Without restriction of generality, we may assume that both X and Y
are even (by using the η-trick). Let λ, μ ∈ R. From the generalized AMWI
(6.19), we have that:

ŝF (ei(λX+μY)) ≡ (sF − i	F )(ei(λX+μY))

(6.19)
= i ei(λX+μY)

(
1

2
{λX + μY + L + F , λX + μY + L + F} + A(F + λX + μY)

)

(6.52)

Selecting the terms proportional to λμ and using the expression (6.21) for
�F (1), we obtain

(sF − i�F )(XY) = X ({Y, L + F} − i�F (Y)
)

+ Y({X , L + F} − i�F (X )
)

− i{X ,Y} + iXY�F (1) − i〈A′′(F),X ⊗ Y〉 ,

by using the analog of (6.24) for F ∈ BV1 loc(M). The statement follows from
the derivation property of sF and Proposition 6.4. �

For F ∈ F1 loc(M), one obtains a map

LieGc(M) × Floc(M) � (X, F ) �→ sF (∂X) − i	F (∂X) = ∂X(F + L) − ΔX(F ),

(6.53)

which coincides with the action previously constructed in (5.2). The fact that
it is an action was derived from the cocycle relation (5.8) for X 	→ ΔX as a
consequence of the cocycle relation for the anomaly map ζ in the UAMWI.

Actually, the cocycle relation for Δ in the form of the equivalent consis-
tency relation (4.5) derives directly from the BV consistency condition (6.35).

Proposition 6.7. The BV consistency relation (6.35) implies the extended Wess–
Zumino consistency relation (4.5).
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Proof. Let L be independent of antifields. We insert F = F + ∂X1η1 + ∂X2η2
into the BV consistency relation (6.35), where F ∈ Floc(M) and η1, η2 are
Grassmann generators. We use the fact that 〈A′′(F ), ∂X1 ⊗ ∂X2〉 = 0. Since
A(F ) = 0, we obtain the following finite Taylor expansion in η1, η2:

A(F) = −ΔX1(F ) η1 − ΔX2(F ) η2, (6.54)

where we also used (6.27). In particular, note that δA(F)
δφ‡ = 0. With that, we

obtain

{L + F , A(F)} = −{(∂X1η1 + ∂X2η2),
(
ΔX1(F ) η1 + ΔX2(F ) η2

)}
=

(−∂X1ΔX2(F ) + ∂X2ΔX1(F )
)
η1η2 . (6.55)

Note that

〈A′(F), (G + ∂Zη)〉 =
d

dτ

∣∣∣
τ=0

A
(F + τ(G + ∂Zη)

)
(6.56)

= − d

dτ

∣∣∣
τ=0

(
ΔX1(F + τG) η1 + ΔX2(F + τG) η2 + τΔZ(F + τG) η

)

= −〈(ΔX1)′(F ), G〉η1 − 〈(ΔX2)′(F ), G〉η2 − ΔZ(F ) η , (6.57)

where G ∈ Floc(M), Z ∈ LieGc(M) and η is another Grassmann generator.
Hence, using (2.23), we obtain

〈A′(F),
(
1
2
{L + F , L + F})〉 = 〈A′(F),

(
(∂X1η1 + ∂X2η2)(L + F ) − ∂[X1,X2] η1η2

)〉
=

(
−〈(ΔX1)

′(F ), ∂X2(L + F )〉 + 〈(ΔX2)
′(F ), ∂X1(L + F )〉 + Δ[X1, X2](F )

)
η1η2

(6.58)

and

〈A′(F), A(F)〉 = −〈A′(F), (ΔX1(F ) η1 + ΔX2(F ) η2)〉
=

(
〈(ΔX1)′(F ),ΔX2(F )〉 − 〈(ΔX2)′(F ),ΔX1(F )〉

)
η1η2 .

(6.59)

Composing (6.55), (6.58) and (6.59), we obtain the consistency equation
(4.5). �

Remark 6.8. Note that by tracing back the arguments given in this section,
we can see that Proposition 6.7 essentially states that the generalized Wess–
Zumino consistency condition is the consequence of ŝ2F = 0. We can compare
this with a simple fact that the nilpotency of the nonrenormalized BV Lapala-
cian � (see (6.10)) implies an analogous statement for vector fields. Without
the loss of generality, we assume X and Y to be even (we multiply the usual
vector fields with Grassman parameters) X ,Y ∈ BVreg(M) (regular multivec-
tor fields):

0 = �2(XY) = �(
(�X )Y + X (�Y) + {X ,Y})

= ∂X (�Y) + ∂Y(�X ) + �({X ,Y})
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by using that Δ satisfies a relation analogous to (6.42), where ∂X , ∂Y denotes
the natural action of vector fields on functionals as derivations.

7. Summary and Outlook

Symmetries of the classical configuration space are, in general, modified in
the quantum theory by anomalies, which have to satisfy certain consistency
relations. In different formulations of quantum field theory, these consistency
relations appear in different ways, and it is not obvious how they are related to
each other. We clarified in this paper how the cocycle relation for the anomaly
map in a recently proposed nonperturbative characterization of anomalies (the
unitary anomalous master Ward identity (UAMWI) in [13]) is connected with
previous consistency relations. As a by-product, this provides new insights into
the older formulations. We also clarified the relation between the occurrence
of anomalies and the principle of perturbative agreement proposed in [21].

We gave an elementary proof of a consistency relation for the anom-
aly map Δ in the anomalous master Ward identity (AMWI) of [2], restricted
to infinitesimal symmetries of the configuration space (Thm. 4.1), which was
originally derived by Hollands [5] using the antifield formalism. We named it
extended Wess–Zumino condition, as it can be understood as an extension to
nonquadratic interactions of the well-known Wess–Zumino consistency condi-
tion (3.10).

We then showed that our extended Wess–Zumino consistency condition
can be deduced from the cocycle relation (2.16) for the anomaly map ζ occur-
ring in the UAMWI and, hence, describes a Lie algebraic cocycle of the Lie
algebra of the group of compactly supported configuration space symmetries
Gc(M) with values in the Lie algebra of the Stüeckelberg–Petermann renor-
malization group (Thm. 5.1). Conversely, in the framework of perturbation
theory, starting with the AMWI one can derive the UAMWI with an anomaly
map ζ fulfilling the cocycle relation (2.16), see Thm. A.1.

We also investigated the connection to the BV formalism (as previously
studied in [5,6,9]) and the underlying algebraic structures. In particular, we
verified that the extended Wess–Zumino consistency condition (4.5) can be
obtained from the nilpotency of the BV operator ŝF , by restricting to symme-
tries g ∈ Gc(M) (Prop. 6.7). Our proof starts with the consistency condition
(6.35) (Prop. 6.2) proved by Hollands [5], which can be understood as a par-
ticular case of the generalized Jacobi identity for the underlying L∞-algebras
(see the proof of Prop. 6.2) and relies on ŝ2F = 0.

It is an interesting open problem to find the group-like structure associ-
ated with the L∞-structure for more general symmetries and to understand
its relation to renormalization. This will be addressed in our future work.
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Appendix A. Off-Shell UAMWI

In [13, Thm. 10.3(i)], we showed that in formal perturbation theory the UAMWI
holds on shell. In this appendix, we prove by a slightly improved argument that
also the off-shell version of the UAMWI 2.17 holds. Here “off shell” means that
φ can be arbitrary, but we also introduce external sources q and at the end
we set q = δL

δφ [φ], so a priori our expressions are functions of two variables,
φ and q and the UAMWI holds on a subspace where the condition q = δL

δφ [φ]
is satisfied. Crucially, on that subspace the left-hand side of UAMWI proved
below does not depend on q.

Theorem A.1. In formal perturbation theory, the AMWI implies the off-shell
unitary AMWI

S ◦ ζg (F )[φ] = S ◦ gLq
(F )[φ] for φ solving q =

δL

δφ
[φ]

for all F ∈ Floc(M) g ∈ Gc(M) (A.1)

with a cocycle ζ taking values in Rc and with supp ζg ⊂ supp g .

Proof. Since the elements of Gc(M) have compact support and depend smoothly
on x, Gc(M) must be connected. Therefore, given any g ∈ Gc(M), there exists
a smooth curve λ 	→ gλ ∈ Gc(M) with g0 = e and g1 = g . Let Xλ ∈ LieGc(M)
be defined by d

dλg
λ = Xλgλ.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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In the next step, want to find a smooth curve λ 	→ ζ−1
gλ ∈ Rc with

ζ−1
e = id and

d

dλ
S

(
gλ
Lq

ζ−1
gλ (F )

)
[φ] = 0 with q =

δL

δφ
[φ]. (A.2)

Note that inserting λ = 0 and λ = 1 into S ◦ gλ
Lq

◦ ζ−1
gλ , we obtain the unitary

AMWI (2.17).
To search for the desired curve, we will first derive a differential equation

that it has to solve. Note that for G ∈ Floc(M), we have
d

dλ
gλ
Lq

G = ∂Xλgλ
Lq

G + ∂Xλ(Lq), (A.3)

so by using this result, we perform the differentiation in (A.2) and obtain the
condition

S
(
gλ
Lq

ζ−1
gλ (F )

) ·T
(
∂Xλgλ

Lq
ζ−1
gλ (F ) + ∂Xλ(Lq) + gλ

∗
d

dλ
ζ−1
gλ (F )

)
[φ] = 0 for q =

δL

δφ
[φ].

(A.4)

We insert the anomalous MWI (2.25) and find

S
(
gλ
Lq

ζ−1
gλ (F )

) ·T
(
ΔXλ(gλ

Lq
ζ−1
gλ (F )) + gλ

∗
d

dλ
ζ−1
gλ (F )

)
[φ] = 0 for q =

δL

δφ
[φ].

(A.5)

On the other hand, ΔXλ ◦ gλ
Lq

= ΔXλ ◦ gλ
L , since δgλ〈Φ, q〉 is at most of first

order in Φ and due to the defining property (iii) of LieRc. We thus get the
desired family λ 	→ ζ−1

gλ as the unique solution of the differential equation

d

dλ
ζ−1
gλ = −(gλ

∗ )−1ΔXλgλ
Lζ−1

gλ (A.6)

with the initial condition ζ−1
g0 = id. As explained for the case q = 0,

(gλ
∗ )−1ΔXλgλ

L ∈ LieRc (A.7)

holds; hence, ζ−1
gλ ∈ Rc follows, so in particular ζg ∈ Rc. Since the differential

equation (A.6) determining ζ does not contain q, we explicitly see that ζ
can be chosen such that it does not depend on q either. Hence, the proof of
supp ζg ⊂ supp g can be adopted from the case q = 0 as it stands.

It remains to show that ζ satisfies the cocycle identity. Applying three
times the UAMWI (2.17), we obtain

S ◦ ζgh (F )[φ] = S ◦ (gh)Lq
(F )[φ] = S ◦ gLq

◦ hLq
(F )[φ]

= S ◦ ζg ◦ hLq
(F )[φ] = S ◦ hLq

◦ (h−1
Lq

ζg hLq
)(F )[φ]

= S ◦ ζh ◦ (h−1
Lq

ζg hLq
)(F )[φ] (A.8)

for φ solving q = δL
δφ [φ]. Using again that δh 〈Φ, q〉 is at most of first order in

Φ, we conclude that

ζg hLq
(F ) = ζg

(
hLF − δh 〈Φ, q〉) = ζg hL(F ) − δh 〈Φ, q〉, (A.9)
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since ζg ∈ Rc.12 With that, we obtain

h−1
Lq

ζg hLq
= h−1

L ζg hL ≡ ζhg (A.10)

hence the cocycle relation

S ◦ ζgh (F ) = S ◦ ζh ◦ (ζg )h (F ) (A.11)

holds for all field configurations φ. Since the off-shell S-matrix is injective, we
obtain the cocycle relation for ζ. �
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[34] Brunetti, R., Dütsch, M., Fredenhagen, K., Rejzner, K.: C∗-algebraic approach
to interacting quantum field theory: Inclusion of Fermi fields. Lett. Math. Phys.
112, 101 (2022)

[35] Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point
of view of locally covariant quantum field theory. Commun. Math. Phys. 345,
741–779 (2016)

[36] Henneaux, M., Teitelboim, C.: Quantization of gauge systems. Princeton Uni-
versity Press, New Jersey (1992)

Romeo Brunetti
Dipartimento di Matematica
Università di Trento
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