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Abstract—Landform classification and mapping of the 
Martian surface using Mars orbiter images can provide an 
important reference for landing site selection and rovers’ 
traversability evaluation in Mars exploration. Moreover, specific 
Martian landforms are closely associated with the evidences of 
water-related activities and Martian life, thus have crucial 
research importance. This article proposes a novel superpixel-
guided multi-view feature fusion network (MarsMapNet) for 
efficient mapping of the Martian landforms. In particular, the 
proposed MarsMapNet first generates the superpixel-level 
segments from Mars orbiter images by considering local 
morphological homogeneity of landforms. Then a multi-view 
feature extraction and fusion (MVF) network is developed, where 
abstract convolutional features are extracted based on scene-level 
patches, and multi-textures are extracted based on local 
landform from shallow-to-deep feature learning. After the 
network being trained on scene-level samples and guided by the 
superpixel segmentation, Martian landforms can be correctly 
classified in an efficient way, whose mapping time cost sharply 
decreased when compared to the reference methods. The 
proposed MarsMapNet has been validated on three real landing 
sites from several Mars missions (i.e., the Jezero Crater, the 
Southern Utopia Planitia, the Oxia Planum) by using the Mars 
Reconnaissance Orbiter’s Context Camera (CTX) images. 
Qualitative and quantitative analysis on the obtained 
experimental results confirm the effectiveness and efficiency of 
the proposed MarsMapNet when compared with the state-of-the-
art methods, demonstrating its potential for supporting a 
Martian global landform mapping in the future. 

Index Terms—Martian landform mapping, Mars exploration, 
CTX images, superpixel segmentation, shallow and deep features, 
feature fusion. 
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I. INTRODUCTION 

artian surface exhibits various morphological features. 
Such surface landforms were caused by different types 

and degrees of geological processes in different historical 
periods of Mars, and shaped by water, winds, lava flow and 
seasonal phenomena [1-3]. Study of the Martian landform 
features can help us gain insight into the geological 
background, evolutionary history, global climate change, 
water ice, water availability and potentially habitable 
environment [4-9]. It is noteworthy that mapping the Martian 
surface’s landform is an essential and preliminary step for 
investigating the scientific goals, engineering constraints in 
Mars exploration landing site selection [10]. The Martian 
surface features, such as slope, roughness and surface load-
bearing, are highly related to the landing safety of Mars rovers, 
and the terrain type is essential for evaluating the traversability 
for rovers [11]. On the other hand, the spatial distribution of 
water/ice, mineral and biosignature preservation related 
landforms can make further contributions for scientific 
constraints on the candidate landing site selection or sample 
collection [10]. 

Many studies have been conducted in order to identify a 
specific type of Martian landform, such as impact craters [12], 
dunes [13], dark slope streaks [14], volcanic rootless cones 
and transverse aeolian ridges [15, 16], CO2 jet deposits [17] 
and chaos terrains [18]. The morphology and distribution, 
together with material composition analysis, of these 
landforms can be used to reveal their causes. In addition, there 
are works focusing on the multi-class landform classification 
problem. In the earlier studies, the digital elevation model 
(DEM) constructed by the Mars Orbiter Laser Altimeter 
(MOLA) data was the main data source used for extracting 
terrain attribute features and then implementing an 
unsupervised Martian terrain classification [19-21]. 

The topography maps generated by DEM support the 
analysis of engineering requirements for Mars exploration, but 
they mainly reflect features such as slope, roughness, and 
undulations. Due to the coarse spatial resolution of DEM 
products, fine-scale landform types cannot be properly 
represented and distinguished. The high spatial resolution 
images acquired by Mars orbiter cameras offer a great 
opportunity to identify a variety of Mars landforms at a finer 
scale. Studies have been conducted by using different Mars 
Mission orbiter images, such as the Mars Reconnaissance 
Orbiter’ Context camera (CTX) [22] and the High Resolution 
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Imaging Science Experiment (HiRISE) camera [23], the Mars 
Express high-resolution stereo camera (HRSC) [24], the High 
Resolution Imaging Camera (HiRIC) in China’s First Mars 
Exploration Tianwen-1 Mission [25], and the Mars Global 
Surveyor’s Mars Orbiter Camera (MOC) [26]. 

Most of the current landform classification methods for 
Martian orbiter images were built upon supervised 
classification schemes. Such methods can be divided into three 
main categories, including manual visual interpretation, 
traditional machine learning, and deep learning. Planet Four: 
Terrains (P4T) is an online citizen science project, where the 
general public was enlisted to identify and manually label 
seasonally sculpted terrains in the South Polar region of Mars 
using CTX images. The terrains include araneiform, swiss 
cheese terrain and craters [27]. In [28], firstly three 
classification systems were created: four categories based on 
terrain features, two categories based on regions exhibiting 
aeolian deflation, and six categories based on geologic 
classification distilled from USGS maps. Then multi-source 
data including HRSC and MOLA DEM were segmented by 
using the standard normalized cuts algorithm, where multiple 
distinguishing features for each superpixel were extracted to 
form a feature vector. Finally, a traditional classification 
method, such as the Naïve Bayes classifier or the boosting 
classifier, was used to classify the extracted features.  

In recent years, a growing number of advanced deep 
learning methods have been applied to Martian landform 
classification. To help users to automatically discover Mars 
images of interest from the Planetary Data System (PDS) 
image atlas, the AlexNet trained on Earth images was fine-
tuned and used for classifying twenty-four classes of Mars 
rover images and six classes (i.e., craters, bright sand dunes, 
dark sand dunes, dark slope streaks, other and edge) of 
HiRISE orbital images [29]. Based on the same method 
developed in [29], three new classes of interest, which are 
impact ejecta, spider, and swiss cheese were added in [30]. A 
novel software with the capability of Soil Property and Object 
Classification (SPOC) was proposed for classifying HiRISE 
orbital images and the Curiosity’s Navigation Camera images. 
The terrain classification model of SPOC was built based on 
the fully-convolutional neural networks - DeepLab, and 17 
terrain classes were identified for eight candidate landing sites 
of the Mars 2020 Rover (M2020) mission [31]. Then the 
obtained terrain classification result was used to analyze the 
traversability of eight candidate landing sites [32]. In [33], a 
specialized terrain classification system named “Novelty or 
Anomaly Hunter - HiRISE” (NOAH-H) with DeepLab model 
was used to classify HiRISE images of two ExoMars 
candidate landing sites, i.e., Oxia Planum and Mawrth Vallis, 
and 14 descriptive classes were identified for the traversability 
analysis. In our previous work, we proposed a VGG (Visual 
Geometry Group) - Like network for topography mapping of 
the China’s First Mars Mission Tianwen-1 landing area by 
using the high resolution HiRISE and HiRIC orbiter images, 
where three landforms (i.e., smooth regolith, rough surface 
and dunes) were automatically identified along the Zhurong 
rover’s routing path [34]. In [35], a DoMars16k data set that 

contains 15 landforms commonly found on the Martian 
surface was constructed by using CTX images, and a pre-
trained Densenet161 was used to map Martian landforms 
based on a pixel-by-pixel sliding-window approach. Finally, 
the classification map was smoothed by using the Markov 
Random fields (MRFs) method. 

Note that the classification systems for Mars landforms 
usually differ according to the specific application purpose 
and the considered region at a given spatial resolution of the 
orbiter image. A relatively comprehensive class system can be 
found in [31, 33], but the sample annotation is pixel-based. 
Pixel-level annotation means a polygon is used to outline the 
landform along its distinct boundary, and it is labor intensive 
and also requires domain expert knowledge. In [35], a 
DoMars16k data set with 15 landforms and 16,150 CTX 
sample images was built. The sample annotation in 
DoMars16k data set is a square scene-level patch (e.g., 
200×200 pixels) that labeled as a given landform class. Since 
it is a scene-level data set, its annotation is much easier than 
pixel-based samples as in [31, 33]. In this work, we use the 
publicly available scene-level DoMars16k samples to validate 
the proposed novel approach. 

On the basis of the aforementioned analysis, some open 
issues observed in the current literature need to be further 
addressed. First, natural images usually contain rich color or 
spectral information that is suitable for identifying different 
objects. The popular deep learning networks were initially 
proposed for three-band (i.e., RGB) natural images. However, 
the high-resolution Martian orbiter camera data (e.g., CTX, 
HiRISE, HiRIC) are all single-band and gray-scale 
panchromatic images. Thus, directly using the pre-trained 
networks based on natural smooth images (e.g., ImageNet) on 
the single-band Martian images as in the existing works may 
reduce the effectiveness of classification performance. 
Moreover, the unique textural information of various landform 
types has not been adequately exploited in the current 
developed works. Second, classification methods developed in 
the literature used spatial windows [34, 35]. The overlapped 
patches between adjacent pixels inevitably increases the data 
processing burden and the computational cost, and may 
produce salt-and-pepper noises in the mapping results. Despite 
that some post-processing techniques such as MRFs can be 
used to smooth the mapping results [35], it is critical to 
develop an efficient automatic classification method, 
especially when dealing with a large Martian area. Third, in 
practical applications we require a classification map with 
detailed landform boundaries. Therefore, the fine pixel-based 
samples were labeled and used by semantic segmentation 
model (i.e., DeepLab) to obtain a classification map with 
detailed landform boundaries [31, 33]. However, the 
annotation of pixel-based samples are more time-consuming 
compared to scene-level samples (e.g., those in [35]). How to 
map Martian landforms with boundaries between them by 
using scene-level samples becomes a critical task. 

In order to address the aforementioned open issues and 
challenges, in this work a superpixel-guided multi-view 
feature fusion network (denoted as the MarsMapNet) is  
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Fig. 1 Block diagram of the proposed MarsMapNet approach. 

proposed for efficient Martian landform mapping. The 
DoMars16k samples [35] were used for network training and 
accuracy testing of the proposed approach, and experimental 
results obtained on three Martian landing areas including the 
Jezero Crater (i.e., the Mars Perseverance rover landing 
region), the Southern Utopia Planitia (i.e., the Tianwen-1 
Zhurong rover landing region), and the Oxia Planum (i.e., the 
prospective ExoMars landing region) confirm the 
effectiveness of the proposed approach. The main 
contributions of this paper are highlighted as follows. 

1) A novel multi-view feature extraction and fusion (MVF) 
network is developed. The proposed MVF is designed to fully 
extract the multi-texture features of Martian landform at local 
scales and convolutional features at a scene-level. Then the 
extracted multi-view features are fused to offer a more 
comprehensive representation of Martian landforms even on 
the single-band and gray-level orbiter images. This allows a 
more robust exploitation of shallow-to-deep and abstract 
features for complex Martian landforms, and finally leads to 
more accurate mapping results. To the best of our knowledge, 
there is no similar work in literature to solve the same problem. 

2) A new superpixel-guided patch generation process is 
designed. In the prediction process, patches are generated 
according to the guidance of superpixels, and then are 
incorporated with the proposed MVF network. This alleviates 
the salt-and-pepper noise problem [34, 35], and also reduces 
the computational cost (by about 124 times, 99 times and 112 
times on three datasets, respectively) when compared to the 
state-of-the-art (SOTA) pixel-wise classification method. 
Obtained results exhibit good local homogeneity of landforms, 
as well as accurate representation of their discriminable 

boundaries. Note that no additional post-processing is required 
to smooth the results as in the SOTA methods. 

3) The proposed MarsMapNet is easy to be used with a 
good sample augmentation capability. Since it allows the 
classification by using the more accessible scene-level 
samples when compared with pixel-based samples. This 
greatly reduces the annotation difficulty when dealing with the 
complex Martian scenarios (i.e., low-texture, various 
illumination condition regions), and makes sample 
augmentation easier in practical applications. 

The rest of this paper is organized as follows. The proposed 
approach is described in detail in Section II. Experimental 
results and analysis are presented in Section III. Finally, 
Section IV draws the conclusions. 

II. PROPOSED MARSMAPNET 

The proposed MarsMapNet aims to automatically classify 
the Martian landforms and generate efficiently a mapping 
result over a large geographical area. Fig. 1 shows the block 
diagram of the proposed approach, which mainly consists of 
two parts: 1) Superpixel-guided patches generation; 2) Multi-
view feature extraction and fusion network. 

As shown in Fig. 1, there are two phases in the whole 
mapping process: ① the Train/Test phase; ② the Prediction 
phase. In the train/test phase, sample maps of n × n size are 
independently inputted into Branch1 and Branch2 of MVF 
network to train the network and calculate the quantitative 
evaluation results. In the prediction phase, n × n and r × r 
patches created by the guidance of  superpixels are 
independently inputted into Branch1 and Branch2 of the 
trained network to generate the landform mapping result. Note 
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Fig. 2 Examples of superpixel-level segmentation results. 

 
Fig. 3 The comparison of pixel-level and superpixel-guided mapping methods. 
 
that the superpixel segmentation is only used in the prediction 
phase to guide the patch generation, which is not used in the 
train/test phase. 

A. Superpixel-guided patches generation 

The input data for the training process are the manually 
annotated scene-level samples, where each patch of a sample 
image represents a given landform category. Those sample 
images contain homogeneous and regular texture features (e.g., 
aeolian straight, rough terrain), or some remarkable features 
(e.g., channel, crater) of various landforms. However, we aim 
to obtain a more detailed landform mapping result with 
boundaries between different landforms, rather than a scene-
level classification result. To this end, superpixel segmentation 
is performed, and superpixel-level segments with local 
homogeneity are used as the basic units for classification. 

The simple linear iterative clustering (SLIC) [36] is applied 
to obtain the superpixel-level segments. It adopts the k-means 
clustering approach to generate superpixels efficiently, 
exhibiting better boundary adhesion performance. In addition, 
the compactness and number of the superpixels are flexible. 
SLIC superpixels correspond to clusters in the lxy gray-scale 
image space, where l represents the gray-scale value of the  

 
Fig. 4 The flowchart of the label prediction process for a given superpixel. 

gray-scale image, and (x,y) are the pixel’s position. Each pixel 
j within a superpixel has the smallest distance D to the 
clustering center i of that superpixel. This can be expressed as: 
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(1) 

where /S N K , N is the number of pixels, and K is 
independent of the number of superpixels. The compactness m 
allows us to weigh the relative importance between color 
similarity dc and spatial proximity ds. The larger the m, the 
more compact and regular the resulting superpixels, and vice 
versa. In this work, K is defined according to the size of input 
image and the size of landforms of interest, which can be 
empirically formalized as: 

 ( ) / ( )K H W b b    (2) 
where H and W are the height and weight of the input image, 
respectively, and H × W = N. The size of b × b (65 in the 
experiment) is pre-defined close to the size of the interested 
landform in the sample patches. It is obvious that by using the 
superpixel segmentation, the processing burden can be largely 
reduced nearly b × b times compared to the pixel-by-pixel 
sliding-window approach. Fig. 2 showed some examples of 
superpixel segments with parameters m = 0.2 and b = 65. As 
one can see, the superpixel-level segmentation resulted in the 
excellent boundary adhesion performance. Nevertheless, there 
are still some factors affecting the accuracy of segmentation 
boundaries, such as multi-scale complex landforms and image 
contrast quality. However, superpixel-level segmentation can 
achieve the tradeoff between accuracy and efficiency, which is 
suitable in most of practical application cases. 

The superpixel-level segments are generated to guide the 
classification process. Fig. 3 compares the pixel-level and 
superpixel-guided mapping methods. It can be seen that the 
pixel-level mapping result exhibits salt-and-pepper noises, and 
overlapped patches between adjacent pixels inevitably 
increase the data processing burden. However, the superpixel-
guided classification obtains excellent boundary adhesion 
performance with less processing burden. The label prediction 
process for a given superpixel in the proposed approach is 
shown in Fig. 4. During the prediction phase, when superpixel 
blocks are generated, patches of size n × n (see the blue box in 
Fig. 4) and r × r (see the purple box in Fig. 4) centered on a 
given superpixel centroids are created. The size of n × n (200 
× 200) is the same as the sample, and an n × n patch contains 
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the superpixel and its context at a scene-level. r = 120 is 
defined as a tradeoff between b and n to effectively extract 
local multi-texture of superpixel (b × b) and also to avoid the 
influence of other landforms in a scene-level patch (n × n). 
Then, patches with two sizes are input into two branches of 
the MVF network, respectively, to predict the category value 
of landform. Finally, the superpixel is given the predicted 
label. 

B. Multi-view feature extraction and fusion network for 
landform classification 

1) Scene-level convolutional feature extraction 
Popular CNN architectures, such as AlexNet [37], VGG 

[38], GoogLeNet [39], Inception [40], ResNet [41], 
EfficientNet [42] and DenseNet [43] are widely used for 
scene-level image classification. They can automatically learn 
abstract and robust convolutional features from the scene-level 
view. Experimental comparison was conducted in Section 
III.B to evaluate the performance of several SOTA 
architectures, demonstrating that DenseNet161 exhibited 
better classification performance than others. Therefore, the 
DenseNet161 is used as the basic 2D-CNN deep feature 
extraction architecture. 

In DenseNet161, for each layer, feature maps of all 
preceding layers are used as inputs, and its own feature maps 
are given as input to all subsequent layers. Thus, the 
vanishing-gradient problem is alleviated, while the feature 
propagation and reuse are enhanced. DenseNet161 contains 
convolution, pooling, dense block, transition and classification 
layers. For more details, readers can refer to [43]. 
2) Local-scale multi-texture feature extraction 

The Martian orbiter CTX images are single-band gray-level 
images, thus the effective mining of their spatial, textural and 
brightness features becomes an essential prerequisite for a 
successful classification task. Accordingly, the distinctive 
textural features exhibited by landforms can be used to 
distinguish their specific types. To this end, the simple yet 
effective Gray Level Co-occurrence Matrix (GLCM) [44] is 
used to extract the shallow multi-texture features for 
landforms at a local scale. As a popular statistical method for 
image texture analysis, GLCM defines the probability of gray-
level  occurring in the neighborhood of another gray-level  
at an offset ( , )x y  . Given a training patch I, of size n × n, 

these probabilities create a co-occurrence matrix G as follows: 

1 1

 1,   ( , )   and ( , ) = 
( , )

 0,  otherwise

n n
x y

x y

if I x y I x y
G

 
 

 

  
 


  (3) 

where the offset ( , )x y   is expressed by the combination of 

a distance d and a direction θ [44]. 
In this paper, nine statistical values including mean, 

variance, homogeneity, contrast, dissimilarity, entropy, 
angular second moment, correlation and auto correlation are 
extracted from the GLCM. The maximum gray-level of the 
considered CTX image is 256, and we set both  and  as 32 
in the experiment, which balances the effectiveness and a 
proper statistical representation with the computational effort. 
Four different distances d (i.e., 2, 4, 6, 8) and four different  

 
Fig. 5 Architecture of the developed 1D-CNN. 

directions θ (i.e., 0°, 45°, 90°, 135°) are used to generate 

textural features. Finally, feature vector (m0×1) can be 
obtained for each input patch image, and m0 = 4×4×9. 

1D-CNN was effective for feature extraction of 1D signals 
in various application fields [45-47]. In our work, 1D-CNN is 
used to process 1D shallow artificial features. The architecture 
of the developed 1D-CNN is illustrated in Fig. 5, which 
contains three 1D convolution layers (Conv1D) and one fully 
connected layer. The m0-dimensional feature vector extracted 
from each patch sample is inputted to the 1D-CNN for 
discriminable feature mining. The number of channels for 
feature maps 1, 2 and 3 (denoted as FM1, FM2 and FM3) are 
32, 64 and 96, respectively. Let im  be a length of vector 

sequence after the convolution operation, which can be 
expressed as follows: 

 1 1
1, 1, 2,3.i

i

m KernelSize
m i

Stride
  

    (4) 

where KernelSize is the size of the convolution kernel, Stride 
is the step size of the convolution. After the flatten operation, 
the final number of fully connected layer nodes is 

4 396m m  . 

3) Multi-view features fusion and classification 
Fusion of shallow artificial features and deep features has 

shown its effectiveness in multi-source image classification 
[48, 49]. In order to offer a more comprehensive 
representation for Martian landforms from the single-band and 
gray-scale images, the extracted abstract convolutional 
features from scene-level view and the multi-texture features 
from local landform view are fused. The fusion training is 
divided into two steps. One is to independently train the 2D-
CNN in Branch1 and 1D-CNN in Branch2. The other is to 
fuse the Branch1 and Branch2 that trained in the previous step, 
and then re-train the fusion model to fine-tune the weights 
with the idea of transfer learning. The procedure of fine-tune 
fusion plays a crucial role in achieving better classification 
performance and constructing a more robust network, which 
has been validated in Refs. [47] and [50]. 

In the first step, the 2D-CNN (e.g., DenseNet161) and 1D-
CNN architectures are trained independently. Note that for the 
2D-CNN branch, the final fully connected layer of 
DenseNet161 is removed, as it was pre-trained on 1.2 million 
Earth images from 1,000 classes in the ImageNet data set [51]. 
A new fully connected layer with the number of Martian 
landform classes is added, then all parameters are re-trained 
based on the pretrained parameters. 1D-CNN is trained on the 
1D shallow feature vector from scratch. 
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In the second step, the final classification layer of the 
trained 2D-CNN and 1D-CNN architecture is removed. Then 
the FC2D and FC1D are defined as the final fully connected 
layer of 2D-CNN and 1D-CNN architectures, respectively. As 
shown in Fig. 1, they are concatenated to generate the fusion 
layer Ffusion as: 

 2 1||fusion D DF F F  (5) 

where || is the concatenating operation. Ffusion is followed by 
two fully connected layers for classification. Finally, the 
constructed MVF network is re-trained with the last two fully 
connected layers being randomly initialized and other layers 
being initialized using the pre-trained parameters. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

To evaluate the effectiveness of the proposed MarsMapNet 
for Martian landform mapping, quantitative and qualitative 
results obtained on three landing sites (i.e., Jezero Crater, 
Southern Utopia Planitia, Oxia Planum) were analyzed in 
detail. 

A. Experimental Setup and Parameter Setting 

SLIC: Based on multiple trials, the compactness m is set to 
0.2, and b is set to 65, thus K can be automatically calculated 
according to Equation (2). 

GLCM: Gray-level and  are set to 32, four distance 
values d (2, 4, 6, 8) and four directions θ (0°, 45°, 90°, 135°) 

are selected to extract the GLCM feature vectors for each 
image patch. 

Model training: The Stochastic Gradient Descent (SGD) 
optimization is used, where the learning rate is 0.01, the 
momentum is 0.9, and the batch size is set to 64, the training 
epoch of 1D-CNN, 2D-CNN and the proposed MVF network 
are 2000, 50 and 50, respectively. 

Landform prediction: The training samples size n is equal to 
200 [35]. The patch size r for calculating 1D features is 
defined as 120. 

Algorithms were implemented by using Python, where the 
deep learning networks were built by using Pytorch. 
Experiments were carried out on the Ubuntu 18.04.5, with 
Intel Xeon Gold 6130 CPUs at 2.10 GHz, 159 GB RAM, and 
GPU of NVIDIA GRID P40-24Q, 22GB. 

B. Quantitative Results Analysis on the Public Data Set 

The available public DoMars16k data set  is used to 
quantitatively evaluate the classification performance of the 
proposed approach. The DoMars16k data set is built based on 
the Mars Reconnaissance Orbiter’s CTX images. In the 
DoMars16k data set, common Martian landforms are divided 
into five thematic groups, including Aeolian Bedforms, 
Topographic Landforms, Slope Feature Landforms, Impact 
Landforms, and Basic Terrain Landforms. Each group 
contains some specific classes, and in total there are 15 classes 
of landforms in the data set, including Aeolian Curved, 
Aeolian Straight, Cliff, Ridge, Channel, Mounds, Gullies, 
Slope Streaks, Mass Wasting, Crater, Crater Field, Mixed 
Terrain, Rough Terrain, Smooth Terrain and Textured Terrain.  

     
Aeolian 
Curved 

Aeolian 
Straight 

Cliff Ridge Channel 

     
Mounds Gullies Slope Streaks Mass Wasting Crater 

     

Crater Field Mixed Terrain Rough Terrain 
Smooth 
Terrain 

Textured 
Terrain 

Fig. 6 Examples of DoMars16k landforms samples (15 classes) [35]. 

 
Fig. 7 Micro-average P-R curves obtained by different CNN architectures. 

Fig. 6 illustrates examples of the considered 15 classes of 
landforms. The data set consists of 16,150 sample images, 
which were randomly subdivided into training (70%), 
validation (20%), and test (10%) sets, respectively. The size of 
the sample image is 200 × 200 pixels (i.e., 1.2 km × 1.2 km), 
which is a trade-off between the annotation cost and details of 
the final mapping result. 

To qualitatively analyze the effectiveness of the proposed 
approach, we compared multiple metrics: Precision (P), Recall 
(R), P-R curve and F1-scores [52]. Detailed formulas of those 
metrics are listed below: 

   
TP

P
TP FP




 (6) 

   
TP

R
TP FN




 (7) 

where TP is the counts of True Positives, FP is the counts of 
False Positives, FN is number of False Negatives. For binary 
classification, F1-score is defined as the harmonic mean of P 
and R: 

 -
2 P R

F1 Score  
P R

 



 (8) 

For the multi-class case, Micro-F1 equals OA (overall 
accuracy) that is a direct measure when the number of 
different classes is balanced. Macro-F1 is more reliable when 
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Table 1 Comparison of the multiple metrics (%) obtained by different 2D-
CNN networks in Branch 1 of the proposed MVF network. 

Landform 
Classes 

Branch 1 (2D-CNN) 
GoogLe 

Net 
Efficient 
Net_b01 

ResNet 
50 

DenseNet
121 

Inception 
_v3 

DenseNet
161 

Aeolian Curved 98.56 97.58 99.53 98.58 98.56 98.58 
Aeolian Straight 98.04 97.06 98.04 96.12 96.59 97.09 

Cliff 89.66 88.89 86.41 88.56 90.29 91.00 
Ridge 97.05 96.64 98.29 98.28 98.72 87.13 

Channel 98.15 97.67 98.15 97.67 98.62 94.96 
Mounds 93.72 95.40 97.85 96.14 96.14 98.02 
Gullies 94.53 93.94 96.97 95.05 92.46 92.86 

Slope Streaks 90.48 92.09 91.59 91.59 90.48 98.17 
Mass Wasting 91.18 91.18 89.62 89.86 92.38 93.40 

Crater 83.58 86.54 82.65 85.00 86.73 98.72 
Crater Field 92.82 94.58 91.35 93.60 95.61 96.63 

Mixed Terrain 97.00 95.00 97.51 96.04 95.57 90.73 
Rough Terrain 95.91 94.70 97.36 95.52 96.27 95.10 
Smooth Terrain 96.64 95.73 95.00 98.31 95.76 96.23 

Textured Terrain 72.34 77.61 72.63 77.78 74.49 77.72 
Macro-P 92.70 93.00 92.91 93.19 93.25 93.79 
Macro-R 92.77 93.00 93.01 93.28 93.36 93.83 
Micro-F1 92.94 93.12 93.18 93.43 93.49 93.99 
Macro-F1 92.64 92.97 92.86 93.20 93.24 93.76 

Table 2 Accuracy metrics (%) of the ablation architectures of the proposed 
MVF network. 

Landform Classes 
Branch 1 
(2D-CNN: 

DenseNet161) 

Branch 2 
(GLCM&1D-CNN) 

Proposed 
MVF 

network 
Aeolian Curved 98.58 83.11 99.06 
Aeolian Straight 97.09 89.22 97.06 

Cliff 91.00 71.58 92.93 
Ridge 87.13 71.92 88.56 

Channel 94.96 74.46 95.83 
Mounds 98.02 87.80 97.54 
Gullies 92.86 72.63 95.52 

Slope Streaks 98.17 85.98 98.15 
Mass Wasting 93.40 61.19 91.94 

Crater 98.72 74.26 98.31 
Crater Field 96.63 75.40 96.63 

Mixed Terrain 90.73 81.48 94.06 
Rough Terrain 95.10 89.72 94.63 
Smooth Terrain 96.23 85.71 97.05 

Textured Terrain 77.72 53.97 81.03 
Macro-P 93.79 77.20 94.59 
Macro-R 93.83 77.58 94.61 
Micro-F1 93.99 77.45 94.73 
Macro-F1 93.76 77.23 94.55 

 
the number of different classes is unbalanced. Micro-P and 
Micro-R is calculated based on TP, FP and FN for all classes, 
and then the Micro-F1 is calculated based on Micro-P and 
Micro-R: 

 
nc

Micro- 1 2 nc

1 2 1 2 nc

TP TP TP
P

TP TP TP FP FP FP

  


      
…

… …
 (9)

 Micro- 1 2 nc

1 2 nc 1 2 nc

TP TP TP
R

TP TP TP FN FN FN

 


    
 (10)

 
2 Micro- Micro-

Micro-
Micro- Micro-

P R
F1

P R

 



 (11)

Macro-P and Macro-R are calculated by averaging the P and R 
for each class. Macro-F1 is calculated based on Macro-P and 
Macro-R: 

 Macro-
nc

i
i 1

1
P P

nc 

   (12) 

 Macro-
nc

i
i 1

1
R R

nc 

   (13) 

 
2 Macro- Macro-R

Macro-F1
Macro- Macro-R

P

P

 



 (14) 

where nc is the number of classes. 
Table 1 provides the obtained F1-Scores for each landform 

class, as well as the Macro-P, Macro-R, Micro-F1 and Macro-
F1. The results were obtained on the DoMars16k test set by 
different 2D-CNN architectures (i.e., GoogLeNet, 
EfficientNet_b01, ResNet50, DenseNet121, Inception_v3, 
DenseNet161) in Branch 1 of the proposed MVF network. 
Note that the highest F1-measure was selected after five 
running of experiments in order to obtain the optimal 
classification model. To further compare the effect of each 
2D-CNN based networks, we plot the Micro-average P-R 
curves, and provide the numeric results of the area values 
under the curves of different CNN architectures in the legend 
of Fig. 7. Note that a large area under the P-R curve represents 
both high recall and high precision. From Table 1 and Fig. 7, 
one can see clearly that DenseNet161 achieved the best 
performance among all compared 2D-CNN models. 

To evaluate the effectiveness of the proposed MVF network, 
we compared multiple metrics according to the ablation 
analysis. Obtained results are provided in Table 2. Due to the 
insufficient spatial features, Branch 2 exhibits the worst 
performance with the lowest Macro-P, Macro-R, Micro-F1 
and Macro-F1 values are equal to 77.20%, 77.58%, 77.45% 
and 77.23%, respectively. The Branch 1 models performed 
better than Branch 2 with higher accuracies. It should be noted 
that, by taking advantage of both branches, the proposed MVF 
network achieves the highest Macro-P (i.e., 94.59%), Macro-R 
(i.e., 94.61%), Micro-F1 (i.e., 94.73%) and Macro-F1 (i.e., 
95.55%), as well as the highest class-accuracy values on most 
of landforms. This indicates the superiority of multi-view 
features fusion. 

C. Results and Analysis on Real CTX Data 

1) Description of the Study Areas and Used Data 
Three study areas on Mars were selected in our experiments, 

including the NASA’s Perseverance landing region - Jezero 
Crater (18.38°N, 77.58°E), the China’s Tianwen-1 Zhurong 
landing region - Southern Utopia Planitia (25.066°N, 
109.925°E) and the prospective ESA’s ExoMars candidate 
landing region - Oxia Planum (18.28°N, 335.37°E). Fig. 8 
shows the location of the three study areas on the color-coded 
MOLA DEM map. The used Martian orbiter CTX images are 
shown in Fig. 9 (a1) - (c1). In particular, the Jezero Crater is 
located in the Martian Isidis Planitia region, it is supposed that 
an ancient river flowed into the Jezero Crater, and formed a 
delta at its west-side [see in Fig. 9 (a1)]. Utopia Planitia is the 
largest recognized circular impact basin in the northern plains 
of Mars [53], and it may be an area that was covered by a huge 
ancient ocean in the northern hemisphere of Mars [54, 55]. 
Oxia Planum is a 200 km wide low-relief terrain characterized  
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Fig. 8 Three considered study areas on the color-coded MOLA DEM. 

by hydrous clay-bearing bedrock units located at the 
southwest margin of Arabia Terra [56]. This region exhibits 
Noachian- aged terrains. It contains abundant exposures of 
phyllosilicate- bearing bedrock and a fan-shaped sedimentary 
structure at the terminus of an ancient fluvial channel system 
[57]. Fig. 9 (a2) – (c2) show the reference maps of three study 
areas, which were made according to careful manual image 
interpretation. 

2) Qualitative Analysis of the Landform Mapping Results 
Landform mapping results obtained by the proposed 

MarsMapNet are shown in Fig. 10. Note that we provided two 
versions of mapping results: 1) obtained by using multi-view 
features, which is denoted as MarsMapNet (multi-view); 2) 
obtained by using only abstract convolutional features from 
scene-level (i.e., 2D-CNN), which is denoted as MarsMapNet 
(single-view). 

In Fig. 10, one can see that the two versions of the proposed 
method provided results that are macroscopically similar. 
However, differences are present on some landforms at local 
areas. In particular, the main landforms in the Jezero Crater 

region can be observed in Fig. 10 (a1) and (a2) are Channel, 
Crater, Aeolian Straight, Ridge, Slope Streaks, Mixed Terrain, 
Textured Terrain and Crater Field. Landscape features 
indicative of liquid water include erosional forms (like 
channels) and depositional forms (like deltas and alluvial fans) 
[58]. In the northwest corner of the map, the supposed ancient 
river [highlighted with a yellow line in Fig. 10 (a2)] was 
divided into Channel at both ends with Aeolian Straight in the 
middle. This mapping result reflects the real situation due to 
the fact that the bottom of river’s central section is now 
covered by linear dunes. Such identified landforms provide 
important evidence for ancient aqueous processes and aeolian 
processes. In addition, the Aeolian Straight [highlighted in 
white polygon in Fig. 10 (a2)] in the southwest corner of the 
map and Ridge [highlighted in blue rectangles marker in Fig. 
10 (a2)] in the west of the map were correctly classified. Slope 
Streaks [highlighted in yellow oval in Fig. 10 (a2)] where 
found around Ridge, which is confirmed on the high-
resolution HiRISE image. However, some errors still exist in 
the mapping results. For example, since the Mounds class 
contains only mound clusters at a scene-level rather than 
individual mound, the larger-size individual mound 
[highlighted in red squares in Fig. 10 (a2)] may be mistakenly 
identified as crater, as they have very similar geometric 
properties. 

The geomorphic features that appear in the vicinity of the 
Zhurong rover’s landing site include pitted cones, craters, 
mass wasting, troughs, ridges, and transverse aeolian ridges, 
where the formation of rampart crater, cones and troughs are 
highly related to the scientific target water/ice [59-61]. From 
the landform mapping result of Southern Utopia Planitia area 

  

Aeolian Curved 

Aeolian Straight 

Cliff 

Crater 

Slope Streaks 

Channel 

Gullies 

Mass Wasting 

Mixed Terrain 

Ridge 

Rough Terrain 

Mounds 

Crater Field 

Smooth Terrain 

Textured Terrain 
 

(a1) (a2) 

    
(b1) (b2) (c1) (c2)  

Fig. 9 The CTX images used for landform classification and their corresponding reference maps on three study areas: (a1) Perseverance landing region: Jezero 
Crater (the subset of the CTX image: D14_032794_1989_XN_18N282W, image size: 5600 × 3000 pixels); (b1) Tianwen-1 Zhurong landing region: Southern 
Utopia Planitia (subset of CTX mosaic image of F04_037553_2068_XN_26N250W and D22_035786_2060_XN_26N250W, image size: 5843 × 8911 pixels); 
and (c1) Prospective ExoMars candidate landing region: Oxia Planum (CTX image: F13_040921_1983_XN_18N024W, image size: 6361 × 8012 pixels). (a2), 
(b2) and (c2) are reference maps to (a1), (b1) and (c1), respectively. 
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(a1) (a2) 

    
(b1) (b2) (c1) (c2) 

Fig. 10 Landform mapping results obtained by the proposed MarsMapNet (single-view) (a1, b1, c1) and MarsMapNet (multi-view) (a2, b2, c2) on three study 
areas: (a) Jezero Crater, (b) Southern Utopia Planitia, and (c) Oxia Planum. 
 
[see in Fig. 10 (b)], one can see that there are seven classes of 
landforms identified, including Crater Field, Crater, Mounds, 
Channel, Ridge, Textured Terrain and Smooth Terrain. The 
Channel [highlighted in yellow oval marker in Fig. 10 (b2)] 
corresponding to troughs in [59-61] were correctly identified, 
and steep slopes on the Channel boundary were divided into 
Cliff. The troughs in Utopia Planitia were considered to be 
related to volatile activity, and it was suggested that they were 
formed by the volumetric compaction of a fine-grained 
sedimentary material covering an uneven buried surface [59, 
62]. The Mounds located in the region’s southwest and 
southeast [highlighted in blue rectangles in Fig. 10 (b2)] 
correspond to cones as stated in [59-61] and they were 
consistently identified. The Zhurong rover planned to continue 
its journey south to explore these cones and investigate their 
origins. In addition, there is a large rampart crater with a 
diameter of about 2.3 km [highlighted in red circle in Fig. 10 
(b2)], which is much larger than the fixed window size. So, 
this crater was divided into several parts in the mapping 
results, i.e., Ridge and Cliff on the rim, Mass Wasting on the 
slope, and Gullies on the bottom. 

As shown in Fig. 10 (c), the identified landforms in the 
Oxia Planum region consist of Crater, Crater Field, Channel, 
Aeolian Straight, Ridge, Textured Terrain and Rough Terrain. 
Craters fitting the window size were correctly identified, 
whereas smaller craters were divided into the Crater Field. 
Channels [highlighted in yellow oval in Fig. 10 (c2)) 
distributed along the rim of craters were correctly identified. 

In addition, large areas were grouped into Textured Terrain, 
which means the bedrock of the region is covered by loose 
material, but the underlying bedrock is not completely buried 
[35]. It is important to note that channels and bedrock indicate 
long-term low-intensity erosion processes in the Oxia Planum 
region, and this region was chosen as a candidate landing site 
due to this widespread bedrock exposure, which may contain 
physical and chemical biomarkers for seeking out possible 
past life and aqueous activity on Mars [57]. However, there 
are still remaining issues due to the window-size limitations. 
Craters [highlighted in a red circle in Fig. 10 (c2)] larger than  
the window size were divided into Ridge and Aeolian Straight 
parts, which are actually the crater rim and the crater floor. 

In order to further analyze the mapping results qualitatively, 
we calculated the Gradient-weighted Class Activation Maps 
(Grad-CAM) [63] at local regions [see in Fig. 11 (b2) and (c2), 
and Fig. 12 (b2) and (c2)]. For a particular category, a CAM 
indicates the discriminative image regions used by the CNN to 
identify that category [64]. Grad-CAM is a generalization of 
CAM and is applicable to a significantly broader range of 
CNN model families. In Grad-CAM, discriminative regions of 
the image that are associated with the landforms is localized 
and highlighted. 

In Fig. 11, both mapping results obtained by the proposed 
MarsMapNet (single-view) and MarsMapNet (multi-view) are 
correct. Fig. 11 (a) shows some examples of correctly 
classified superpixel landforms. The number of superpixel is 
illustrated in red (e.g., 3239 is the center superpixel of Crater 
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Crater 

     

Channel 

     

Ridge 

     
 (a) (b1) (b2) (c1) (c2) 

Fig. 11 Examples of correct mapping results obtained by the proposed MarsMapNet approaches and the corresponding Grad-CAM at a local scale. (a) 
Superpixel-corresponding patch within the CTX image patch. The whole patch size is 200×200 (inputted into 2D-CNN), the local patch size in the green box is 
120×120 (used to calculate 1D features and inputted into 1D-CNN); (b1) and (b2): mapping results obtained by the proposed MarsMapNet (single-view) and its 
Grad-CAM, respectively; (c1) and (c2): mapping results obtained by the proposed MarsMapNet (multi-view) and its Grad-CAM, respectively. 

Crater 

     

Aeolian Straight 

     

Channel 

     
 (a) (b1) (b2) (c1) (c2) 

Fig. 12 Examples of wrong (b1: MarsMapNet (single-view)) and correct (c1: MarsMapNet (multi-view)) mapping results obtained by the proposed MarsMapNet 
approaches and their corresponding Grad-CAMs at a local scale. (a) Superpixel-corresponding patch within the CTX image patch. The whole patch size is 
200×200 (inputted into 2D-CNN), the local patch size in the green box is 120×120 (used to calculate 1D features and inputted into 1D-CNN); (b1) and (b2): 
mapping results obtained by the proposed MarsMapNet (single-view) and its Grad-CAM, respectively; (c1) and (c2): mapping results obtained by the proposed 
MarsMapNet (multi-view) and its Grad-CAM, respectively. 

in the first row). Fig. 11 (b1) and (c1) show the mapping 
results. One can see that the highlighted regions obtained by 
two proposed methods are similar, corresponding exactly to 
the landform type (i.e., Crater, Channel, Ridge) of the center 
superpixels [see Fig. 11 (b2) and (c2)]. 

Fig. 12 shows wrong and correct examples of mapping 
results where the proposed MarsMapNet (multi-view) 
outperformed the proposed MarsMapNet (single-view). In the 
first and second rows, classes of the center superpixel 1990 
and 263 are Crater and Aeolian Straight, respectively, which 
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Table 3 The Micro-F1 (%) of mapping results obtained by different methods. 

Study areas 
Reference methods 

Proposed 
MarsMapNet  
(multi-view) 

without 
MRFs 

with 
MRFs 

without 
MRFs 

with 
MRFs 

Jezero Crater 82.65 84.25 86.03 86.41 
Southern Utopia Planitia 72.93 73.54 78.32 78.55 

Oxia Planum 84.04 84.35 85.51 85.70 

were mis-classified into Mixed Terrain and Mass Wasting by 
the proposed MarsMapNet (single-view), and the highlighted 
regions were off-center the center superpixels. However, they 
were correctly predicted in the proposed MarsMapNet (multi-
view), and the highlighted regions exactly matched the center 
superpixels. There are some examples (e.g., third row in Fig. 
12) where the proposed MarsMapNet (single-view) and 
MarsMapNet (multi-view) both acquire the highlighted region 
correctly, but the MVF allows MarsMapNet (multi-view) to 
achieve better recognition performance. 

3) Comparison with other methods 
To further demonstrate the effectiveness of the proposed 

MarsMapNet, landform mapping results obtained by the 
MarsMapNet (multi-view) were compared with those obtained 
by the state-of-the-art methods with or without post processing 
[35]. For a fair comparison, the trained Densenet161 that 
achieved the highest testing accuracy was also used the 
reference method. The MRFs was used to smooth the pixel- 
wise classification noise by a sliding window. Table 3 lists the 
Micro-F1 scores of mapping results on three study areas. The 
Micro-F1 scores were calculated based on the manually 
labeled reference maps (see in Fig. 9 (b2), (c2) and (d2)). The 
accuracy of reference method was improved by using MRFs. 
Since the mapping result of the proposed MarsMapNet 
exhibited good boundary adhesion performance and local 
homogeneity, the high accuracy can be obtained without 
MRFs. It is worth noting that the accuracy of the proposed 
MarsMapNet without using MRFs is also higher than that of 
the reference method using MRFs. 

Fig. 13 provides a comparison of the obtained classification 
maps on the Jezero Crater area data set. The two compared 
methods produced in general similar results at a global scale. 

However, some major differences are highlighted with yellow 
boxes in Fig. 13, which are enlarged and further compared in 
Fig. 14. We can observe the salt-and-pepper noise in the 
mapping results obtained by the reference method without 
using MRFs filtering [see in Fig. 14 (c1)]. After MRFs 
filtering, noise was removed, resulting in a smoother landform 
classification map [see in Fig. 14 (c2)]. The proposed 
MarsMapNet achieved better mapping results [Fig. 14 (d1)] 
than the reference method without using MRFs [Fig. 14 (c1)] 
and achieved with more regular and smooth boundaries. 
However, homogeneity can be also observed within the given 
classes. Despite the use of MRFs in the proposed approach, 
there is no significant improvement in the classification result 
[see Fig. 14 (d2)]. This indicates that the proposed 
MarsMapNet can obtain comparable mapping results without 
post-processing operations to the reference method that relies 
on the MRFs filtering. In addition, classification results at a 
local scale are compared in more details [see the red box 
highlighted in Fig. 14 (a) and enlarged in Fig. 14 (b)]. There is 
Aeolian Straight in the first-row image, a Crater in the 
second-row image, and Aeolian Straight (left part) and 
Channel (right part) in the third-row image. They were all 
correctly identified by the proposed MarsMapNet [see in Fig. 
14 (d1)], but were misclassified by the reference method [see 
Fig. 14 (c2)]. 

4) Comparison of computing time 
Table 4 shows the computing time taken by different 

methods. Especially, time cost in the reference methods 
contains two parts: the model prediction and the MRFs 
filtering steps. The time cost in the proposed MarsMapNet 
(single-view) includes two parts: the superpixel segmentation 
and model prediction, and the proposed MarsMapNet (multi -
view) contains three parts: the superpixel segmentation, multi-
texture features generation and model prediction. Three 2D-
CNN models (i.e., DenseNet161, Inception_v3 and 
DenseNet121) were also compared according to their high 
performance in the quantitative evaluation as shown in Table 1. 
We can see that due to the deeper model and more parameters, 
DenseNet161 took the most time, followed by DenseNet121 
and Inception-v3. 

Table 4 Computational time taken by alternate methods (Seconds). 

Study 
areas 

Methods 
Classification 

unit 
Superpixel 

segmentation 
Multi-texture 

features generation 
Model 

prediction 
Post-classification 
processing (MRFs) 

Total 

Jezero 
Crater 

Reference 
methods 

DenseNet161 
Pixel 

/ / 78,413 859 79,272 
Inception_v3 / / 46,500 879 47,379 
DenseNet121 / / 42,660 861 43,521 

Proposed MarsMapNet (single-view) 
Superpixel 

14 / 34 / 48 
Proposed MarsMapNet (multi-view) 14 596 29 / 639 

Southern 
Utopia 
Planitia 

Reference 
methods 

DenseNet161 
Pixel 

/ / 265,351 2,803 268,154 
Inception_v3 / / 155,160 2,810 157,970 
DenseNet121 / / 140,280 2,807 143,087 

Proposed MarsMapNet (single-view) 
Superpixel 

57 / 121 / 178 
Proposed MarsMapNet (multi-view) 59 2,555 93 / 2,707 

Oxia 
Planum 

Reference 
methods 

DenseNet161 
Pixel 

/ / 257,484 2,796 260,280 
Inception_v3 / / 150,840 2,781 153,621 
DenseNet121 / / 134,460 2,795 137,255 

Proposed MarsMapNet (single-view) 
Superpixel 

47 / 100 / 147 

Proposed MarsMapNet (multi-view) 48 2,203 81 / 2,332 

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2023.3348931

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on January 03,2024 at 16:33:07 UTC from IEEE Xplore.  Restrictions apply. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

12 

  
(a1) (a2) 

  
(b1) (b2) 

Fig. 13 Landforms mapping results at a global scale obtained by different methods (Jezero Crater area): reference method [35] without (a1) and with MRFs (a2); 
the proposed MarsMapNet without (b1) and with MRFs (b2). 

 

 

    
 

 

    
 

 

    
(a) (b) (c1) (c2) (d1) (d2) 

Fig. 14 Landforms mapping results at a local scale obtained by different methods (Jezero Crater area). (a) CTX images; (b) enlarged view (HiRISE image) of the 
red box in (a); reference method [35] without (c1) and with MRFs (c2); the proposed MarsMapNet without (d1) and with MRFs (d2). 
 

The total time consumption of the proposed MarsMapNet 
approach is significantly smaller than that of the reference 
method (DenseNet161). In particular, the MarsMapNet 
(single-view) decreased by 1,652 times, 1,506 times and 1,771 
times of time consumption on three data sets, respectively. 
The MarsMapNet (multi-view) decreased by 124 times, 99 

times and 112 times on three data sets, respectively. Even 
when compared with the reference methods (more light-
weight Inception-v3 and DenseNet121), two versions of the 
proposed MarsMapNet also exhibited a significant advantage 
on computational efficiency. A sharp time reduction can be 
seen mainly in the model prediction process. With regard to 
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the two versions of the proposed MarsMapNet techniques, the 
main difference in computing cost is due to shallow-feature 
generation step. Although the MarsMapNet (multi-view) took 
more time than the MarsMapNet (single-view), we consider 
this an acceptable tradeoff with respect to its improved 
classification accuracy. Furthermore, the time cost analysis 
also indicates that the proposed MarsMapNet (single-view) 
exhibits great advantages for a rapid landform mapping, which 
offers the potential for efficient Martian landform mapping 
over a large area. 

IV. CONCLUSION 

In this article, a novel superpixel-guided multi-view feature 
fusion network (MarsMapNet) is proposed for efficient 
mapping of the Martian landforms. To fully exploit texture 
information on single-band and gray-scale Martian orbiter 
images, the specially designed multi-texture features are 
extracted from a local view and inputted into 1D-CNN for 
further feature mining. Then they are fused with abstract 
convolutional features that are extracted by 2D-CNN from a 
scene-level view. When performing Martian landforms 
mapping, superpixel segmentation is incorporated into the 
trained network to both reduce salt-and-pepper noise in pixel-
wise classification and allows a better local homogeneity and 
more accurate landform boundaries. Moreover, superpixel-
level classification results can be obtained by using more 
accessible scene-level samples. 

Quantitative analysis on the considered data set and 
qualitative mapping analysis on three Mars missions’ landing 
(or candidate landing) regions confirmed the effectiveness of 
the proposed method in terms of better classification accuracy 
and high computational efficiency when compared with state-
of-the-art methods. The proposed approach has the potential 
for discovering Martian surface scientific targets of interest, 
analyzing their pattern and spatial distribution, especially in 
the application of landing site selection. For future works, we 
plan to investigate the potential of the proposed MarsMapNet 
in producing a Martian global landform product. Meanwhile, 
we will explore more advanced techniques to improve the 
Martian landform mapping results at local scale. 
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