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1 Introduction

This report presents the progress on activities carried out on the topic of Metamaterials.
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2 Mathematical Formulation

Each one step transformation involves two domains. In this report, the first domain is called “virtual domain” or

“virtual space” while the other one is referred to as “physical domain” or “physical space”. In addition, the terms

“virtual” and “physical” are used to describe entities in virtual and physical spaces respectively. The rectangular

coordinate system in virtual space is labeled as (x′, y′, z′) whereas in the physical space the labels (x, y, z) are

used.

If the transformation from (x′, y′, z′) to (x, y, z) is defined as:

(x, y, z) = Γ (x′, y′, z′) (1)

x = x (x′, y′, z′) (2)

y = y (x′, y′, z′) (3)

z = z (x′, y′, z′) (4)

the Jacobian matrix of the transformation Λ will be:

Λ =













∂x
∂x′

∂x
∂y′

∂x
∂z′

∂y
∂x′

∂y
∂y′

∂y
∂z′

∂z
∂x′

∂z
∂y′

∂z
∂z′













. (5)

For the inverse transformation i.e. (x, y, z) to (x′, y′, z′),

(x′, y′, z′) = Γ′ (x, y, z) (6)

x′ = x′ (x, y, z) (7)

y′ = y′ (x, y, z) (8)

z′ = z′ (x, y, z) (9)

the corresponding Jacobian matrix will be

Λ′ =













∂x′

∂x
∂x′

∂y
∂x′

∂z

∂y′

∂x
∂y′

∂y
∂y′

∂z

∂z′

∂x
∂z′

∂y
∂z′

∂z













. (10)

and the following relations can be established.

Λ′ = Λ−1 (11)
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det
(

Λ′
)

=
1

det (Λ)
(12)

If ε′ and µ′ represent permittivity and permeability tensors in virtual medium respectively,

ε′ =













ε′xx ε′xy ε′xz

ε′yx ε′yy ε′yz

ε′zx ε′zy ε′zz













(13)

µ′ =













µ′

xx µ′

xy µ′

xz

µ′

yx µ′

yy µ′

yz

µ′

zx µ′

zy µ′

zz













(14)

corresponding permittivity and permeability tensors in physical space can be computed as follows:

ε =
Λ ε′ ΛT

det (Λ)
(15)

µ =
Λµ′ ΛT

det (Λ)
. (16)

If there is a source with current I ′ and current density J ′ in virtual space its corresponding image in the physical

space can be computed as [2]

J =
ΛJ ′

det (Λ)
. (17)

I = I ′. (18)

For a cascade of transformations: Γ̂ {(x′′, y′′, z′′) → (x′, y′, z′)} followed by Γ̃ {(x′, y′, z′) → (x, y, z)}, the overall

transformation Γ {(x′′, y′′, z′′) → (x, y, z)} can be formulated as follows. In the following discussion, and in the

remaining of this report, when dealing with cascade of transformations, the space defined by the coordinates

(x′, y′, z′) will be termed as the Intermediate space and objects defined in this space will be called intermediate

objects. Let Λ̂ and Λ̃ represent the Jacobian matrices of the transformations Γ̂ and Γ̃ respectively defined as:

Λ̂ =













∂x′

∂x′′

∂x′

∂y′′

∂x′

∂z′′

∂y′

∂x′′

∂y′

∂y′′

∂y′

∂z′′

∂z′

∂x′′

∂z′

∂y′′

∂z′

∂z′′













(19)

Λ̃ =













∂x
∂x′

∂x
∂y′

∂x
∂z′

∂y
∂x′

∂y
∂y′

∂y
∂z′

∂z
∂x′

∂z
∂y′

∂z
∂z′













. (20)

Further more, let
{

ε′′, µ′′
}

,
{

ε′, µ′
}

and {ε, µ} represent sets of permittivity and permeability tensors in

(x′′, y′′, z′′), (x′, y′, z′) and (x, y, z) spaces respectively, while the corresponding currents are represented as J ′′,

5



J ′ and J . Considering the transformation: Γ̃ {(x′, y′, z′) → (x, y, z)}, the following relations can be established:

ε =
Λ̃ ε′ Λ̃

T

det
(

Λ̃
) (21)

µ =
Λ̃µ′ Λ̃

T

det
(

Λ̃
) (22)

and for the other transformation, Γ̂ {(x′′, y′′, z′′) → (x′, y′, z′)},

ε′ =
Λ̂ ε′′ Λ̂

T

det
(

Λ̂
) (23)

µ′ =
Λ̂µ′′ Λ̂

T

det
(

Λ̂
) . (24)

Substituting (23) and (24) in (21) and (22) respectively and rearranging terms gives the relationship between

material properties for the overall transformation

ε =

(

Λ̃Λ̂
)

ε′′
(

Λ̃Λ̂
)T

det
(

Λ̃Λ̂
) (25)

µ =

(

Λ̃Λ̂
)

µ′′

(

Λ̃Λ̂
)T

det
(

Λ̃Λ̂
) . (26)

Following similar analysis, the current sources for the complete transformation can be related as:

J =

(

Λ̃Λ̂
)

J ′′

det
(

Λ̃Λ̂
) . (27)

I = I ′ = I ′′. (28)

2.1 +qTo Library

The +qTo software library is a numerical implementation of 2D Transformation. It takes boundary contour of

virtual space as input and generates grid of transformation to a rectangular region. It first selects points on

the input contour in virtual space corresponding to uniformly distributed points on the contour of rectangle in

physical space. The internal grid is generated by taking these points as boundary conditions and solving the

2D Laplacian equation. The detail of the solution is presented in [4].

Equations (15) and (16) are used to compute material permittivity and permeability tensors for generic trans-

formation. Under the following assumptions, the expression for these quantities can be simplified[5].

• TE or TM mode of propagation.
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• Grid lines are orthogonal.

• Size of mesh elements is equal (square mesh).

• Isotropic medium in virtual space.

Under such assumptions, permittivity and permeability in physical space will be simplified as:

• For TE mode of propagation:

– Constant permeability: µr (x, y) = µr.

– Isotropic permittivity computed as ratio of the area of the cells of the transformation grid.

• For TM mode of propagation:

– Constant permittivity: εr (x, y) = εr.

– Isotropic permeability computed as ratio of the area of the cells of the transformation grid.

2.2 Grid Orthogonality Assessment

Since the orthogonality of the transformation grid is the basis for isotropic approximation, it is quantified as

follows. Figure 1 shows a sample grid intersection in the complex plane.

θ
z1

z2

Figure 1. Description of grid orthogonality measure: A sample unit cell of a grid in the complex plane.

Referring to Figure 1, and using Euler’s notation, z1 = |z1| ej[arg(z1)], z2 = |z2| ej[arg(z2)], the internal angle θ

can be computed as

θ = arg (z1)− arg (z2) = arg

(

z1
z2

)

.

The offset from orthogonality χ can then be evaluated as

χ = θ − 90 (29)
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3 Numerical Results

3.1 Edge to Circular Transformation

Goal: Reshaping of conformal array

Test Case Description

A 2D problem is considered and the transformation is described pictorially in Figure 2. Figure 2(a) shows the

virtual array, Figure 2(b) the rectangular intermediate medium while Figure 2(c) shows the setup of the actual

physical array. The main purpose of this test case is to investigate the ability to synthesize metamaterial lenses

capable of transforming a conformal arrays(specifically in the form of a wedge in 2D) into a standard circular

array. The synthesized array is expected to have uniform beam shape when being steered.

In Figure 2, the dimensions a, w, γ and the inter element spacing in the virtual space (d′′) are parameters taken

from design specification (free parameters) and all other dimensions depend on these parameters (a, w, γ and

d′′).
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d′′

x′′a′′

y′′

h′′

l′′
w′′

( a)

t′

l′

h′

x′
w′

y′

(b)

γ
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l

h

y

x

(c)

Figure 2. Description of (a) Virtual object, (b) Intermediate object, and (c) Physical object.
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Simulation Parameters

• Array of Isotropic radiators.

• Number of Array Elements: N = 20.

• Frequency of operation: ν = 600MHz

• Wavelength in free space: λ = 0.5m

Physical Object Parameters:

• Width of transformation region: w = 5λ.

• Length of the edge: a = 5λ.

• Angle of the edge: γ = 900.

Virtual Object Parameters:

• Array of point sources uniformly distributed along a circular contour, symmetric with respect to y′′ axis.

• Radius of the contour of the array: a′′ = a = 5λ.

• Width of transformation region: w′′ = w
sin γ

2

= 5.876λ.

• Element Spacing along the circular contour: d′′ = λ
2 .

• Uniform Amplitude Excitation: I ′n = 1.

• Pattern steered to φ′′

s = 600 with phase excitation defined as[6]:

ϕ′

n =
−2π

λ
a′ × cos (φ′′

s − φ′′

n) . (30)

where φn is the angular position of the nth radiating element.

Transformation Parameters:

• Number of grid lines along x′ − axis: xgrid = 251.

Full wave simulation Parameters:

• Two dimensional problem.

• TE waves.

• Radiation pattern is computed using COMSOL built in far-field evaluation tool.
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RESULTS

There was problem in the transformation. Due to the sharp corner going into the transformation region, part

of the grid was distorted (Figure 3(a)). It is difficult (perhaps impossible) to interprete the distorted grid in

terms of 2D material property distribution. To solve this problem, a fillet was applied at the internal corner

and the distortion was avoided. The radius of the fillet applied is 2% of the edge length (0.02× a = 0.1λ).
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Figure 3. Detail of the internal corner of the physical medium: a) sharp corner and (b) with fillet applied to

the corner.
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RESULTS

Transformation Grid
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Figure 4. Transformation Grids: (a) Virtual space, (b) Intermediate space and (c) Physical space. The

radiating elements are shown by the black dots.

Observations:

• The medium is discretized into: 250× 68.

• Approximate dimension of each cell in intermediate space: λ
10 × λ

10 .
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RESULTS

Grid orthogonality assessment.

(a)

(b)
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Figure 5. Transformation grid orthogonality test: (a),(c) primary transformation, (b),(d) secondary

transformation.

Observations:

• The first transformation is nearly orthogonal, Figure 5(a) and Figure 5(c).

• Large offset from orthogonality is observed for the secondary transformation because of the straight line

edges and sharp corners, Figure 5(b) and Figure 5(d).
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RESULTS

Exact values of permittivity.

ε′′vz = ε′vz = εvz = ε′′zv = ε′zv = εzv = µ′′

vz = µ′

vz = µvz = µ′′

zv = µ′

zv = µzv = 0 where v ∈ {x, y}).

(a) (b)

(c) (d)

(e)
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(f) (g)

(h) (i)

(j)

Figure 6. Components of the permittivity tensor in the (a)-(e) intermediate medium, (f)-(j) physical

medium.
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Observations:

• Since the virtual medium is free space (ε′′r = µ′′

r = 1), the permeability tensor in the intermediate and

physical medium, is the same as that of permittivity, i.e µ′ = ε′, µ = ε.

• In the intermediate medium, the quantities µ′

xy = ε′xy and µ′

yx = ε′yx are near zero whereas µ′

xx = ε′xx and

µ′

yy = ε′yy are near unity except at the edges. As a result, pure Isotropic approximation can be made for

TE waves.

• In the physical medium, however, isotropic approximation is a very strong assumption.
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RESULTS

Isotropic approximation

(a)

(b)

Figure 7. Isotropic permittivity of the (a) intermediate (b) physical medium.

Observations:

• This approximation is valid under the assumption that the grids in virtual space are “nearly” orthogonal.

Looking at Figure 5, this assumption is much better satisfied for the primary transformation.

• Permittivity value bounds:

– 0.4494 ≤ ε′r ≤ 2.4728 in the intermediate space (Figure 7(a)).

– 0.0360 ≤ εr ≤ 1.3486 in the physical space (Figure 7(b)).
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RESULTS

Simulation Results

(a)

(b) (c)

(d) (e)

Figure 8. Normal component of the electric field: (a) Virtual space, (b) Intermediate space with Isotropic

approximation, (c) Physical space with Isotropic approximation, (d) Intermediate space with full Anisotropic

parameters and (e) Physical space with full Anisotropic parameters. The steering angle (φs = 600) is shown

by the broken line.
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Observations:

• There is no significant difference between the isotropic approximation and anisotropic implementations in

the intermediate space (Figures 8(b) and (c). See also Figure 9). This validates the isotropic approxima-

tion.

• The field distribution in intermediate and physical space is not steered to the desired angle. In addition

the field does not resemble a directed/steered radiation.

• A significant amount of refraction is observed at the boundary of the metamaterial lens.
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RESULTS

Comparison of power patterns
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Figure 9. Comparison between normalized power patterns.
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RESULTS

Comparison of power patterns

Several snapshots of the pattern at different steering angles is presented here.
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Figure 10. Plots of normalized power patterns at different steering angles: (a) Virtual array, (b) Intermediate

Medium with Isotropic approximation, (c) Physical Medium with Isotropic approximation, (d) Intermediate

Medium with full Anisotropic configuration, (e) Physical Medium with full Anisotropic configuration

22



Comparison of power patterns: 3dB Beam Width

The 3dB beam width of the the patterns of Figure 9 and Figure 10 for a range of steering angles are reported

here.
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Figure 11. Comparison between normalized power patterns: Plot of beam width at different steering angles.

Observations:

• The beam width of the virtual circular array is uniform around the middle and varies at the ends. This

is because the aperture of the array does not cover the circumference of a complete circle. The array

elements are distributed in a range of 108.860(35.57 ≤ φn ≤ 144.43).
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3.2 Edge to Circular Transformation: Matched Boundary

Goal: Reshaping of conformal array: solve the problem caused by refraction at metamate-

rial boundary

Test Case Description

To investigate the refraction problem observed in the previous results (Figure 8), a modified transformation

is presented here. Refraction will be avoided, if the metamaterial property (permittivity and permeability) is

matched to the exterior region (air) at the interface. To realize such transformation, the transformation grids

have to have the same shape at the interface. Towards this end, the following transformations (Figure 12) are

proposed. The dimensions used in these transformations is the same as the previous test case listed in page 10.

The only exception being the reduction in number of samples along x-axis to 201 (xgrid = 201) because the

size of the metamaterial region is smaller in this case. For the same reason stated in page 11, a fillet is applied

to the internal corner in the physical object; the radius of the fillet in this case is 5% of a(0.05× a = 0.25λ).
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Figure 12. Description of (a) Virtual object, (b) Intermediate object, and (c) Physical object.
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RESULTS

Transformation Grid
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Figure 13. Transformation Grids: (a) Virtual space, (b) Intermediate space and (c) Physical space.
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Observations:

• The medium is discretized into: 200× 58.

• Approximate dimension of each cell in intermediate space: λ
12.5 × λ

12.5 .
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RESULTS

Grid orthogonality assessment.

(a)

(b)
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Figure 14. Transformation grid orthogonality test: (a),(c) primary transformation, (b),(d) secondary

transformation.

Observations:

• Considerable amount of offset from orthogonality is observed at both stages of the transformation.
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RESULTS

Exact values of permittivity.

ε′′vz = ε′vz = εvz = ε′′zv = ε′zv = εzv = µ′′

vz = µ′

vz = µvz = µ′′

zv = µ′

zv = µzv = 0 where v ∈ {x, y}

(a) (b)

(c) (d)

(e)
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(f) (g)

(h) (i)

(j)

Figure 15. Components of the permittivity tensor in the (a)-(e) intermediate medium, (f)-(j) physical

medium.

Observations:

• µ′ = ε′, µ = ε.

• In the physical space, material property is matched at almost all parts of the the boundary. That is,

at the interface of metamaterial and air the following conditions are satisfied: εxx = εyy = εzz = 1,

εxy = εyx = εxz = εzx = εyz = εzy = 0.
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RESULTS

Isotropic approximation

(a)

(b)

Figure 16. Isotropic permittivity of the (a) intermediate (b) physical medium.

Observations:

• Permittivity value bounds:

– 0.3144 ≤ ε′r ≤ 36.45 in the intermediate space (Figure 31(a)).

– 0.0720 ≤ εr ≤ 2.519 in the physical space (Figure 31(b)).
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RESULTS

Simulation Results

(a)

(b) (c)

(d) (e)

Figure 17. Normal component of the electric field: (a) Virtual space, (b) Intermediate space with Isotropic

approximation, (c) Physical space with Isotropic approximation, (d) Intermediate space with full Anisotropic

parameters and (e) Physical space with full Anisotropic parameters. The steering angle (φs = 600) is shown

by the broken line.
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Observations:

• The virtual object is the same as the previous test case without matching. (Figure 8(a) and Figure 17(a)

).

• The field is directed/scanned as desired in intermediate space both for isotropic and anisotropic configu-

ration. (Figures 17(b) and (c)).

• The field distribution in physical space with isotropic approximation is not properly scanned (Figure

17(d)).

• The field distribution in physical space with anisotropic distribution is scanned as desired (Figure 17(e)).

• No significant amount of refraction observed at the boundaries.
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RESULTS

Comparison of power patterns
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Figure 18. Comparison between normalized power patterns.
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RESULTS

Comparison of power patterns

Several snapshots of the pattern at different steering angles is presented here.
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Figure 19. Plots of normalized power patterns at different steering angles: (a) Virtual array, (b) Intermediate

Medium with Isotropic approximation, (c) Physical Medium with Isotropic approximation, (d) Intermediate

Medium with full Anisotropic configuration, (e) Physical Medium with full Anisotropic configuration
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Comparison of power patterns: 3dB Beam Width

The 3dB beam width of the the patterns of Figure 18 and Figure 19 for a range of steering angles are reported

here.

 0

 5

 10

 15

 20

 25

 30

 0  15  30  45  60  75  90  105  120  135  150  165  180

3d
B 

Be
am

 W
id

th
 [d

eg
re

es
]

φs [degrees]

Edge To Circular Transformation
Matched Boundary

Virtual
Intermediate: Isotropic

Intermediate: Anisotropic

Physical: Isotropic
Physical: Anisotropic

Figure 20. Comparison between normalized power patterns: Plot of beam width at different steering angles.

Observations:

• The curve of beam width of physical array with isotropic configuration closely follows the virtual array as

desired.
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