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Abstract. Requirements are conflicting when there exist no system that satisfies
them all. Conflicts often originate from clashing needs of different stakeholders.
Security requirements are no exception to the rule; moreover, their violation leads
to severe consequences, such as privacy infringement, which, in many countries,
implies burdensome monetary sanctions. In large (security) requirements models,
conflicts are hard or impossible to identify manually. In these cases, automated
reasoning is necessary. In this paper, we propose a reasoning framework to detect
conflicting security requirements as well as conflicts between security require-
ments and business policies. Our framework formalises the STS-ml requirements
modelling language for socio-technical systems. These systems consist of mutu-
ally interdependent humans, organisations, and software. In addition to present-
ing the framework, we apply the it to a case study about e-Government, and we
report on promising scalability results of our implementation.
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1 Introduction

Conflicting requirements are requirements that cannot be satisfied at the same time.
Conflicts often occur because requirements come from multiple stakeholders that have
inconsistent needs [15]. Conflicts affect security requirements too [3]: access to some
information may be granted from one stakeholder, but prohibited from another. Also,
security requirements can conflict with business policies: an actor’s policy may specify
to access some information, while no authorised is granted by the information owner.

Coping with such conflicts at requirements-time avoids designing and implement-
ing a non-compliant and hard-to-change system. Unfortunately, security requirements
models are often large, and cannot be effectively analysed manually. Ignoring conflicts
is not an option: non-compliance may result in privacy laws infringements, loss of rep-
utation, and burdensome sanctions. Automated reasoning has been proposed to detect
conflicts between requirements [20,5,4,8,10], and security requirements [21,7].

Conflicting security requirements are critical in Socio-Technical Systems (STSs).
An STS is a purposeful interaction among human, organisational, and technical actors.
Each actor defines its individual policy, and expects others to comply with its secu-
rity requirements. Being specified independently, policies and security requirements
are likely to clash. When a conflict arises, an actor will inevitably violate either its



policy, or the security requirements it is requested to fulfil. Either case threatens the
well-functioning of the STS, which depends on the proper interplay of the actors.

Many security requirements frameworks have been proposed (see [12] for a review).
Since we are interested in STSs, our baseline is the STS-ml [1] security requirements
modelling language for STSs. STS-ml represents an STS as a set of goal-oriented in-
teracting actors, and it supports specifying a variety of security requirements between
those actors. Practical experiences with STS-ml (see [19] and Sec. 2) have empirically
evidenced that the resulting models are large and that they include conflicts that are
difficult to identify manually.

In this paper, we propose a reasoning framework for STS-ml for detecting two fam-
ilies of conflicts: among security requirements, and between business policies and se-
curity requirements. We consider the interplay between different requirements sources:
the business policies of individual actors, their security expectations on other actors,
and the normative requirements in the STS. The contributions of the paper are:

– A formal framework for STS-ml for detecting conflicts by comparing (i) actions
that actors may perform, based on their business policies; and (ii) expectations
about (not) performing actions, based on security requirements;

– An implementation of the formal framework in Datalog (bundled in STS-Tool [14],
the support tool for STS-ml), which shows promising scalability results;

– An experimentation on an industrial case study, which demonstrates the effective-
ness of the reasoning techniques in identifying non-trivial conflicts in large models.

The rest of the paper is organised as follows. Sec. 2 presents our motivating case
study about e-Government. Sec. 3 reviews our baseline: STS-ml. Sec. 4 introduces the
formal framework for STS-ml. Sec. 5 describes the identification of conflicts, while
Sec. 7 evaluates our framework on the case study and presents scalability results. Sec. 8
contrast our approach to related work, while Sec. 9 concludes.

2 Motivating Case Study: tax collection in Trentino

Trentino as a Lab (TasLab)1 is an online collaborative platform to foster ICT innova-
tion in the Trentino province [16]. Its aim is to create a community of research institu-
tions, universities, enterprises and public administration, which collaborate in research-
intensive ICT projects. TasLab provides information on local innovation trends, events,
investment opportunities. It also offers an area where users can match innovation de-
mand (from local government and municipalities) with innovation supply (by enter-
prises and research institutions), and they can collaboratively write project proposals.

We focus on a TasLab collaborative project about tax collection. The innovation de-
mand comes from the Province of Trento (PAT) and the Trentino Tax Agency (Trentino
Riscossioni), which require a system that verifies if correct revenues are gathered from
individual (Citizen) and corporate (Organisation) taxpayers, provides a complete profile
of taxpayers, generates reports, and enables online tax payments.

This is an example of an STS in which multiple actors interact via a technical sys-
tem: citizens and organisations pay taxes online; municipalities (Municipality) furnish

1 http://www.taslab.eu



information about citizens, addresses, and tax payments; Informatica Trentina (InfoTN)
is the system contractor; other IT companies develop specific functionalities (e.g., data
polishing, search modules); Trentino Riscossioni is the end user of the system; and PAT
withholds the land register (information about buildings and lots).

These actors exchange confidential information and interact for processing such
information. Each actor has its own business policy, i.e., goals achieved through pro-
cesses that manipulate information, and expects others to comply with its security re-
quirements, e.g., about integrity and confidentiality. Moreover, normative requirements
apply to all actors. Different types of conflict may arise:

– Business policies can clash with security requirements. For instance, Trentino Ris-
cossioni may authorise Informatica Trentina to use some data, but does not allow
further distribution of such data. If Informatica Trentina’s business policy includes
relying upon an external provider to polish data, a conflict would occur;

– Security requirements can be conflicting. For instance, citizens may not want to
authorise IT companies to access their personal data, while the municipality that
possesses the citizen records may grant such authority;

– Normative requirements may conflict with other requirements. For instance, a lo-
cal norm may prohibit private subjects from matching personal information about
citizens with their tax records. This could create a conflict with the business policy
of the company who polishes data, wherein such information is matched.

3 Baseline: STS-ml

STS-ml [1] is an actor- and goal-oriented security requirements engineering framework.
As such, it includes high-level organisational concepts such as actor, goal, delegation,
etc. Security requirements in STS-ml models are mapped to social commitments [17]—
contracts among actors—that actors in the STS shall comply with at runtime. STS-ml
modelling consists of three complementary views, so that different interactions among
actors can be analysed by working on a specific perspective (view). Fig. 1 shows parts
of the model for our case study (the full model is in Appendix A) .

The social view represents actors as intentional and social entities. Actors are in-
tentional as they have goals they aim to attain, and they are social, for they interact
with others by delegating goals and exchanging (providing) documents. Actors may
possess documents, they may use, modify, or produce documents while achieving their
goals. STS-ml supports two types of actors: agents, to refer to concrete participants, and
roles, to refer to abstract actors (abstracted from agents, used when the actual partici-
pant is unknown). In our example, we represent Informatica Trentina (InfoTN) as agent,
while TN Company Selector is modelled as a role, given that we do not know which
party will take over this responsibility. InfoTN has goal online system built. Goals
are refined through AND/OR-decompositions: online system built is AND-decomposed
into system maintained, search module built and navig module built. InfoTN delegates
search module built to TN Company Selector; it provides the document high quality
data to Trentino Riscossioni.

The information view represents the owners of information, it gives a structured rep-
resentation of actors’ information and documents, and the way they are interconnected.
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Fig. 1: Partial STS-ml model of the tax collection case study

This view helps determining how actors affect information while they manipulate docu-
ments to achieve their goals. Information can be represented by one or more documents
(through the madeTangibleBy relationship), and on the other hand one or more infor-
mation pieces can be part of some document. For instance, location and fiscal code are
information owned by PAT; location is made tangible by residential buildings

The authorisation view shows the authorisations actors grant to others over in-
formation, either because they own it, or because they have been authorised to do
so. In our example, Municipality authorises InfoTN to use information personal info,
residential address, and tax contributions to have system maintained.

Through its three views, STS-ml supports different requirements types:

– Business policies are expressed by specifying actors, their goals, delegations, doc-
ument provisions, and how actors manipulate documents to fulfil goals;

– Interaction (security) requirements are security-related constraints on delegations
and provisions, e.g., non-repudiation, integrity of transmission, or redundancy;

– Authorisation requirements determine which information can be used, how, for
which purpose, and by whom;

– Normative requirements constrain the adoption of roles and the uptake of responsi-
bilities (separation / binding of duties, conflicting / combination of goals).



Together, interaction, authorisation, and normative requirements constitute the se-
curity requirements of STS-ml. The business policies of the actors shall comply with
the security requirements. Security requirements are social relationships where an actor
(requester) wants another actor (responsible) to comply with a requested property.

4 Formal framework

We define the formal framework for STS-ml that enables our automated reasoning tech-
niques, and illustrate it on the model of Fig. 1. We employ the following notation:
atomic variables are strings in italic with a leading capital letter (e.g., G, I); sets are
strings in the calligraphic font for mathematical expressions (e.g., G, I); relation names
are in sans-serif with a leading non-capital letter (e.g., wants, possesses); constants are
in typewriter style with a leading non-capital letter (e.g., and, or). Due to space limita-
tions, we do not define here atomic concepts and relations (e.g., goal, delegation).

Def. 1 (Informational knowledge base). A tuple IKB = 〈I,D, IDR〉, where I is a
set of information elements, D is a set of documents, and IDR is a set of relationships
over information in I and documents in D:

– part-of-i(I1, I2): information I1 is part of information I2;
– part-of-d(D1, D2): document D1 is part of document D2;
– makes-tangible(I,D): document D materializes information I . �

The information view in Fig. 1 includes, e.g., relationships makes- tangible(fiscal code,
Business registry), and part-of-d(ResidentialBuildings, cadastre registry).

Def. 2 (Intentional relationship). A relationship within the scope of an individual ac-
tor A, which, thus, has no social meaning:

– decomposes(A,G, {G1, . . . , Gn},DecT): A decomposes goal G into sub-goals
G1 to Gn, and the decomposition is of type DecT (and or or);

– needs(A,G,D): A uses document D while achieving G;
– modifies(A,G,D): A modifies document D while achieving G;
– produces(A,G,D): A produces document D while achieving G;
– capable-of(A,G): A is capable of achieving leaf-level goal G on its own;
– possesses(A,D): A possesses document D (no other actor provides it to A). �

Def. 3 (Actor model). A tuple AM = 〈A,G, IRL, T 〉 where A is an actor, G is a set
of goals, IRL is a set of intentional relationships over goals in G and documents, and
T is an actor type (role or agent). Additionally, ∀IRL ∈ IRL:

– IRL = decomposes(A′, G,S,DecT)→ A′ = A ∧G ∈ G ∧ S ⊂ G
– IRL = needs/modifies/produces(A′, G,D)→ A′ = A ∧G ∈ G
– IRL = capable-of(A′, G)→ A′ = A ∧G ∈ G �

An actor model defines the business policy of one actor. The social view of Fig. 1 in-
cludes an actor model whereA = InfoTN, G includes online system build, data refined,
and so on, IRL includes decomposes(InfoTN, data complt. ensured, {data refined,
data integrated}, and) and modifies(InfoTN, data refined, tax), and T = agent.



Def. 4 (Social relationship). A relationship that has a social meaning, i.e., it specifies
how one or more actors are related in the STS:

– delegates(A1, A2, G): actor A1 delegates goal G to actor A2;
– provides(A1, A2, D): actor A1 provides document D to actor A2;
– authorises(A1, A2, I,G,OP,TrAuth): actor A1 authorises actor A2 to perform

operations OP on the information in I, in the scope of the goals in G, and allows
(prohibits) A2 to transfer the authorisation to others if TrAuth is true (false);

– plays(Ag1, R2): agent Ag1 plays role R2;
– owns(A1, I2): actor A1 is the legitimate owner of information I2. �

Social relationships are modelled in the social and authorisation views. They define the
social structure among the actors, i.e., relationships with validity in the modelled STS.

Def. 5 (Interaction requirement). A property that an actor requires another to comply
with, related to either a delegates or a provides social relationship between them.
If Del = delegates(A1, A2, G):

– r-not-repudiated-del(A2, A1,Del):A2 requiresA1 not to repudiate the delegation;
– r-not-repudiated-acc(A1, A2,Del): A1 requires A2 not to repudiate the accep-

tance of the delegation Del;
– r-ts-red-ensured(A1, A2, G):A1 requiresA2 to deploy concurrent redundant means

for G (ts-red = true redundancy, single actor);
– r-tm-red-ensured(A1, A2, G):A1 requiresA2 to deploy concurrent redundant means

forG involving at least another actor (tm-red = true redundancy, multiple actors);
– r-fs-red-ensured(A1, A2, G): A1 requires A2 that, if the first strategy for G by A2

fails, A2 will deploy another strategy (fs-red = fallback redundancy, single actor);
– r-fm-red-ensured(A1, A2, G): A1 requires A2 that, if the first strategy for G by A2

(another actor A3) fails, A3 (A2) will deploy another strategy (fm-red = fallback
redundancy, multiple actors);

– r-not-redelegated(A1, A2, G): A1 requires A2 to not redelegate G.

If Prov = provides(A1, A2,Doc), then r-integrity-ensured(A2, A1,Prov) means that
A2 requires A1 that the integrity of Doc is not compromised during its transmission. �

Interaction requirements are security expectations that actors express on social relation-
ships. In Fig. 1, Del1 = delegates(Trentino Riscossioni, InfoTN, data complt. ensured)
has two interaction requirements: r-not-repudiated-acc(Trentino Riscossioni, InfoTN,
Del1) and r-not-redelegated(Trentino Riscossioni, InfoTN, data complt. ensured).

Def. 6 (Normative requirement). A property that the STS—here, intended as legal
context—requires any participating actor A to comply with:

– r-not-played-both(STS, A,R1, R2): A cannot play both roles R1 and R2;
– r-not-pursued-both(STS, A,G1, G2): A cannot pursue both goals G1 and G2;
– r-played-both(STS, A,R1, R2): if A plays role R1 (R2) shall also play R2 (R1);
– r-pursued-both(STS, A,G1, G2): if A pursues goal G1 (G2), A should pursue G2

(G1) too. �

Fig. 1 includes a normative requirement that imposes a combination of duties to any
actor: r-pursued-both(STS, A, semantic search built, enterprise search b.).



Def. 7 (STS-ml model). A tupleM = 〈AM,SR, IKB, IRQ,NRQ〉 whereAM is a
set of actor models, SR is a set of social relationships, IKB is an informational knowl-
edge base, IRQ is a set of interaction requirements, and NRQ is a set of normative
requirements. An STS-ml model is valid iff:

– social relationships are only over actors with models in AM;
– delegations are consistent: ∀delegates(A1, A2, G) ∈ SR → ∃〈A1,G1, IRL1, T1〉,
〈A2,G2, IRL2, T2〉 ∈ AM. G ∈ G1 ∧ G ∈ G2;

– provisions are consistent: ∀provides(A1, A2, D) ∈ SR → ∃〈A1,G, IRL, T 〉 ∈
AM. possesses (D) ∈ IRL ∨ ∃ a consistent provides(A3, A1, D) ∈ SR;

– normative requirements are over roles with models in AM and their goals. �

An STS-ml model is constructed from all the elements in all the views. A valid STS-ml
model obeys to additional constraints. The STS-ml model sketched in Fig. 1 is valid.
Note that STS-Tool does not allow creating invalid STS-ml models.

Def. 8 (Authorisation completion). Let M = 〈AM,SR, IKB, IRQ,NRQ〉 be a
valid STS-ml model. The authorisation completion of SR, denoted as ∆SR, is a super-
set of SR that makes prohibitions explicit. Formally, ∀A1, A2 with an actor model in
AM, ∀owns(A1, I) ∈ SR. @authorises(A3, A2, I,G,OP,TrAuth) ∈ SR ∧ I ∈ I →
authorises(A1, A2, I,GA2

, ∅, false) ∈ ∆SR, where GA2
is the set of goals of A2. �

Def. 8 formalises the intuition that, if an actor A2 has no incoming authorisation for
information I , A2 has a prohibition for I . Such prohibition is an STS-ml authorisation
from the information owner that allows performing no operation and prohibits transfer-
ring authorisations. In Fig. 1, the lack of incoming authorisations to Trentino Riscossioni
for information land details, implies authorises(PAT,Trentino Riscossioni, land details,
G, ∅, false) ∈ ∆SR, where G is the set of goals of Trentino Riscossioni.

Def. 9 (Authorisation requirement). A requirement derived from an authorisation
Auth = authorises(A1, A2, I, G,OP,TrAuth) ∈ ∆SR as follows:

– G 6= ∅ → r-not-ntk-violated(A1, A2, I,G), where ∀I ∈ I, documents that make
I tangible can be used / modified / produced by A2 only for goals in G;

– U /∈ OP → r-not-used(A1, A2, I), r-not-reauthorised(A1, A2, I,G, {U}): A2

cannot use documents that include information in I, or authorise others;
– M /∈ OP → r-not-modified(A1, A2, I), r-not-reauthorised(A1, A2, I,G, {M}):
A2 cannot modify documents that include information in I, or authorise others;

– P /∈ OP → r-not-produced(A1, A2, I), r-not-reauthorised(A1, A2, I,G, {P}):
A2 cannot produce documents that include information in I, or authorise others;

– D /∈ OP → r-not-disclosed(A1, A2, I), r-not-reauthorised(A1, A2, I,G, {D}):
A2 cannot provide to other actors any document that includes information in I, or
authorise others;

– TrAuth = false → r-not-reauthorised(A1, A2, I,G, {U, M, P, D}): A2 cannot
transfer any permission on I and for G to other actors.

We denote the set of authorisation requirements for Auth as ARQAuth, and the set of
authorisation policies for an actor A as AARQA. �



In STS-ml, authorisation requirements are specified implicitly by modelling authorisa-
tions between actors. In Fig. 1, the authorisation from Trentino Riscossioni to InfoTN
implies, for instance, requirements about r-not-ntk-violated (due to the non-empty goal
scope), r-not-used and r-not-disclosed (no authorisation on those operations is granted).

Table 1: Security requirements and their verification against a variant VM . Del =
delegates(A1, A2, G); Prov = provides(A1, A2, D)
Requirement Verification at design-time

Interaction requirements
R1 : r-not-repudiated-del(A2, A1,Del) No
R2 : r-not-repudiated-acc(A1, A2,Del) No
R3 : r-ts-red-ensured(A1, A2, G) Partial. A2 pursues goals in VM that define at
R4 : r-fs-red-ensured(A1, A2, G) least two disjoint ways to support G
R5 : r-tm-red-ensured(A1, A2, G) Partial. Both A2 and another actor A3 support
R6 : r-fm-red-ensured(A1, A2, G) G, each in a different way

R7 : r-not-redelegated(A1, A2, G)
@delegates(A2, A3, G

′) ∈ VM . G′ = G or G′

is a subgoal of G
R8 : r-integrity-ensured(A2, A1,Prov) No

Authorisation requirements

R9 : r-not-ntk-violated(A1, A2, I,G)
@needs/modifies/produces(A2, G,D) ∈ VM .
D makes tangible (part of) I ∈ I and G /∈ G

R10 : r-not-used(A1, A2, I)
@needs(A2, G,D) ∈ VM . D makes tangible
(part of) I ∈ I

R11 : r-not-modified(A1, A2, I)
@modifies(A2, G,D) ∈ VM . D makes tangi-
ble (part of) I ∈ I

R12 : r-not-produced(A1, A2, I)
@produces(A2, G,D) ∈ VM . D makes tangi-
ble (part of) I ∈ I

R13 : r-not-disclosed(A1, A2, I)
@provides(A2, A3, D) ∈ VM . D makes tangi-
ble (part of) I ∈ I

R14 : r-not-reauthorised(A1, A2, I,G,OP)
@authorises(A2, A3, I,G,OP ′) ∈ VM .
OP ′ ⊆ OP

Normative requirements
R15 : r-not-played-both(STS, A,R1, R2) {plays(A,R1), plays(A,R2)} * VM
R16 : r-played-both(STS, A,R1, R2) {plays(A,R1), plays(A,R2)} ⊆ VM

R17 : r-not-pursued-both(STS, A,G1, G2)
A is not the final performer for both G1 and G2

or their subgoals

R18 : r-pursued-both(STS, A,G1, G2)
A is the final performer for both G1 and G2 or
their subgoals

5 Detecting conflicts in security requirements

STS-ml models represent an analyst’s knowledge about an STS. At design-time, the an-
alyst can rely upon such knowledge to analyse the models. While there is no guarantee



that the agents will act as in the model, analysis still helps to identify potential conflicts.
We use the framework of Sec. 4 to detect conflicts among authorisations (Sec. 5.1), and
those between business policies and security requirements (Sec. 5.2). We provide ex-
amples of both types of conflicts obtained from the case study in Sec. 7.1.

5.1 Conflicts among authorisations

Before reasoning on conflicts between business policies and security requirements (in-
teraction, authorisation, and normative requirements), we need to ensure that there are
no conflicts among authorisations, i.e., that the authorisations are consistent. Inconsis-
tent authorisations are ambiguous, as they include concurrent authorisations and prohi-
bitions. Conflict resolution techniques (e.g., [18]) may be used to take a decision.

Def. 10 (Authorisation conflict). Two authorisations Auth1,Auth2 ∈ ∆SR, where Auth1
= authorises(A1, A2, I1, G1,OP1,CT1) and Auth2 = authorises(A3, A2, I2, G2,OP2,
CT2), are conflicting (a-conflict(Auth1,Auth2)) if I1 ∩ I2 6= ∅ and either:

1. G1 6= ∅ ∧ G2 = ∅ , or vice versa; or,
2. G1 ∩ G2 6= ∅, and either (i) OP1 6= OP2, or (ii) CT1 6= CT2. �

An authorisation conflicts occurs if both authorisations apply to the same information,
and either (1) one authorisation restricts the permission to a goal scope, while the other
does not (thus, one implies an r-not-ntk-violated requirement, while the other permits
usage for any purpose); or, (2) the scopes are intersecting, and different permissions are
granted (operations, and authority to transfer the authorisation). An authority-consistent
STS-ml model (Def. 11) is a valid STS-ml model where no authorisation conflicts exist.

Def. 11 (Authority-consistent STS-ml model). A valid STS-ml modelM = 〈AM,SR,
IKB, IRQ,NRQ〉 such that @Auth1,Auth2 ∈ ∆SR. a-conflict(Auth1,Auth2). �

5.2 Conflicts between business policies and security requirements

Given an authorisation-consistent STS-ml model, we verify if any security requirement
is violated by the business policies of the actors. Such conflicts occur if (1) actors do
some action they are required not to do, or (2) actors do not do something they are re-
quired to do. STS-ml models include the necessary information to check these conflicts:

– Intentional or social relationships define the actions an actor can possibly do (its
business policy). For instance, given AM = 〈A,G, IRL, T 〉, if needs(A,G,D) ∈
IRL, then A may possibly execute the action of using the document D to achieve
G. Similarly, delegates(A1, A2, G) implies thatA1 may possibly execute the action
of delegating the fulfillment of G to A2;

– Security requirements imply commitments about (not) performing certain actions.
For instance, r-played-both(STS,A,R1, R2) implies a commitment for A to exe-
cute the actions of playing both R1 and R2, while r-not-modified(A1, A2, I) im-
plies a commitment for A2 to not execute any modifes(A,G,D), where D makes
tangible some I ∈ I.



An STS-ml model does not explicitly specify the exact course of actions that the in-
volved actors carry out to achieve their goals. We introduce the notion of a variant
for an STS-ml model (see Def. 12) to denote a set of actions that the actors carry out
to achieve all their root goals. These actions correspond to intentional relationships
(needs,modifies, produces), social relationships (delegates, provides, authorises), and
the pursues(A,G) action, telling that actor A pursues (intends to achieve) goal G.

Def. 12 (STS-ml variant). Given an authorisation-consistent STS-ml model M =
〈AM,SR, IKB, IRQ,NRQ〉, a variant of M (denoted as VM ) is a set of actions
such that all the actors in M support their root goals. Formally:

1. α 6= pursues(. . .) ∈ VM ↔ α ∈ SR ∨ ∃〈A,G, IRL, T 〉 ∈ AM. α ∈ IRL
2. ∀〈A,G, IRL, T 〉 ∈ AM:

(a) ∀G ∈ G. G is a root goal→ pursues(A,G) ∈ VM
(b) ∀decomposes(G, {G1, . . . , Gn}, and) ∈ IRL ∧ pursues(A,G) ∈ VM →

pursues(A,G1) ∈ VM ∧ . . . ∧ pursues(A,Gn) ∈ VM
(c) ∀decomposes(G,S, or) ∈ IRL ∧ pursues(A,G) ∈ VM → ∃Gi ∈
S. pursues (A,Gi) ∈ VM

(d) ∀G ∈ G. pursues(A,G) ∈ VM :

i. ∀α = delegates(A,A′, G) ∈ SR → {α, pursues(A′, G)} ⊆ VM
ii. ∀α = needs/modifies/produces(A,G,D) ∈ IRL → α ∈ VM

3. ∀α = authorises(A1, A2, I, G,OP,CT) ∈ SR → α ∈ VM
4. ∀α = provides(A1, A2, D) ∈ SR → α ∈ VM �

Every action in the variant that does not refer to pursuing a goal shall appear in the STS-
ml model (clause 1), i.e., the variant refers to that STS-ml model. For each actor model
(clause 2), the actor pursues its root goals in the variant (clause 2(a)). If a pursued
goal is and- (or-) decomposed, all (at least one) subgoals are pursued in the variant
(clauses 2(b-c)). If a goal is pursued, and that goal is delegated to another actor (clause
2(d)i.), the delegation is in the variant and the delegatee pursues the goal in the variant.
Need/produce/modify actions that relate to pursued goals are in the variant too (clause
2(d)ii.). All authorisations and provisions (clauses 3-4) are actions in the variant.

Def. 13 (Bus-Sec conflict). Given a variant VM for an STS-ml model M , there exists
a conflict between business policies and security requirements iff:

– VM contains one or more performed byA2 that are forbidden by some requirement
in IRQ, NRQ, or AARQA2

requested from some A1 to A2;
– VM does not contain one or more actions performed by A2 that are required by

some requirement in IRQ,NRQ, orAARQA2 requested from some A1 to A2.�

The second column of Table 1 describes semi-formally if and how security requirements
can be verified at design-time. Below, we provide some more details.

Security requirements. R1,R2, and R8 are verified at runtime, by checking actions that
are not in STS-ml (e.g., repudiating a delegation). Redundancy requirements (R3 to R6)
can be partially checked. While the existence of redundant alternatives can be verified,



a variant does not tell how alternatives are interleaved, i.e., if they provide true redun-
dancy, fallback, or none. Thus, true redundancy and fallback are checked the same way.
Single-agent redundancy (R3 and R4) is fulfilled if A2 has at least two disjoint alterna-
tives (via or-decompositions) for G. Multi-actor redundancy (R5 and R6) requires that
at least one alternative involves another actor A3. Not-redelegation (R7) is verified if
there is no delegation of G or its subgoals from A2 to other actors in the variant.

Authorisation requirements. These prescribe actions that A2 shall not perform in the
variant. Need-to-know (R9) is verified by the absence of needs, modifes, or produces
actions on documents that make tangible some information in I for some goal G′ that
is not in G or in descendants of some goal in G. Requirements R10 to R12 are verified if
A2 performs no needs, modifies, and produces action on documents that make tangible
part of I ∈ I, respectively. Non-disclosure (R13) does a similar check but looking at
document provisions. Non-reauthorisation (R14) is fulfilled if A2 does not authorise
others to perform any operation in OP on I in the scope of G.

Normative requirements. R15 and R16 require A to avoid playing or to play two roles
through plays actions, respectively. R17 is verified if A is not the final performer2 for
both G1 and G2 or their subgoals. R18 is verified in a similar way, with the main differ-
ence that A has to be the final performer for both goals.

6 Reasoning about conflicts in STS-ml using Datalog

We have implemented our framework using Datalog, and it supports identifying con-
flicting authorisations as well as verifying the violation of security requirements. This
implementation is integrated in STS-Tool, the modelling and analysis support tool for
the socio-technical security modelling language. STS-ml models are drawn through the
tool, to be then translated into Datalog textual files. Rules for the mapping each element
of the model to a Datalog predicate have been specified in order to make the translation
automatic. The DLV reasoner takes in input the generated STS-ml model files together
the Datalog rules specifying the checks performed by the analysis to get the results. The
results are parsed and visualized over the STS-ml models.

In the following we present the Datalog rules for identifying conflicts, together with
the general rules necessary for defining the propagation of properties as well as for
capturing actors’ business requirements.

Listing 1.1 presents the rules for the model’s informational knowledge base, which
define when a given actor possesses a certain document (rules 1-4): an actor possess a
document that is within his model (has-in-scope) (1), it is not producing the document
and no other actor is providing this document to him (2), the actor has a goal that
produces the document and possesses such document being the first actor to create the
document(3), and finally an actor possesses a document if it is provided the document
by some other actor (4). Additionally, the rules specify ownership propagation over
parts of information (rule 5), that is, an actor that owns a given information, owns also
its constituent pieces of information.

2 An actor that pursues a given goal using its capabilities



Listing 1.1: Informational Knowledge Base Rules

1. possesses(A,D) :- has_in_scope(A,D), 0=#count{G: produce(A
,D,G)}, 0=#count{A1: provides(A1,A,D)}.

2. possesses(A,D) :- produces(A,D,G), has(A,G).
3. provided(A1,A2,D) :- possesses(A1,D), provides(A1,A2,D),

A1 != A2.
4. possesses(A2,D) :- provided(_,A2,D).
5. own(A,I1) :- own(A,I), partOfI(I1,I).

Listing 1.2 and 1.3 present the datalog rules for the verification of r-not-redelegated
and r-redundancy-ensured respectively. This check will identify a conflict if there is a
conflict in at least one variant of the considered STS-ml model.

Listing 1.2: Interaction Requirements Verification: No-redelegation

R1 : r-not-redelegated(A1,A2,Del)
1. violate_not_redelegated(A2,A1,G,Gi ) :- delegated(A1,A2,G)

, not_redelegated(A1,A2,G), delegated(A2,_,Gi).
2. not_redelegated(A1,A2,G,Gi) :- not_redelegated(A1,A2,G),

has(A2,G), is_refined(A2,G,Gi).
3. has(A,Gi ) :- has(A, G), and_dec(A,G), is_refined(A,G,Gi).
4. has(A,Gi ) v - has(A, Gi ) :- has(A,G), or_dec(A,G),

is_refined(A,G,Gi).
5. -has(A,Gi) :- or-dec(A,G), 0=#count{Gi :is_refined(A,G,Gi)

,has(A,Gi)}.
6. -has(A,Gi) :- or-dec(A,G),1<#count{Gi :is_refined(A,G,Gi),

has(A,Gi)}.
7. delegated(A1,A2,Gi ) :- has(A1,G), delegates(A1,A2,Gi).
8. has(A2,Gi ) :- delegated(_,A2,Gi).
9. subgoal(Gi,G,A) :- is_refined(A,G,Gi).
10. subgoal(G1,G2,A) :- subgoal(G1,G3,A), subgoal(G3,G2,A).

The verification of redundancy considers goal trees, being them composed of or-
decompositions of and-decompositions, to be pursued by the actor. This means that only
one variant is generated, since we cannot verify redundancy in case only one alternative
is selected to accomplish the desired goal.

Listing 1.3: Interaction Requirements Verification: Redundancy

R2 : r-s-red-ensured(A1,A2,G)
1. violate_s_red(A2,A1,G) :- delegated(A1,A2,G),

s_red_ensured(A1,A2,G), 1>=#count{Gi:or_dec(A2,G),
is_refined(A2,G,Gi).

2. violate_s_red(A2,A1,G) :- delegated(A1,A2,G),
s_red_ensured(A1,A2,G), or_dec(A,G), is_refined(A,G,Gi),
delegated(A2,_,Gi).

3. has(A,Gi ) :- has(A,G), and_dec(A,G), is_refined(A,G,Gi).
4. has(A, Gi ) :- has(A, G), or_dec(A, G), is_refined(A, G,

Gi ).



5. delegated(A1,A2,Gi ) :- has(A1,G), delegates(A1,A2,Gi).
6. has(A2,Gi ) :- delegated(_,A2,Gi).
7. subgoal(Gi,G,A) :- is_refined(A,G,Gi).
8. subgoal(G1,G2,A) :- subgoal(G1,G3,A), subgoal(G3,G2,A).

R3 : r-m-red-ensured(A1,A2,G)
1. violate_m_red(A2,A1,G) :- delegated(A1,A2,G),m_red_ensured

(A1,A2,G), 1>=#count{Gi:or_dec(A2,G),is_refined(A2,G,Gi).
2. violate_m_red(A2,A1,G) :- delegated(A1,A2,G),m_red_ensured

(A1,A2,G), 0=#count{A3:delegated(A2,A3,Gi),subgoal(Gi,G,
A2).

3. has(A,Gi) :- has(A,G), and_dec(A,G), is_refined(A,G,Gi).
4. has(A,Gi) :- has(A,G), or_dec(A,G), is_refined(A,G,Gi).
5. delegated(A1,A2,Gi) :- has(A1,G), delegates(A1,A2,Gi).
6. has(A2,Gi) :- delegated(_,A2,Gi).
7. subgoal(Gi,G,A) :- is_refined(A,G,Gi).
8. subgoal(G1,G2,A) :- subgoal(G1,G3,A), subgoal(G3,G2,A).

Listing 1.4 introduces the authorisation rules, which are necessary to capure the
transfer of authorisations from actor to actor. The owner of an information has full
authority over the information (rules 1 and 2); whenever an actor authorises another
to perform operations over information for the scope of some goal, it authorises the
actor to perform operations over information while achieving subgoals of the authorised
goals (rule 3), similarly for parts of information (rule 4); whenever a given authorisation
is granted the predicate hasAuthority keeps track of an actor’s authority to perform
operations over a given information, in the scope of some goal, having the authority to
transfer authoirsations or not (rule 5). Rules 6 to 13 define when an actor could use,
modify, produce or distribute a given information as well as keep track of the authority
the actor has to use, modify, produce or distribute. The authorisation scope limiting an
authorisation to a goal scope defines for which goals the actor has authority to perform
operations on the granted information. Rule 15 instead defines the goals that are outside
an authorisation’s scope. These rules lay the ground for the verification of authorisation
requirements.

Rules 16 to 26 define the authority an actor has as authorised by an illegible ac-
tor, for each authorised operation the authorisee is granted to perform that operation
(similarly for the transfer of authorisations), and for each operation that is not granted
the authorisation for that operation is not passed. Making explicit these rules facilitates
capturing conflicts among authorisations.

Listing 1.4: Authorisation Rules

1. hasAuthority(A,1,1,1,1,I,G,1) :- own(A,I), has(A,G).
2. hasAuthority(A,1,1,1,1,I,all_goals,1) :- own(A,I), 0=#

count{G: has(A,G)}.
3. authorise(A1,A2,I,G1,U,M,P,Di,T) :- authorise(A1,A2,I,G,U,

M,P,Di,T), subgoal(G1,G,A2).
4. authorise(A1,A2,I1,G,U,M,P,Di,T) :- authorise(A1,A2,I,G,U,

M,P,Di,T), partOfI(I1,I).



5. hasAuthority(A2,U,M,P,Di,I,G,T):- authorise(A1,A2,I,G,U,M,
P,Di,T).

6. can_use(A,I,D,G) :- has(A,G), need(A,D,G), madeTangibleBy(
I,D).

7. has_authority_to_use(A,I) :- hasAuthority(A,1,_,_,_,I,_,_)
.

8. can_modify(A,I,D,G) :- has(A,G), modify(A,D,G),
madeTangibleBy(I,D).

9. has_authority_to_modify(A,I) :- hasAuthority(A,_,1,_,_,I,_
,_).

10. can_produce(A,I,D,G):- has(A,G), produce(A,D,G),
madeTangibleBy(I,D).

11. has_authority_to_produce(A,I) :- hasAuthority(A,_,_,1,_,I
,_,_).

12. can_distribute(A,I,D):- provides(A,_,D), madeTangibleBy(I
,D).

13. has_authority_to_distribute(A,I) :- hasAuthority(A,_,_,_
,1,I,_,_).

14. scope_g(A,I,G) :- hasAuthority(A,_,_,_,_,I,G,_).
15. -scope_g(A,I,G) :- hasAuthority(A,_,_,_,_,I,G1,_), has(A,

G), has(A,G1), G != G1, 0=#count{G2: hasAuthority(A,_,_,_
,_,I,G2,_), G2 = G}.

16. -has_authority_to_authorise(A,I) :- hasAuthority(A,_,_,_,
_,I,_,0).

17. authorise_usage(A1,A2,I) :- authorise(A1,A2,I,_,1,_,_,_,_
).

18. -authorise_usage(A1,A2,I) :- authorise(A1,A2,I,_,0,_,_,_,
_).

19. authorise_modification(A1,A2,I) :- authorise(A1,A2,I,_,_
,1,_,_,_).

20. -authorise_modification(A1,A2,I) :- authorise(A1,A2,I,_,_
,0,_,_,_).

21. authorise_production(A1,A2,I) :- authorise(A1,A2,I,_,_,_
,1,_,_).

22. -authorise_production(A1,A2,I) :- authorise(A1,A2,I,_,_,_
,0,_,_).

23. authorise_distribution(A1,A2,I) :- authorise(A1,A2,I,_,_,
_,_,1,_).

24. -authorise_distribution(A1,A2,I) :- authorise(A1,A2,I,_,_
,_,_,0,_).

25. authorise_transferibility(A1,A2,I) :- authorise(A1,A2,I,_
,_,_,_,_,1).

26. -authorise_transferibility(A1,A2,I) :- authorise(A1,A2,I,
_,_,_,_,_,0).



Listing 1.5 defines the rules for identifying authorisation conflicts. For all actors,
the incoming authorisations are considered and for every pair an authorisation con-
flict is detected whenever one of the authorisations grants performing an operation
(authorise-usage, authorise-modification, authorise-production, and authorise-
distribution, or grants the authority to further transfer authorisations through authorise-
transferibility, whereas the other authorisation forbids either performing the operations
or transfering authorisations.

Listing 1.5: Authorisation Conflicts Verification

1. authorisation_conflict(A2,I) :- authorise_usage(A1,A2,I),
-authorise_usage(A3,A2,I).

2. authorisation_conflict(A2,I) :- authorise_modification(A1,
A2,I), -authorise_modification(A3,A2,I).

3. authorisation_conflict(A2,I) :- authorise_production(A1,A2
,I), -authorise_production(A3,A2,I).

4. authorisation_conflict(A2,I) :- authorise_distribution(A1,
A2,I), -authorise_distribution(A3,A2,I).

5. authorisation_conflict(A2,I) :- authorise_transferibility(
A1,A2,I), -authorise_transferibility(A3,A2,I).

After detecting authorisation conflicts, the analysis verifies if there are any conflicts
among business requirements and authorisation requirements. Listing 1.6 presents the
rules for identifying these conflicts, grouping them by requirement. All the violations
are propagated through the information structure (following the part of relationships).

Listing 1.6: Authorisation Requirements Verification

Need to know: r-not-ntk-violated(A1,A2,I,G)
1. violate_ntk(A2,I,G) :- -scope_g(A2,I,G), used(A2,I,G),

not violate_non_usage(A2,I,G).
2. violate_ntk(A2,I,G) :- -scope_g(A2,I,G), modified(A2,I,G),

not violate_non_modification(A2,I,G).
3. violate_ntk(A2,I,G) :- -scope_g(A2,I,G), produced(A2,I,G),

not violate_non_production(A2,I,G).
4. violate_ntk(A2,I1,G) :- violate_ntk(A2,I,G), partOfI(I1,I)

.
5. violate_ntk(A2,I,G) :- violate_ntk(A2,I1,G), partOfI(I1,I)

.

Non usage: r-not-used(A1,A2,I)
1. violate_non_usage(A2,I,G) :- not has_authority_to_use(A2,I

), used(A2,I,G).
2. used(A2,I,G) :- possess(A2,D), can_use(A2,I,D,G).
3. violate_non_usage(A2,I1,G) :- violate_non_usage(A2,I,G),

partOfI(I1,I).
4. violate_non_usage(A2,I,G) :- violate_non_usage(A2,I1,G),

partOfI(I1,I).



Non modification: r-not-modified(A1,A2,I)
1. violate_non_modification(A2,I,G) :- not

has_authority_to_modify(A2,I), modified(A2,I,G).
2. modified(A2,I,G) :- possess(A2,D), can_modify(A2,I,D,G).
3. violate_non_modification(A2,I1,G) :-

violate_non_modification(A2,I,G), partOfI(I1,I).
4. violate_non_modification(A2,I,G) :-

violate_non_modification(A2,I1,G), partOfI(I1,I).

Non production: r-not-produced(A1,A2,I)
1. violate_non_production(A2,I,G) :- not

has_authority_to_produce(A2,I), produced(A2,I,G).
2. produced(A2,I,G) :- can_produce(A2,I,D,G).
3. violate_non_production(A2,I1,G) :- violate_non_production(

A2,I,G), partOfI(I1,I).
4. violate_non_production(A2,I,G) :- violate_non_production(

A2,I1,G), partOfI(I1,I).

Non disclosure: r-not-disclosed(A1,A2,I)
1. violate_non_disclosure(A2,I,D) :- not

has_authority_to_distribute(A2,I), distributed(A2,I,D).
2. distributed(A2,I,D) :- possess(A2,D), can_distribute(A2,I,

D).
3. violate_non_disclosure(A2,I1,G) :- violate_non_disclosure(

A2,I,G), partOfI(I1,I).
4. violate_non_disclosure(A2,I,G) :- violate_non_disclosure(

A2,I1,G), partOfI(I1,I).

Listing 1.7 on the other hand, enumerates the rules for identifying all actors which
violate their authorities, while reauthorising other actors: (1) without having the right to
tranfer authorisations; (2) authorising others on operations they do not have themselves.

Listing 1.7: Unauthorised Reauthorisations

Authority violation: r-not-reauthorised(A1,A2,I,G,OP)
1. violate_del_of_authority(A1,A2,I) :- -

has_authority_to_authorise(A1,I), authorise_usage(A1,A2,I
).

2. violate_del_of_authority(A1,A2,I) :- -
has_authority_to_authorise(A1,I), authorise_modification(
A1,A2,I).

3. violate_del_of_authority(A1,A2,I) :- -
has_authority_to_authorise(A1,I), authorise_production(A1
,A2,I).

4. violate_del_of_authority(A1,A2,I) :- -
has_authority_to_authorise(A1,I), authorise_distribution(
A1,A2,I).

5. unauth_del_of_usage(A1,A2,I) :- not has_authority_to_use(
A1,I), authorise_usage(A1,A2,I), not
violate_del_of_authority(A1,A2,I).



6. unauth_del_of_mod(A1,A2,I) :- not has_authority_to_modify(
A1,I), authorise_modification(A1,A2,I), not
violate_del_of_authority(A1,A2,I).

7. unauth_del_of_prod(A1,A2,I) :- not
has_authority_to_produce(A1,I), authorise_production(A1,
A2,I), not violate_del_of_authority(A1,A2,I).

8. unauth_del_of_distr(A1,A2,I) :- not
has_authority_to_distribute(A1,I), authorise_distribution
(A1,A2,I), not violate_del_of_authority(A1,A2,I).

As far as organisational constraints are concerned, security analysis verifies whether
the specification of r-not-played-both, rmbox−played-both, r-not-pursued-both, and
r-pursued-both brings up conflicts with the actors business requirements. The analy-
sis defines a final performer actor, and propagates the normative requirements over an
actor’s model and over social relationships it has with others, to identity conflicts.

Listing 1.8: Normative Requirements Verification

Role based separation of duty
1. - played(A,R2) :- sod_role(R1,R2), played(A,R1), role(R1),

role(R2), R1!= R2.
2. - played(A,R1) :- sod_role(R1,R2), played(A,R2), role(R1),

role(R2), R1!= R2.
3. violate_sod_role(A,R1,R2) :- sod_role(R1,R2), played(A,R1)

, played(A,R2).

Goal rules
1. has(A,Gi) :- has(A,G), and_dec(A,G), is_refined(A,G,Gi).
2. has(A,Gi) :- has(A,G), or_dec(A,G), is_refined(A,G,Gi).
3. delegated(A1,A2,Gi) :- has(A1,G), delegates(A1,A2,Gi).
4. has(A2,Gi) :- delegated(_,A2,Gi).
5. subgoal(Gi,G,A) :- is_refined(A,G,Gi).
6. subgoal(G1,G2,A) :- subgoal(G1,G3,A), subgoal(G3,G2,A).

7. finalPerformer(R,G) :- has(R,G), 0=#count{R1: can_delegate
(R,R1,G)}.

8. finalPerformer(R,G) :- has(R,G), can_delegate(R,R1,G), not
delegated(R,R1,G).

Separation of duty: r-not-played-both(STS,A,R1,R2)
1. violate_sod_goal(A,R1,G1,R2,G2) :- sod_goal(G1,G2),

finalPerformer(R1,G1), finalPerformer(R2,G2), play(A,R1),
play(A,R2).

2. violate_sod_goal(R,R,G1,R,G2) :- sod_goal(G1,G2),
finalPerformer(R,G1), finalPerformer(R,G2), 0=#count{A:
play(A,R)}.

3. violate_sod_goal(A,A,G1,R,G2) :- sod_goal(G1,G2),
finalPerformer(A,G1), finalPerformer(R,G2), agent(A),
role(R), play(A,R).



4. sod_goal(Ga,G2) :- sod_goal(G1,G2), or_dec(R,G1),
isRefined(R,G1,Ga), finalPerformer(R,Ga).

5. sod_goal(G1,Ga) :- sod_goal(G1,G2), or_dec(R,G2),
isRefined(R,G2,Ga), finalPerformer(R,Ga).

Binding of duty: r-played-both(STS,A,R1,R2)
1. violate_cod_goal(A,R1,G1,R2,G2) :- cod_goal(G1,G2),

finalPerformer(R1,G1), finalPerformer(R2,G2), agent(A),
role(R1), role(R2), play(A,R2), not play(A,R1).

2. violate_cod_goal(A,R1,G1,R2,G2) :- cod_goal(G1,G2),
finalPerformer(R1,G1), finalPerformer(R2,G2), agent(A),
role(R1), role(R2) ,play(A,R1), not play(A,R2).

3. violate_cod_goal(R1,R1,G1,R2,G2) :- cod_goal(G1,G2),
finalPerformer(R1,G1), finalPerformer(R2,G2), 0=#count{A:
agent(A)}.

4. violate_cod_goal(R1,R1,G1,R2,G2) :- cod_goal(G1,G2),
finalPerformer(R1,G1), finalPerformer(R2,G2), agent(A),
not play(A,R1), not play(A,R2).

5. violate_cod_goal(A,A,G1,R,G2) :- cod_goal(G1,G2),
finalPerformer(A,G1), finalPerformer(R,G2), agent(A),
role(R), not play(A,R).

6. cod_goal(Ga,G2) :- cod_goal(G1,G2), or_dec(R,G1),
isRefined(R,G1,Ga), finalPerformer(R,Ga).

7. cod_goal(G1,Ga) :- cod_goal(G1,G2), or_dec(R,G2),
isRefined(R,G2,Ga), finalPerformer(R,Ga).

7 Evaluation

We evaluate our framework in two ways. One, we show its effectiveness in identifying
conflicts by applying it to the case study about tax collection (Sec 7.1). Two, we assess
its efficiency by reporting on scalability experiments with large models (Sec 7.2).

7.1 Findings from the case study

We first modelled the case study using STS-Tool (Fig. 1). Then, we used the tool’s
automated reasoning capabilities—based on a disjunctive datalog solver—to identify
authorisation conflicts. The analysis returned a number of conflicts that we had not
identified during the modelling, among which:

– Authority to produce: Trentino Riscossioni authorises InfoTN to produce informa-
tion personal info, residential address and tax contributions to obtain refined data,
whereas Municipality requires this information is only used, and not produced.

– Authority to modify: InfoTN grants Okkam Srl the authority to modify informa-
tion personal info to obtain interconnected data, whereas TN Company Selector
requires no document representing this information is modified.

These conflicts exist due to the different authorisation policies we elicited from the
stakeholders. These conflicts, which went unnoticed at modelling time, became evident



after performing the reasoning. One possible strategy to resolve them is to consider the
need for authorisation for the authorised party, and negotiate the necessary rights with
the authorising parties. This way, the first conflict would be solved by negotiating with
the Municipality. The second conflict, instead, can be fixed by informing InfoTN to
revoke the authorisation, given that Okkam Srl does not need it (from the social view).

After fixing authorisation conflicts, we used the tool’s capabilities to identify Bus-
Sec conflicts. This activity provided us with further useful insights:

– r-not-redelegated: TN Company Selector relies on Okkam Srl to build a seman-
tic search module (delegation of semantic search built). However, while relying on
TN Company Selector, InfoTN wants this company to build the search modules,
requiring it not to redelegate goal semantic search built. This interaction require-
ment is in conflict with the business policy about delegating semantic search built.

– r-not-modified: Engineering Tribute Srl makes an unauthorised modification of Ci-
tizen’s personal info, violating the authorisation requirement r-not-modified spec-
ified by Citizen and passed on by TN Company Selector.

– r-not-produced: Citizen makes an unauthorised production of addresses, for this
information is owned by the Municipality and no authorisation is granted to Citizen.

– r-not-reauthorised: Citizen wants only the Municipality to use and produce his
personal info and does not allow transfer of authority, however the Municipality
further authorises InfoTN to use this information.

– r-pursued-both: goals semantic search built and enterprise search b. should be pur-
sued by the same actor, since a r-pursued-both normative requirement is specified
between these goals. A conflict occurs because TN Company Selector is not the
final performer for both goals (semantic search built is delegated to Okkam Srl).
The Bus-Sec conflicts that we identified mainly originate from the different policies

of the companies in the province. Resolving these conflicts necessarily requires trade-
off analysis [3], by comparing the importance of business policies for the stakeholders
and the impact of relaxing the security requirements. Notice that relaxation is often not
an option, especially if a requirement derives from norms in the legal context.

7.2 Scalability study

We performed a scalability study to assess the effectiveness of our automated reason-
ing, and to determine how well it would scale up to large models. To such extent, we
investigate how the execution time is affected by the model size.

Design of experiments. We take the model in Fig. 1 as a basic building block, and
clone it to obtain larger models. We increase the size of a model in two ways: first, we
augment the number of elements (nodes and relationships) in the model; second, we
increase the number of variants in the model. The latter is motivated by our reasoning
techniques, which rely upon the generation of STS-ml model variants (Def. 12).

To obtain bigger models, we (1) create an identical copy (clone) of the given model;
(2) add a fictitious leaf goal to a randomly chosen actor; (3) delegate this goal to the
clone of the chosen actor; and (4) decompose the delegated goal in the cloned actor
model into the root goal of his existing goal model and another fictitious goal. This
process increases the number of variants, for the initial model contains variability.



We run tests on models with zero, medium and high variability, by customising the
decomposition types in the original model. For each model, we run the analysis 7 times,
discard the fastest and slowest executions, and compute the average execution time.

Fig. 2: Scalability analysis: increasing the number of elements (a) and variants (b)

Results. We have conducted experiments on a DELL Optiplex 780 machine, Pen-
tium(R) Dual-Core CPU E5500 2.80GHz, 4Gb DDR3 399, powered by Windows 7.
Fig. 2 summarises the results of our scalability experiments. Below, we detail the re-
sults and draw conclusions for the two scalability dimensions we have considered:

– Number of elements [Fig. 2(a)]: we present results for all the conflict types we can
detect, i.e., authorisation conflicts, and violation of interaction, authorisation, and
normative requirements. As noticeable by the plot, all techniques scale very well
(linear growth). Furthermore, the tool is able to reason about extra-large models
(>6000 elements) in about twelve seconds.

– Number of variants [Fig. 2(b)]: this dimension affects execution time the most. We
show only violations of authorisation and interaction requirements; the other checks
do not increase the number of variants. While the growth is still linear in the number
of variants, it is exponential in the number of elements (the model with 1,048,576
variants consists of 2,500 elements). The reason why medium variability tests seem
to have longer execution times than high is that, for a given number of variants, a



medium variability model contains twice the elements in a high variability model.
Notice that the tool deals with dozens of thousands of variants in less than a minute.

The results are very promising, especially considering the fact that the size of real world
scenarios is smaller than the extra-large models we produced with our cloning strategy.

8 Related work

We review related work about identifying conflicting requirements, reasoning about
security requirements, and methodologies for security requirements engineering.

Conflicts between requirements. The importance of identifying conflicting re-
quirements is well-known by practitioners and has been widely acknowledged by the
research community [20,5]. Several formal frameworks have been proposed, especially
in goal-oriented requirements engineering.

Giorgini et al. [8] use SAT solvers to analyse the satisfaction or denial of goals in
goal models. They propose both qualitative and quantitative analysis techniques that
determine evidence of goal satisfaction/denial by using label propagation algorithms.
Conflicts are identified when propagation implies both positive and negative evidence.
Their approach inspired further research. Horkoff and Yu [10] deal with conflicts in
an interactive fashion, i.e., the analyst has to resolve conflicting sources of partial or
conflicting evidence. Fuxman et al. [5] translate i* models to Formal Tropos, and use
first-order linear-time temporal logic to identify scenarios with conflicts. KAOS [20]
includes analysis techniques to identify and resolve inconsistencies that arise from the
elicitation of requirements from multiple stakeholders with different viewpoints.

Our framework takes an interaction-oriented stance to conflict identification, by
checking business policies against security requirements on social relationships, as op-
posed to reasoning on a single goal model. An interesting research line is to integrate
those frameworks to detect inconsistencies among individual business policies.
Reasoning about security requirements. SI* [6] is a security requirements engineer-
ing framework that relies upon organisational concepts. It builds on i* [22] and adds
security-related concepts, among which delegation and trust of execution or permis-
sion. SI* uses automated reasoning to check security properties of a model, reasoning
on the interplay between execution and permission of trust and delegation relationships.
Our framework supports a wider set of security requirements (featuring sophisticated
authorisations), and clearly separates security requirements from business policies.

De Landtsheer and van Lamsweerde [2] model confidentiality claims in terms of
specification patterns, representing properties that unauthorised agents should not know.
Their reasoning identifies violations of confidentiality claims in terms of counterexam-
ple scenarios present in requirements models. Diagnosis algorithms are used to generate
the unauthorised agents reasoning to infer knowledge that is claimed to be confidential.
While their approach represents confidentiality claims in terms of high-level goals, ours
represents authorisation requirements as social relationships, and we identify violations
by looking at the business policies of the actors.
Security requirements methodologies. These approaches provide methodological guid-
ance to identify possible conflicts, as opposed to exploiting automated reasoning tech-
niques. Secure Tropos [13] models security concerns throughout the whole develop-



ment process. The framework expresses security requirements as security constraints,
considers potential threats and attacks, and provides methodological steps to validate
these requirements and overcome vulnerabilities.

Liu et al. [11] extend i* to deal with security and privacy requirements. Their
methodology defines security and privacy-specific analysis mechanisms to identify po-
tential attackers, derive threats and vulnerabilities, thereby suggesting countermeasures.

Haley et al. [9] propose a framework to determine adequate security requirements
by constructing the context of the system, defining security requirements as constraints
over functional requirements, and developing a structure of satisfaction arguments to
verify the correctness of security requirements. This approach focuses mainly on system
requirements, while ours is centred on the interaction among actors.

9 Conclusions

We have proposed a formal framework to detect conflicts in security requirements. Our
framework formalises STS-ml [1], a security requirements modelling language for STS.
The formal framework defines the semantics of the modelling language as well as that
of the security requirements it can express (interaction security requirements, authori-
sation requirements, and normative requirements).

Based on such framework, we have shown how to detect two types of conflicts:
(i) among authorisation requirements; and (ii) between business policies and security
requirements. We have illustrated the effectiveness of our conflict identification tech-
niques on an industrial case study, and we have reported on a scalability study that
shows the efficiency of our framework even with very large models.

Additionally, the formal framework constitutes a theoretical foundation for extend-
ing the language, as well as to develop further analysis techniques. Our future work
includes: (1) devising further reasoning techniques to identify inconsistencies among
security requirements (so far, we identify inconsistencies only among authorisation re-
quirements); and (2) exploring possible ways to resolve conflicts and inconsistencies.
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A Multi-view modelling of TasLab Case Study

We provide the complete model for the scenario extracted from the tax collection case
study. We represent here the different views as modelled in STS-Tool for this case
study. Fig. 3 represents the complete social view, which represents all the involved ac-
tors together with their interactions and captures the complete list of elicited interaction
(security) needs; Fig. 4 represents the complete information view, capturing the infor-
mational content of the documents actors have and possess, as modelled in the social
view. Finally, Fig. 5 shows all the authorisations passed from actor to actor in this case
study.
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