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Abstract

Fourth order curvature driven interface evolution equations frequently appear in the natural sciences. Often axisym-

metric geometries are of interest, and in this situation numerical computations are much more efficient. We will

introduce and analyze several new finite element schemes for fourth order geometric evolution equations in an ax-

isymmetric setting, and for selected schemes we will show existence, uniqueness and stability results. The presented

schemes have very good mesh and stability properties, as will be demonstrated by several numerical examples.
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1. Introduction

The motion of interfaces driven by a law for the normal velocity, which involves the surface Laplacian of curvature

quantities, plays an important role in many applications. The resulting differential equations are parabolic and of

fourth order. Prominent examples are the surface diffusion flow, which models phase changes due to diffusion along

an interface, see [39, 16]. In this evolution law the normal velocity of the interface is given by the surface Laplacian

of the mean curvature.

Typical membrane energies involve the curvature of the membrane. In the simplest models the Willmore func-

tional, which is just the integrated squared mean curvature, is an appropriate energy, see [46]. Recently, in particular,

biomembranes have been the focus of research and in this case more complex energies, like the Canham-Helfrich

energy, are of interest, see [17, 33, 42] for details. Taking the L2–gradient flow of such an energy also leads to a fourth

order geometric evolution equation involving the surface Laplacian of the mean curvature and cubic nonlinearities in

the curvature, see [43, 36]. In the case of biological membranes also more complex laws, taking volume and surface

constraints or a coupling to fluid flow into account, are of relevance, see [5, 9] and the references therein.

In this paper we introduce new numerical schemes for axisymmetric versions of these flows. This is a very relevant

issue as in many situations axisymmetric shapes appear and reducing the computations to a spatially one-dimensional

problem greatly reduces the computational complexity. Schemes for the axisymmetric problem also have the benefit

that mesh degeneracies, which for other schemes frequently happen during the evolution, can be avoided. We will

also introduce schemes which make use of the tangential degrees of freedom in order to obtain good mesh properties.

Some of these schemes even have the property that mesh points equidistribute during the evolution.

We now specify the interface evolution laws studied in this paper in more detail. Let (S(t))t≥0 ⊂ R3 be a family

of smooth, oriented hypersurfaces, which we later assume to be axisymmetric. The mean curvature flow for S(t) is

given by the evolution law

VS = km on S(t) , (1.1)
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and it is the L2–gradient flow for for the surface area. Here VS denotes the normal velocity of S(t) in the direction

of the normal ~nS. Moreover, km is the mean curvature of S(t), i.e. the sum of the principal curvatures of S(t). For the

methods derived in this paper the identity

∆S ~id = km ~nS on S(t) (1.2)

will be crucial, where ∆S is the Laplace–Beltrami operator on S(t) and ~id denotes the identity function in R3. A

derivation of the identity (1.2) can be found in e.g. [24]. In this paper we will consider fourth order analogues of the

second order geometric evolution equation (1.1).

The surface diffusion flow for S(t) is given by the evolution law

VS = −∆S km on S(t) . (1.3)

This law was introduced by Mullins, [39], in order to describe thermal grooving and this evolution law also has

important applications in epitaxial growth, see e.g. [32, 1].

A flow combining surface diffusion and surface attachment limited kinetics introduced in [16], and analyzed in

[29], is given by

VS = −∆S
(

1

α
− 1

ξ
∆S

)−1

km on S(t) , (1.4)

where α, ξ ∈ R>0 are given parameters. This flow can be written as

VS = −∆S y ,

(
−1

ξ
∆S +

1

α

)
y = km on S(t) , (1.5)

and in the limit of fast attachment kinetics ξ → ∞ and α = 1, we recover surface diffusion, (1.3). In the limit of fast

surface diffusion α→ ∞ and ξ = 1 we recover conserved mean curvature flow,

VS = km −
∫
S km dH2

∫
S 1 dH2

on S(t) ,

with H2 being the surface measure. A discussion of these limits can be found in [45]. Hence, for general values α,

ξ ∈ R>0, the intermediate flow (1.4) interpolates between surface diffusion and conserved mean curvature flow, see

e.g. [29] and [4, p. 4282] for more details.

We now define the generalized Willmore energy of the surface S(t) as

1
2

∫

S(t)

(km − κ)2 dH2 , (1.6)

where κ ∈ R is a given constant, the so-called spontaneous curvature. On S(t), Willmore flow, i.e. the L2–gradient

flow for (1.6), is given by

VS = −∆S km − (km − κ) |∇S ~nS|2 + 1
2

(km − κ)2 km = −∆S km + 2 (km − κ) kg − 1
2

(k2
m − κ2) km on S(t) . (1.7)

Here ∇S ~nS is the Weingarten map and kg is the Gaussian curvature of S(t), i.e. it is the product of the two principal

curvatures. We also consider Helfrich flow, which is the volume and surface area preserving variant of (1.7).

In this paper, we consider the case that S(t) is an axisymmetric surface, that is rotationally symmetric with respect

to the x2–axis. We further assume that S(t) is made up of a single connected component, with or without boundary.

Clearly, in the latter case the boundary ∂S(t) of S(t) consists of either one or two circles that each lie within a

hyperplane that is parallel to the x1 − x3–plane. For the evolving family of surfaces we allow for the following types

of boundary conditions. A boundary circle may assumed to be fixed, it may be allowed to move vertically along

the boundary of a fixed infinite cylinder that is aligned with the axis of rotation, or it may be allowed to expand and

shrink within a hyperplane that is parallel to the x1 − x3–plane. Depending on the postulated free energy, certain angle

conditions will arise where S(t) meets the external boundary. If the free energy is just surface area, H2(S(t)), then a
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Figure 1: Sketch of Γ and S, as well as the unit vectors ~e1, ~e2 and ~e3 .

90◦ degree contact angle condition arises. We refer to Section 2 below for further details, in particular with regard to

more general contact angles.

Numerical analysis of geometric evolution equations has been an active field in the last thirty years and we refer

to [24] for an overview. Approaches using parametric finite element methods have heavily relied on ideas of Gerd

Dziuk, who first used a weak formulation of (1.2) in order to compute the mean curvature, see [26, 27]. The present

authors have used the tangential degrees of freedom to improve the mesh quality during the evolution of discretized

curvature flows, see [2, 3, 4, 5]. There has been interest in numerical schemes for axisymmetric schemes for geometric

evolution equations both for second and for fourth order flows, see [41, 40, 14, 19, 20, 23, 25, 44, 47]. However, the

literature on numerical analysis of such schemes is sparse. For exceptions we refer to [23, 25] in the context of

graph formulations for surface diffusion and Willmore flow, respectively. Axisymmetric versions of geometric flows

have also been treated analytically and questions regarding stability and singularity formation have been studied, see

[34, 28, 13, 18, 35]. We also refer to [21, 22], who discuss the relation between the axisymmetric Willmore flow and

the elastic flow in hyperbolic space.

The structure of this work is as follows. In Section 2 we introduce weak formulations for fourth order axisymmetric

geometric flows, which all involve a splitting into two second order equations. The weak formulations are essential

for the discretization with the help of piecewise linear, continuous finite elements. Spatially discretized semidiscrete

schemes, based on these weak formulations, are introduced in Section 3. Fully discrete schemes are introduced in

Section 4 and for some of the schemes existence, uniqueness and stability results are shown. Finally, in Section 5

numerical results for surface diffusion, for the intermediate law (1.4), for Willmore flow and for Helfrich flow are

presented. The results demonstrate the stability and good mesh properties discussed in the preceding sections and the

ideas presented in this paper hence have the potential to work also for more complex dynamics like the evolution of

biomembranes in flows, see e.g. the setting in [9].

2. Weak formulations

Let R/Z be the periodic interval [0, 1], and set

I = R/Z , with ∂I = ∅ , or I = (0, 1) , with ∂I = {0, 1} .

We consider the axisymmetric situation, where ~x(t) : I → R2 is a parameterization of Γ(t). Throughout Γ(t) represents

the generating curve of a surface S(t) that is axisymmetric with respect to the x2–axis, see Figure 1. In particular, on

defining
~Π3

3(r, z, θ) = (r cos θ, z, r sin θ)T for r ∈ R≥0 , z ∈ R , θ ∈ [0, 2 π]

and

Π3
2(r, z) = {~Π3

3(r, z, θ) : θ ∈ [0, 2 π)} ,
3



we have that

S(t) =
⋃

(r,z)T∈Γ(t)
Π3

2(r, z) =
⋃

ρ∈I

Π3
2(~x(ρ, t)) . (2.1)

Here we allow Γ(t) to be either a closed curve, parameterized over R/Z, which corresponds to S(t) being a genus-1

surface without boundary. Or Γ(t) may be an open curve, parameterized over [0, 1]. Then Γ(t) has two endpoints, and

each endpoint can either correspond to an interior point of S(t), or to a boundary circle of S(t). Endpoints of Γ(t)

that correspond to an interior point of the surface S(t) are attached to the x2–axis, on which they can freely move up

and down. For example, if both endpoints of Γ(t) are attached to the x2–axis, then S(t) is a genus-0 surface without

boundary. If only one end of Γ(t) is attached to the x2–axis, then S(t) is an open surface with boundary, where the

boundary consists of a single connected component. If no endpoint of Γ(t) is attached to the x2–axis, then S(t) is an

open surface with boundary, where the boundary consists of two connected components.

In particular, we always assume that, for all t ∈ [0, T ],

~x(ρ, t) . ~e1 > 0 ∀ ρ ∈ I \ ∂0I , (2.2a)

~x(ρ, t) . ~e1 = 0 ∀ ρ ∈ ∂0I , (2.2b)

~xt(ρ, t) . ~ei = 0 ∀ ρ ∈ ∂iI , i = 1, 2 , (2.2c)

~xt(ρ, t) = ~0 ∀ ρ ∈ ∂DI , (2.2d)

where ∂DI ∪⋃2
i=0 ∂iI = ∂I is a disjoint partitioning of ∂I, with ∂0I denoting the subset of boundary points of I that

correspond to endpoints of Γ(t) attached to the x2–axis. Moreover, ∂DI ∪ ⋃2
i=1 ∂iI denotes the subset of boundary

points of I that model components of the boundary of S(t). Here endpoints in ∂DI correspond to fixed boundary

circles of S(t), that lie within a hyperplane parallel to the x1 − x3–plane R × {0} × R. Endpoints in ∂1I correspond to

boundary circles of S(t) that can move freely along the boundary of an infinite cylinder that is aligned with the axis

of rotation. Endpoints in ∂2I correspond to boundary circles of S(t) that can expand/shrink freely within a hyperplane

parallel to the x1 − x3–plane R × {0} × R. See Table 1 for a visualization of the different types of boundary nodes.

On assuming that

|~xρ| ≥ c0 > 0 ∀ ρ ∈ I , (2.3)

we introduce the arclength s of the curve, i.e. ∂s = |~xρ|−1 ∂ρ, and set

~τ(ρ, t) = ~xs(ρ, t) =
~xρ(ρ, t)

|~xρ(ρ, t)|
and ~ν(ρ, t) = −[~τ(ρ, t)]⊥, (2.4)

where (·)⊥ denotes a clockwise rotation by π
2
.

On recalling (2.1), we observe that the normal ~nS on S(t) is given by

~nS(~Π3
3(~x(ρ, t), θ)) = ~νS(ρ, θ, t) =


(~ν(ρ, t) . ~e1) cos θ

~ν(ρ, t) . ~e2

(~ν(ρ, t) . ~e1) sin θ

 for ρ ∈ I , θ ∈ [0, 2 π) (2.5)

and t ∈ [0, T ]. Similarly, the normal velocityVS of S(t) in the direction ~nS is given by

VS = ~xt(ρ, t) . ~ν(ρ, t) on Π3
2(~x(ρ, t)) ⊂ S(t) , ∀ ρ ∈ I , t ∈ [0, T ] .

For the curvature κ of Γ(t) it holds that

κ ~ν = ~κ = ~τs =
1

|~xρ|

[
~xρ

|~xρ|

]

ρ

. (2.6)

An important role in this paper is played by the surface area of the surface S(t), which is equal to

H2(S(t)) = A(~x(t)) = 2 π

∫

I

~x(ρ, t) . ~e1 |~xρ(ρ, t)| dρ . (2.7)
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Table 1: The different types of boundary nodes enforced by (2.2b)–(2.2d).

∂I ∂Γ ∂S

∂0I
~e1

~e2

N/A

∂DI
~e1

~e2

∂1I
~e1

~e2

∂2I
~e1

~e2

5



Often the surface area, A(~x(t)), will play the role of the free energy in our paper. But for an open surface S(t), with

boundary ∂S(t), we consider contact energy contributions which are discussed in [31], see also [6, (2.21)]. In the

axisymmetric setting the relevant energy is given by

E(~x(t)) = A(~x(t)) + 2 π
∑

p∈∂1I

̺̂(p)

∂S (~x(p, t) . ~e1) ~x(p, t) . ~e2 + π
∑

p∈∂2I

̺̂(p)

∂S (~x(p, t) . ~e1)2 , (2.8)

where we recall from (2.2c) that, for i = 1, 2, either ∂iI = ∅, {0}, {1} or {0, 1}. In the above ̺̂(p)

∂S ∈ R, for p ∈ {0, 1}, are

given constants. Here ̺̂(p)

∂S , for p ∈ ∂1I, denotes the change in contact energy density in the direction of −~e2, that the

two phases separated by the interface S(t) have with the infinite cylinder at the boundary circle of S(t) represented by

~x(p, t). Similarly, ̺̂(p)

∂S , for p ∈ ∂2I, denotes the change in contact energy density in the direction of −~e1, that the two

phases separated by the interface S(t) have with the hyperplane R × {0}R at the boundary circle of S(t) represented

by ~x(p, t). These changes in contact energy lead to the contact angle conditions

(−1)p ~τ(p, t) . ~e2 = ̺̂(p)

∂S p ∈ ∂1I , (2.9a)

(−1)p ~τ(p, t) . ~e1 = ̺̂(p)

∂S p ∈ ∂2I , (2.9b)

for all t ∈ (0, T ]. In most cases, the contact energies are assumed to be the same, so that ̺̂(0)

∂S = ̺̂(1)

∂S = 0, which leads to

90◦ contact angle conditions in (2.9), and means that (2.8) collapses to (2.7). See [6] for more details on contact angles

and contact energies. We note that a necessary condition to admit a solution to (2.9a) or to (2.9b) is that |̺̂(p)

∂S | ≤ 1, but

we do allow for more general values in (2.8). In addition, we observe that the energy (2.8) is not bounded from below

if ̺̂(p)

∂S , 0 for p ∈ ∂1I or if ̺̂(p)

∂S < 0 for p ∈ ∂2I.

For later use we note that

d

dt
E(~x(t)) = 2 π

∫

I

[
~xt . ~e1 + ~x . ~e1

(~xt)ρ . ~xρ

|~xρ|2

]
|~xρ| dρ + 2 π

∑

p∈∂1I

̺̂(p)

∂S
[
(~xt(p, t) . ~e1) ~x(p, t) . ~e2 + (~x(p, t) . ~e1) ~xt(p, t) . ~e2

]

+ 2 π
∑

p∈∂2 I

̺̂(p)

∂S (~x(p, t) . ~e1) ~xt(p, t) . ~e1 . (2.10)

Moreover, we recall that expressions for the mean curvature and the Gaussian curvature of S(t) are given by

κS = κ − ~ν .~e1

~x . ~e1

and KS = −κ
~ν .~e1

~x . ~e1

on I , (2.11)

respectively; see e.g. [20, (6)]. More precisely, if km and kg denote the mean and Gaussian curvatures of S(t), then

km = κS(ρ, t) and kg = KS(ρ, t) on Π3
2(~x(ρ, t)) ⊂ S(t) , ∀ ρ ∈ I , t ∈ [0, T ] . (2.12)

In the literature, the two terms making up κS in (2.11) are often referred to as in-plane and azimuthal curvatures,

respectively, with their sum being equal to the mean curvature. We note that combining (2.11) and (2.6) yields that

κS ~ν = κ ~ν − ~ν .~e1

~x . ~e1

~ν =
1

|~xρ|

[
~xρ

|~xρ|

]

ρ

− ~ν .~e1

~x . ~e1

~ν , (2.13)

see also (B.4) in Appendix Appendix B. It follows from (2.13) that

(~x . ~e1)κS ~ν = (~x . ~e1)~τs + (~τ .~e1)~τ − ~e1 = [(~x . ~e1)~τ]s − ~e1 = [(~x . ~e1) ~xs]s − ~e1 . (2.14)

A weak formulation of (2.14) will form the basis of our stable approximations for surface diffusion, (1.3), and the

intermediate flow (1.4). Clearly, for a smooth surface with bounded mean curvature it follows from (2.13) that

~ν(ρ, t) . ~e1 = 0 ∀ ρ ∈ ∂0I , ∀ t ∈ [0, T ] , (2.15)

which is clearly equivalent to

~xρ(ρ, t) . ~e2 = 0 ∀ ρ ∈ ∂0I , ∀ t ∈ [0, T ] . (2.16)

A precise derivation of (2.16) in the context of a weak formulation of (2.13) can be found in [12, Appendix A].

We observe that it follows from (2.15) and (2.6) that

lim
ρ→ρ0

~ν(ρ, t) . ~e1

~x(ρ, t) . ~e1

= lim
ρ→ρ0

~νρ(ρ, t) . ~e1

~xρ(ρ, t) . ~e1

= ~νs(ρ0, t) . ~τ(ρ0, t) = −κ(ρ0, t) ∀ ρ0 ∈ ∂0I , ∀ t ∈ [0, T ] . (2.17)
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2.1. Surface diffusion

On recalling (B.3) from Appendix Appendix B, we note that in the axisymmetric parameterization of S(t), the

flow (1.3) can be written as

(~x . ~e1) ~xt . ~ν = −
[
~x . ~e1 [κS]s

]
s on I , (2.18)

with, on recalling (2.2b)–(2.2d),

~xt(ρ, t) . ~e1 = 0 ∀ ρ ∈ ∂0I , ~xt(ρ, t) . ~ei = 0 ∀ ρ ∈ ∂iI , i = 1, 2 , ~xt(ρ, t) = ~0 ∀ ρ ∈ ∂DI , ∀ t ∈ [0, T ] ,

(2.19)

as well as (2.16), (2.9) and

(κS)ρ(ρ, t) =

(
κ − ~ν .~e1

~x . ~e1

)

ρ

(ρ, t) = 0 ∀ ρ ∈ ∂I , ∀ t ∈ (0, T ] . (2.20)

Here (2.20) for ρ ∈ ∂0I ensures that the radially symmetric function km, recall (2.12), on S(t) induced by κS(t) is

differentiable. For ρ ∈ ∂1I ∪ ∂2I ∪ ∂DI the condition (2.20) can be interpreted as a no-flux condition. We remark that

(2.18) agrees with [41, (2)].

Let V
∂0
= {~η ∈ [H1(I)]2 : ~η(ρ) . ~e1 = 0 ∀ ρ ∈ ∂0I} and V

∂
= {V

∂0
: ~η(ρ) . ~ei = 0 ∀ ρ ∈ ∂iI , i = 1, 2, ~η(ρ) =

~0 ∀ ρ ∈ ∂DI}. Then we consider the following weak formulation of (2.18) and (2.6), on recalling (2.11).

(E): Let ~x(0) ∈ V∂0
. For t ∈ (0, T ] find ~x(t) ∈ [H1(I)]2, with ~xt(t) ∈ V∂, and κ(t) ∈ H1(I) such that

∫

I

(~x . ~e1) ~xt . ~ν χ |~xρ| dρ =
∫

I

~x . ~e1

(
κ − ~ν .~e1

~x . ~e1

)

ρ

χρ |~xρ|−1 dρ ∀ χ ∈ H1(I) , (2.21a)

∫

I

κ ~ν . ~η |~xρ| dρ +
∫

I

(~xρ . ~ηρ) |~xρ|−1 dρ = −
2∑

i=1

∑

p∈∂iI

̺̂(p)

∂S ~η(p) . ~e3−i ∀ ~η ∈ V∂ . (2.21b)

We note that (2.21b) weakly imposes (2.16) and (2.9), while it is immediately clear that (2.21a) weakly imposes (2.20)

on ∂I \ ∂0I. The degenerate weight ~x . ~e1 on the right hand side in (2.21a) means that it is not obvious that (2.21a)

weakly imposes (2.20) on ∂0I. Hence we rigorously derive in Appendix Appendix A that (2.21a) does indeed weakly

impose (2.20) on ∂0I.

Let L3 denote the Lebesgue measure in R3. Then choosing χ = 2 π in (2.21a) yields

± d

dt
L3(Ω(t)) =

∫

S(t)

VS dH2 = 2 π

∫

I

(~x . ~e1) ~xt . ~ν |~xρ| dρ = 0 , (2.22)

where S(t) = ∂Ω(t), and where the sign in (2.22) depends on whether ~nS is the outer or inner normal to Ω(t) on S(t),

recall (2.5). Moreover, choosing χ = κ − ~ν .~e1

~x . ~e1
in (2.21a) and ~η = ~xt in (2.21b) yields, on recalling (2.10) and (2.2a),

that

1

2 π

d

dt
E(~x(t)) = −

∫

I

~x . ~e1

∣∣∣∣∣∣

[
κ − ~ν .~e1

~x . ~e1

]

ρ

∣∣∣∣∣∣
2

|~xρ|−1 dρ ≤ 0 . (2.23)

It does not appear possible to mimic the proof of (2.23) on the discrete level. Hence we also introduce the following

alternative formulation for surface diffusion, which treats the mean curvature κS(t) of S(t) as an unknown.

(F ): Let ~x(0) ∈ V∂0
. For t ∈ (0, T ] find ~x(t) ∈ [H1(I)]2, with ~xt(t) ∈ V∂, and κS(t) ∈ H1(I) such that

∫

I

(~x . ~e1) ~xt . ~ν χ |~xρ| dρ =
∫

I

~x . ~e1 (κS)ρ χρ |~xρ|−1 dρ ∀ χ ∈ H1(I) , (2.24a)

∫

I

~x . ~e1 κS ~ν . ~η |~xρ| dρ +
∫

I

[
~η .~e1 + ~x . ~e1

~xρ . ~ηρ

|~xρ|2

]
|~xρ| dρ = −

2∑

i=1

∑

p∈∂iI

̺̂(p)

∂S (~x(p, t) . ~e1)~η(p) . ~e3−i ∀ ~η ∈ V
∂
.

(2.24b)

We note that (2.24b) weakly imposes (2.16) and (2.9), while (2.24a) weakly imposes (2.20), recall (2.11), where for

the case ∂0I , ∅ we refer to Appendix Appendix A.
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Choosing χ = 2 π in (2.24a) yields (2.22), as before. Moreover, choosing χ = κS in (2.24a) and ~η = ~xt in (2.24b)

yields, on recalling (2.10), that

1

2 π

d

dt
E(~x(t)) = −

∫

I

~x . ~e1 |(κS)ρ|2 |~xρ|−1 dρ ≤ 0 . (2.25)

In contrast to (2.23), it will be possible to mimic the proof of (2.25) on the discrete level.

2.2. Intermediate evolution law

In the axisymmetric parameterization of S(t), the flow (1.5) can be written, similarly to (2.18), as

(~x . ~e1) ~xt . ~ν = −
[
~x . ~e1 ys

]
s , − 1

ξ
[~x . ~e1 ys]s +

1
α
~x . ~e1 y = x . ~e1 κS on I , (2.26)

with (2.19), as well as (2.16), (2.9) and

yρ(ρ, t) = 0 ∀ ρ ∈ ∂I , ∀ t ∈ (0, T ] . (2.27)

It is straightforward to adapt the formulations (E) and (F ) to (2.26). For example, generalizing (F ) to (2.26)

yields the following weak formulation.

(I): Let ~x(0) ∈ V
∂0

. For t ∈ (0, T ] find ~x(t) ∈ [H1(I)]2, with ~xt(t) ∈ V
∂
, and (y(t),κS(t)) ∈ [H1(I)]2 such that

∫

I

(~x . ~e1) ~xt . ~ν χ |~xρ| dρ =
∫

I

~x . ~e1 yρ χρ |~xρ|−1 dρ ∀ χ ∈ H1(I) , (2.28a)

1

ξ

∫

I

~x . ~e1 yρ ζρ |~xρ|−1 dρ +

∫

I

~x . ~e1

[
α−1 y − κS

]
ζ |~xρ| dρ = 0 ∀ ζ ∈ H1(I) , (2.28b)

∫

I

~x . ~e1 κS ~ν . ~η |~xρ| dρ +
∫

I

[
~η .~e1 + ~x . ~e1

~xρ . ~ηρ

|~xρ|2

]
|~xρ| dρ = −

2∑

i=1

∑

p∈∂iI

̺̂(p)

∂S (~x(p, t) . ~e1)~η(p) . ~e3−i ∀ ~η ∈ V∂ .

(2.28c)

The weak formulation of (2.26) corresponding to (E) is given by (2.28a), (2.21b) and (2.28b) with κS replaced by the

expression in (2.11). We note that (2.28c) weakly imposes (2.16) and (2.9), while (2.28a) and (2.28b) weakly impose

(2.27), where for the case ∂0I , ∅ we refer once again to Appendix Appendix A.

Choosing χ = 2 π in (2.28a) yields (2.22), as before. Moreover, choosing χ = α
ξ
κS in (2.28a), ζ = ακS − ys in

(2.28b) and ~η = α
ξ
~xt in (2.28c) yields, similarly to (2.25), that

α

ξ

1

2 π

d

dt
E(~x(t)) = −α

ξ

∫

I

~x . ~e1 yρ (κS)ρ |~xρ|−1 dρ = −1

ξ

∫

I

~x . ~e1 |yρ|2 |~xρ|−1 dρ − α
∫

I

~x . ~e1 |κS − 1
α

y|2 |~xρ| dρ ≤ 0 .

(2.29)

2.3. Willmore flow

It holds that the Willmore energy of the surface S(t), recall (1.6), can be written as

W(~x(t)) = 1
2

∫

S(t)

(km − κ)2 dH2 = π

∫

I

~x . ~e1 (κS − κ)2 |~xρ| dρ ,

see also [20, (6),(7)]. Noting once more (B.3) from Appendix Appendix B, a strong formulation for the flow (1.7) on

I is given by

(~x . ~e1) ~xt . ~ν = −
[
~x . ~e1 [κS]s

]
s + 2 ~x . ~e1 [κS − κ]KS − 1

2
~x . ~e1

(
κ2
S − κ

2
)
κS on I , (2.30)

with (2.16), (2.20) and ~xt(ρ, t) . ~e1 = 0 for ρ ∈ ∂0I = ∂I, t ∈ [0, T ]. Here we stress that for Willmore flow we always

assume that ∂0I = ∂I. That is because it does not appear possible to model Willmore flow for open surfaces in the

weak formulation (2.31), below. The reason is that the relevant boundary conditions, i.e. clamped, Navier, semi-free or
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free, see e.g. [10, p. 1706], that would need to be enforced for ~xt, cannot be enforced through this weak formulation in

the open curve case. Instead, techniques as in [10] are needed here, and we will consider the details in the forthcoming

paper [11].

Then we consider the following weak formulation of (2.30) and (2.6), on recalling (2.11).

(W): Let ~x(0) ∈ V
∂0

. For t ∈ (0, T ] find ~x(t) ∈ [H1(I)]2, with ~xt(t) ∈ V
∂
, and κ(t) ∈ H1(I) such that

∫

I

(~x . ~e1) ~xt . ~ν χ |~xρ| dρ =
∫

I

~x . ~e1

[
κ − ~ν .~e1

~x . ~e1

]

ρ

χρ |~xρ|−1 dρ − 2

∫

I

[
κ − ~ν .~e1

~x . ~e1

− κ
]
κ ~ν .~e1 χ |~xρ| dρ

− 1
2

∫

I

~x . ~e1


[
κ − ~ν .~e1

~x . ~e1

]2

− κ2


[
κ − ~ν .~e1

~x . ~e1

]
χ |~xρ| dρ ∀ χ ∈ H1(I) , (2.31a)

∫

I

κ ~ν . ~η |~xρ| dρ +
∫

I

~xρ . ~ηρ |~xρ|−1 dρ = 0 ∀ ~η ∈ V∂ . (2.31b)

We note that the two last terms on the right hand side of (2.31a) give no contribution at the boundary ∂I = ∂0I, since

~ν .~e1 = ~x . ~e1 = 0 there. We also note that (2.31b) weakly imposes (2.16). Similarly to (2.21a), we note that (2.31a)

weakly imposes (2.20), see [12, Appendix A] for details in the case ρ ∈ ∂0I.

We note that in contrast to surface diffusion, a weak formulation for Willmore flow based on κS , i.e. (2.24b), has

no benefits over the presented formulation (2.31). Due to the presence of Gaussian curvature, recall (1.7) and (2.11), a

weak formulation based on (2.24b) would still involve the singular fraction ~ν .~e1

~x . ~e1
, since ~x . ~e1KS = −(κS +

~ν .~e1

~x . ~e1
)~ν .~e1.

Moreover, and in contrast to a formulation with (2.31b), discretizations based on such a formulation would exhibit

tangential motion of vertices that does not lead to equidistribution, and which for linear fully discrete schemes may

lead to a breakdown of the scheme.

2.3.1. Helfrich flow

Helfrich flow is given as the surface area and volume preserving variant of (1.7). Its strong formulation can be

written as

VS = −∆S km + 2 (km − κ) kg − 1
2

(k2
m − κ2) km + λA km + λV on S(t) , (2.32)

where (λA(t), λV (t))T ∈ R2 are chosen such that

H2(S(t)) = H2(S(0)) , L3(Ω(t)) = L3(Ω(0)) . (2.33)

On writing (2.31a) as

∫

I

(~x . ~e1) ~xt . ~ν χ |~xρ| dρ −
∫

I

~x . ~e1

[
κ − ~ν .~e1

~x . ~e1

]

ρ

χρ |~xρ|−1 dρ =

∫

I

f χ |~xρ| dρ

a weak formulation of Helfrich flow is given as follows.

(WA,V): Let ~x(0) ∈ V
∂0

. For t ∈ (0, T ] find ~x(t) ∈ [H1(I)]2, with ~xt(t) ∈ V
∂
, and κ(t) ∈ H1(I) such that

∫

I

(~x . ~e1) ~xt . ~ν χ |~xρ| dρ −
∫

I

~x . ~e1

[
κ − ~ν .~e1

~x . ~e1

]

ρ

χρ |~xρ|−1 dρ

=

∫

I

f χ |~xρ| dρ + λA

∫

I

~x . ~e1

[
κ − ~ν .~e1

~x . ~e1

]
χ |~xρ| dρ + λV

∫

I

~x . ~e1 χ |~xρ| dρ ∀ χ ∈ H1(I) (2.34)

and (2.31b) hold, with (λA(t), λV (t))T ∈ R2 chosen such that (2.33) hold.

3. Semidiscrete schemes

Let [0, 1] = ∪J
j=1

I j, J ≥ 3, be a decomposition of [0, 1] into intervals given by the nodes q j, I j = [q j−1, q j]. For

simplicity, and without loss of generality, we assume that the subintervals form an equipartitioning of [0, 1], i.e. that

q j = j h , with h = J−1 , j = 0, . . . , J . (3.1)
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Clearly, if I = R/Z we identify 0 = q0 = qJ = 1.

The necessary finite element spaces are defined as follows: Vh = {χ ∈ C(I) : χ |I j
is linear ∀ j = 1 → J} and

Vh = [Vh]2, Vh
∂0
= Vh∩V∂0

, Vh
∂ = Vh∩V∂. We also define Wh = Vh, Wh

∂0
= {χ ∈ Vh : χ(ρ) = 0 ∀ ρ ∈ ∂0I}, Wh = Vh,

Wh
∂0
= [Wh

∂0
]2. Let {χ j}Jj= j0

denote the standard basis of Vh, where j0 = 0 if I = (0, 1) and j0 = 1 if I = R/Z. For later

use, we let πh : C(I)→ Vh be the standard interpolation operator at the nodes {q j}Jj=0
.

Let (·, ·) denote the L2–inner product on I, and define the mass lumped L2–inner product ( f , g)h, for two piecewise

continuous functions, with possible jumps at the nodes {q j}Jj=1
, via

( f , g)h = 1
2

J∑

j=1

h j

[
( f g)(q−j ) + ( f g)(q+j−1)

]
, (3.2)

where we define f (q±
j
) = lim

δց0
f (q j ± δ). The definition (3.2) naturally extends to vector valued functions.

Let (~Xh(t))t∈[0,T ], with ~Xh(t) ∈ Vh
∂0

, be an approximation to (~x(t))t∈[0,T ] and define Γh(t) = ~Xh(t)(I). Throughout this

section we assume that
~Xh(ρ, t) . ~e1 > 0 ∀ ρ ∈ I \ ∂0I , ∀ t ∈ [0, T ] .

Assuming that |~Xh
ρ | > 0 almost everywhere on I, and similarly to (2.4), we set

~τh = ~Xh
s =

~Xh
ρ

|~Xh
ρ |

and ~νh = −(~τh)⊥ . (3.3)

For later use, we let ~ωh ∈ Vh be the mass-lumped L2–projection of ~νh onto Vh, i.e.

(
~ωh, ~ϕ |~Xh

ρ |
)h
=

(
~νh, ~ϕ |~Xh

ρ |
)
=

(
~νh, ~ϕ |~Xh

ρ |
)h ∀ ~ϕ ∈ Vh . (3.4)

Recall that

A(~Zh) = 2 π
(
~Zh . ~e1, |~Zh

ρ |
)
~Zh ∈ Vh

∂0
(3.5)

and

E(~Xh(t)) = A(~Xh(t)) + 2 π
∑

p∈∂1I

̺̂(p)

∂S (~Xh(p, t) . ~e1) ~Xh(p, t) . ~e2 + π
∑

p∈∂2I

̺̂(p)

∂S (~Xh(p, t) . ~e1)2 . (3.6)

We have, similarly to (2.10), that

d

dt
E(~Xh(t)) = 2 π



~X
h
t . ~e1 + ~X

h . ~e1

(~Xh
t )ρ . ~X

h
ρ

|~Xh
ρ |2

 , |~X
h
ρ |


+ 2 π
∑

p∈∂1I

̺̂(p)

∂S

[
(~Xh

t (p, t) . ~e1) ~Xh(p, t) . ~e2 + (~Xh(p, t) . ~e1) ~Xh
t (p, t) . ~e2

]

+ 2 π
∑

p∈∂2I

̺̂(p)

∂S (~Xh(p, t) . ~e1) ~Xh
t (p, t) . ~e1 . (3.7)

In view of the degeneracy on the right hand side of (2.13), and on recalling (2.17) and (3.4), we introduce, given

a κh(t) ∈ Vh, the function Kh(κh(t), t) ∈ Vh such that

[Kh(κh(t), t)](q j) =



~ωh(q j, t) . ~e1

~Xh(q j, t) . ~e1

q j ∈ I \ ∂0I ,

−κh(q j, t) q j ∈ ∂0I .

(3.8)
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3.1. Surface diffusion

Our semidiscrete finite element approximation of (E), (2.21), is given as follows.

(Eh)(h): Let ~Xh(0) ∈ Vh
∂0

. For t ∈ (0, T ] find ~Xh(t) ∈ Vh, with ~Xh
t (t) ∈ Vh

∂
, and κh(t) ∈ Vh such that

(
(~Xh . ~e1) ~Xh

t , χ~ν
h |~Xh

ρ |
)(h)
=

(
~Xh . ~e1

[
κh − Kh(κh)

]
ρ
, χρ |~Xh

ρ |−1
)

∀ χ ∈ Vh , (3.9a)

(
κh ~νh, ~η |~Xh

ρ |
)(h)
+

(
~Xh
ρ , ~ηρ |~Xh

ρ |−1
)
= −

2∑

i=1

∑

p∈∂iI

̺̂(p)

∂S ~η(p) . ~e3−i ∀ ~η ∈ Vh
∂
. (3.9b)

Here, and throughout, we use the notation ·(h) to denote an expression with or without the superscript h. I.e. the scheme

(Eh)h employs mass lumping on some terms, recall (3.2), while the scheme (Eh) employs true integration throughout.

We stress that the side condition (3.9b), for (Eh)h, leads to an equidistribution property; see Remark 3.1 below.

For later use we observe that

L3(Ωh(t)) = 2 π

∫

Ah(t)

~id . ~e1 dL2 = π

∫

Ah(t)

∇ .
[
(~id . ~e1)2 ~e1

]
dL2

= π

∫

Γh(t)

(~id . ~e1)2 ~νh . ~e1 dH1 = π

∫

I

(~Xh . ~e1)2 ~νh . ~e1 |~Xh
ρ | dρ , (3.10)

where Ah(t) ⊂ R2 denotes the domain enclosed by Γh(t) = ~Xh(I), and where ~νh(t) denotes the outer normal to Ah(t)

on ∂Ah(t) = Γh(t). Of course, Ωh(t) ⊂ R3 denotes the domain that is enclosed by the three-dimensional axisymmetric

surface Sh(t) that is generated by the curve Γh(t), i.e. Sh(t) = ∂Ωh(t). Moreover, on recalling (2.22), we note that

d

dt
L3(Ωh(t)) =

∫

Sh(t)

Vh
Sh dH2 = 2 π

(
~Xh . ~e1, ~X

h
t . ~ν

h |~Xh
ρ |
)
, (3.11)

whereVh
Sh (t) denotes the normal velocity of Sh(t) in the direction of ~νhSh (t), the outer normal to Ωh(t) on Sh(t).

Choosing χ = 1 in (3.9a) yields that (
~Xh . ~e1, ~X

h
t . ~ν

h |~Xh
ρ |
)(h)
= 0 . (3.12)

Comparing (3.11) and (3.12), we observe that due to mass lumping being employed in (3.9a) for (Eh)h, it is not

possible to prove exact volume conservation for (Eh)h. On the other hand, for the semidiscrete scheme (Eh) we obtain

exact volume preservation. We note that in practice the fully discrete variants of both (Eh)h and (Eh), for reasonable

meshes, have excellent volume conserving properties.

Our semidiscrete finite element approximation of (F ), (2.24), is given as follows.

(Fh)(h): Let ~Xh(0) ∈ Vh
∂0

. For t ∈ (0, T ] find ~Xh(t) ∈ Vh, with ~Xh
t (t) ∈ Vh

∂
, and κhS(t) ∈ Vh such that

(
(~Xh . ~e1) ~Xh

t , χ~ν
h |~Xh

ρ |
)(h)
=

(
~Xh . ~e1

[
κhS

]
ρ
, χρ |~Xh

ρ |−1
)

∀ χ ∈ Vh , (3.13a)

(
~Xh . ~e1 κ

h
S ~ν

h, ~η |~Xh
ρ |
)(h)
+

(
~η .~e1, |~Xh

ρ |
)
+

(
(~Xh . ~e1) ~Xh

ρ , ~ηρ |~Xh
ρ |−1

)
= −

2∑

i=1

∑

p∈∂iI

̺̂(p)

∂S (~Xh(p, t) . ~e1)~η(p) . ~e3−i ∀ ~η ∈ Vh
∂
.

(3.13b)

Choosing χ = 1 in (3.13a), on recalling (3.11), yields exact volume conservation for the scheme (Fh). Moreover, in

contrast to (Eh)(h), it is possible to prove a stability bound for (Fh)(h). To this end, choose χ = κhS in (3.13a) and ~η = ~Xh
t

in (3.13b) to obtain, on recalling (3.7), that

d

dt
E(~Xh(t)) = −2 π

(
~Xh . ~e1 |(κhS)ρ|2, |~Xh

ρ |−1
)
≤ 0 .
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Table 2: Properties of the different semidiscrete schemes for the evolution laws (1.3), (1.4), (1.7) and (2.32). Note that subscripts refer to semidis-

cretization, whereas superscripts indicate numerical integration, recall (3.2).

scheme flow stability proof equidistribution

(Eh)h / (Eh) (3.9) (1.3) no yes / no

(Fh)h / (Fh) (3.13) (1.3) yes no

(Ih)h / (Ih) (3.15) (1.4) yes no

(Wh)h (3.16) (1.7) no yes

(WA,V
h

)h (3.17), (3.19) (2.32) no yes

Remark 3.1. Let ~h j(t) = ~X
h(q j, t) − ~Xh(q j−1, t) for j = 1, . . . , J, and set ~h0 = ~hJ if ∂I = ∅. Then, if (~Xh(t), κh(t)) ∈

Vh × Vh satisfies (3.9b), for (Eh)h, it holds that

|~h j(t)| = |~h j−1(t)| if ~h j(t) ∦ ~h j−1(t)


j = 1, . . . , J ∂I = ∅ ,
j = 2, . . . , J ∂I , ∅ .

(3.14)

The equidistribution property (3.14) can be shown by choosing ~η = χ j−1 [~ωh(q j−1, t)]
⊥ ∈ Vh

∂ in (3.9b), recall (3.4).

See also [2, Remark 2.4] for more details. We stress that (3.13b), even for (Fh)h, does not lead to an equidistribution

property for Γh(t).

For the reader’s convenience, Table 2 summarises the main properties of all the schemes introduced in Section 3.

3.2. Intermediate evolution law

It is straightforward to adapt the semidiscrete schemes (E)h and (F )(h) to the flow (1.5). For example, a semidis-

crete finite element approximation of (I), (2.28), that is based on (Fh)(h), is given as follows.

(Ih)(h): Let ~Xh(0) ∈ Vh
∂0

. For t ∈ (0, T ] find ~Xh(t) ∈ Vh, with ~Xh
t (t) ∈ Vh

∂
, and (Yh(t), κhS(t)) ∈ [Vh]2 such that

(
(~Xh . ~e1) ~Xh

t , χ~ν
h |~Xh

ρ |
)(h)
=

(
~Xh . ~e1 Yh

ρ , χρ |~Xh
ρ |−1

)
∀ χ ∈ Vh , (3.15a)

1
ξ

(
~Xh . ~e1 Yh

ρ , ζρ |~Xh
ρ |−1

)
+

(
~Xh . ~e1

[
α−1 Yh − κhS

]
, ζ |~Xh

ρ |
)(h)
= 0 ∀ ζ ∈ Vh , (3.15b)

(
~Xh . ~e1 κ

h
S ~ν

h, ~η |~Xh
ρ |
)(h)
+

(
~η .~e1, |~Xh

ρ |
)
+

(
(~Xh . ~e1) ~Xh

ρ , ~ηρ |~Xh
ρ |−1

)
= −

2∑

i=1

∑

p∈∂iI

̺̂(p)

∂S (~Xh(p, t) . ~e1)~η(p) . ~e3−i ∀ ~η ∈ Vh
∂
.

(3.15c)

Choosing χ = 1 in (3.15a), on recalling (3.11), yields exact volume conservation for the scheme (Ih). Moreover, it is

possible to prove a stability bound for (Ih)(h). To this end, choose χ = α
ξ
κhS in (3.15a), ζ = α κhS − Yh in (3.15b) and

~η = ~Xh
t in (3.15c) to obtain, on recalling (3.7), that

1

2 π

d

dt
E(~Xh(t)) = − 1

α

(
~Xh . ~e1 |Yh

ρ |2, |~Xh
ρ |−1

)
− ξ

(
~Xh . ~e1 |κhS − 1

α
Yh|2, |~Xh

ρ |
)(h) ≤ 0 ,

which is a discrete analogue of (2.29).

3.3. Willmore flow

Our semidiscrete finite element approximation of (W), (2.31), is given as follows, where we recall that ∂I = ∂0I,

and so ~Xh(t) ∈ Vh
∂

for all t ∈ [0, T ].
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(Wh)h: Let ~Xh(0) ∈ Vh
∂. For t ∈ (0, T ] find ~Xh(t) ∈ Vh, with ~Xh

t (t) ∈ Vh
∂, and κh(t) ∈ Vh such that

(
(~Xh . ~e1) ~Xh

t , χ~ν
h |~Xh
ρ |
)h −

(
~Xh . ~e1

[
κh − Kh(κh)

]
ρ
, χρ |~Xh

ρ |−1
)
= −2

([
κh − ~ω

h . ~e1

~Xh . ~e1

− κ
]
κh ~ωh . ~e1, χ |~Xh

ρ |
)h

− 1
2

~Xh . ~e1


[
κh − ~ω

h . ~e1

~Xh . ~e1

]2

− κ2


[
κh − ~ω

h . ~e1

~Xh . ~e1

]
, χ |~Xh

ρ |


h

∀ χ ∈ Vh , (3.16a)

(
κh ~νh, ~η |~Xh

ρ |
)h
+

(
~Xh
ρ , ~ηρ |~Xh

ρ |−1
)
= 0 ∀ ~η ∈ Vh

∂ . (3.16b)

We recall from Remark 3.1 that (3.16b) leads to the equidistribution property (3.14). For this reason we only consider

the variant (Wh)h with mass lumping.

3.3.1. Helfrich flow

On re-writing (3.16a) as

(
(~Xh . ~e1) ~Xh

t , χ~ν
h |~Xh

ρ |
)h −

(
~Xh . ~e1

[
κh − Kh(κh)

]
ρ
, χρ |~Xh

ρ |−1
)
=

(
f h, χ |~Xh

ρ |
)h
,

we consider the following semidiscrete finite element approximation of (WA,V), (2.34), (2.31b).

(WA,V
h

)h: Let ~Xh(0) ∈ Vh
∂
. For t ∈ (0, T ] find ~Xh(t) ∈ Vh, with ~Xh

t (t) ∈ Vh
∂
, and (κh(t), λh

A
(t), λh

V
(t)) ∈ Vh × R2 such

that

(
(~Xh . ~e1) ~Xh

t , χ~ν
h |~Xh

ρ |
)h −

(
~Xh . ~e1

[
κh − Kh(κh)

]
ρ
, χρ |~Xh

ρ |−1
)

=
(

f h, χ |~Xh
ρ |
)
+ λh

A

(
~Xh . ~e1

[
κh − Kh(κh)

]
, χ |~Xh

ρ |
)h
+ λh

V

(
~Xh . ~e1, χ |~Xh

ρ |
)h ∀ χ ∈ Vh , (3.17)

where (λh
A
, λh

V
)T ∈ R2 are such that

H2(Sh(t)) = H2(Sh(0)) , L3(Ωh(t)) = L3(Ωh(0)) . (3.18)

Here we note that (3.18) can be equivalently formulated as

A(~Xh(t)) = A(~Xh(0)) , (3.19a)

V(~Xh(t)) = V(~Xh(0)) , V(~Zh) = −π
(
(~Zh . ~e1)2, [~Zh

ρ]
⊥ . ~e1

)
~Zh ∈ Vh

∂
, (3.19b)

where we have recalled (3.5), (3.3) and (3.10).

4. Fully discrete schemes

Let 0 = t0 < t1 < . . . < tM−1 < tM = T be a partitioning of [0, T ] into possibly variable time steps ∆tm = tm+1 − tm,

m = 0→ M − 1. We set ∆t = maxm=0→M−1 ∆tm. For a given ~Xm ∈ Vh
∂0

we set ~νm = − [~Xm
ρ ]⊥

|~Xm
ρ |

. Let ~ωm ∈ Vh be the natural

fully discrete analogue of ~ωh ∈ Vh, recall (3.4).

Similarly to (3.8), and given a κm+1 ∈ Vh, we introduce Km(κm+1) ∈ Vh such that

[Km(κm+1)](q j) =



~ωm(q j) . ~e1

~Xm(q j) . ~e1

q j ∈ I \ ∂0I ,

−κm+1(q j) q j ∈ ∂0I .
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4.1. Surface diffusion

Our fully discrete analogue of the scheme (Eh)(h), (3.9), is given as follows.

(Em)(h): Let ~X0 ∈ Vh
∂0

. For m = 0, . . . ,M − 1, find (δ~Xm+1, κm+1) ∈ Vh
∂
× Vh, where ~Xm+1 = ~Xm + δ~Xm+1, such that

~Xm . ~e1

~Xm+1 − ~Xm

∆tm
, χ~νm |~Xm

ρ |


(h)

=

(
~Xm . ~e1

[
κm+1 − Km(κm+1)

]
ρ
, χρ |~Xm

ρ |−1
)

∀ χ ∈ Vh , (4.1a)

(
κm+1 ~νm, ~η |~Xm

ρ |
)(h)
+

(
~Xm+1
ρ , ~ηρ |~Xm

ρ |−1
)
= −

2∑

i=1

∑

p∈∂iI

̺̂(p)

∂S ~η(p) . ~e3−i ∀ ~η ∈ Vh
∂
. (4.1b)

We note that it does not appear possible to prove the existence of a unique solution to (Em)(h). However, despite the

lack of a mathematical proof, in practice the linear system (4.1) is always invertible.

Our fully discrete analogues of the scheme (Fh)(h), (3.13), are given as follows.

(Fm)(h): Let ~X0 ∈ Vh
∂0

. For m = 0, . . . ,M − 1, find (δ~Xm+1, κm+1
S ) ∈ Vh

∂
× Vh, where ~Xm+1 = ~Xm + δ~Xm+1, such that

~Xm . ~e1

~Xm+1 − ~Xm

∆tm
, χ~νm |~Xm

ρ |


(h)

=

(
~Xm . ~e1

[
κm+1
S

]
ρ
, χρ |~Xm

ρ |−1
)

∀ χ ∈ Vh , (4.2a)

(
~Xm . ~e1 κ

m+1
S ~νm, ~η |~Xm

ρ |
)(h)
+

(
~η .~e1, |~Xm

ρ |
)
+

(
(~Xm . ~e1) ~Xm+1

ρ , ~ηρ |~Xm
ρ |−1

)

= −
2∑

i=1

∑

p∈∂iI

̺̂(p)

∂S (~Xm(p) . ~e1)~η(p) . ~e3−i ∀ ~η ∈ Vh
∂ . (4.2b)

For the second variant, which is going to lead to systems of nonlinear equations and for which a stability result

can be shown, we introduce the notation [r]± = ±max{±r, 0} for r ∈ R.

(Fm,⋆)(h): Let ~X0 ∈ Vh
∂0

. For m = 0, . . . ,M − 1, find (δ~Xm+1, κm+1
S ) ∈ Vh

∂
×Vh, where ~Xm+1 = ~Xm + δ~Xm+1, such that

~Xm . ~e1

~Xm+1 − ~Xm

∆tm
, χ~νm |~Xm

ρ |


(h)

=

(
~Xm . ~e1

[
κm+1
S

]
ρ
, χρ |~Xm

ρ |−1
)

∀ χ ∈ Vh , (4.3a)

(
~Xm . ~e1 κ

m+1
S ~νm, ~η |~Xm

ρ |
)(h)
+

(
~η .~e1, |~Xm+1

ρ |
)
+

(
(~Xm . ~e1) ~Xm+1

ρ , ~ηρ |~Xm
ρ |−1

)

= −
∑

p∈∂1I

̺̂(p)

∂S (~Xm(p) . ~e1)~η(p) . ~e2 −
∑

p∈∂2I

(([̺̂
(p)

∂S]+ ~X
m+1(p) + [̺̂

(p)

∂S]− ~X
m(p)) . ~e1)~η(p) . ~e1 ∀ ~η ∈ Vh

∂
. (4.3b)

We state the following mild assumptions.

(A) Let |~Xm
ρ | > 0 for almost all ρ ∈ I, and let ~Xm . ~e1 > 0 for all ρ ∈ I \ ∂0I.

(B)(h) LetZ(h) =

{(
(~Xm . ~e1)~νm, χ |~Xm

ρ |
)(h)

: χ ∈ Vh

}
⊂ R2 and assume that

dim spanZ(h) = 2.

Note that the assumption (B)h, on recalling (3.4), is equivalent to assuming that

dim span{~ωm(q j)} j=1 ...,J = 2.

Lemma 4.1. Let ~Xm ∈ Vh
∂0

satisfy the assumptions (A) and (B)(h). Then there exists a unique solution (δ~Xm+1,

κm+1
S ) ∈ Vh

∂
× Vh to (Fm)(h).

Proof. As (4.2) is linear, existence follows from uniqueness. To investigate the latter, we consider the system: Find

(δ~X, κS) ∈ Vh
∂ × Vh such that

~Xm . ~e1

δ~X

∆tm
, χ~νm |~Xm

ρ |


(h)

=
(
~Xm . ~e1 [κS]ρ, χρ |~Xm

ρ |−1
)

∀ χ ∈ Vh , (4.4a)

(
~Xm . ~e1 κS ~ν

m, ~η |~Xm
ρ |

)(h)
+

(
(~Xm . ~e1) (δ~X)ρ, ~ηρ |~Xm

ρ |−1
)
= 0 ∀ ~η ∈ Vh

∂ . (4.4b)
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Choosing χ = κS ∈ Vh in (4.4a) and ~η = δ~X ∈ Vh
∂ in (4.4b) yields that

∆tm
(
~Xm . ~e1 |(δ~X)ρ|2, |~Xm

ρ |−1
)
+

(
~Xm . ~e1 |[κS]ρ|2, |~Xm

ρ |−1
)
= 0 . (4.5)

It follows from (4.5) and the assumption (A) that κS = κ
c ∈ R and δ~X ≡ ~Xc ∈ R2. Hence it follows from (4.4a)

that ~Xc .~z = 0 for all ~z ∈ Z(h), and so assumption (B)(h) yields that ~Xc = ~0. Similarly, it follows from (4.4b) and

the fact that Z(h) must contain a nonzero vector that κc = 0. Hence we have shown that (4.2) has a unique solution

(δ~Xm+1, κm+1
S ) ∈ Vh

∂ × Vh.

For the scheme (Fm,⋆)(h) it does not appear possible to prove existence of a solution. However, despite the lack of

a mathematical proof, in practice we are always able to find a solution with the help of a Newton method.

Theorem 4.2. Let ~Xm ∈ Vh
∂0

satisfy the assumption (A), and let (~Xm+1, κm+1
S ) be a solution to (Fm,⋆)(h). Then it holds

that

E(~Xm+1) + 2 π∆tm
(
~Xm . ~e1 |[κm+1

S ]ρ|2, |~Xm
ρ |−1

)
≤ E(~Xm) . (4.6)

Proof. Choosing χ = ∆tm κ
m+1
S in (4.3a) and ~η = ~Xm+1 − ~Xm ∈ Vh

∂
in (4.3b) yields, on noting that ~Xm(p) . ~e1 =

~Xm+1(p) . ~e1 for p ∈ ∂1I, that

−∆tm
(
~Xm . ~e1 |[κm+1

S ]ρ|2, |~Xm
ρ |−1

)
=

(
~Xm+1 − ~Xm, ~e1 |~Xm+1

ρ |
)
+

(
(~Xm . ~e1) (~Xm+1 − ~Xm)ρ, ~X

m+1
ρ |~Xm

ρ |−1
)

+
∑

p∈∂1I

̺̂(p)

∂S (~Xm(p) . ~e1) (~Xm+1(p) − ~Xm(p)) . ~e2

+
∑

p∈∂2I

([̺̂
(p)

∂S]+ ~X
m+1(p) + [̺̂

(p)

∂S]− ~X
m(p)] . ~e1) (~Xm+1(p) − ~Xm(p)) . ~e1

≥
(
~Xm+1 − ~Xm, ~e1 |~Xm+1

ρ |
)
+

(
~Xm . ~e1, |~Xm+1

ρ | − |~Xm
ρ |

)

+
∑

p∈∂1I

̺̂(p)

∂S (~Xm(p) . ~e1) ~Xm+1(p) . ~e2 −
∑

p∈∂1I

̺̂(p)

∂S (~Xm(p) . ~e1) ~Xm(p) . ~e2

+ 1
2

∑

p∈∂2I

[̺̂
(p)

∂S]+ (~Xm+1(p) . ~e1)2 − 1
2

∑

p∈∂2I

[̺̂
(p)

∂S]+ (~Xm(p) . ~e1)2

+ 1
2

∑

p∈∂2I

[̺̂
(p)

∂S]− (~Xm+1(p) . ~e1)2 − 1
2

∑

p∈∂2I

[̺̂
(p)

∂S]− (~Xm(p) . ~e1)2

=
(
~Xm+1 . ~e1, |~Xm+1

ρ |
)
−

(
~Xm . ~e1, |~Xm

ρ |
)

+
∑

p∈∂1I

̺̂(p)

∂S (~Xm+1(p) . ~e1) ~Xm+1(p) . ~e2 −
∑

p∈∂1I

̺̂(p)

∂S (~Xm(p) . ~e1) ~Xm(p) . ~e2

+ 1
2

∑

p∈∂2I

̺̂(p)

∂S (~Xm+1(p) . ~e1)2 − 1
2

∑

p∈∂2I

̺̂(p)

∂S (~Xm(p) . ~e1)2

=
1

2 π
E(~Xm+1) − 1

2 π
E(~Xm) ,

where we have used the two inequalities ~a . (~a− ~b) ≥ |~b| (|~a| − |~b|) for ~a, ~b ∈ R2, and 2 β (β− α) ≥ β2 − α2 for α, β ∈ R.

This proves the desired result (4.6).

4.2. Intermediate evolution law

It is straightforward to adapt the schemes (Em)h, (Fm)(h) and (Fm,⋆)(h) to the flow (1.5). For example, (Fm,⋆)(h) can

be adapted to yield the following fully discrete approximation of (Ih)(h), (3.15).
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(Im,⋆)(h): Let ~X0 ∈ Vh
∂0

. For m = 0, . . . ,M − 1, find (δ~Xm+1, Ym+1, κm+1
S ) ∈ Vh

∂ × [Vh]2, where ~Xm+1 = ~Xm + δ~Xm+1,

such that

~Xm . ~e1

~Xm+1 − ~Xm

∆tm
, χ~νm |~Xm

ρ |


(h)

=
(
~Xm . ~e1 Ym+1

ρ , χρ |~Xm
ρ |−1

)
∀ χ ∈ Vh , (4.7a)

1
ξ

(
~Xm . ~e1 Ym+1

ρ , ζρ |~Xm
ρ |−1

)
+

(
~Xm . ~e1

[
α−1 Ym+1 − κm+1

S
]
, ζ |~Xm

ρ |
)(h)
= 0 ∀ ζ ∈ Vh , (4.7b)

(
~Xm . ~e1 κ

m+1
S ~νm, ~η |~Xm

ρ |
)(h)
+

(
~η .~e1, |~Xm+1

ρ |
)
+

(
(~Xm . ~e1) ~Xm+1

ρ , ~ηρ |~Xm
ρ |−1

)

= −
∑

p∈∂1I

̺̂(p)

∂S (~Xm(p) . ~e1)~η(p) . ~e2 −
∑

p∈∂2I

(([̺̂
(p)

∂S]+ ~X
m+1(p) + [̺̂

(p)

∂S]− ~X
m(p)) . ~e1)~η(p) . ~e1 ∀ ~η ∈ Vh

∂
. (4.7c)

Theorem 4.3. Let ~Xm ∈ Vh
∂0

satisfy the assumption (A), and let (~Xm+1, Ym+1, κm+1
S ) be a solution to (Im,⋆)(h). Then it

holds that

E(~Xm+1) +
2 π∆tm

α

(
~Xm . ~e1 |[Ym+1]ρ|2, |~Xm

ρ |−1
)
+ 2 π∆tm ξ

(
~Xm . ~e1 |κm+1

S − 1
α

Ym+1|2, |~Xm
ρ |

)(h) ≤ E(~Xm) . (4.8)

Proof. The proof is a simple adaptation of the proof of Theorem 4.2. In particular, choosing χ = ∆tm
α
ξ
κm+1
S in (4.7a),

ζ = ∆tm α κ
m+1
S − Ym+1 in (4.7b) and ~η = ~Xm+1 − ~Xm ∈ Vh

∂ in (4.7c) yields (4.8).

4.3. Willmore flow

Our fully discrete analogue of the scheme (Wh)h, (3.16), is given as follows.

(Wm)h: Let ~X0 ∈ Vh
∂

and κ0 ∈ Vh. For m = 0, . . . ,M − 1, find (~Xm+1, κm+1) ∈ Vh
∂
× Vh such that

~Xm . ~e1

~Xm+1 − ~Xm

∆tm
, χ~νm |~Xm

ρ |


h

−
(
~Xm . ~e1

[
κm+1 − Km(κm+1)

]
ρ
, χρ |~Xm

ρ |−1
)

= −2

([
κm − ~ω

m . ~e1

~Xm . ~e1

− κ
]
κm ~ωm . ~e1, χ |~Xm

ρ |
)h

− 1
2

~Xm . ~e1


[
κm − ~ω

m . ~e1

~Xm . ~e1

]2

− κ2


[
κm − ~ω

m . ~e1

~Xm . ~e1

]
, χ |~Xm

ρ |


h

∀ χ ∈ Vh , (4.9a)
(
κm+1 ~νm, ~η |~Xm

ρ |
)h
+

(
~Xm+1
ρ , ~ηρ |~Xm

ρ |−1
)
= 0 ∀ ~η ∈ Vh

∂
. (4.9b)

We note that, similarly to (Em)h, it does not appear possible to prove existence and uniqueness of a solution to (Wm)h.

However, despite the lack of a mathematical proof, in practice the linear systems (4.9) are always invertible.

4.3.1. Helfrich flow

We re-write (4.9a) as

~Xm . ~e1

~Xm+1 − ~Xm

∆tm
, χ~νm |~Xm

ρ |


h

−
(
~Xm . ~e1

[
κm+1 − Km(κm+1)

]
ρ
, χρ |~Xm

ρ |−1
)
=

(
f m, χ |~Xm

ρ |
)h
.

Then our fully discrete analogue of the scheme (WA,V
h

)h, (3.17), (3.19), is given as follows.

(WA,V
m )h: Let ~X0 ∈ Vh

∂ and κ0 ∈ Vh. For m = 0, . . . ,M − 1, find (~Xm+1, κm+1, λm+1
A
, λm+1

V
) ∈ Vh

∂ × Vh × R2 such that

(4.9b) and

~Xm . ~e1

~Xm+1 − ~Xm

∆tm
, χ~νm |~Xm

ρ |


h

−
(
~Xm . ~e1

[
κm+1 − Km(κm+1)

]
ρ
, χρ |~Xm

ρ |−1
)

=
(
f m, χ |~Xm

ρ |
)
+ λm+1

A

(
~Xm . ~e1

[
κm − Km(κm)

]
, χ |~Xm

ρ |
)h
+ λm+1

V

(
~Xm . ~e1, χ |~Xm

ρ |
)h

∀ χ ∈ Vh , (4.10a)

A(~Xm+1) = A(~X0) , V(~Xm+1) = V(~X0) , (4.10b)
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hold, where we have recalled (3.19). The system (4.10) can be solved with a suitable nonlinear solution method, see

below. In the simpler case of surface area conserving Willmore flow, we need to find

(~Xm+1, κm+1, λm+1
A
, λm+1

V
) ∈ Vh

∂
× Vh × R × {0} such that (4.10) hold. Similarly, for volume conserving Willmore

flow, we need to find (~Xm+1, κm+1, λm+1
A
, λm+1

V
) ∈ Vh

∂
× Vh × {0} × R such that (4.10) hold.

Adapting the strategy in [30], we now describe a Newton method for solving the nonlinear system (4.10). The lin-

ear system (4.10a) and (4.9b), with (λm+1
A
, λm+1

V
) in (4.10a) replaced by (λA, λV ), can be written as: Find (~Xm+1(λA, λV ),

κm+1(λA, λV)) ∈ Vh
∂
× Vh such that

Tm


κm+1(λA, λV )

~Xm+1(λA, λV )

 =

gm

~0

 + λA


Km

~0

 + λV


Nm

~0

 . (4.11)

Assuming the linear operator Tm is invertible, we obtain that


κm+1(λA, λV )

~Xm+1(λA, λV )

 = (Tm)−1



gm

~0

 + λA


Km

~0

 + λV


Nm

~0


 =: (Tm)−1


gm

~0

 + λA

(
sm

1

~s
m

2

)
+ λV


qm

1

~q
m

2

 . (4.12)

It immediately follows from (4.12) that

∂λA
~Xm+1(λA, λV ) = ~s

m

2
, ∂λV

~Xm+1(λA, λV) = ~q
m

2
.

Hence

∂λA
A(~Xm+1(λA, λV )) =

[
δ

δ~Xm+1
A(~Xm+1(λA, λV))

]
(~sm

2 ) , ∂λA
V(~Xm+1(λA, λV )) =

[
δ

δ~Xm+1
V(~Xm+1(λA, λV ))

]
(~sm

2 ) ,

and similarly for ∂λV
A(~Xm+1(λA, λV )) and ∂λV

V(~Xm+1(λA, λV )). Here ~sm
2
∈ Vh

∂ is the finite element function correspond-

ing to the coefficients in ~s
m

2
for the standard basis of Vh. Moreover, we have defined the first variation of A(~Zh), for

any ~Zh ∈ Vh
∂, as

[
δ

δ~Zh
A(~Zh)

]
(~η) = lim

ε→0

1

ε

(
A(~Zh + ε~η) − A(~Zh)

)
= 2 π

(
~η .~e1, |~Zh

ρ |
)
+ 2 π

(
(~Zh . ~e1)~ηρ, ~Z

h
ρ |~Zh
ρ |−1

)
∀ ~η ∈ Vh

∂
,

and similarly

[
δ

δ~Zh
V(~Zh)

]
(~η) = lim

ε→0

1

ε

(
V(~Zh + ε~η) − V(~Zh)

)
= 2 π

(
~Zh . ~e1, ~η . [~Z

h
ρ]
⊥
)

∀ ~η ∈ Vh
∂ .

For a given iterate (λk
A
, λk

V
), with corresponding ~Xm+1,k = ~Xm+1(λk

A
, λk

V
) and κm+1,k = κm+1(λk

A
, λk

V
), we now define

the following quantities.

[~k
m+1,k

]i =

([
δ

δ~Xm+1,k
A(~Xm+1,k)

]
(χi ~eℓ)

)2

ℓ=1

, [~n
m+1,k

]i =

([
δ

δ~Xm+1,k
V(~Xm+1,k)

]
(χi ~eℓ)

)2

ℓ=1

.

Then the Newton update is given by

(
λk+1

A

λk+1
V

)
=

(
λk

A

λk
V

)
−


~k

m+1,k
.~s

m

2
~k

m+1,k
. ~q

m

2

~n
m+1,k

.~s
m

2
~n

m+1,k
. ~q

m

2



−1 
A(~Xm+1,k) − A(~X0)

V(~Xm+1,k) − V(~X0)

 . (4.13)

In practice, the linear systems (4.11) are always invertible, and the Newton iteration (4.13) converges within a couple

of iterations.
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Figure 2: Initial data ~X0 approximating a semicircle with J = 64. The initial ratios (5.1) are r0 = 1.94 and r0 = 89.81, respectively.

5. Numerical results

As the fully discrete energy, we consider E(~Xm), recall (3.6). Unless otherwise stated, we choose ̺̂(0)

∂S = ̺̂(1)

∂S = 0.

We always employ uniform time steps, ∆tm = ∆t, m = 0, . . . ,M − 1.

We also consider the ratio

r
m =

max j=1→J |~Xm(q j) − ~Xm(q j−1)|
min j=1→J |~Xm(q j) − ~Xm(q j−1)|

(5.1)

between the longest and shortest element of Γm, and are often interested in the evolution of this ratio over time.

In practice, we stop the computation when ~Xm < 0 for some ρ ∈ I, as the computed results would then no longer

be physical. However, for sufficiently small discretization parameters this happens only once the computation reaches

a singularity for the underlying flow.

5.1. Numerical results for surface diffusion

5.1.1. Sphere

Clearly, a sphere is a stationary solution for surface diffusion. Hence, setting ∂0I = ∂I = {0, 1} and choosing as

initial data ~X0 the approximations of a semicircle displayed in Figure 2, we now investigate the different tangential

motions exhibited by the six schemes (Em)h, (Em), (Fm)h, (Fm), (Fm,⋆)h and (Fm,⋆). We set ∆t = 10−4 and integrate

the evolution for the initial data on the left of Figure 2 until time T = 1, see Figure 3. Of the six schemes, only

(Fm)h breaks down before reaching the final time. When (Fm)h breaks down due to vertices moving to the left of the

x2–axis, the element ratio rm has reached a value of 6058. Hence it appears that (Fm)h exhibits an implicit tangential

motion towards the x2–axis, which can lead to coalescence of vertices or to vertices on the left of the x2–axis. For this

reason we do not consider the scheme (Fm)h any further. For the remaining five schemes (Em)h, (Em), (Fm), (Fm,⋆)h,

(Fm,⋆) the element ratios rm at time T = 1 are 1.00, 1.00, 3.04, 62.21, 3.05, and the enclosed volume is preserved

almost exactly by all the schemes. We show the final distributions of vertices, and plots of rm over time in Figure 3. In

addition, we show plots of the rm for the scheme (Fm,⋆) for different time step sizes in Figure 4. In these experiments

it appears that the element ratio asymptotically approaches a value close to 3. The same plots for the scheme (Em)h

show rm monotonically decreasing to the value 1 by virtue of the equidistribution property (3.14), with the decrease

faster for smaller time step sizes ∆t.

In a second set of experiments to investigate the different tangential motions induced by the individual schemes,

we repeat the simulations in Figure 3 now for the initial data displayed on the right of Figure 2. We again use J = 64

and ∆t = 10−4, and show the relevant results in Figure 5. Once again the scheme (Fm)h breaks down due to vertices

moving to the left of the x2–axis. For the remaining five schemes (Em)h, (Em), (Fm), (Fm,⋆)h, (Fm,⋆) the element ratios

rm at time T = 1 are 1.06, 1.06, 3.02, 113.13, 3.07. Due to the very nonuniform initial data, the enclosed volume is

only preserved well for the three schemes without numerical integration. In particular, the relative enclosed volume

losses for the five schemes are 20.6%, −1.0%, −0.9%, 35.9%, −0.7%.
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Figure 3: Comparison of the different schemes for surface diffusion of the unit sphere. Left to right: (Em)h, (Em), (Fm), (Fm,⋆)h , (Fm,⋆). Plots are

for ~Xm at time t = 1 and for the ratio rm over time. The element ratios rm at time t = 1 are 1.00, 1.00, 3.04, 62.21, 3.05.
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Figure 4: (Fm,⋆) Plots of the ratio rm for ∆t = 10−k, k = 3, . . . 6.

For the remainder of this subsection, we will only present numerical results for the two schemes (Em)h and (Fm,⋆).

Note that the former is a linear fully discrete approximation of (Eh)h, for which the equidistribution property (3.14)

holds. The latter, on the other hand, is a nonlinear scheme that is unconditionally stable, recall Theorem 4.2, and,

the semidiscrete scheme (Fh) that it is based on preserves the enclosed volume exactly. As the results for (Em)h and

(Fm,⋆) are often indistinguishable, we only visualize the numerical results for the former, and will do so from now on

in this section.

5.1.2. Genus 0 surface

An experiment for a rounded cylinder of total dimension 1 × 7 × 1 can be seen in Figure 6. Here we have once

again that ∂0I = ∂I = {0, 1}. The discretization parameters are J = 128 and ∆t = 10−4. The relative volume loss

for this experiment for (Em)h is 0.05%, while for (Fm,⋆) it is 0.00%. If we increase the aspect ratio of the initial data,

then pinch-off can occur during the evolution. We visualize this effect in Figure 7, where as initial data we choose a

rounded cylinder of total dimension 1×8×1. The discretization parameters are as before, and the relative volume loss

for (Em)h is 0.02%, while for (Fm,⋆) it is 0.00%. An experiment for a disc shape of total dimension 9 × 1 × 9 is shown

in Figure 8. The discretization parameters are J = 128 and ∆t = 10−3. The relative volume loss for this experiment

for (Em)h is 0.03%, while for (Fm,⋆) it is 0.04%. We notice that although for the time step size ∆t = 10−3, the element

ratio for the scheme (Fm,⋆) is smaller than for (Em)h, this is no longer the case for smaller time step sizes. For smaller

time step sizes, the ratio approaches the value 1 very quickly for the scheme (Em)h, while for (Fm,⋆) it can reach much

larger values, before eventually approaching a value closer to 4. See Figure 9 for some ratio plots for (Fm,⋆) when

∆t = 10−k, k = 4, 5, 6. We note that this behaviour appears to be generic for all our numerical experiments for surface

diffusion.
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Figure 5: Comparison of the different schemes for surface diffusion towards a sphere. Left to right: (Em)h, (Em), (Fm), (Fm,⋆)h, (Fm,⋆). Plots are

for ~Xm at time t = 1 and for the ratio rm over time. The element ratios rm at time t = 1 are 1.06, 1.06, 3.02, 113.13, 3.07. The relative enclosed

volume losses are 20.6%, −1.0%, −0.9%, 35.9%, −0.7%.

5.1.3. Torus

In order to model the evolution of a torus, we set I = R/Z, so that ∂I = ∅. For a torus with R = 1, r = 0.25,

we obtain a surface that closes up towards a genus-0 surface, as in [4, Fig. 14]. See Figure 10 for the simulation

results, where we note that the surface closing up represents a singularity for the parametric approach. In particular,

some vertices of ~Xm are approaching the x2–axis, which leads to a moderate increase in the element ratio (5.1). The

discretization parameters for this experiment are J = 256 and ∆t = 10−5. The observed relative volume loss is 0.02%

for both the schemes (Em)h and (Fm,⋆). A detailed view of the vertex distribution at the final time, t = 0.02392, for

the schemes (Em)h and (Fm,⋆) is given in Figure 11. Here we note that the element ratios rm at this time are 1.30 and

1.33, respectively. Hence the proximity of the x2–axis has no dramatic effect on the vertex distribution.

5.1.4. Droplet on a substrate

Here we consider the evolution for a droplet on a substrate, so that e.g. ∂2I = {0} and ∂0I = {1}. See Figure 12

for a simulation for the choice ̺̂(0)

∂S = −
1
2
. Here we use J = 64 and ∆t = 10−3. The relative volume loss for this

experiment is −0.64% for the scheme (Em)h and −0.61% for the scheme (Fm,⋆). The same experiment with ̺̂(0)

∂S = 0.9

can be seen in Figure 13. The relative volume loss for this experiment is −0.13% for the scheme (Em)h and −0.10%

for the scheme (Fm,⋆).

5.1.5. Cut genus 1 surface on a substrate

In this section, we show some experiments for the upper half of a genus 1 surface attached to the hyperplane

R × {0} × R, so that ∂2I = ∂I = {0, 1}. See Figure 14 for an experiment with J = 129 and ∆t = 10−4. The

relative volume loss for this experiment is 0.47% for the scheme (Em)h and 0.43% for the scheme (Fm,⋆). The same

experiment with ̺̂(0)

∂S = −̺̂
(1)

∂S =
1
2

can be seen in Figure 15. The relative volume loss for this experiment is −0.25%

for both schemes (Em)h and (Fm,⋆).
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Figure 6: (Em)h Evolution for a rounded cylinder of dimension 1 × 7 × 1. Plots are at times t = 0, 0.1, . . . , 1. We also visualize the axisymmetric

surface Sm generated by Γm at time t = 0.3. On the right are plots of the discrete energy and the ratio rm and, as a comparison, a plot of the ratio

rm for the scheme (Fm,⋆).

5.1.6. Cut cylinder between two hyperplanes

In this subsection we repeat the computations in [7, Figs. 21, 22] for two open dumbbell-like cylindrical shapes

attached to two parallel hyperplanes, see Figures 16 and 17, and so we let ∂2I = ∂I = {0, 1}. In particular, in these

experiments the two components of the boundary of Sm are attached to two distinct parallel hyperplanes. That means

that ~Xm(0) is attached to the x1–axis, while ~Xm(1) remains on the line R × {a}, with a = 4 in Figure 16 and a = 8

in Figure 17. The initial data are given by Γ(0) = {(1 + α cos(2 π ρ), ρ a)T : ρ ∈ [0, 1]}, with α = 0.5 and α = 0.25,

respectively. For the discretization parameters we choose J = 128 and ∆t = 10−3. The relative volume losses for

these experiments are −0.02% and −0.01% for the scheme (Em)h, and −0.01% in both cases for the scheme (Fm,⋆).

We note that for the smaller aspect ratio of the shape in Figure 16, the evolution reaches a cylinder. For the larger

aspect ratio in Figure 17 the surface would like to undergo pinch-off, which represents a singularity in the parametric

approach. As a consequence, the element ratio (5.1) increases to about 1.19 for scheme (Em)h, and to about 1.30 for

scheme (Fm,⋆).

5.2. Numerical results for the intermediate evolution law

We repeat the experiment in Figure 6 for the scheme (Im,⋆) to approximate the flow (1.4), rather than surface

diffusion. We choose the values ξ = α = 1, so that the flow interpolates between surface diffusion and conserved

mean curvature flow. The results are shown in Figure 18, where we note the slower evolution compared to Figure 6.

The discretization parameters are J = 128 and ∆t = 10−4. The relative volume loss for this experiment is 0.00%. We

mention that for the fully 3d approximation [4, (2.27a–c)] of the intermediate flow (1.4), some transient mesh ringing

was observed for a numerical simulation similar to Figure 18, see [4, Fig. 17]. Of course, in the axisymmetric setting

considered in this paper, no such mesh effects can ever occur.
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Figure 7: (Em)h Evolution for a rounded cylinder of dimension 1 × 8 × 1. Plots are at times t = 0, 0.05, . . . , 0.2, 0.2452. We also visualize the

axisymmetric surface Sm generated by Γm at time t = 0.2452. On the right are plots of the discrete energy and the ratio rm and, as a comparison, a

plot of the ratio rm for the scheme (Fm,⋆).

5.3. Numerical results for Willmore flow

Here present numerical results for the scheme (Wm)h, recall (4.9). As the fully discrete energy, we consider

Wh(~Xm) = π
(
~Xm . ~e1,

(
κm+1 − κ − Km(κm+1)

)2
|~Xm
ρ |

)h

. (5.2)

On recalling (2.6), and given Γ0 = ~X0(I), we define the initial data κ0 ∈ Vh via κ0 = πh
[
~κ0 . ~ω0

|~ω0|

]
, where ~κ0 ∈ Vh is such

that (
~κ0, ~η |~X0

ρ |
)h
+

(
~X0
ρ , ~ηρ |~X0

ρ |−1
)
= 0 ∀ ~η ∈ Vh .

Unless otherwise stated, we set κ = 0.

5.3.1. Sphere

We note that a sphere of radius r(t), where r(t) satisfies

r′(t) = − κ

r(t)
( 2

r(t)
+ κ) , r(0) = r0 ∈ R>0 , (5.3)

is a solution to (1.7). The nonlinear ODE (5.3), in the case κ , 0, is solved by r(t) = z(t) − 2
κ

, where z(t) is such that
1
2

(z2(t) − z2
0
) − 4

κ
(z(t) − z0) + 4

κ
2 ln

z(t)

z0
+ κ2 t = 0, with z0 = r0 +

2
κ

.

We use the true solution (5.3) for a convergence experiment for the scheme (Wm)h. Here we start with a nonuni-

form partitioning of a semicircle of radius r(0) = r0 = 1 and compute the flow for κ = −1 until time T = 1. In

particular, we have ∂0I = ∂I = {0, 1} and we choose ~X0 ∈ Vh
∂0

with

~X0(q j) = r0

(
cos[(q j − 1

2
) π + 0.1 cos((q j − 1

2
) π)]

sin[(q j − 1
2
) π + 0.1 cos((q j − 1

2
) π)]

)
, j = 0, . . . , J ,
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Figure 8: (Em)h Evolution for a disc of dimension 9 × 1 × 9. Plots are at times t = 0, 0.5, . . . , 4. We also visualize the axisymmetric surface Sm

generated by Γm at time t = 0.5. On the right are plots of the discrete energy and the ratio rm and, as a comparison, a plot of the ratio rm for the

scheme (Fm,⋆).
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Figure 9: (Fm,⋆) Plot of the ratio rm for ∆t = ∆t = 10−k, k = 4, 5, 6.
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Figure 10: (Em)h Evolution for a torus with R = 1 and r = 0.25. Plots are at times t = 0, 0.002, . . . , 0.022, 0.02392. We also visualize the

axisymmetric surface Sm generated by Γm at times t = 0 (above) and t = 0.02392 (below). On the right are plots of the discrete energy and the

ratio rm and, as a comparison, a plot of the ratio rm for the scheme (Fm,⋆).
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Figure 12: (Em)h [∂0I = {1}, ∂2I = {0}, ̺̂(0)

∂S = −
1
2 ] Evolution for a droplet attached to R × {0} × R. Solutions at times t = 0, 0.1, . . . , 1 and at time

t = 1. We also visualize the axisymmetric surface Sm generated by Γm at time t = 1. On the right are plots of the discrete energy and the ratio (5.1)

and, as a comparison, a plot of the ratio rm for the scheme (Fm,⋆).

recall (3.1). We compute the error ‖Γ − Γh‖L∞ = maxm=1,...,M max j=0,...,J ||~Xm(q j)| − r(tm)| over the time interval [0, T ]

between the true solution and the discrete solutions for the scheme (Wm)h. Here we use the time step size ∆t = 0.1 h2
Γ0 ,

where hΓ0 is the maximal edge length of Γ0. The computed errors are reported in Table 3, where we observe a

convergence rate of O(h2
Γ0 ).

5.3.2. Genus 0 surface

The evolution for Willmore flow for the same initial data as in Figure 8 is shown in Figure 19. The discretization

parameters for the scheme (Wm)h are J = 128 and ∆t = 10−3. As expected, the flat disc evolves to a sphere. At

time t = 10 the discrete Willmore energy (5.2) is 25.330, and continuing the evolution until time t = 100 yields an

energy of 25.131. This compares well with the value 8 π = 25.133, which is the Willmore energy (1.6), for κ = 0, of

a sphere. Repeating the simulation with κ = −2 yields the results in Figure 20, where we observe that the final steady

state now approximates the unit sphere. In fact, the discrete energy (5.2) at time t = 3 is 1.8 × 10−5, which compares

Table 3: (Wm)h Errors for the convergence test (5.3) with κ = −1.

J hΓ0 ‖Γ − Γh‖L∞ EOC

32 1.0792e-01 1.9659e-03 —

64 5.3988e-02 5.1262e-04 1.940681

128 2.6997e-02 1.2980e-04 1.981917

256 1.3499e-02 3.2571e-05 1.994737

512 6.7495e-03 8.1512e-06 1.998504
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Figure 13: (Em)h [∂0I = {1}, ∂2I = {0}, ̺̂(0)

∂S = 0.9] Evolution for a droplet attached to B. Solutions at times t = 0, 0.1, . . . , 1 and at time t = 1. We

also visualize the axisymmetric surface Sm generated by Γm at time t = 1. On the right are plots of the discrete energy and the ratio (5.1) and, as a

comparison, a plot of the ratio rm for the scheme (Fm,⋆).

with the energy (1.6), for κ = −2, being zero for a unit sphere. We also repeat the computation in [8, Fig. 9] for a

rounded cylinder of total dimension 2 × 6 × 2, see Figure 21. Here the surface would like to pinch off into two unit

spheres. The discretization parameters are J = 128 and ∆t = 10−3. We note that at time t = 1, the ratio rm has reached

a value of 1.14. Hence, despite the proximity to the x2–axis, the vertices are still nearly equidistributed.

5.3.3. Genus 1 surface

Using as initial data for Willmore flow the surface generated by the curve Γ(0) that is given by an elongated

cigar-like shape of total dimension 4 × 1, with barycentre (4, 0)T ∈ R2, we observe the numerical evolution shown in

Figure 22. The discretization parameters are J = 128 and ∆t = 10−3. The observed final radius of Γm is 2.11, with

the centre of the circle at (3.06, 0). Hence the ratio of the two radii of the torus is R/r = 3.06/2.11 = 1.4488, which

will tend to
√

2 as the evolution continues further. In fact, continuing the evolution until time t = 10 yields a ratio

R/r = 3.03/2.15 = 1.4140 and a discrete energy (5.2) of 39.484. Here we recall that the ratio
√

2 characterizes the

Clifford torus, the known minimizer of the Willmore energy (1.6), with κ = 0, among all genus 1 surfaces, see [37],

with Willmore energy equal to 4 π2 = 39.478. Repeating the simulation in Figure 22 with κ = −2 gives the results in

Figure 23. The observed final radius of Γm is 0.498, with the centre of the circle at (4.26, 0). Hence the ratio of the

two radii of the torus is now R/r = 4.06/0.498 = 8.15.

In order to study the development of a singularity under Willmore flow, we consider the evolution from [38, Figs.

8, 9]. In particular, as initial data for the scheme (Wm)h we choose a curve that is the union of a circle of radius 0.5,

and two quarter circles of radius 2, see Figure 24. The discretization parameters are J = 1024 and ∆t = 4 × 10−5. It

can be seen from the numerical results shown in Figure 24 that the scheme (Wm)h computes an evolution of a shape

with a loop with large curvature and two circular segments that increase in size. We conjecture that as t → ∞, upon

rescaling to a shape of fixed diameter, the surface approaches two touching spheres. This would resemble a singularity

for Willmore flow. We note that the existence of surfaces that become singular under Willmore flow was proven in
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Figure 14: (Em)h [∂2I = ∂I = {0, 1}, ̺̂(0)

∂S = ̺̂(1)

∂S = 0] Evolution for the upper half of a genus 1 surface attached to R × {0} × R. Solutions at times

t = 0, 0.01, . . . , 0.1 and at time t = 0.1. We also visualize the axisymmetric surface Sm generated by Γm at time t = 0.1. On the right are plots of

the discrete energy and the ratio (5.1) and, as a comparison, a plot of the ratio rm for the scheme (Fm,⋆).

[15]. More precisely, it was shown that either a finite time singularity occurs, or that a rescaled infinite time solution

becomes singular for large times. It is stated in [15, p. 408] that “either a small quantum of the curvature concentrates

or the diameter of the surface does not stay bounded under the Willmore flow”. Our simulations indicate that the

latter can happen and in contrast to [38] we did not found any indication for a finite time singularity. Here we remark

that the authors in [38, Fig. 8], who also exploit an additional symmetry and only compute the evolution for half the

generating curve, appear to have performed a topological change to yield two touching spheres at a finite time. Given

our numerical results we believe that this heuristical topological change was not justified, and the simulation should

have been continued normally. Repeating the simulation in Figure 24 for J = 2048 and ∆t = 10−5 until time t = 100

yields very good agreement between the shapes of the curves for our two experiments, and so we are satisfied that the

evolution shown in Figure 24 approximates Willmore flow of the initial data. We remark that the discrete energy (5.2)

at time t = 1000 for the run in Figure 24 is 50.739, with the Willmore energy, (1.6) for κ = 0, for two touching spheres

being equal to 16 π = 50.265. Finally, in order to better understand the long-time behaviour of the “radius” of the two

approximate expanding spheres, we plot in Figure 25 the quantities maxI
~Xm . ~e1 and 1

4
(maxI

~Xm . ~e2 − minI
~Xm . ~e2)

over time. We fit both curves to a function of the form f (t) = a tp. For the former curve, we obtain a value p = 0.222,

while for the second curve we obtain the power p = 0.232.

5.4. Numerical results for Helfrich flow

Here we present some simulations for the scheme (WA,V
m )h, recall (4.10).

5.4.1. Genus 0 surface

We repeat the computation in [8, Fig. 6] for Helfrich flow with κ = 0 of a rounded cylinder of total dimension

1 × 4 × 1. The discretization parameters are J = 128 and ∆t = 10−3. We observe relative surface area and volume

losses of 0.00%, and we obtain the evolution in Figure 26 towards a mild dumbbell-like shape.
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Figure 15: (Em)h [∂2 I = ∂I = {0, 1}, ̺̂(0)

∂S = −̺̂
(1)

∂S =
1
2

] Evolution for the upper half of a genus 1 surface attached to R × {0} × R. Solutions at times

t = 0, 0.01, . . . , 0.1 and at time t = 0.1. We also visualize the axisymmetric surface Sm generated by Γm at time t = 0.1. On the right are plots of

the discrete energy and the ratio (5.1) and, as a comparison, a plot of the ratio rm for the scheme (Fm,⋆).

5.4.2. Genus 1 surface

Repeating the experiment in Figure 22 for Helfrich flow, until the earlier time of T = 0.5, we observe a relative

surface area loss of 0.12% and a relative volume loss of 0.00%. The evolution is shown in Figure 27, where we note

that the evolution is very different from the one in Figure 22. In particular, the toroidal surface would like to undergo a

change of topology, and close the hole at the origin to become a genus 0 surface. For the smaller time steps ∆t = 10−4

and ∆t = 10−5, the relative surface area loss is reduced to 0.01% and 0.00%, respectively, while the relative volume

losses remain zero to the displayed number of digits.

Conclusions

We have derived and analysed various numerical schemes for the parametric approximation of surface diffusion,

an intermediate flow between surface diffusion and conserved mean curvature flow, Willmore flow and Helfrich flow.

As regards surface diffusion, we propose a choice between two practical and robust schemes. A very practical lin-

ear scheme is given by (Em)h. In practice the scheme is stable, and it asymptotically distributes the vertices uniformly.

A nonlinear scheme, for which an unconditional stability bound can be shown, is given by (Fm,⋆). The nonlinearity

in (Fm,⋆) is only very mild, and so a Newton solver never takes more than three iterations in practice. Moreover,

coalescence of vertices does not occur in practice, and the ratio of largest element/smallest element appears to asymp-

totically approach some value that is significantly larger than 1, but smaller than 10. Similarly to (Fm,⋆), we presented

the scheme (Im,⋆) for the approximation of the intermediate flow. Once again, the scheme is unconditionally stable

and can be easily solved for with a Newton method

Lastly, for Willmore flow and Helfrich flow we propose the fully practical linear schemes (Wm)h and (WA,V
m )h,

respectively. Like the scheme (Em)h, they also enjoy an asymptotic equidistribution property.
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Figure 16: (Em)h [∂2I = ∂I = {0, 1}, ̺̂(0)

∂S = ̺̂(1)

∂S = 0] Evolution for an open dumbbell-like cylindrical shape attached to R× {0} ×R and R× {4} ×R.

Solution at times t = 0, 0.5, . . . , 2. We also visualize the axisymmetric surface Sm generated by Γm at times t = 0 (above) and t = 2 (below). On

the right are plots of the discrete energy and the ratio (5.1) and, as a comparison, a plot of the ratio rm for the scheme (Fm,⋆).

Appendix A. Derivation of (2.20) on ∂0 I

Here we demonstrate that (2.21a) and (2.24a) weakly impose (2.20) on ∂0I. These proofs are an extension of the

proof in [12, Appendix A], where it is shown that (2.24b) weakly imposes (2.16). First we consider (2.24a) and the

case ρ0 = 0 ∈ ∂0I.

We assume for almost all t ∈ (0, T ) that ~x(t) ∈ [C1(I)]2, κS (t) ∈ C1(I) and ~xt(t) . ~ν(t) ∈ L∞(I). These assumptions

and (2.3) imply that

C1 ρ ≤ |~x(ρ, t) . ~e1| ≤ C2 ρ ∀ ρ ∈ [0, ρ] , (A.1)

for ρ sufficiently small, and for almost all t ∈ (0, T ).

Let t ∈ (0, T ). For a fixed ρ > 0 and ε ∈ (0, ρ), we define

χε(ρ) =



(ρ)−1
∫ ρ
ε

(~x(z, t) . ~e1)−1 dz 0 ≤ ρ < ε ,
(ρ)−1

∫ ρ
ρ

(~x(z, t) . ~e1)−1 dz ε ≤ ρ < ρ ,
0 ρ ≤ ρ .

We observe that (A.1) implies that (~x . ~e1) χε is integrable in the limit ε → 0. On choosing χ = χε ∈ H1(I) in (2.24a),

we obtain in the limit ε→ 0 that

(ρ)−1

∫ ρ

0

(~x . ~e1) ~xt . ~ν

(∫ ρ

ρ

(~x . ~e1)−1 dz

)
|~xρ| dρ = −(ρ)−1

∫ ρ

0

(κS)ρ |~xρ|−1 dρ . (A.2)
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Figure 17: (Em)h [∂2I = ∂I = {0, 1}, ̺̂(0)

∂S = ̺̂(1)

∂S = 0] Evolution for an open dumbbell-like cylindrical shape attached to R× {0} ×R and R× {8} ×R.

Solution at times t = 0, 0.5, 1, 1.49, and a detail of the vertex distribution at time t = 1.49. We also visualize the axisymmetric surface Sm generated

by Γm at times t = 0 (above) and t = 1.49 (below). On the right are plots of the discrete energy and the ratio (5.1) and, as a comparison, a plot of

the ratio rm for the scheme (Fm,⋆).
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Figure 18: (Im,⋆) Evolution for a rounded cylinder of dimension 1 × 7 × 1. Plots are at times t = 0, 0.2, . . . , 5. We also visualize the axisymmetric

surface Sm generated by Γm at time t = 0.4. On the right are plots of the discrete energy and the ratio rm.
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Figure 19: (Wm)h Willmore flow for a disc of dimension 9 × 1 × 9. Solution at times t = 0, 1, . . . , 10. We also visualize the axisymmetric surface

Sm generated by Γm at time t = 1. On the right a plot of the discrete energy and of the ratio (5.1).
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Figure 20: (Wm)h Willmore flow with κ = −2 for a disc of dimension 9 × 1 × 9. Solution at times t = 0, 0.5, . . . , 3. We also visualize the

axisymmetric surface Sm generated by Γm at time t = 0.5. On the right a plot of the discrete energy and of the ratio (5.1).
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Figure 21: (Wm)h Willmore flow with κ = −2 for a rounded cylinder of dimension 2 × 6 × 2. Solution at times t = 0, 0.1, . . . , 1, and a detail of

the vertex distribution at time t = 1. We also visualize the axisymmetric surface Sm generated by Γm at time t = 1. On the right are plots of the

discrete energy and of the ratio (5.1).
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Figure 22: (Wm)h Willmore flow towards a Clifford torus. Solution at times t = 0, 0.5, . . . , 10. We also visualize the axisymmetric surface Sm

generated by Γm at time t = 10. On the right a plot of the discrete energy and of the ratio (5.1).
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Figure 23: (Wm)h Willmore flow with κ = −2 towards a torus. Solution at times t = 0, 0.1, . . . , 2. We also visualize the axisymmetric surface Sm

generated by Γm at time t = 2. Below a plot of the discrete energy and of the ratio (5.1).
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Figure 24: (Wm)h Willmore flow towards two touching spheres. In the first three plots we show the initial data, the solution at times t =

10, 100, 1000, and again at time t = 1000. We also visualize parts of the axisymmetric surface Sm generated by Γm at time t = 0 and at time t = 10.

Below a plot of the discrete energy and of the ratio (5.1).
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Figure 25: A plot of max
I
~Xm . ~e1 (upper graph) and 1

4
(max

I
~Xm . ~e2 − min

I
~Xm . ~e2) (lower graph) over time, for the simulation in Figure 24,

together with the functions fi(t) = ai tpi , i = 1, 2, with (a1, p1) = (1.013, 0.222) and (a2 , p2) = (0.863, 0.232).

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.5

 42.3

 42.4

 42.5

 42.6

 42.7

 42.8

 42.9

 43

 43.1

 0  0.2  0.4  0.6  0.8  1

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 0  0.2  0.4  0.6  0.8  1

Figure 26: (WA,V
m )h Helfrich flow for κ = 0 for a rounded cylinder of dimension 1 × 4 × 1. Solution at times t = 0, 0.5, 1. We also visualize the

axisymmetric surface Sm generated by Γm at time t = 1. On the right are plots of the discrete energy and of the ratio (5.1).
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Figure 27: (WA,V
m )h Helfrich flow for a toroidal surface. Solution at times t = 0, 0.1, . . . , 0.5. We also visualize the axisymmetric surface Sm

generated by Γm at time t = 0.5. Below a plot of the discrete energy and of the ratio (5.1).

Applying Fubini’s theorem and noting (A.1), as well as the boundedness of |~xρ| and ~xt . ~ν, yields that

∣∣∣∣∣∣(ρ)
−1

∫ ρ

0

(~x . ~e1) ~xt . ~ν

(∫ ρ

ρ

(~x . ~e1)−1 dz

)
|~xρ| dρ

∣∣∣∣∣∣ =
∣∣∣∣∣∣(ρ)

−1

∫ ρ

0

(~x . ~e1)−1

(∫ z

0

(~x . ~e1) ~xt . ~ν |~xρ| dρ
)

dz

∣∣∣∣∣∣→ 0 as ρ→ 0 .

(A.3)

On the other hand, the right hand side in (A.2) converges to (κS)ρ(0, t) |~xρ(0, t)|−1 as ρ → 0, on recalling the

smoothness assumptions on κS and ~x. Combining this with (A.3) and (2.3) yields the boundary condition (2.20)

for ρ = 0 ∈ ∂0I. The proof for ρ = 1 ∈ ∂0I is analogous.

The proof for (2.21a) is identical, on assuming that (κ − ~ν .~e1

~x . ~e1
)(t) ∈ C1(I) for almost all t ∈ (0, T ). Finally we note

that the above proof also shows that (2.28a) weakly imposes (2.27) on ∂0I, on assuming that y(t) ∈ C1(I) for almost

all t ∈ (0, T ).

Appendix B. Some axisymmetric differential geometry

Let ~x : I → R2 parameterize Γ, the generating curve of a surface S. Then ~y : I × [0, 2 π)→ R3 parameterizes S,

where

~y(ρ, θ) = (~x(ρ) . ~e1 cos θ, ~x(ρ) . ~e2, ~x(ρ) . ~e1 sin θ)T . (B.1)

On recalling that ∂s = |~xρ|−1 ∂ρ, we note that

|~ys|2 = 1 , |~yθ|2 = (~x . ~e1)2 , ~ys . ~yθ = 0 . (B.2)

In what follows, we often identify a function f defined on I × [0, 2 π) with the function f ◦ ~y−1, defined on S. For

example, it follows from (B.2) that

∇S f = fs ~ys + (~x . ~e1)−2 fθ ~yθ .

Similarly,

∇S . ~f = ~fs . ~ys + (~x . ~e1)−2 ~fθ . ~yθ ,

and so, on noting ((~x . ~e1)−1 ~yθ)s = ~0 and (~ys)θ . ~yθ = (~x . ~e1) ~xs . ~e1, we obtain that

∆S f = ∇S . (∇S f ) = fss +
~xs . ~e1

~x . ~e1

fs + (~x . ~e1)−2 fθθ .
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For a radially symmetric function f , with f (ρ, θ) = f (ρ, 0) for all (ρ, θ) ∈ I × [0, 2 π), it follows that

∆S f = (~x . ~e1)−1 (~x . ~e1 fs)s . (B.3)

We remark that a derivation of (2.13), recall also (1.2), is obtained by combining (B.1) and (B.3) to yield, on

recalling (2.6), (2.4) and (2.5), that

∆S ~y = ~yss +
~xs . ~e1

~x . ~e1

~ys + (~x . ~e1)−2 ~yθθ =


~xss . ~e1 cos θ

~xss . ~e2

~xss . ~e1 sin θ

 + (~x . ~e1)−1


(~xs . ~e1)2 cos θ

(~xs . ~e1) ~xs . ~e2

(~xs . ~e1)2 sin θ

 − (~x . ~e1)−1


cos θ

0

sin θ



= κ


~ν .~e1 cos θ

~ν .~e2

~ν .~e1 sin θ

 − (~x . ~e1)−1


(~xs . ~e2)2 cos θ

−(~xs . ~e1) ~xs . ~e2

(~xs . ~e2)2 sin θ

 = κ


(~ν .~e1) cos θ

~ν .~e2

(~ν .~e1) sin θ

 −
~xs . ~e2

~x . ~e1


~xs . ~e2 cos θ

−~xs . ~e1

~xs . ~e2 sin θ



=

(
κ − ~ν .~e1

~x . ~e1

) 
~ν .~e1 cos θ

~ν .~e2

~ν .~e1 sin θ

 =
(
κ − ~ν .~e1

~x . ~e1

)
~νS . (B.4)

Acknowledgements
The authors gratefully acknowledge the support of the Regensburger Universitätsstiftung Hans Vielberth.
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[1] E. Bänsch, P. Morin, R.H. Nochetto, A finite element method for surface diffusion: the parametric case, J. Comput. Phys. 203 (2005) 321–343.

[2] J.W. Barrett, H. Garcke, R. Nürnberg, A parametric finite element method for fourth order geometric evolution equations, J. Comput. Phys.

222 (2007) 441–462.

[3] J.W. Barrett, H. Garcke, R. Nürnberg, On the variational approximation of combined second and fourth order geometric evolution equations,

SIAM J. Sci. Comput. 29 (2007) 1006–1041.

[4] J.W. Barrett, H. Garcke, R. Nürnberg, On the parametric finite element approximation of evolving hypersurfaces in R3, J. Comput. Phys. 227

(2008) 4281–4307.

[5] J.W. Barrett, H. Garcke, R. Nürnberg, Parametric approximation of Willmore flow and related geometric evolution equations, SIAM J. Sci.

Comput. 31 (2008) 225–253.

[6] J.W. Barrett, H. Garcke, R. Nürnberg, Finite element approximation of coupled surface and grain boundary motion with applications to

thermal grooving and sintering, European J. Appl. Math. 21 (2010) 519–556.

[7] J.W. Barrett, H. Garcke, R. Nürnberg, Parametric approximation of surface clusters driven by isotropic and anisotropic surface energies,

Interfaces Free Bound. 12 (2010) 187–234.

[8] J.W. Barrett, H. Garcke, R. Nürnberg, Computational parametric Willmore flow with spontaneous curvature and area difference elasticity

effects, SIAM J. Numer. Anal. 54 (2016) 1732–1762.

[9] J.W. Barrett, H. Garcke, R. Nürnberg, A stable numerical method for the dynamics of fluidic biomembranes, Numer. Math. 134 (2016)

783–822.

[10] J.W. Barrett, H. Garcke, R. Nürnberg, Stable variational approximations of boundary value problems for Willmore flow with Gaussian

curvature, IMA J. Numer. Anal. 37 (2017) 1657–1709.

[11] J.W. Barrett, H. Garcke, R. Nürnberg, Stable approximations for axisymmetric Willmore flow for closed and open surfaces, 2018. (in prepa-

ration).

[12] J.W. Barrett, H. Garcke, R. Nürnberg, Variational discretization of axisymmetric curvature flows, 2018. http://arxiv.org/abs/1805.

04322.

[13] P. Basa, J.C. Schön, P. Salamon, The use of Delaunay curves for the wetting of axisymmetric bodies, Quart. Appl. Math. 52 (1994) 1–22.

[14] A.J. Bernoff, A.L. Bertozzi, T.P. Witelski, Axisymmetric surface diffusion: dynamics and stability of self-similar pinchoff, J. Statist. Phys. 93

(1998) 725–776.

[15] S. Blatt, A singular example for the Willmore flow, Analysis 29 (2009) 407–430.

[16] J.W. Cahn, J.E. Taylor, Surface motion by surface diffusion, Acta Metall. Mater. 42 (1994) 1045–1063.

[17] P.B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, J. Theor. Biol.

26 (1970) 61–81.

[18] B.D. Coleman, R.S. Falk, M. Moakher, Stability of cylindrical bodies in the theory of surface diffusion, Phys. D 89 (1995) 123–135.

[19] B.D. Coleman, R.S. Falk, M. Moakher, Space-time finite element methods for surface diffusion with applications to the theory of the stability

of cylinders, SIAM J. Sci. Comput. 17 (1996) 1434–1448.

[20] G. Cox, J. Lowengrub, The effect of spontaneous curvature on a two-phase vesicle, Nonlinearity 28 (2015) 773–793.

[21] A. Dall’Acqua, A. Spener, The elastic flow of curves in the hyperbolic plane, 2017. http://arxiv.org/abs/1710.09600.

[22] A. Dall’Acqua, A. Spener, Circular solutions to the elastic flow in hyperbolic space, in: Proceedings of Analysis on Shapes of Solutions to

Partial Differential Equations, (2017), volume 2082 of RIMS Kôkyûroku, Kyoto, Japan.
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