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Majority of modern techniques for creating and optimizing the geometry of medical
devices are based on a combination of computer-aided designs and the utility of the
finite element method This approach, however, is limited by the number of
geometries that can be investigated and by the time required for design
optimization. To address this issue, we propose a generative design approach that
combines machine learning (ML) methods and optimization algorithms. We evaluate
eight different machine learning methods, including decision tree-based and
boosting algorithms, neural networks, and ensembles. For optimal design, we
investigate six state-of-the-art optimization algorithms, including Random Search,
Tree-structured Parzen Estimator, CMA-ES-based algorithm, Nondominated Sorting
Genetic Algorithm, Multiobjective Tree-structured Parzen Estimator, and Quasi-
Monte Carlo Algorithm. In our study, we apply the proposed approach to study
the generative design of a prosthetic heart valve (PHV). The design constraints of the
prosthetic heart valve, including spatial requirements, materials, and manufacturing
methods, are used as inputs, and theproposed approachproduces a final design and a
corresponding score to determine if the design is effective. Extensive testing leads to
the conclusion that utilizing a combination of ensemblemethods in conjunction with
a Tree-structured Parzen Estimator or a Nondominated Sorting Genetic Algorithm is
the most effective method in generating new designs with a relatively low error rate.
Specifically, theMean Absolute Percentage Error was found to be 11.8% and 10.2% for
lumen and peak stress prediction respectively. Furthermore, it was observed that both
optimization techniques result in design scores of approximately 95%. From both a
scientific and applied perspective, this approach aims to select the most efficient
geometry with given input parameters, which can then be prototyped and used for
subsequent in vitro experiments. By proposing this approach, we believe it will replace
or complement CAD-FEM-based modeling, thereby accelerating the design process
and finding better designswithin given constraints. The repository, which contains the
essential components of the study, including curated source code, dataset, and
trained models, is publicly available at https://github.com/ViacheslavDanilov/
generative_design.
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Introduction

The pathological changes in heart valves, including stenosis or
regurgitation, have emerged as a major focus of contemporary
cardiovascular medicine (Coffey et al., 2021). Valvular Heart
Disease (VHD), resulting from such pathological changes, is a
highly prevalent problem, affecting 75.2 million individuals
globally and causing over 0.5 million deaths annually (Roth et al.,
2020). Current clinical recommendations for treatment of VHD
primarily focus on pharmacological therapy as a symptomatic
correction, while acknowledging that it cannot influence the
underlying valvular pathology. Thus, surgical or transcatheter
replacement of heart valves with artificial products is considered
the main treatment strategy (Vahanian et al., 2022).

Prosthetic heart valves (PHVs), made from biologically derived
materials that mimic the anatomical structure of the tricuspid
valve, are the premier option used to replace malfunctioning heart
valves. Although bioprostheses exhibit superior hemodynamics
compared to mechanical alternatives, studies have revealed their
susceptibility to structural failure within 10–15 years (Côté et al.,
2017; Bourguignon et al., 2018). This failure is a multivariate
process involving mechanical degradation, material stress
accumulation, and the active participation of proteolytic
enzymes and blood cells, leading to the deposition of calcium
ions on the leaflet material (Kostyunin et al., 2020). The observed
relationship between stress distribution characteristics of the
valves and their duration of operation indicates the need to
optimize the valve design in terms of shape and geometry
(Vesely, 2003; Abbasi et al., 2019).

This optimization problem is relevant for most types of
prosthetic heart valves, including surgically framed, transcatheter,
and the emerging field of polymer prostheses, as they use similar
materials and operating principles. Achieving a generalized
optimization algorithm is hindered by a multitude of factors. For
example, PHVs require several parameters to describe their leaflets,
depending on their level of complexity. Furthermore, leaflets may be
made of materials with pronounced nonlinear properties, such as
anisotropy and fiber orientation. In addition, biomechanical
modeling of certain PHV models may require the inclusion of
surrounding elements, such as a support frame or recipient
tissues, in the analysis. Despite these difficulties, various research
groups have proposed techniques for optimizing different types of
PHVs, primarily based on numerical methods implemented through
computer-aided engineering software, usually focusing on the finite
element method. Resulting in three general approaches to the
optimization of the PHV valve apparatus:

1. Manual approach. This approach involves independent
modification of the valve geometry based on the designer’s
subjective experience, with the effectiveness being assessed
through in silico simulation (Li and Sun, 2010; Xu et al.,
2018). While this method can be useful in the early stages of
prosthesis development, its results may be limited due to the
subjective nature of the optimization and the lack of systematic
consideration of the entire space of possible shapes.

2. Semi-automatic approach. To address the subjectivity of manual
optimization, researchers have proposed a semi-automatic approach
that partially automates the valve design process. This involves

generating a variety of three-dimensional valve models,
performing finite element analysis to study the stress-strain state,
and selecting the optimal shape (Hsu et al., 2015; Li and Sun, 2017;
Abbasi and Azadani, 2020). However, the finite element method,
especially in the context of modeling the effect of blood flow (Fluid-
Structure Interaction, FSI), can become computationally intensive,
potentially limiting a comprehensive investigation of the entire
spectrum of feasible geometric parameters.

3. ML approach. To overcome the limitations of FEM, some
authors have proposed to replace it with a ML based surrogate
method (Nallagonda, 2018; Balu et al., 2019; Liang and Sun,
2019; Gulbulak et al., 2021). This involves imitating the
numerical modeling process with ML algorithms to quickly
obtain results. This approach can significantly increase the
productivity of PHV research, increasing the number of
geometries under investigation by an order of magnitude
(Nallagonda, 2018; Balu et al., 2019; Liang and Sun, 2019).
However, the number of combinations grows exponentially as
new properties are introduced or the range of their values is
expanded, making this approach challenging to apply in
practice.

To address the limitations of existing approaches, this study
focuses on the use of iterative algorithms for optimal geometry
determination. Specifically, we demonstrate the effectiveness of
combining ML and optimization algorithms. ML algorithms,
trained on a sample of 11,565 designs, accurately evaluate key
geometric characteristics of PHV valves whereas, optimization
algorithms quantify the selected leaflet geometry through the
utility of a custom function. The geometry is then iteratively
modified and re-evaluated until an optimal design is obtained,
within the specified constraints. This approach to optimization is
not based on a comprehensive exploration of all possible parameter
combinations, but rather on the iterative modification of the leaflet
geometry to bring its characteristics to an optimal state.

Here, the key concept is the ability to evaluate critical parameters
of a prototype device, without the need for additional experiments,
using FEM. The proposed method, as shown in Figure 1, combines
ML and optimization algorithms to replace FEM-based modeling,
thereby speeding up the search for optimal geometry parameters of
the generated PHVs. From both a scientific and an applied
perspective, this approach aims to select the most efficient PHV
geometry with specific input parameters, which can then be
prototyped and tested in subsequent in vitro experiments.

The proposed research consists of:

• Implementing a parametric valve design (detailed in the
“Parametric Design of Valves” section).

• Acquiring initial PHV designs using FEM (detailed in the
“Data Collection” section).

• Training and validating ML models using the AutoML
methodology (detailed in the “Application of Machine
Learning in Generative Design” section).

• Searching for optimal designs using an optimization algorithm
(detailed in the “Exploration of Optimal Designs” section).

• Testing the generated PHV designs using finite element
modeling (detailed in the “Finite Element Analysis of
Generated PHV Designs” section).
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Methods

Parametric design of valves

The study is based on a three-dimensional parametric model of a
leaflet prosthesis for the mitral position, generated algorithmically
using MATLAB. The geometry of the leaflet was determined by a
combination of six parameters, as shown in Table 1 and Figure 2.

By varying the values of these parameters, within specified ranges,
theMATLAB algorithm generated a set of lines, a surface, and finally an
STL mesh composed of geometric primitives (triangles). All models are
represented as shells, described by 1,109–10464 S3-type elements per
leaflet, aligning well with the approach endorsed in modern scientific
approaches (Johnson et al., 2021). A total of 11,565 leaflet designs were
generated.

Data collection

The models were analyzed using FEM to simulate the effect of
pressure on the leaflet opening. Within the MATLAB environment a
calculation file for “Abaqus/CAE”was created, specifying the following:

• Boundary conditions. The valve model was fixed to prevent
displacement along the lower edge (“encastre” boundary
condition) in all six degrees of freedom. This was done to
mimic the method of attachment of the valve to the prosthetic
valve.

• Areas of pressure influence. A physiological pressure
corresponding to the pressure in the aortic root was applied
to the leaflet outlet surface, while a pressure corresponding to the
pressure in the ventricle was applied to the leaflet inlet surface.

FIGURE 1
Overview of the proposed multistage generative approach.

TABLE 1 Summary of key parameters for PHV design.

No Parameter Description Range

1 HGT Base height of the leaflet 10—25 mm

2 DIA Standardized diameter of the prosthesis, intended for the desired size of the leaflet 15—40 mm

3 THK Uniform thickness of the leaflet 0.1—1.0 mm

4 CVT Radius of curvature of the leaflet belly, where 0 represents a flat leaflet and 1 represents the maximum possible curvature given the
selected parameters

0–1

5 ANG Elevation or depression angle of the leaflet free edge −30°—+30°

6 ELM Young’s modulus of the material used for the leaflet 0.5—20 MPa
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The dynamic pressure changes were consistent with literature
data (Pfensig et al., 2017). However, considering that only the
opening phase was simulated, we selected a limited duration of
pressure application, 0.2 s, during which the leaflets open.

• Modeling settings. We used a simplified material model that
linearly described the biomechanics of the valve leaflet based
on the elastic modulus. Although such a material model
simplifies the behavior of the blade, this approach should
be consistent for comparative analysis and determination of
optimal geometries. In total, we utilized 20 material models
that have the potential for use in the design of a valve
apparatus. A detailed list of materials and their elastic
moduli is provided in Supplementary Appendix SA.

The results of all 11,565 numerical experiments were then
systematically analyzed using our Python algorithm. We note
that this work represents a proof-of-concept approach to semi-
automated optimization; therefore, at this stage, we deliberately limit
our analysis to the most important parameters from our perspective:
the opening area (LMN) and the maximum principal stress (STS).
The former is a primary indicator of prosthetic performance and
illustrates the effects of optimization. The latter serves as a key

criterion for leaflet material failure under sustained loads (Claiborne
et al., 2013; Chen et al., 2019), leading us to focus primarily on
optimizing the mechanical stress distribution.

All valve design generation, FEM, and data collection processes
were performed simultaneously on three high-performance
computers, each equipped with a 4-core, 8-thread Intel Core i7-
3770K processor with 3.4 GHz base clock frequency, 32 GB of RAM,
and an Nvidia Quadro RTX 4000 graphics processor with 8 GB of
video memory. The average wall clock time for each calculation and
analysis was 766 s (12.8 min).

Application of machine learning in
generative design

We use six parameters–HGT, DIA, THK, CVT, ANG, and ELM
- as features to train our model with two parameters, LMN and STS,
used as targets. Our choice of ML algorithms was motivated through
an extensive research into applied techniques within the medical
domain, including Decision Tree (Quinlan, 1986), Random Forest
(Breiman, 2001), Extra Tree (Geurts et al., 2006), Neural Network
(Hornik et al., 1989), eXtreme Gradient Boosting (XGBoost) (Chen

FIGURE 2
3D model of a PHV with parametric variations.
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and Guestrin, 2016), Light Gradient Boosting Machine (Light GBM)
(Ke et al., 2017), CatBoost (Prokhorenkova et al., 2017), and Ensemble
(Valentini and Masulli, 2002) with the addition of Stacking (Wolpert,
1992). These regressors are integrated into a single AutoML framework
for training and validation. In addition, we used a “Baseline” regressor,
which makes predictions by averaging the target from training data, and
acts as a comparison point for the 8 regressors evaluated but is not used
for PHV prototyping.

Normalization can significantly influence the performance of ML
algorithms, prompting us to investigate how different normalization
techniques influence input parameters and model output. We applied
normalization separately on input (geometric parameters of a PHV
design) and model output, focusing on 5 types of normalization: 1)
Raw–no transformation is applied, 2)MinMax–features are transformed
by scaling each feature to a given range (from 0 to 1), 3)
Standard–features are standardized by removing the mean and
scaling to unit variance, 4) Robust–features are scaled using statistics
that are robust to outliers, removing the median and scaling according to
the quantile range, 5) Power–a family of parametric, monotonic
transformations that make data more Gaussian, using the Yeo-
Johnson transformation (Yeo and Johnson, 2000) to optimize
variance and minimize skewness.

Our study consist of 11,565 designs with 9,252 designs randomly
selected for training and 2,313 designs for validation. Since the focus of this
study is the prediction of numerical scores (regression), RootMean Square
Error (RMSE) was used as the primary loss function. We implemented
and evaluated two single-output ML models, with the first model
predicting LMN scores and the second model predicting STS scores.

We applied several high-quality techniques to optimize the
performance of our ML model during training. These techniques
include golden features, k-means features, feature selection, hill
climbing, and boost on errors, which have demonstrated their
effectiveness in various areas of ML.

Golden features are a set of features with high predictive power.
They are generated by applying mathematical operators (e.g.,
summation) to pairs of original features. To identify the best features,
we generated all possible unique pairs of original features and randomly
subsampled them to 250,000 if there were more than 250,000 pairs. The
predictive power of a newly created feature was estimated using the
decision tree algorithmwith amaximumdepth of 3. Only the top 10 new
features were added to the training data as golden features.

K-means features are created using K-means clustering, which
adds features based on cluster separability. These features can
include a sample’s distance from all cluster centroids and a
sample’s cluster label.

The feature selection is done in two steps. First, a random featurewith
a uniform distribution between 0 and 1 is inserted into the data set.
Subsequently, all irrelevant features are discarded. If an existing feature
has an importance lower than the random feature added in the first step,
it is dropped.

Hill climbing is a local search algorithm that continuously moves in
the direction of increasing height to find the top of the mountain or the
best solution to the problem (Hernando et al., 2018). It stops when it
reaches a peak value where no neighbor has a higher value. Hill climbing
is a variant of the generate and test method that generates feedback to
decide which direction to move in the search space. Since the hill
climbing algorithm is a greedy approach, its search moves in the
direction that optimizes the cost (loss function). Note, however, that

this algorithm does not backtrack the search space because it does not
remember previous states.

Finally, boost on errors is an approach similar to boosting
techniques where a future model is improved using past errors.

The models were trained on a computer system equipped with
an Intel Core i9-10940X processor clocked at 3.30 GHz, an NVIDIA
GeForce RTX 3090 graphics card, 256 GB of RAM, and the
Windows 10 operating system.

Exploration of optimal designs

To determine the optimal geometries of PHV, we
implemented six state-of-the-art optimization algorithms for
sampling geometric parameters and efficiently pruning suboptimal
designs: Random Search (RS) (Bergstra and Bengio, 2012), Tree-
structured Parzen Estimator (TPE) (Bergstra et al., 2011; Bergstra
et al., 2013), CMA-ES-based Algorithm (CMA) (Auger and Hansen,
2005; Ros and Hansen, 2008; Hansen, 2016; Nomura et al., 2021),
Nondominated Sorting Genetic Algorithm (NSGA) (Deb et al., 2002),
Multiobjective Tree-structured Parzen Estimator (MOTPE) (Ozaki et al.,
2022), and Quasi-Monte Carlo Algorithm (QMC) (Bergstra and Bengio,
2012). To efficiently perform the design search procedure, we
implemented a pruning mechanism based on the Hyperband pruner
(Li et al., 2017), which demonstrated its performance in various
optimization experiments (Ozaki et al., 2020) and outperformed
benchmarks with Kurobako (Imamura, 2020) for non-deep learning
tasks. In our study, each optimization algorithm was limited to
2000 iterations.

To evaluate the geometric design parameters, we introduced our
own objective function based on the weighted harmonicmean, allowing
for direct estimation of lumen and stress scores for each PHV design.
Each PHV geometry is evaluated by the design score DSN:

DSN � 1 + α2( ) p LMNs p STSs
α2 pSTSs + LMNs

(1)

LMNs � LMN � ORFC

ORFCmax
(2)

STSs �
1 − STS

UTS
, when

STS

UTS
( )< 1

0, when
STS

UTS
( )≥ 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(3)

where LMN and STS represent the absolute lumen and stress values
obtained for a given set of geometric parameters in a design.α is a positive
factor that allows for a trade-off between LMNs and STSs, with a value
chosen such that LMNs is considered α times as important as STSs. Five
different values of α were estimated, including 0.2, 0.5, 1.0, 2.0, and 5.0 1.
Ultimate tensile strength,UTS, represents themaximum stress amaterial
can withstand before breaking when stretched or pulled. During the
optimization phase, twenty UTS values were used, ranging from 2.34 to
57.1, corresponding to common materials used in medical device

1 α � 0.2 or α � 0.5 represent cases when STSs is considered 5 and 2 times as
important as LMNs; α � 1.0 implies a perfect balance between LMNs and
STSs; α � 2.0 or α � 5.0 represent cases when LMNs is considered 2 and
5 times as important as STSs .
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prototyping.ORFC andORFCmax are the effective and geometric orifice
areas, respectively. ORFC is calculated based on FEM modeling, while
ORFCmax is equal to πr2, where r is the radius of the PHV.We note that
LMN is equal to LMNs, which is obtained directly from trainedmodels.
This is due to the fact that LMN does not require further scaling as it falls
within the interval used for quantitative design comparison. To ensure
that design comparisons are unambiguous, all design scores, DSN,
LMNs, and STSs, were normalized in the range of [0, 1].

To verify the effectiveness of the algorithms in determining the
optimal geometry of a designed device, numerical modeling was utilized
for performance evaluation. This process involved selecting 500 random
combinations of geometric parameters (100 geometries per each α value)
from the datasets obtained during optimization and usingMLmodels to
predict LMN and STS values. These combinations were then analyzed by
numericalmodeling using themethod outlined in “Data Collection”. The
criterion for accuracy, in this case the predicted versus modeled results,
was determined by calculating RMSE.

When examining differences between samples, such as predicted
vs. modeled, a paired t-test was employed as the samples were
considered dependent and used a common set of geometric
parameters. Differences were considered reliable at a significance
level of p < 0.05. The analysis was performed using the Python
library “SciPy”, which specializes in statistical processing.

Results

Initial data analysis

The dataset utilized for training consists of combinations of
geometric parameters within predefined ranges, in addition to their
corresponding results obtained through the Abaqus/CAE

simulation environment. The distribution of the features,
including HGT, DIA, ANG, CVT, THK, and ELM, was
determined to be uniform due to the random nature of their
generation, as depicted in Figure 3. Comparatively, the targets in
the dataset were represented by shifted ranges. The median for LMN
was 0.55, with an interquartile range (IQR) of 0.05–0.73 and a
minimum-maximum range of 0.002–0.999. For STS, the median was
1.13, with an IQR of 0.23–2.67 and a minimum-maximum range of
0.04–12.81. Analysis of the data set revealed the existence of highly
effective designs, with 175 of them having LMN values greater than
0.95. It is worth noting that 25% of the total dataset (2,892) failed to
exceed 0.05 in terms of LMN. A similar pattern was observed for
STS, with the majority of the sample represented by small values;
specifically, 5,496 results did not exceed 1.0 MPa. However, there
were also instances of high STS values, with 512 geometries
exceeding the threshold of 5.0 MPa.

Evaluation of machine learning models

The AutoML framework was successfully implemented and used to
train 341 models for LMN prediction and 347 models for STS
prediction. The results indicate that the lowest RMSE was achieved
by ensembles, with an RMSE of 0.126 for LMN and 0.121 for STS.
Comparison with other models showed significant inferiority in terms
of error, as illustrated in Figure 4. Further analysis and optimization
efforts will focus on the use of ensemble-based models.

The predictive performance of the obtained ensembles on the
validation subset was evaluated by comparing the predicted to actual
values, as shown in Figure 5A, and by examining the standardized
residuals, as shown in Figure 5B. Ideally, the results should be closely
aligned with a regressed diagonal line (Figure 5A) or horizontal zero axis

FIGURE 3
Distribution of input variables and output targets.
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(Figure 5B). However, further analysis revealed a relatively large
error for 64 out of 2,313 designs (2.8% of the total), exceeding the
limits of three standard deviations. Despite this, statistical
analysis showed no significant difference between actual and
predicted samples (p � 0.151).

The evaluation of the STS score (Figure 6) showed similar results
to the LMN ensemble. However, the number of geometries
exceeding the three standard deviation threshold was lower, with
35 out of 2,313 designs (1.5% of the total) observed. Statistical

analysis revealed no significant difference between the actual and
predicted samples (p � 0.092).

To formally evaluate the performance of the ensembles, various
metrics were estimated on the training and validation subsets.
Table 2 presents a summary of the results, including five error-
based metrics that provide an average measure of the proximity of
the predictions to the expected values. Furthermore, Supplementary
Appendix SB provides a comprehensive set of regression metrics
that fully describe the ensembles obtained and the distribution of

FIGURE 4
Performance of ML algorithms under study.

FIGURE 5
Comparison of actual and predicted values of LMN.
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RMSE across different ML algorithms used during training. Detailed
descriptions and equations for these metrics can be found in the
publicly available project repository 2.

In recent years, the use of ML models has become increasingly
widespread, but the interpretability of these models remains a
significant challenge. One method that has been proposed to
increase the transparency and interpretability of ML models is
the SHapley Additive exPlanations (SHAP) method (Lundberg
et al., 2017). SHAP scores are based on cooperative game theory
and have been widely used to understand the main features that
affect the performance of a given model.

In this study, we applied SHAP to evaluate feature importance of
two ensembles using a validation subset. To provide a clear
visualization of the results, we employed a bee swarm plot, which
is designed to display an information-dense summary of how top
features in a dataset affect the model’s output. In the bee swarm plot,

each PHV geometry in the given explanation is represented by a
single dot on each feature row. The X position of the dot is
determined by the SHAP value of that feature, and dots “pile up”
along each feature row to show density. In addition, a blue-
purple-red color scale was used to display the original feature
values. It is important to note that while the SHAP values
provide insight into the contribution or importance of each
feature to the model’s prediction, they do not evaluate the
quality of the prediction itself. The results of our analysis are
shown in Figure 7.

After conducting an analysis of the swarm plots for the LMN
and STS ensemble models, our findings indicate that both models
have relatively similar feature importance. Specifically, DIA and
ANG were found to have a positive contribution to the prediction
output when their values were high, and a negative contribution
when their values were low. Conversely, THK and ELM were found
to have a positive contribution to the prediction output when their
values were low, and a small negative contribution when their values
were high. Furthermore, CVT was found to have a weak prediction
contribution whilst HGT had almost no contribution in both
ensemble models. The global feature importances are depicted in
the feature rows in Figure 7. For further analysis, the distribution of
SHAP values for each feature is presented in Supplementary
Appendix SC.

Evaluation of generated PHV designs

We used a Hyperband-based pruning mechanism in conjunction
with six optimization algorithms to identify optimal PHV geometries.
Here, the search space of explored parameters was strictly defined to
match modern manufacturing standards, to ensure applicability in
medical device manufacturing, as described in Table 1, and omit
parameter values that are unfeasible in a real setting.

FIGURE 6
Comparison of actual and predicted values of STS.

TABLE 2 Evaluation of model performance on training and validation subsets.

No Metric LMN STS

Train Validation Train Validation

1 MAPE 0.116 0.118 0.093 0.102

2 WAPE 0.042 0.044 0.077 0.081

3 MAE 0.018 0.019 0.127 0.135

4 NRMSE 0.040 0.044 0.022 0.029

5 R2 98.7% 98.4% 97.0% 96.8%

2 https://github.com/ViacheslavDanilov/generative_design/blob/main/
tools/metrics.py.
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Figure 8 showcases the results from optimal design exploration.
Each optimizer performed 2000 iterations per alpha value, using five
different alpha values: 0.2 and 0.5 (optimization prioritizing STS); 1.0
(balanced optimization between LMN and STS); 2.0 and 5.0
(optimization prioritizing LMN). In total, each optimization algorithm
evaluated 10,000 designs with different characteristics (2000 iterations ×
5 alpha values). As shown in Figure 8, designs prioritizing STS (alpha
values of 0.2 and 0.5) converged faster to higher design scores. In contrast,
designs prioritizing LMN converged more slowly. Balanced designs
(alpha value of 1.0) showed intermediate convergence dynamics
whilst the best designs studied converged to a similar range of scores,
with DSN above 0.90.

As part of our optimal design exploration, we evaluated twomethods
for assessing the importance of hyperparameters: Mean Decrease
Impurity (MDI) and Functional ANOVA (fANOVA) (Hutter et al.,
2014). Bothmethods use a random forest regressionmodel to predict the
objective value based on a given parameter configuration. The accuracy
of this model directly affects the reliability of the importance scores
provided by the evaluators. For both evaluators, the number of trees in
the forest was set to 64, and themaximumdepth of the trees was set to 64.

The results of the feature importances, as depicted in Figure 9,
indicate thatMDI and fANOVA results are similar in nature to those of
SHAP. All optimization algorithms consider Young’s modulus (ELM)
and PHV thickness (THK) as the most influential parameters with a
significant impact on the optimization process. In contrast, four other
geometry parameters including ANG, CVT, DIA, andGHTwere found
to have little effect.

Finite element analysis of generated PHV
designs

The quantitative evaluation on the test subset is of utmost
importance during the in-silico verification of the optimal

designs. The results, as presented in Table 3, indicate that the
metrics for the geometries obtained during the test phase are
comparable to the values obtained during the training and
validation phases. A comprehensive set of metrics designed to
assess the accuracy of LMS and STS predictions for the three
sample groups (training, validation, and test) is detailed in
Supplementary Appendix SB.

The optimization algorithms themselves have demonstrated
remarkable performance by selecting geometric parameters of the
leaflet that result in high DSN scores. Despite a shift in the balance of
optimality towards either LMNor STS, all algorithmswere able to identify
geometries with high integral DSN scores in the range of 0.86–0.97.

A qualitative examination of the optimization results confirms
the efficiency of the algorithms. All algorithms effectively selected
parameter combinations that resulted in optimal leaflet opening
while minimizing stress, as demonstrated in Figure 10 and
Supplementary Appendix SD. The optimal leaflet models
typically exhibit high LMN opening areas while maintaining
moderate STS values, which in most cases do not exceed
2.0 MPa. This is well below the strength limit of the material
models. It is noteworthy that the optimization algorithms show
similar trends in selecting the best geometric indicators. The CMA,
NSGA, QMC, and TPE algorithms selected larger diameters
(31.0–32.2 mm) as optimal, minimized the leaflet lift angle for a
better opening, and showed a similar thickness (0.30–0.34 mm).
However, the parameters of HGT and CVT varied significantly
among the optimizers and no general trend was observed.

Discussion

The design of PHV leaflets plays a critical role in ensuring both their
efficacy and longevity (Sebastian et al., 2019; Xuan et al., 2020).
Nevertheless, these materials are susceptible to degradation and

FIGURE 7
Estimation of SHAP values for model features. All instances are drawn using the blue-violet-red color scale. Red and blue dots represent features
with high and low values respectively, while violet represents intermediate feature values.

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Danilov et al. 10.3389/fbioe.2023.1238130

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1238130


calcification, which can lead to valve malfunction (Kostyunin et al.,
2020). A major contributor to biomaterial degradation is cyclic
mechanical stress (Claiborne et al., 2013; Chen et al., 2019).
Therefore, it is imperative to optimize leaflet design based on the

distribution of mechanical stress. This is precisely why numerical
simulation has emerged as an essential foundation for such
optimization, becoming a crucial element in the advancement of
medical device research (Bologna et al., 2023) and the assessment of

FIGURE 8
Design score dynamics for different optimization algorithms.
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stress-strain patterns in specific pathological conditions within the
cardiovascular system (Di Giuseppe et al., 2021). FEM is particularly
advanced among numerical simulation tools and has been
demonstrated to be highly efficient in modeling PHVs (Borazjani,
2013; Gilmanov and Sotiropoulos, 2016; Castravete et al., 2020; Lee
et al., 2020; Chen et al., 2022). Furthermore, existing research has
demonstrated advanced optimization algorithms that enable the semi-
automatic generation and FEM analysis of significant quantities of
PHVs, facilitating the selection of optimal candidates among them (Hsu
et al., 2015; Li and Sun, 2017; Abbasi and Azadani, 2020; Gulbulak et al.,
2021). Among the most sophisticated approaches in this context, we
consider the work of Travaglino et al. (Travaglino et al., 2020). This
study developed a computational framework using a Bayesian
algorithm to optimize leaflet geometry in transcatheter aortic valves.
The authors used a specialized machine learning tool to guide the
optimization process, rather than exhaustively enumerating potential
leaflet configurations to identify the optimal solution. They employed a
combination of spline parameters and FEM based on bovine and
porcine pericardial material models to investigate approximately
1,000 leaflet designs under nominal circular deployment and
physiological loading conditions. The optimal parameter values for

the valve model were obtained, resulting in leaflet shapes that reduced
peak stress by approximately 17% compared to the initial model.

Our study builds upon this concept showcasing the application of
six state-of-the-art optimization algorithms. These algorithms not only
automate the selection of optimization directions, but also lead to the
generation of the most appropriate geometries. While these algorithms
are widely represented in ML hyperparameter search problems, their
application to the optimization of leaflet devices is novel and constitutes
a primary focus of our investigation. These algorithms differ in how
they explore and exploit the search space, balance the trade-off between
exploration and exploitation, and handle multiple objectives and
constraints. RS is a simple algorithm that randomly samples
parameters from a uniform distribution without using any
information from previous evaluations. TPE is a Bayesian
optimization algorithm that models the probability of improvement
as a function of parameters and uses a tree structure to adaptively
partition the search space. CMA is an evolutionary algorithm that
adapts the covariance matrix of a multivariate normal distribution to
generate new solutions. NSGA is a genetic algorithm that uses a non-
dominated sorting procedure to rank solutions according to their Pareto
dominance, and a crowding distance measure to maintain diversity.
MOTPE is an extension of TPE for multiobjective optimization that
uses a hypervolume indicator to guide the search toward the Pareto
front. QMC is an algorithm that uses low-discrepancy sequences to
sample parameters more uniformly than random sampling, and can
achieve faster convergence rates than RS. These algorithms have been
applied to various problems in geometry and device optimization, such
as shape, design and process optimization.

Our results showed that NSGA and TPE were the most effective
optimizers for this task. Of note, TPE successfully achieved the desired
result in less than 100 iterations, establishing these algorithms as the
preferred choice for addressing similar challenges. NSGA is a widely
used genetic algorithm that guarantees the inclusion of individuals with

FIGURE 9
Importance of geometry parameters as computed by MDI and fANOVA.

TABLE 3 Evaluation of model performance on in silico test subset.

No Metric LMN STS

1 MAPE 0.163 0.086

2 WAPE 0.032 0.074

3 MAE 0.018 0.075

4 NRMSE 0.041 0.021

5 R2 98.6% 95.5%

Frontiers in Bioengineering and Biotechnology frontiersin.org11

Danilov et al. 10.3389/fbioe.2023.1238130

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1238130


extreme values of the target functionals in the set of parents (Joshi et al.,
2021; Rego et al., 2022; Saravanamuthu et al., 2022). TPE, on the other
hand, is a Tree-Structured Parzen Estimator algorithm typically used to
optimizeMLmodel hyperparameters (Bergstra et al., 2011; 2013), and it
was intriguing to find that it was also suitable for optimizing a heart

valve design. In contrast, the Random Search algorithm performed the
worst, as expected due to its limited number of iterations.

Furthermore, in the presented sequence of “generation -
modeling - optimizer”, we incorporated an element of surrogate
FEM based on ML, which aims to accelerate the execution of

FIGURE 10
Examples of final designs resulting from the studied optimizers: epiphyses in the open state after pressure application simulation. The initial
geometry from which all algorithms started optimization is also shown.
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numerical calculations, which becomes a bottleneck in cases with
thousands of geometries in FEM. Such an approach for predicting
the stress-strain state of the leaflet and its coaptation area (Balu et al.,
2019) or the geometric orifice area (Gulbulak et al., 2021) has already
demonstrated its validity. In this study, FEM modeling of valve
biomechanics has been adapted through the integration of ML
techniques. The methodology involves the use of an algorithm to
predict the peak stress experienced by the valve leaflet, coupled with
ML evaluation of the geometric opening area of the valve when it is
in the fully open state in a prosthetic heart valve. This is done with a
primary optimization focus of increasing the leaflet opening area.

Our ML models were trained on a large sample of geometries and
materials, including animal pericardium and synthetic polymers, to
enable the optimization of the prosthetic heart valve with different
leaflet materials. Unlike previous studies that focused on PHV
performance measured by hydrodynamic efficiency and durability
(Liang and Sun, 2019; Travaglino et al., 2020), we employed ML
models with RMSE less than 13% and R2 values greater than 0.96. A
similar study by Balu et al. (Balu et al., 2019) introduced the concept of
deep learning based on FEM analysis to study the biomechanics of aortic
valve bioprosthesis deformation, achieving a valve coaptation prediction
efficiency of R2 � 0.87. In contrast to our study, their distribution of the
“predicted vs. true” plot did not show a clear division into two regions.

Our study included modeling the opening of the PHV, which
resulted in the data being split into two states, corresponding to the
open state and the case where the PHV failed to open (for example, if
the material was too stiff). In another study, Liang and Sun presented a
proof-of-concept using deep learning to design artificial aortic valves
and evaluated the qualitative and quantitative distribution of the stress
field (for a closed valve) generated by the neural network comparedwith
FEM data (Liang and Sun, 2019). The results showed a maximum
discrepancy of 4.1% between FE-calculated and ML-predicted stress.
However, it is important to note that this comparison was not made
over a wide range of parameters with extreme values, as in our study.
Overall, the prediction performance of the ML algorithm employed is
considered comparable to the above-mentioned work. Furthermore, it
was found that among the algorithms studied, ensemble
methods exhibited the highest performance for both targets,
surpassing the performance of tree-based, neural-network-
based, and gradient-boosting-based algorithms. This superior
performance is likely due to the complex and non-obvious
dependencies between parameters and target metrics present
in the dataset.

Limitations

This study presents a proof-of-concept framework for
optimizing valve leaflet geometry that is designed to showcase
the capabilities of specialized machine algorithms and
optimizers. As a result, certain constraints were deliberately
imposed on FEM.

First, we focused exclusively on the opening phase of the valve.
Literature shows that the highest stresses within the leaflet material
occur during the diastolic phase, so it is rational to evaluate this factor
throughout the cardiac cycle. However, in this work, one of our
objectives was to maximize the opening area of the leaflet apparatus,
thus limiting the scope of the in-silico investigations. Undoubtedly,

future research should include the modeling of the entire cardiac cycle
and the analysis of quantitative characteristics throughout its entirety.

Second, we deliberately excluded the prosthesis frame components
from the FEM setup by using a linear material description. The purpose
of such assumptions is to avoid being tied to a specific prosthesis design
with its unique geometry and mechanical component properties.
Comprehensive modeling of the entire construct would require
implementing descriptions of support frame properties, which vary
significantly in material composition, including metals, polymers
(Mylotte et al., 2013), and others. Researchers and engineers wishing
to apply this framework in practice could certainly augment the
assembly FEM with all relevant prosthetic components. However,
current work is intended to demonstrate the viability of the concept
of using ML optimizers. Similar considerations apply to the description
of leaflet materials - several models, especially for polymers, can be
linearly approximated within small deformation ranges. Of course,
biomaterials should ideally be described more comprehensively
(Borazjani, 2013; Hsu et al., 2015). In this case, we deliberately
simplified their description to linear for the sake of a unified
problem formulation and due to the limitations of ML algorithms in
handling complex models.

Third, the current numerical modeling setup does not
incorporate the fluid (blood) domain and the corresponding
fluid-structure interaction modeling (Borazjani, 2013; Hsu et al.,
2015; Gilmanov and Sotiropoulos, 2016). This assumption was
primarily motivated by the need for reasonable computational
times, as the development of the algorithm involved the
execution of 11,565 numerical experiments. Significant
complication by FSI modeling would exponentially increase the
computational cost, requiring either a reduction in the space of
geometries to be analyzed or an impractical increase in
computational time. The cumulative time spent on these
experiments amounted to 103 machine days, a figure that would
undoubtedly be multiplied many times over in the case of FSI.
Nevertheless, the evolutionary path of the present framework
towards the incorporation of FSI is well justified and promising,
since the effects (mainly shear stress) that occur in the leaflet
material during blood contact in the context of FSI critically
affect its internal state.

Finally, future studies could potentially benefit from the use of a
more advanced and fine-tuned computer modeling method, such as
fluid-structure interaction. Despite these limitations, the objectives
of the study were successfully achieved.

Certainly, all of the aforementioned limitations will significantly
improve and refine the accuracy of the presented framework and
thus become focal points for future work.

Conclusion

The utilization of ML algorithms has been an area of growing
interest in recent years due to their ability to automate complex
intelligent tasks. Our research has demonstrated the feasibility of
applying ML to optimize the geometry of prosthetic heart valve
leaflets, providing a new, efficient, and productive approach.
However, it was found that the performance of the coupling of the
mesh generator, explorer, and optimizer is dependent on the chosen
regressor model and optimizer model. The results of this study suggest
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that the use of an ensemble trained on FEM data in conjunction with a
Genetic Algorithm-based (NSGA) or Tree-Structured Parzen
Estimator-based (TPE) optimizer can effectively search for the
optimal configuration of prosthetic heart valve leaflets. These
findings have potential implications for the development of new
medical device design methods using ML algorithms.
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