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Abstract

Rapid damage assessment after natural disasters (e.g. earthquakes, floods) and violent
conflicts (e.g. war-related destruction) is crucial for initiating effective emergency response
actions. Remote sensing satellites equipped with multispectral and Synthetic Aperture
Radar (SAR) imaging sensors can provide vital information due to their ability to map
affected areas of interest with high geometric precision and in an uncensored manner.

The new spaceborne Very High Resolution (VHR) SAR sensors onboard the
TerraSAR-X and COSMO-SkyMed satellites can achieve spatial resolutions in the order
of 1 m. In VHR SAR data, features from individual urban structures (like buildings)
can be identified in their characteristic settings in urban settlement patterns.

This thesis presents novel techniques to support emergency response after catastrophic
events using latest generation earth observation imagery. In this context, the potential
and limits of VHR SAR imagery for extracting information about individual buildings in
an (semi-) automatic manner is investigated.

The following main novel contributions are presented. First, we investigate the po-
tential of the characteristic double bounce of a building in VHR SAR imagery to be
exploited in automatic damage assessment techniques. In particular, we analyze empir-
ically the relation between the double bounce effect and the aspect angle. Then, we
propose a radar imaging simulator for urban structures, which is based on an adapted ray
tracing procedure and a Lambertian-specular mixture model, emphasizing the geometrical
effects of the scattering. Furthermore, we propose an approach to the height estimation
of buildings from single detected SAR data. It is based on a ”hypothesis generation - ren-
dering - matching” procedure, where a series of hypotheses are generated and rendered
by the previously introduced radar imaging simulator in order to compare the simulations
with the actual VHR SAR data. Moreover, we present a method that detects buildings
destroyed in an earthquake using pre-event VHR optical and post-event detected VHR
SAR imagery. This technique evaluates the similarity between the predicted signature
of the intact building in the post-event SAR scene and the actual scene to distinguish
between damaged and undamaged buildings. Finally, we address the practical require-
ments of rapid emergency response scenarios by proposing an IT system infrastructure
that enables collaborative and distributed geospatial data processing and on-demand map
visualization.

The effectiveness of all proposed techniques is confirmed by quantitative and qualitative
experimental results obtained on airborne and spaceborne VHR SAR imagery.
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Chapter 1

Introduction

In this chapter, we give an introduction to this dissertation. In particular, we define and
present the framework of this thesis by providing an overview to remote sensing data
assisted damage assessment after natural disasters. Furthermore, we highlight the main
objectives and novel contributions of this work. Finally, the structure and organization
of this document is described.

1.1 Motivation

The reported occurrence of natural disasters, such as earthquakes, floods and cyclones, is
on the rise [1], [2], leading to an increased public awareness of the impact of catastrophic
events. In the short term, the occurrence of such events cannot be reduced by immediate
human actions, whereas long term trends may be influenced for events that are tenta-
tively linked to climate change. To understand and possibly mitigate the impact of such
catastrophic events on human beings and their environment, research is being carried out
for each of the characteristic phases of such events, i.e. before the event (early warning
systems, risk assessment, preparedness) [3], [4], [5], the moment the event occurs (disaster
alerting systems) [6], and after the event (emergency response) [7].

Emergency response is generally understood as supporting the organized intervention
of civil security entities after a catastrophic event, either caused by a natural disaster or
resulting from human conflict. Geospatial processing activities in support of emergency
response range from the provision of relevant archived map products to dedicated data
processing to provide thematic inputs into the various phases of emergency response,
e.g. situation assessment, logistical planning, detailed damage assessment, and post-
disaster reconstruction. The dynamics of the typical emergency response cycle and the
institutional structures that are in place to trigger geospatial support actions, especially
in the case of natural disasters, are detailed in [8].

Rapid damage assessment after a catastrophic event is crucial for initiating effective
emergency response actions. Remote sensing satellites equipped with optical and SAR
imaging sensors can provide important information about the affected areas since they can
map the regions of interest quickly, with a high geometric precision, and in an uncensored
manner. In [9] some of the operational aspects of using earth observation data for rapid
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damage assessment and the integration of their derived information into the information
flow for emergency response are highlighted. The authors propose novel automatic change
detection methods, using the Indian Ocean tsunami 2004 disaster as a demonstration case.
Other examples of the application of remote sensing data to rapid damage detection are
given in [10] for the 2003 Bam earthquake in Iran, and in [11] and [12] for the 2004
Central Indian Ocean tsunami, the 1999 Izmir earthquake in Turkey, and the 2006 Java
earthquake in Indonesia, respectively. Technical papers proposing novel methodologies
for earth observation data processing increasingly address topics relevant for emergency
response [13], [14], [15], [16], [17].

Current spaceborne VHR optical sensors, such as IKONOS, QuickBird, EROS-B,
WorldView-1, and the recently launched GeoEye, have meter and submeter spatial reso-
lutions. These sensors fall into the passive optical systems category and depend on sun
illumination and cloud free weather conditions to acquire useful imagery. In contrast, ac-
tive SAR sensors can acquire imagery independently of illumination conditions and with
a relative insensitivity to weather conditions. Until recently, spaceborne commercial SAR
sensors were only capable of imaging the earth surface with a spatial resolution no better
than 9 m. This changed after the new VHR SAR sensors onboard the TerraSAR-X [18],
and COSMO-SkyMed [19] satellites were launched in 2007 and 2008, providing SAR im-
agery with spatial resolutions down to 1 m. Current experimental airborne SAR systems
even reach spatial resolutions of about 0.1 m [20]. In such imagery, features from individ-
ual urban structures, such as buildings, can be identified in their characteristic settings in
urban settlement patterns (e.g. residential areas, city centers, industrial parks). There-
fore, VHR SAR revolutionizes the perspective and the goal of the analysis of radar data:
from a global study of the main scattering mechanisms and texture properties of extended
groups of buildings, to the analysis of the scattering properties of individual buildings.
Due to the meter resolution and the intrinsic reliability of the acquisition of SAR data,
it is expected that VHR SAR becomes an important source of information to support
emergency response actions after catastrophic events in urban areas.

1.2 Objectives and novel contributions of the thesis

In this thesis we present novel techniques to support emergency response after catastrophic
events using latest generation earth observation imagery. In this context, the potential
and limits of VHR SAR for extracting, in an (semi-) automatic manner, information about
individual buildings in urban areas are investigated. The focus is on the usage of publicly
available VHR SAR imagery from operational spaceborne sensors, i.e. TerraSAR-X and
COSMO-SkyMed.

In this framework we introduce five main novel contributions:

1. an empirical analysis of the properties of the double bounce scattering mechanism
of buildings;

2. a radar imaging simulator for buildings based on an adapted ray tracing procedure
and a Lambertian-specular mixture model;

3. a method to estimate the heights of buildings from single detected SAR data;
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4. a method that detects buildings destroyed in an earthquake using pre-event VHR
optical and post-event detected VHR SAR imagery;

5. an approach to integrate earth observation imagery into the operational workflow of
geospatial information processing to support emergency response actions.

In the next sub-sections the main objectives and novelties of this research work will be
briefly described.

Analysis of the properties of the double bounce scattering mechanism of buildings

The double bounce effect of buildings is an important characteristic in VHR SAR images.
It typically appears as a strong scattering mechanism caused by a corner reflector, which
is made by the front wall of the building and its surrounding ground area. It indicates
the presence of an intact building and is used as feature for the automatic detection and
reconstruction of buildings from SAR data. In order to exploit this feature effectively
for automatic damage assessment techniques its stability with respect to changes in the
viewing configuration and material properties needs to be understood in detail. Until
now, the double bounce mechanism was only studied using electromagnetic scattering
models, and medium resolution SAR images. No detailed empirical analysis using VHR
SAR data has been proposed in literature at the time of the development of this work.

In this thesis, we present an empirical analysis of the behavior of the double bounce
effect of buildings in VHR SAR data with respect to the aspect angle of buildings and
their surrounding ground material. First, we conduct polarimetric scaled building model
measurements under well-controlled conditions with a variety of viewing configurations
in the European Microwave Signature Laboratory (EMSL) of the European Commission
(EC) - Joint Research Center (JRC) [21]. Since the laboratory experiment is subject
to a number of simplifying assumptions which limit their generalization capabilities, we
validate and refine in a second phase the results from the EMSL by analyzing a set of
industrial and residential buildings with two different ground materials (grass and asphalt)
in actual VHR spaceborne SAR data.

Radar imaging simulation for buildings

Radar imaging simulators can be used to support the analysis of radar scattering effects,
assist in scene interpretation, and for training and teaching. Moreover, they can be
used for information extraction, by generating simulated images based on hypotheses and
comparing them with measured images, as proposed in this thesis for estimating building
heights from single detected VHR SAR imagery, and for detecting damaged buildings
using VHR optical pre-event and VHR SAR post-event imagery. Especially in the latter
use cases, surface roughness parameters and dielectric properties of the materials in the
scene are generally not known a priori, so that electromagnetic models such as the Physical
Optics (PO) and Geometrical Optics (GO) approximations [22], the Finite-Difference
Time-Domain method (FDTD) [23], or the Integral Equation method (IEM) [24] cannot
be used to calculate the backscattering from the surfaces.

Therefore, we propose in this thesis as radar imaging simulator that is relatively simple
to implement and that finds a balance between accuracy and efficiency. The main goal
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of the proposed method is to obtain a precise simulation of the geometry of objects in
SAR imagery, rather than a detailed simulation of the radiometry. The simulator is based
on an adapted ray tracing procedure to determine which surfaces of a generic object are
visible. The backscatter contributions are calculated by means of a novel Lambertian-
specular mixture model. We illustrate its efficiency on two rather different structures, a
rectangular gable roof building and an Egyptian pyramid.

Building height estimation from single detected VHR SAR imagery

Building volume is the product of the spatial extent of a built-up structure and its height.
It is an indirect measure for population density, which is an essential parameter in impact
assessment for emergency response. Furthermore, the height of a building is a structural
indicator about the status of a building after a catastrophic event, i.e. whether it is
still structurally intact. Hence, height determination of buildings is a key issue for post-
emergency event information extraction in urban areas.

Currently reported methods for height extraction from SAR data rely on multidimen-
sional data, where the same area is imaged from different flight paths, such as Inter-
ferometric SAR (InSAR), multistatic SAR, multiaspect SAR, or circular SAR. Opera-
tional spaceborne VHR SAR sensors have revisit times of several days (e.g. 11 days for
TerraSAR-X), limiting the usefulness of multidimensional data to support fast emergency
response.

In this thesis, we present a novel concept for the height estimation of buildings from
single detected SAR data. The proposed approach is based on the definition of a hy-
pothesis on the height of the building and on the simulation of a SAR image for testing
that hypothesis. A matching procedure is applied between the estimated and the actual
SAR image in order to test the height hypothesis. The process is iterated for different
height assumptions until the matching function is optimized and thus the building height
is estimated.

Earthquake damage assessment of buildings using VHR optical and SAR imagery

Information on the impact of a catastrophic event can be derived from suitable satellite
imagery by comparing reference data before the event (pre-event) to imagery acquired
shortly after the event (post-event). The advantage of SAR imagery is being independent
of cloud conditions and not requiring the sun illumination. Suitable SAR data availabil-
ity directly after an event is thus, in principle, only based on the SAR sensor’s orbiting
characteristics. Spaceborne VHR SAR only became available recently, so that their data
archives have limited pre-event imagery. Consequently, VHR SAR is not yet a reliable
source of pre-event reference data. In contrary, optical VHR sensors have existed for al-
most a decade and have already imaged large parts of the earth. The increased availability
of this type of sensors and their growing image archives (which are frequently updated),
make VHR optical data well suited as the pre-event reference data source.

Considering the above mentioned practical difficulties, the best combination of im-
agery for rapid damage assessment is spaceborne VHR optical for the pre-event imagery
and spaceborne VHR SAR for post-event imagery. However, they cannot be compared
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directly in a change detection approach because both types of data have entirely different
radiometric and physical image formation characteristics.

In this thesis, we present a novel method that detects buildings destroyed in an earth-
quake using pre-event VHR optical and post-event detected VHR SAR imagery. In the
first step, the 3-D parameters of a building are estimated from the pre-event optical im-
agery. Second, the building information and the acquisition parameters of the VHR SAR
scene are used to predict the expected signature of the building in the post-event SAR
scene assuming that it would not be affected by the event. Third, the similarity between
the predicted image and the actual SAR image is analyzed. If the similarity is high, the
building is likely to be still intact, whereas a low similarity indicates that the building is
destroyed. A similarity threshold is used to classify the individual buildings.

Distributed geospatial data processing functionality to support collaborative and rapid
emergency response

Emergency response actions are at local or regional scales, thematically specific (e.g.
classification of individual urban structures), and have stringent timing requirements for
the delivery of the relevant data layers. The main requirements for geospatial support
activities when responding to a call for emergency response support can be summarized
as: 1) the collection of data from different archives and acquisition capabilities; 2) the
need for customized rapid visualization for each of the actors in the emergency response
community; and 3) the need to trigger, in near real-time, geospatial processing tasks,
organize collaborative analysis (e.g. manual feature capturing by photo-interpreters),
and inform decision makers with tailored output. Often, these requirements are only met
in an ad hoc manner, whereas the success and effectiveness of using geospatial data to
support emergency response strongly depends on the personal experience of each team
member, as well as the overall experience of the team.

In this thesis, we propose common steps for using geospatial data to support emer-
gency response actions. This effort aims at increasing the efficiency of analyzing the data
and the overall effectiveness of using geospatial data for supporting the relief effort. In
particular, we propose a novel approach, based on an IT system infrastructure, to collate
geospatial feature data from distributed sources and integrate them in image processing
and visualization. The IT system infrastructure enables rapid collaborative mapping,
support for in-situ data collection, customized on-demand image processing, geospatial
data queries, and near instantaneous map visualization.

1.3 Structure of the thesis

This thesis is organized in 9 chapters.
The present chapter pointed out the motivation for this thesis, and highlighted the

objectives as well as the main novel contributions.
Chapter 2 describes the principles of real and synthetic aperture radar. The geometric

effects of the side looking geometry of SAR are highlighted, which are especially important
for analyzing buildings in VHR SAR data. Furthermore, the polarimetric parameters
and decompositions used to analyze the EMSL data are explained. Finally, different
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SAR acquisition modes are presented together with the characteristics of operational
spaceborne VHR SAR sensors.

Chapter 3 investigates the appearance of buildings in VHR SAR imagery. In particular,
the main characteristics of idealized rectangular flat and gable roof buildings are presented.
Using actual VHR SAR imagery, specific scattering phenomena are discussed, which often
limit the robustness of automatic building detection and reconstruction techniques.

Chapter 4 presents the empirical analysis of the relation between the double bounce
effect and the aspect angle of a building in VHR SAR data. First, we focus the attention
on the laboratory experiment. Then, in a second stage, we conduct the analysis of the
actual spaceborne VHR SAR data.

Chapter 5 presents the radar imaging simulator. First, the enhanced ray tracing pro-
cedure is explained in detail. Then the Lambertian-specular mixture model is introduced
before its main characteristics are discussed. The simulator is one of the core components
for the methods introduced in Chapter 6 and Chapter 7.

Chapter 6 presents the method for building height estimation from single detected
VHR SAR imagery. The characteristics of the method are highlighted using a large set
of buildings imaged by airborne and spaceborne VHR SAR sensors with varying viewing
configurations from the city of Dorsten, Germany.

Chapter 7 introduces the method for detecting buildings destroyed in an earthquake
using pre-event VHR optical and post-event detected VHR SAR imagery. It relies on
concepts presented in Chapter 6. As test case we use a subset of the town of Yingxiu,
China, which was heavily damaged in the Sichuan earthquake of May 12, 2008.

Chapter 8 presents an IT system enabling distributed geospatial data processing to
support collaborative and rapid emergency response. First, we discuss the typical sequence
of geospatial support activities carried out for emergency response. Then the IT system
architecture is described in detail. In this context we also highlight the integration of
the method introduced in Chapter 7 into the proposed infrastructure. The usage of
the system is explained for a damage assessment scenario for the Lebanon armed conflict
between Lebanese and Israeli forces in July 2006 using VHR optical imagery. Furthermore,
using the Sichuan earthquake 2008 as test case, we demonstrate the system for a damage
assessment scenario using VHR SAR imagery.

Finally, Chapter 9 draws the conclusions of this thesis. Furthermore, future develop-
ments of the research activity are discussed.
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Chapter 2

Fundamentals

In this chapter we review the basic principles of radar and radar imaging systems. First,
we introduce the radar equation before we highlight the fundamentals of Real Aperture
Radar (RAR) and SAR. Then we discuss some important characteristics of SAR imagery,
which are relevant for the understanding of the appearance of buildings in VHR SAR
data. Furthermore, we describe the basics of polarimetry and highlight some important
polarimetric parameters and decompositions used to analyze the EMSL data. Finally,
we explain some common acquisition modes implemented in state of the art VHR SAR
sensors, before we outline the main characteristics of the TerraSAR-X and COSMO-
SkyMed sensors.

2.1 Radar equation

Radio detection and ranging (radar) systems are active systems which measure the scat-
tering of a transmitted pulse in a narrow microwave frequency band (see Table 2.1). The
scattering of the transmitted microwave pulse is primarily determined by the geometry
and dielectric properties of the target and the transmit/receive configuration of the SAR
sensor. In the following we will only consider monostatic systems, i.e. transmitter and
receiver antenna are the same, or their relative distance is negligible. In this context, the
scattering recorded at the receiving antenna is also termed backscattering.

Table 2.1: Microwave frequency bands.

Band Frequency (GHz) Wavelength (cm)
UHF 0.3 - 1.0 100.0 - 30.0

L 1.0 - 2.0 30.0 - 15.0
S 2.0 - 4.0 15.0 - 7.5
C 4.0 - 8.0 7.5 - 3.8
X 8.0 - 12.0 3.8 - 2.5
Ku 12.0 - 18.0 2.5 - 1.7
K 18.0 - 27.0 1.7 - 1.1
Ka 27.0 - 40.0 1.1 - 0.75
V 40.0 - 75.0 0.75 - 0.40
W 75.0 - 100.0 0.40 - 0.27
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Figure 2.1: Geometry of scattering from target.

The relation between the transmitted power PT , the power returned by the target PR,
and the power recorded at the receiving antenna PE is described by the radar equation
(see Figure 2.1) [25]. Considering an isotropic radiator, the emitted energy propagates
uniformly in all directions. The non-directional power density SN at the target with
distance r is given by:

SN =
PT

4 · π · r2
. (2.1)

Radar systems typically use directional antennas to form a small beam. These antennas
have an increase of the power density in the direction of the beam, which is called antenna
gain G:

G =
4 · π · AA · Ka

λ2
, (2.2)

with AA being the geometric antenna area, Ka a factor expressing the efficiency of the
antenna, and λ the wavelength. Then, the directional power density SD at the target is
given by:

SD = SN · G. (2.3)

The power returned from the target does not only depend on the power density at the
target itself, but also on the Radar Cross Section (RCS) σ, which is a measure of the
reflective strength of a target. Assuming that the target is small with respect to the radar
beam, it is defined as:

σ = 4 · π · r2 · PR

PI

, (2.4)

with PI being the incident power. The power returned from the target can be written as:

PR = SD · σ. (2.5)

Since we consider here the monostatic case the transmitter→target and target→receiver
distances are the same. Furthermore we can assume that the antenna gains of the trans-
mitting and receiving antennas are equal, and thus the power received at the sensor is

8



CHAPTER 2. FUNDAMENTALS

La

Le

Swath

θ

Satellite track

Radar footprint

Nadir

Antenna

Azimuth direction

Sh

Figure 2.2: Side looking geometry of imaging radar systems.

given by:

PE =
PR · AA · Ka

4 · π · r2 · L =
PT · G2 · λ2 · σ
(4 · π)3 · r4 · L , (2.6)

with L being a factor for the system losses.
An important factor for the assessment of the quality of radar measurements is the

Signal-to-Noise Ratio (SNR) :

SNR =
PE · τ
k · K =

PT · G2 · λ2 · σ · τ
(4 · π)3 · r4 · L · k · K , (2.7)

with k denoting the Boltzmann constant, K the noise temperature and τ the microwave
pulse duration. The higher the SNR is, the less disruptive the noise is, and hence the
better it is to detect also weak signals in the recorded data.

2.2 Real aperture radar

Airborne and spaceborne imaging radar systems, such as RAR and SAR, illuminate the
scene in side looking geometry (see Figure 2.2). The antenna of the radar system is
mounted on a platform in such a way that the horizontal and vertical axes of the antenna
are parallel and orthogonal to the azimuth direction, respectively. The angle between
Nadir and the radar beam direction is called the incidence angle θ.

The footprint of the main lobe of the radar beam on the ground can be approximated
by an ellipse with the principal axis:

Wx = r · θa =
hS · θa

cos(θ)
, (2.8)
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Figure 2.3: Angles and footprint dimensions of imaging radars. (a) Range direction. (b) Azimuth
direction.

Wy =
r · θe

cos(θ)
=

hS · θe

cos2(θ)
, (2.9)

θa =
λ

La

, (2.10)

θe =
λ

Le

, (2.11)

where Wx and Wy refer to the axes parallel and orthogonal to the flight trajectory, re-
spectively, La and Le to the antenna dimensions (see Figure 2.3), and hS to the sensor
flight height.

For a RAR system, the azimuth resolution δra is determined by (2.8) and hence is
given by the size of the antenna, the wavelength, and the distance between sensor and
target [hS/ cos(θ)]. Indeed, a spaceborne platform with an antenna with 5 m length in
azimuth, which is flying with a low altitude of 300 km and measuring with a wavelength
of 0.1 m (3 GHz) with an incidence angle of 50° only achieves an azimuth resolution of
about 9.3 km.

Two objects located in the same azimuth resolution cell can only be resolved by the
sensor if their distance in range direction is greater than the spatial extent of an individual
microwave pulse. Otherwise, the echoes of the objects will overlap. The microwaves
propagate at light velocity c and travel the distance between the radar sensor and the
target twice: from the transmitter to the target and vice versa. Thus, the slant range
resolution δslr is given by:

δslr =
c · τ
2

, (2.12)

highlighting that it is only a function of the pulse duration. The ground range resolution
δgr depends on the incidence angle and is calculated by projecting δslr geometrically on
the ground plane (see Figure 2.4):

δgr =
c · τ

2 · sin(θ)
. (2.13)
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Figure 2.4: Geometry in slant- and ground range projection.

It is not possible to reduce the pulse duration arbitrarily in order to achieve a good
range resolution, since this would imply a low emitted/return power and consequently
a low SNR. Instead, pulse compression techniques with matched filter processing are
used, achieving sufficient range resolutions and high SNR at the same time. With these
techniques δslr and δgr are related to the frequency bandwidth B of the transmitted radar
pulse by:

δslr =
c

2 · B , (2.14)

δgr =
c

2 · B · sin(θ)
. (2.15)

The used waveform is known as linear frequency modulated chirp. In Figure 2.5 we show
the schematic view of the real part (Figure 2.5a) and the time-frequency relation (Figure
2.5b) of chirp signals. The instant frequency follows a raising linear ramp with duration
T and bandwidth B.

2.3 Synthetic aperture radar

We highlighted in the previous section that due to practical limitations RAR systems
have a poor azimuth resolution. This is especially valid for spaceborne sensors, where
the distance between sensor and target is very large. Instead, SAR systems can consider-
ably improve the azimuth resolution by processing the phase information of the complex
signals.

Figure 2.6 shows the principle of SAR. A point target is illuminated by the SAR beam
during a time span depending on Wx, in which the platform is moving. During this time,
which is called integration time, a SAR system records the phase history of the signal.
By exploiting the Doppler shifts of the complex signals, different objects can be resolved,
even if they are located in azimuth direction closer than the real azimuth aperture of the
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Figure 2.5: Schematic view of chirp signal. (a) Real part of a chirp pulse. (b) Time-frequency relation.

antenna. The synthetic aperture corresponds to a synthetic antenna length Lsa which is
equal to the distance travelled by the sensor in which a target is illuminated by the beam:

Lsa = Wx =
hS · λ

La · cos(θ)
. (2.16)

The achieved angular aperture in azimuth direction of SAR is half of the one of RAR:

θsa =
λ

2 · Lsa

. (2.17)

The azimuth resolution δa of SAR is given by:

δa ≈ r · θsa =
λ · hS

2 · Lsa · cos(θ)
=

La

2
, (2.18)

demonstrating that it is only dependent on the length of the actual antenna, but not on
the distance between sensor and target.

2.4 Characteristics of SAR imagery

2.4.1 Geometric distortions

The side looking geometry of SAR together with non-flat terrain causes geometric dis-
tortions, such as foreshortening, and relief displacement. Furthermore, it is source for
layover- and shadow effects, which are visible as relatively bright and dark regions in
SAR imagery, respectively.

Foreshortening: In Figure 2.7a we show the foreshortening phenomena, which is a
dominant effect in mountainous areas. Inclined surfaces, which are oriented towards the
sensor, appear shortened in SAR imagery. For instance distance AB is much longer then
its projection A′B′ on SAR slant range image space. The slant range compression results

12



CHAPTER 2. FUNDAMENTALS

La

t

θa θa θa
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Figure 2.6: Principle of SAR. The point target is illuminated for the duration the sensor travels distance
Wx that is the length of the synthetic antenna.

in a brighter area A′B′, since it contains the entire energy scattered by the longer AB
area.

Relief displacement: SAR measures the distances between an object and the sensor.
Hence, if the inclination of the surface is larger than the incidence angle, the top of the
elevated structure is shifted in the image towards the sensor, as shown in Figure 2.7b.
Even so that A is located on the ground in front of the elevated point B, the projection
on the SAR slant range space results in a reversed order, i.e. B′ is closer to the sensor
than A′.

Layover: The layover effect is related to the relief displacement. If a slope is steeper
than the radar beam, parts of the ground surface, the slope facing the sensor, and parts
of the slope turned away from the sensor are equidistant to the SAR antenna. Therefore,
their backscattering return to the sensor at the same time, causing the layover effect,
whereas the different signals cannot be separated anymore. For instance, in Figure 2.7c,
the slope BC is steeper than the incidence angle of the radar beam so that AB, BC,
and CD are located within the same distance to the sensor. Hence, their backscattering
overlays in the area C ′B′ + A′B′ + C ′D′.

Shadow: Shadows are areas where no backscattering is recorded at the sensor, because
they are occluded from the radar beam. This occurs when surfaces which are turned away
from the sensor are steeper than the SAR illumination, as shown in Figure 2.7d. The area
between BD can not be illuminated by the radar beam, since BC is steeper than the
radar beam, causing the shadow area B′D′.

13



2.4. CHARACTERISTICS OF SAR IMAGERY

Sensor

A

B

A’ B’

(a)

Sensor B’

B

A

A’

(b)

Sensor

C

A B

D

C’B’+A’B’+C’D’

(c)

Sensor B’ D’

B

CA D
(d)

Figure 2.7: Geometric effects of SAR. (a) Foreshortening. (b) Relief displacement. (c) Layover.
(d) Shadow.

.

2.4.2 Surface scattering

The scattering of microwaves from a surface is composed by a mix of specular and Lamber-
tian scattering, depending on the surface roughness σs with respect to the wavelength [22].
For a perfectly smooth (σs ≪ λ) and infinitely large (size ≫ λ) surface, the field is entirely
scattered in specular direction (see Figure 2.8a). Hence, no backscattering is recorded by
the sensor. A perfectly rough surface (σs ≫ λ) instead scatters according to the Lam-
bertian cosine law (see Figure 2.8c). For a slightly rough surface (σs < λ) the scattering
is characterized by a large specular component, and a Lambertian component with less
power scattered in all directions (see Figure 2.8b). The rougher the surface, the weaker
are the specular and the stronger are the Lambertian components.

Besides being dependent on the surface roughness, the scattering is also influenced by
the relative dielectric constant ǫr and the relative permeability µr of the surface material.
For SAR imaging the influence of µr is negligible and therefore µr = 1. ǫr is a complex
number that depends on the dielectric properties of the material and varies with respect
to the material moisture content and the SAR frequency. Materials with low ǫr have less
reflectivity and hence a higher penetration into the medium.
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Figure 2.8: Specular and Lambertian scattering from surfaces (adopted from [22]). (a) Scattering from
smooth surface. (b) Scattering from slightly rough surface. (c) Scattering from rough surface.
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Figure 2.9: Coherent sum of individual scatterers.

2.4.3 Speckle noise

SAR data are affected by a characteristic noise called “speckle”, which causes the granular
appearance of SAR imagery. In reality it is not a noise effect but the result of constructive
and destructive interferences between the complex returns from the scatterers in a reso-
lution cell. Since the resolution cell is large compared to the wavelength, N targets are
present in one cell. Their individual scattering contributions sum up coherently resulting
in a single complex value measured at the sensor (see Figure 2.9):

A · eiϕ =

N∑

n=0

An · eiϕn , (2.19)

with A being the modulus and ϕ the phase. Even so that the speckle effect is not
random as it depends on the scatterers present in the scene, it is often modeled as random
multiplicative noise effect. It can be reduced by averaging correlated samples implying
a reduction of the spatial resolution. Multilooking techniques average samples directly
during the processing of the SAR signals (image formation), while speckle filters are
applied to the processed SAR image [26].
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2.5 Radar polarimetry

The characteristics of a scatterer influence the polarimetric parameters of the scattered
electromagnetic wave. Consequently, using radar polarimetry [27], the polarimetric char-
acteristics of a scatterer can be derived. With this information it is possible to distinguish
between different scattering mechanisms and to calculate physical parameters from the
investigated scene.

2.5.1 Scattering matrix

To determine the scattering behavior of a target, the relationship between the polarization
characteristics of the incident and scattered waves is investigated. The polarization states
of both waves can be described as a vector, so that the polarization behavior of the target
can be represented by:

[
~Es

H

~Es
V

]
= [S] ·

[
~Ei

H

~Ei
V

]
, (2.20)

[S] =

[
SHH SHV

SV H SV V

]
, (2.21)

with ~Ei denoting the incident field and ~Es the scattered field. The scattering matrix [S] is
obtained from the magnitudes and phases measured by the four channels of a polarimetric
radar. H and V denote the horizontal linear and vertical linear polarizations, respectively.
The first index refers to the polarization of the transmit antenna, and the second to the
one of the receive antenna, so that HV refers to the combination of a H polarized transmit
and V polarized receive antenna. HH , and V V , are referred to as co-polarized channels,
while HV and V H are called cross-polarized channels. In the monostatic case, which we
will consider in the remainder of this thesis, [S] is symmetric, as the reciprocity property
holds for most targets and SHV = SV H . Note that also other polarizations with orthogonal
states can be used, such as left and right circular.

2.5.2 Polarimetric parameters

Total power

The total power P received by a polarimetric radar is the sum of the squared modulus of
all the elements of the scattering matrix.

P = |SHH |2 + 2 · |SHV |2 + |SV V |2. (2.22)

Co-polarized correlation coefficient

The Co-polarized Correlation Coefficient (CCC), permits separating even and odd bounce
contributions by analyzing its phase information. It is given by:

CCC =
〈SHH · S∗

V V 〉√
〈|SHH |2〉 · 〈|SV V |2〉

0 ≤ |CCC| ≤ 1

0° ≤ ∠CCC ≤ 180°
(2.23)
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where Spp indicates the pp-coefficient (p={H, V }) of the scattering matrix, ∗ is the com-
plex conjugate operator, and 〈.〉 is the average operator.

If the magnitude of CCC is unity, the received signals from the two channels are
linearly related. If it is less than one it may mean that the backscattering at the two
channels is not directly related, that noise is present, or that the received waves are only
partially polarized.

The CCC phase angle is the phase difference between the two co-polarized channels.
This value can assist in classifying a pixel, as it depends on the number of bounces that
the wave experiences. An ideal single bounce (or odd-bounce) scatterer has a CCC phase
of 0°, while an ideal double bounce (or even-bounce) scatterer has a CCC phase of 180°.
In practice, this parameter shows some variations, so that odd or even-bounce scattering
mechanisms are characterized by a CCC phase range near the ideal values.

2.5.3 Polarimetric decompositions

Coherent decompositions

Coherent decompositions express the measured scattering matrix as a combination of the
scattering returns of simpler objects:

[S] =
I∑

i=1

cs,i · [S]i, (2.24)

with [S]i denoting the response of each of the I canonical objects, and cs,i denoting the re-
spective weight with which [S]i contributes to [S]. An large number of sets [S]i; i = 1, . . . , I
can be used to decompose the scattering matrix, but only some of them are actually use-
ful to interpret the information contained in [S]. Note that coherent decompositions can
only be employed effectively if the incident and the scattered waves are entirely polarized,
which is only valid for coherent targets, i.e. point/pure scatterers.

A widely used coherent decomposition is the Pauli decomposition [28], which uses the
Pauli basis ΨP to decompose the scattering matrix:

ΨP :
1√
2
· {[σ]i}, i = 0, 1, 2, 3 (2.25)

where

[σ]0 =

[
1 0
0 1

]
, [σ]1 =

[
1 0
0 −1

]
, [σ]2 =

[
0 1
1 0

]
, [σ]3 =

[
0 −1
1 0

]
, (2.26)

are the Pauli spin matrices. The Pauli decomposition is given by:

[S] =

[
SHH SHV

SV H SV V

]
=

αp√
2
· [σ]0 +

βp√
2
· [σ]1 +

γp√
2
· [σ]2, (2.27)

with

αp =
SHH + SV V√

2
, βp =

SHH − SV V√
2

, γp =
√

2 · SHV . (2.28)
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The first summand in (2.27) refers to the scattering from a general odd-bounce scattering
target, like a sphere, a plate or a trihedral. The second term represents the contributions
from a dihedral, or, in general, scattering characterized by even-bounce. The third term
represents those scatterers which return the orthogonal polarization of the incidence wave,
such as the volume scattering produced by forest canopy.

The coefficients αp, βp and γp are the factors by which the associated matrices need to
be weighted to obtain the original scattering matrix. The total power (2.22) is given by:

P = |αp|2 + |βp|2 + |γp|2, (2.29)

so that the values |αp|2, |βp|2, and |γp|2 denote the scattered power by odd-bounce, even-
bounce, and volume scattering, respectively.

Incoherent decompositions

In the previous section we pointed out that coherent decompositions can only characterize
pure scattering mechanisms. However, in reality, scatterers are typically not ideal so that
the returned waves are only partially polarized. In order to extract the polarimetric
information of these returns, a statistical analysis of the average covariance 〈[C]〉 and
coherency 〈[T ]〉 matrix can be performed with:

[C] =




|SHH |2

√
2 · SHH · S∗

HV SHH · S∗
V V√

2 · SHV · S∗
HH 2 · |SHV |2

√
2 · SHV · S∗

V V

SV V · S∗
HH

√
2 · SV V · S∗

HV |SV V |2



 , (2.30)

and

[T ] =
1

2
·




|SHH + SV V |2 (SHH + SV V )(SHH − SV V )∗ 2(SHH + SV V )S∗

HV

(SHH − SV V )(SHH + SV V )∗ |SHH − SV V |2 2(SHH − SV V )S∗
HV

2 · SHV · (SHH + SV V ) 2 · SHV · (SHH − SV V )∗ 4 · |SHV |2



 .

(2.31)

The 〈.〉 matrices are computed by averaging separately each of its elements, which can be
achieved either by multilooking the SAR image, or by means of a sliding window.

The objective of the incoherent decompositions is to separate 〈[C]〉 and 〈[T ]〉 as the
combination of second order descriptors, corresponding to simpler or canonical objects:

〈[C]〉 =
I∑

i=1

cc,i · [C]i, (2.32)

〈[T ]〉 =

I∑

i=1

ct,i · [T ]i, (2.33)

with [C]i and [T ]i denoting the canonical responses, and cc and ct the respective coeffi-
cients.
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A commonly used incoherent decomposition is the H/A/ᾱ decomposition [29], which
is based on an eigenvalue decomposition. It can be shown that:

〈[T ]〉 =
3∑

i=1

λe,i · ~ui · ~u+
i , (2.34)

with + denoting the conjugate transpose operator, and λe,i the eigenvalues. ~ui are the
eigenvectors:

~ui =
[
cos αi sin αi · cos βi · ejϕe,i sin αi · cos βi · ejυe,i

]T
. (2.35)

υe and ϕe are phase terms without direct interpretation. Instead, the α angle is related
to the scattering mechanism:

• α ≈ 0: single bounce scattering;

• α ≈ π/4: volume scattering;

• α ≈ π/2: double bounce scattering.

The β angle is the orientation of the target corresponding to the scattering mechanism
determined by α. A more advanced analysis of the physical information can be achieved
by the calculation of the following parameters:

• Total power:
P = λe,1 + λe,2 + λe,3 (2.36)

• Eigenvalue probabilities:

pe,i =
λe,i∑3
i=1 λe,i

(2.37)

• Entropy:

H = −
3∑

i=1

pe,i · log3(pe,i) (2.38)

• Anisotropy:

A =
λe,2 − λe,3

λe,2 + λe,3

(2.39)

• Mean α angle:

ᾱ =
3∑

i=1

pe,i · αi (2.40)

The eigenvalues express the significance of the corresponding eigenvector (or scatter-
ing mechanism). The composition of scattering mechanisms is analyzed by means of the
entropy and the anisotropy. The entropy and anisotropy determine the degree of random-
ness of the scattering process. From a practical point of view, the anisotropy can only be
employed as a source of information when H > 0.7, since for lower entropies the second
and third eigenvalues are highly affected by noise.
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Figure 2.10: The H/α plane and the clustering zones (adopted from [29]).

Considering H, A, and ᾱ, an unsupervised classification scheme (see Figure 2.10) is
defined, which is based on the projection of the pixels on the H/α plane. The plane is
bound by a curve taking into account that for high entropies the scattering mechanisms
cannot be classified reliably anymore.

2.6 SAR operation modes

Several sensor operation modes for acquiring SAR data were developed in the past. The
most common modes which are implemented in spaceborne SAR missions are StripMap
(SM), SpotLight (SL), and ScanSAR (SC).

The SM mode (see Figure 2.11a), which is in fact the mode presented in detail in Section
2.3, is a standard mode in SAR. The radar antenna has a fixed viewing angle with respect
to the platform flight path. The antenna records, while the platform is moving along the
azimuth direction, the return from the footprint, which covers a theoretically unlimited
strip on the ground.

The SL mode (see Figure 2.11b) aims at improving the azimuth resolution. The radar
antenna steers the beam direction to illuminate the required scene for a longer period
compared to the standard SM mode. A larger synthetic aperture is created by dedicated
processing, resulting in a better azimuth resolution. Due to the antenna steering, the use
of the SL mode decreases the ground coverage of the acquisition. The hybrid SM/SL mode
offers a compromise between better azimuth resolution than in SM mode, and increased
ground coverage with respect to the SL mode [30].

The SC mode (see Figure 2.11c) provides a larger swath. The larger coverage is ob-
tained by scanning several adjacent sub-swaths with quasi-simultaneous beams, each with
a different incidence angle. This results in a worse azimuth resolution compared to the
SM mode because the same azimuth bandwidth is used for the sub-swaths. Note that the
SC mode is not of interest for VHR SAR.
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(a) (b)

(c)

Figure 2.11: SAR operation modes. (a) StripMap mode. (b) SpotLight mode. (c) ScanSAR mode.

2.7 VHR SAR sensors

Until recently, SAR images with resolutions in the order of 1 m could only be obtained by
airborne sensors. The first spaceborne VHR SAR sensors became available with the launch
of the German TerraSAR-X satellite (Figure 2.12a) and the Italian COSMO-SkyMed
constellation (Figure 2.12b). TerraSAR-X is fully operational and will be complemented
by the TanDEM-X mission [31], which supports the acquisition of single pass InSAR data
to produce a global Digital Elevation Model (DEM) according to the HRTI-3 specification
[32]. Instead, the COSMO-SkyMed program consists in a constellation of four satellites
whereas three were launched successfully so far.

The TerraSAR-X satellite is equipped with a high resolution polarimetric SAR that
operates in X-band (9.65 GHz) [33]. It acquires data with single or dual polarization in
four acquisition modes: High-resolution SpotLight (HS), SL, SM and SC. Furthermore,
it can acquire fully polarimetric data using an experimental high resolution mode. An
overview of the main acquisition parameters of TerraSAR-X is given in Table 2.2.

Similar to TerraSAR-X, the COSMO-SkyMed satellite constellation is equipped with
X-band sensors which support the SL, SM and SC modes [34]. Another fine SL acqui-
sition mode is dedicated to defense applications. It supports the HH, HV, VH and VV
polarization in single and dual polarization modes (the latter only in a special SM mode).
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(a) (b)

Figure 2.12: VHR SAR satellites. (a) TerraSAR-X. (b) COSMO-SkyMed. (TerraSAR-X image: German
Aerospace Center (DLR), 2009; COSMO-SkyMed image: Telespazio, 2009.)

Since COSMO-SkyMed will consist of four satellites it will provide images from the same
region with a worst case response time of three days and a short worst case revisit time
of 12 hours. The main characteristics of COSMO-SkyMed are summarized in Table 2.3.

Table 2.2: Main acquisition characteristics of TerraSAR-X.

Parameter HS SL SM SC

Coverage (azimuth
x ground range)

5 km x 10 km 10 km x 10 km
< 1500 km x 30 km < 1500 km x 100 km

θ 20° - 55° 20° - 55° 20° - 45° 20° - 45°
δa 1 m 2 m 3 m 16 m
δgr 1.5 m - 3.5 m 1.5 m - 3.5 m 1.7 m - 3.5 m 1.7 m - 3.5 m

Table 2.3: Main acquisition characteristics of COSMO-SkyMed.

Parameter SL SM SC

Coverage (azimuth
x ground range)

10 km x 10 km
30 km - 40 km x
30 km - 40 km

100 km - 200 km x
100 km - 200 km

θ 25° - 50° 25° - 50° 25° - 50°
δa 1 m 3 m - 5 m 30 m - 100 m
δgr 1 m 3 m - 5 m 30 m - 100 m
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Chapter 3

Properties of buildings in VHR SAR
imagery

In this chapter, we review the fundamentals of microwave backscattering of buildings,
which form the basis for the methods and analyzes presented in this thesis. In Section
3.1, we describe the theoretic appearance of flat and gable roof rectangular buildings under
a variety of viewing configurations. Then, in Section 3.2, we show some examples in actual
SAR data, based on which we discuss common effects often limiting the performance of
automatic building detection and reconstruction methods.

3.1 Theoretic properties of buildings

In SAR imagery, typical urban structures are affected by layover, double bounce and
shadowing effects, which relate to the ranging geometry of radar sensors. To highlight
these effects, Figure 3.1 shows examples of the backscattering range profiles of a simple
flat roof building model, which is a rectangular box with uniformed surfaces and flat
surroundings, with a common width w, and different heights h viewed by a SAR sensor
with incidence angle θ: a shows the return from the ground, b highlights the double
bounce caused by the dihedral corner reflector that arises from the intersection of the
building vertical wall and the surrounding ground, c indicates single backscattering from
the front wall, while d depicts the returns from the building roof, and e represents the
shadow area from which there is no return from the building or the ground. The symbols
ll [ll = h · cot(θ)] and ls [ls = h · tan(θ)] denote the lengths of the areas affected by layover
and shadow in the ground projected image space, respectively. For the backscattering of
flat roof buildings, three different situations can be observed according to the boundary
condition h < w · tan(θ) [35], [36]. If this condition is fulfilled (Figure 3.1a), part of the
roof scattering d is superimposed on the scattering from the ground a and the front wall
c in the region a+c+d, while there is a region d which is only characterized by returns
from the roof. In the case of h = w · tan(θ) (Figure 3.1b), the entire roof contribution d is
sensed before the double bounce area in such a way that there is a homogeneous layover
area a+c+d, which has contributions from the ground, the building front wall and the
roof. If h > w · tan(θ) (Figure 3.1c), all roof contributions are sensed before the double
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(a)

(b)

(c)

Figure 3.1: Scattering from a simple flat roof building model with width w and different heights h: ground
scattering a; double bounce b; scattering from vertical wall c; backscattering from roof d ; shadow area
e; length of layover area in ground projected image space ll; length of shadow area in ground projected
image space ls. The gray values in the backscattering profiles correspond to the relative amplitudes.
(a) h < w · tan(θ). (b) h = w · tan(θ). (c) h > w · tan(θ).
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bounce area again, with the difference that the layover area is split in an area a+c+d,
which has contributions from the ground, the front wall and the roof, and an area a+c,
which only has backscatter from the ground and the front wall of the building.

An interferogram is a phase difference image, which is calculated from the phases of
two complex images acquired from the same region with the same flight path orientation,
but which were separated by a baseline, so that their respective viewing configurations
are slightly different. Taking into account the geometry of SAR interferometry, the height
of individual objects can be calculated from the interferogram. However, if h ≥ w · tan(θ)
(Figure 3.1b and Figure 3.1c), the calculation of a meaningful Digital Surface Model
(DSM) fails due to the signal mixture from different altitudes (ground and roof), which
is also known as the ”front porch” effect [37]. To tackle this problem, [38] proposes two
models, one for interferometric and one for polarimetric data.

The scattering effects of a gable roof building are different from what is observed for
a flat roof building [35], [39]. Figure 3.2 shows three examples of backscattering profiles
from a gable roof building with roof inclination angle αr for different incidence angles.
The major difference with respect to flat roof buildings is the presence of a second bright
scattering feature, which is closer to the sensor than the double bounce, resulting from
direct backscattering d1 from the part of the roof which is oriented towards the sensor.
For incidence angles which are not equal to the inclination angle of the roof (Figure 3.2a
and Figure 3.2c), this feature is extended to an area, while in case of θ = αr (Figure 3.2b)
these contributions return to the sensor at the same instance of time and are therefore
integrated into a bright line similar to the double bounce of a building. In case that
θ > αr there is no backscattering d2 from the part of the roof which faces away from the
sensor, since this part is occluded by the front side of the building.

The viewing configuration of a sensor with respect to the building is not only defined
by the incidence angle of the sensor, but also by the orientation of the building with
reference to the azimuth direction, known as aspect angle φ. This is the angle between
the sensor facing wall and the azimuth direction of the sensor (see Figure 3.3). If the front
wall of the building is parallel to the azimuth direction then φ = 0◦. The width w and
length l of a building are the dimensions of the short side and long side of the building,
respectively. For spaceborne acquisitions, the possible aspect angles of a building are fixed
by ascending and descending passes, while for airborne measurements the aspect angle is
defined by the flight track of the airplane and the squint angle of the antenna. Therefore,
airborne acquisitions permit more flexibility for varying φ than spaceborne measurements,
which can be an advantage for missions where buildings need to be investigated from a
predefined viewing configuration.

As highlighted in Figure 3.1 and Figure 3.2, the double bounce effect is a significant
characteristic of buildings in VHR SAR signals [40]. It indicates the presence of a building
and appears in correspondence with its front wall. It can be used as a feature for the
automatic detection and reconstruction of buildings from SAR data [41], [42]. However,
the strength of the double bounce effect depends on both, the height of the building (i.e.
the higher the building the stronger the double bounce) and the aspect angle. Theoretical
models for the double bounce of a building show a quadratic dependence of its RCS on
the building height [40], [43].
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(a)

(b)

(c)

Figure 3.2: Examples of backscattering profiles from a gable roof building with roof inclination angle
αr at various incidence angles. The legend is similar to the one for flat roof buildings in Figure 3.1. d1
denotes the scattering from the side of the roof which is oriented towards the sensor, while d2 represents
the scattering from the part of the roof which faces away from the sensor. The gray values in the
backscattering profiles correspond to the relative amplitudes. (a) θ < αr. (b) θ = αr. (c) θ > αr.
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Figure 3.3: Definition of width w, length l, and aspect angle φ of a building. The buildings in gray are
oriented parallel to the azimuth direction with φ = 0◦, while the buildings with the solid black lines were
rotated by φ with respect to the azimuth direction.

The aspect angle mainly influences the appearance of the layover and shadow areas.
In Figure 3.4, we present the results of simulations (for more details on the simulator
see Chapter 5) of a flat roof building model with dimensions 50 m × 100 m × 30 m
(width × length × height) at φ = 0◦ (Figure 3.4a), φ = 22.5◦ (Figure 3.4b), and φ = 45◦

(Figure 3.4c), which reflects the situation depicted in the right part of Figure 3.3. From
this point on dimensions will always be presented in the format “width × length ×
height”. The simulations were performed with θ = 50◦ and 1.0 m azimuth and slant range
resolution corresponding to a configuration supported by current spaceborne sensors like
TerraSAR-X or COSMO-SkyMed. The images on the left side show the simulation results
with viewing direction from the bottom, while the images in the right column display the
corresponding 3-D views of the building, as it would appear visually. Since we want to
highlight the major scattering effects of buildings in SAR, we suppressed the calculation
of speckle. In the situation of φ = 0◦, the shadow and layover areas have a rectangular
shape, which changes with increasing aspect angle to L-shape. The area at which there is
only backscattering from the roof also has a rectangular shape at φ = 0◦, but it changes
for φ > 0◦ to a parallelogram. Note that in these simulations the relative strength of the
double bounce may be overestimated for the cases of larger aspect angles (φ = 22.5◦, and
φ = 45.0◦) (see Chapter 4).

3.2 Properties of buildings in actual VHR SAR imagery

In Figure 3.5a we show a flat roof industrial building, which is approximately 11.8 m
high1, in the panchromatic channel of QuickBird imagery. The corresponding subset in
meter resolution TerraSAR-X imagery is shown in Figure 3.5b, with viewing direction
from the left. The building was measured with incidence angle θ = 49.1◦, and aspect
angle φ = 8.2◦. The shadow area is visible as the large dark almost rectangular area in
the middle of the scene. The SAR signature shows two bright stripes, and some other

1The height was estimated from the length of the shadow in the optical image.
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(a)

(b)

(c)

Figure 3.4: Simulations (without speckle) of a flat roof building model (corresponding to Figure 3.1a)
with dimensions 50 m × 100 m × 30 m (width × length × height) with θ = 50◦ and 1.0 m azimuth-
and slant range resolution. The images in the left column show the simulations with viewing direction
from the bottom, while the images in the right column show the corresponding 3-D models as they would
appear visually. (a) φ = 0◦. (b) φ = 22.5◦. (c) φ = 45◦.
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Figure 3.5: Example of an industrial flat roof building. (a) Building in QuickBird image. (b) Building in
slant range TerraSAR-X image with 1 m resolution with viewing direction from the left. (c) Normalized
backscatter range profile of row 59 of TerraSAR-X subset. (QuickBird image: DigitalGlobe distributed
by Eurimage S.p.A, 2005; SAR image: Infoterra GmbH/DLR, 2008.)

random bright spots at the sensor close side (left) of the shadow area. The stronger bright
stripe corresponds to the double bounce. Since the aspect angle is small and hence the
front wall is almost parallel to the azimuth direction, this scattering effect is pronounced.

The weaker bright stripe corresponds to a smaller corner reflector at the roof, which is
visible at the right side of the top of the building in Figure 3.5a. Buildings usually do not
have a very smooth front wall with one homogeneous material. For instance, the walls
have window frames with small corner reflectors, the windows have a material different
to the walls, the walls have metal rain drains attached to it, which are the reasons for the
random bright scattering spots. In Figure 3.5c we show the normalized backscatter range
profile of row 59 of the TerraSAR-X subset. The two bright peaks are very distinct, as
well as the shadow area in the pixel range [40,75]. Due to the speckle, no distinct roof
scattering or layover area is visible.

In many cases, the shadow regions of buildings in urban areas are superimposed by the
scattering of other objects, such as trees and neighboring buildings, which are located in
its immediate surrounding, influencing the actual shape and size of the shadow area. In
Figure 3.6 we show for instance a flat roof apartment building, which has some trees in the
immediate surrounding. The meter resolution TerraSAR-X subset shown in Figure 3.6b
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(a) (b)

Figure 3.6: Example of a flat roof building which has trees in its immediate surrounding. (a) Building in
orthophoto. (b) Building in slant range TerraSAR-X image with 1 m resolution with viewing direction
from the left. Half of the potential shadow area of the building is affected by trees, which are as high
as the building itself. (Orthophoto: Landesvermessungsamt NRW, Bonn, 2007; SAR image: Infoterra
GmbH/DLR, 2008.)

was imaged with φ = 7.0◦ and θ = 50.7◦ from the left side. The trees in the top right
quadrant of the orthophoto in Figure 3.6a are located from the sensor point of view behind
the building and therefore in its potential shadow area. Since their height is similar to
the height of the building itself, they are not excluded from the radar beam and cause
backscattering, diminishing the shadow area of the building to about half of its theoretic
full size. Instead, trees in front of the building occlude (part of) the corner reflector of
the building and hence lead to an (partial) absence of the double bounce.

In summary, we have seen that the appearance of buildings in SAR depends on many
different parameters. First, the characteristics of the object itself (e.g. materials of the
walls, shape of footprint, dimensions of building, roof structure, objects attached to the
walls) influence the backscattering. Furthermore, the viewing configuration (incidence and
aspect angle) with which the building was sensed has a significant impact. Finally, due
to the ranging geometry of SAR sensors, also the scattering of objects in the immediate
surrounding can interfere with the backscattering of the building. This large variety of
parameters is the main limiting factor for the performance of existing building information
extraction algorithms and challenges the development of novel robust methods.
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Chapter 4

Analysis of the properties of the
double bounce scattering mechanism
of buildings

The double bounce effect is a significant characteristic of buildings in VHR SAR signals.
It indicates the presence of a building and appears in correspondence with its front wall.
Double bounce is already used as feature for the automatic detection and reconstruction of
buildings from SAR data. In order to exploit this feature effectively for automatic damage
assessment techniques, its stability with respect to changes in the viewing configuration
and the material properties need to be understood in detail. Thus, this chapter1 addresses
the empirical analysis of the relation between the double bounce effect and the aspect
angle of a building for different ground materials. The study is carried out in two phases:
1) development of a laboratory experimental setup on a scaled building model under well-
controlled conditions with a variety of viewing configurations; 2) validation and refinement
of the results obtained from the laboratory measurements by analyzing a set of industrial
and residential buildings with two different ground materials (grass and asphalt) in actual
VHR spaceborne SAR data.

4.1 Introduction to the analysis of the double bounce mecha-

nism

Among the different scattering contributions present in urban areas, the double bounce
effect of buildings is an important scattering characteristic. It can be exploited for the

1This chapter appears in:
[44] D. Brunner, G. Lemoine, J. Fortuny, and L. Bruzzone, “Building characterization in VHR SAR data acquired

under controlled EMSL conditions,” in Proceedings of IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), Barcelona, Spain, July 2007, pp. 2694-2697.

[45] D. Brunner, L. Bruzzone, A. Ferro, J. Fortuny, and G. Lemoine, “Analysis of the double bounce scattering
mechanism of buildings in VHR SAR data,” in Proceedings of SPIE Conference on Image and Signal Processing
for Remote Sensing XIV, vol. 7109, Cardiff, Wales, UK, September 2008, pp. 71090Q-1-71090Q-12.

[46] D. Brunner, L. Bruzzone, A. Ferro, and G. Lemoine, “Analysis of the reliability of the double bounce scat-
tering mechanism for detecting buildings in VHR SAR images,” in Proceedings of IEEE Radar Conference
(RadarCon09), Pasadena, CA, USA, May 2009.
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development of automatic methods for the detection and reconstruction of buildings from
VHR SAR data [47], [42]. At first glance, the usage of this feature for the development
of an automatic method for the detection of destroyed buildings in damage assessment
scenarios seems promising. However, the relation between the double bounce effect and
the SAR illumination conditions has not yet been investigated to a sufficient extent in
real VHR SAR images. In particular, the effect of the aspect angle of a building on
the power signature of the double bounce is important. As buildings are imaged with
different aspect angles, its behavior implies the limits of detection techniques which are
solely based on the double bounce effect.

In order to model the double bounce effect of a building, the theory of dihedral corner
reflectors has been extended to simplified building models, which are generally constituted
by rectangular parallelepipeds with smooth walls surrounded by a homogeneous ground
surface [40], [43]. These models are considered isolated in the electromagnetic sense, i.e.
no interactions with other structures in the scene are taken into account. In particular, [40]
presents a fully analytical electromagnetic model for urban environments that also includes
a study on the double bounce contribution from buildings based on GO and PO, according
to the surface roughness.

The choice of the adequate roughness and dielectric parameters of a surface (and
thus of the theoretical model that has to be used) is non-trivial. In the literature typical
parameters for different types of soils have been reported [48], [49], [50], [51], [52]. However,
RCS measurements made directly on SAR images can differ considerably with theoretical
predictions using material parameters reported in literature, e.g. due to the effect of
the moisture content or the temperature of the material. Furthermore, surfaces in urban
areas are not homogeneous, which is even true within one resolution cell. For instance,
a paved street in a city is characterized by manhole covers causing bumps, which affect
the effective surface roughness. Moreover, they also have a different material since they
are made from metal. Hence, using only the dielectric constant and surface roughness
parameters of asphalt to calculate the RCS of a street in urban areas is a significant
simplification. In addition, in dense urban environments, scattering effects coming from
adjacent objects can interfere and therefore invalidate the assumption of isolated buildings.
As a result, the theoretical models currently reported in literature can only be considered
as a tool for making preliminary predictions of the scattering behavior of buildings in
urban environments imposing the need for empirical studies.

Some empirical studies have been conducted so far. In [53], the preliminary results of
an experiment performed by means of an outdoor inverse SAR facility on corner reflector
models made of different real world materials are presented. This study indicates that the
double bounce effect gives a strong power signature to buildings with walls almost parallel
to the SAR azimuth direction, but decays rapidly in a narrow range of aspect angles. Us-
ing actual medium resolution SAR data, [54] demonstrated the influence of polarization
and incidence angle on the double bounce effect, which showed that the corner reflector
has generally a higher return in HH polarization. Instead, VV polarization is more sensi-
tive to variations of the incidence angle, as the neighborhood of the Brewster angles for
the surfaces might significantly affect the return signal. The analysis was conducted on
buildings parallel or perpendicular to the azimuth direction. In [43] the authors discuss
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Figure 4.1: 3-D sketch of EMSL.

the influence of both incidence and aspect angle in the scattering from urban environments
using actual SAR airborne data. They observed that buildings which are parallel to the
azimuth direction have a stronger double bounce contribution than buildings facing away
from the radar. Their study was conducted on a small set of residential and commercial
buildings. Nonetheless, in real world settings only few buildings can be acquired with
0° aspect angle. For instance in spaceborne acquisitions, the aspect angle of a building
is fixed by the combination of descending and ascending passes.

In this chapter, we present a detailed experimental study on the behavior of the double
bounce effect from the building front wall with respect to: 1) the aspect angle of buildings;
and 2) their surrounding ground material, using polarimetric and non-polarimetric VHR
SAR images under different conditions. Firstly, we perform and analyze scaled building
model measurements in the EMSL under varying viewing configurations. Due to the
practical limitations of the laboratory facility, simplifying assumptions were necessary for
the design of the experiments, which limit the generalization capabilities of the results.
Therefore, we validate and refine in the second step the laboratory results by analyzing a
set of industrial and residential buildings with two different ground materials (grass and
asphalt) in actual VHR spaceborne data.

The remainder of this chapter is organized as follows. Section 4.2 provides a detailed
description of the laboratory experimental setup, while Section 4.3 presents the analysis
of the obtained data carried out according to different and complementary techniques.
Section 4.4 reports the steps and the results of the second phase of this work, i.e. the
analysis of actual VHR SAR spaceborne images. Finally, Section 4.5 summarizes the
results of the analyzes and draws some conclusions.
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Figure 4.2: Schematic view of the EMSL and measurement setup of the experiment.

4.2 Description of the EMSL experiment

4.2.1 The European Microwave Signature Laboratory

The EMSL of the EC-JRC located in Ispra, Italy, is a fully controlled laboratory facility.
It was designed in 1993 to permit a wide range of measurement setups (wide frequency
range, possibility to vary viewing configuration, monostatic or bistatic measurements,
etc.) and to provide operational modes similar to those used by airborne and spaceborne
sensors. Its dimensions allow to study both, small objects and real natural targets, e.g.
trees [55].

The EMSL anechoic chamber is formed by the conjunction of a hemispheric and a
cylindrical part, both with a diameter of 10 m (see Figure 4.1). Two antennas are mounted
on two sleds located between the two parts. They can move independently on a rail in a
range between ±115° around the zenith. Targets are mounted on a carrier that can move
on a rail to enter/remove the measurement targets through a 5 m wide door. This target
support allows precise linear and rotational (360°) positioning of the target, also during
the measurements.

The EMSL supports wideband polarimetric radar measurements in the scatteromet-
ric and imaging mode. In the scatterometric mode the resolution is determined by the
antenna footprint which is used to characterize the return of the whole target or to ob-
tain independent samples varying the setup parameters, e.g. the aspect angle. In the
imaging mode the angular and frequency diversity is exploited to create one-, two- or
three-dimensional images of the target scattering properties. The frequencies supported
by the laboratory range from 300 MHz to 26.5 GHz, with an overall dynamic range of
100 dB.

4.2.2 Experiment setup

In order to simulate in the EMSL a flat roof normal sized building in real world, a cuboid
with dimensions 90 cm ×120 cm × 60 cm was used (scaling factor 1:10). It was a glued
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(a) (b)

Figure 4.3: (a) Position of the building model on the ground plane. The arrow indicates the direction of
rotation. (b) A photo of the experiment setup (without aluminum foil).

wooden frame with 2.6 cm thick gypsum plates attached to it. Some problems occurred
due to the inside-model multiple reflections and the low roughness of the building walls
and ground plate. This induced to cover the plate and the model with aluminum foil,
which was crumpled and flattened again in order to simulate random surface roughness
(authentic ground materials could not be used due to the weight limitations of the carrier).
The frequency used to illuminate the building model was 10 GHz, with a bandwidth of
1 GHz. Note that, due to the scaling factor 1:10, a frequency of 100 GHz should be used
for the simulation of X-band measurements. However, this is not supported by the EMSL
facility and represents a limitation that we took into account during the analysis.

As shown in Figure 4.2, the plate was mounted on the target support which was situ-
ated 70 cm below the focal point of the chamber. The model was positioned decentralized
on the plate so that the layover and shadow areas matched the ground plate for all the
considered aspect angles (see Figure 4.3). The building model was measured at three po-
larizations (HH, HV and VV) with 30° incidence angle. The plate was sensed from 0° to
90° aspect angle in 0.1° steps. Then, the final images were obtained by processing 100
consecutive aspect measurements in an integration window of 10° centered on 1° aspect
angle steps. For the processing, we used a 3-D time-domain back propagation SAR pro-
cessor, which was specifically developed by the JRC for the EMSL [56]. This resulted in
a series of 90 synthesized SAR images for each polarization, which have 17.2 cm azimuth
and 30 cm range resolution, respectively. Without the processing step the azimuth reso-
lution would not be useful for the aim of this study. The main drawback of the processing
could be the inclusion of scattering effects that may vary over the angular range covered
by the measurements.

Figure 4.4 shows two examples for typical power images. Only HH and VV polariza-
tions are considered, as the HV measurements were always at the background noise level.
This is an expected behavior as the main scattering mechanisms are single and double
bounce surface scattering. The position of the building model and the ground plate are
highlighted by the inner and outer rectangles, respectively. 0° aspect angle means that the
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Figure 4.4: Examples of dB-power images. Power values are between -5 dB (black) and 35 dB (white).
The big frame indicates the ground plate area, while the small one identifies the model position.
(a) 0° aspect angle - HH polarized. (b) 80° aspect angle VV-polarized.

longer building wall was parallel to the azimuth direction. In this case, the illumination
was from left to right. On the contrary, 90° aspect angle means that the shorter building
wall was oriented to the sensor, which means that the illumination was from the top. The
scale is between -5 dB (black) and 35 dB (white).

4.3 Analysis of scaled building model measurements

In this section we investigate the relation between the double bounce effect and the aspect
angle of the building model using the EMSL data in the power domain, the CCC, as well
as the Pauli- and H/A/ᾱ decompositions. Meaningful results were already achieved by
analyzing the first half of the measurements so that we report here only the results between
0° and 45° aspect angle.

4.3.1 Power domain

The HH and VV power images generally show that the return from the ground plate is
stronger in VV than in HH. This can be explained by the small perturbation model [22,
pp. 922-1033], which leads to the higher VV backscattering for θ ≤ 30°, as the random
surface roughness is expected to fulfill its conditions [22, pp. 962-966]. Focusing on
the double bounce area, the images do not present a clear and uniform strong stripe
along the complete wall of the model, but a main scattering point close to the corner
of the model and several local power peaks. We expect that the non-uniform scattering
stripe of the model wall were due to a specific scattering pattern related to the geometry
and the physical characteristics of the model itself [57]. This “antenna behavior”, which
can be shown to be dependent on the illumination conditions, seems to become relevant
in this scenario. The enhanced return from the model corner seems to be related to
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Figure 4.5: Mean power of the expected double bounce area. (a) HH. (b) VV.

diffraction effects that become relevant due to the absence of the correct scaling factor of
the wavelength. This causes that the model dimensions are not very large with respect
to the wavelength so that the diffraction effects are not negligible anymore [40].

In Figure 4.5 we plot the mean power of the expected double bounce stripe area as a
function of the aspect angle for the HH (Figure 4.5a) and VV polarizations (Figure 4.5b).
For low aspect angles, the mean power in the double bounce area drops consistently, with
a significant difference of approximately 13 dB between 0° and 13° aspect angle. For
larger aspect angles, the overall decreasing trend becomes shallower, while some local
intermediate maxima occur giving the curve an oscillating behavior. In total the mean
power drops by 24 dB from around 32 dB at 0° degree aspect angle to 8 dB at 45° aspect
angle (VV channel).

4.3.2 Co-polarized correlation coefficient

The CCC modulus images were mainly characterized by values near 1. This means that
the scattering mechanisms involved in the measurements were well defined and the degree
of depolarization was low. The double bounce effect presents an average power value
consistently higher than the remaining returns. By considering only pixels above a defined
power threshold value, a “pure” double bounce scattering mechanism can be isolated and
spurious effects coming from the plate are removed. Figure 4.6a shows the resulting CCC
absolute phase image for the 10° aspect angle case. As expected, there is an area that is in
correspondence with the building wall which shows high values (near 180°), meaning that
this region is indeed characterized by double bounce scattering mechanisms. A statistical
analysis of the CCC phase defined the CCC phase range, for which double bounce can be
considered as the major scattering mechanism in the resolution cell, to be between 120° -
180°. The relationship between the number of pixels, whose major scattering mechanism
is double bounce, and the aspect angle of the building model was derived by counting the
pixels belonging to the double bounce phase range in the expected double bounce area
(Figure 4.6b). This showed that there is a relation between the number of double bounce
pixels and the mean power of the double bounce stripe itself. In fact, the curve derived
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Figure 4.6: (a) CCC absolute phase image for 10° aspect angle (9 dB power threshold; black=0,
white=180°). (b) Double bounce pixels vs. aspect angle (9 dB power threshold).

from this analysis has a behavior that resembles the mean power graphs of Figure 4.5,
with a significant drop in the low aspect angle range and a shallower decaying behavior
for larger aspect angles.

4.3.3 Pauli decomposition

In order to obtain a power characterization of the double bounce effect, the Pauli de-
composition was applied to the data. In Figure 4.7a and Figure 4.7b an example of
the Pauli decomposition is presented. We considered only the αp- (single bounce) and
βp-channels (double bounce) as the volume component of the decomposition was always
at the background noise level due to the characteristics of the cross-polarized channels. In
the αp-channel the return from the ground plate, the layover area, and the remaining roof
scattering are better distinguishable than in the βp-channel. The latter is dominated by
a double bounce stripe, which is in correspondence with the building wall. In Figure 4.7c
the mean power values within the expected double bounce area in the βp-channel are
drawn as a function of the aspect angle. This plot resembles the general behavior of
the one presented in Figure 4.6b, given that they were obtained measuring different pa-
rameters (mean power and number of double bounce pixels). Furthermore, Figure 4.7c
confirms that the mean power values of the double bounce areas of Figure 4.5 result from
the double bounce effect, and are not due to single bounce backscattering contributions
or other spurious effects.

4.3.4 H/A/ᾱ decomposition

After the analysis of the results of the coherent Pauli decomposition, we applied the
incoherent H/A/ᾱ decomposition to the EMSL data set to achieve an unsupervised clas-
sification of single and double bounce pixels. In particular, we studied the entropy and

38



CHAPTER 4. ANALYSIS OF THE PROPERTIES OF THE DOUBLE BOUNCE SCATTERING
MECHANISM OF BUILDINGS

dB

-5

40

(a)

dB

-5

40

(b)

 5

 10

 15

 20

 25

 30

 35

 40

 0  5  10  15  20  25  30  35  40  45

P
ow

er
 [
d
B

]

Aspect angle [deg]

Mean power

(c)

Figure 4.7: Example of the Pauli decomposition for the 0° aspect angle; (a) αp-channel; (b) βp-channel;
(black=-5 dB, white=40 dB). (c) Mean double bounce power (for the expected double bounce area) vs.
aspect angle.

the ᾱ angle parameter, which show a relationship with the CCC modulus and phase. The
higher the entropy is, the lower the CCC modulus and vice versa. On the contrary, the
higher the ᾱ angle is, the higher the CCC phase, given that the range of ᾱ is exactly
half of the CCC phase range. The H/ᾱ planes were derived either for the whole image or
limited to the pixels inside the double bounce region.

Figure 4.8a and Figure 4.8b show the obtained planes for the 0° aspect angle image.
The prevailing surface scattering effect of the ground plate (bottom left part of the plane
in Figure 4.8a) is evident. In the top-left part of the plane (best visible in Figure 4.8b)
there is a double bounce pixel concentration, which corresponds mainly to the pixels
located at the building model front wall. Following the classification scheme proposed
in [29], we calculated the number of double bounce pixels for each aspect angle within the
expected double bounce region, which is shown in Figure 4.8c. The shapes of the graphs
are more irregular than in the previous studies. However, the overall trend is similar. It
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Figure 4.8: H/ᾱ planes corresponding to 0° aspect angle image. Abscissa: H (values between 0 and 0.5),
ordinate: ᾱ (values between 0° and 90°). As preprocessing, a -10 dB power threshold was applied to
suppress noisy pixels. (a) Decomposition applied to the whole image. (b) Decomposition applied only to
the double bounce area. (c) Number of double bounce pixels vs. aspect angle using the H/ᾱ classification
for the double bounce area.

can be noted that this decomposition scheme classifies more pixels as double bounce than
the classifier based on the CCC phase criterion adopted for Figure 4.6b. Interestingly,
a classification in double bounce pixels using the CCC absolute phase criterion gave
approximately the same results as the H/ᾱ classifier if double bounce is considered for an
absolute phase range between 100° and 180°.
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4.4 Analysis of actual spaceborne VHR SAR data

To compare the findings from the previous section with actual data, we analyzed the
ascending and descending TerraSAR-X pair, which will be described in detail in Section
6.4. As ground truth, we used optical images retrieved from Google Earth™ [58] and Mi-
crosoft Virtual Earth™ [59] virtual globe viewers. We also collected additional information
regarding the meteorological precipitations and the temperature for the December 2007
and January 2008 in the area considered.

We selected a set of candidate buildings which presented smooth (or almost smooth)
walls with asphalt or grass ground surfaces in the surroundings. The smoothness of a wall
was verified using the birds eye view from Virtual Earth™, which can display a building
from four different sides. We estimated their dimensions from the optical images, so that
we predicted their scattering behavior by a geometric approach using 3-D models. These
estimations were then confirmed measuring the return of the buildings on the SAR image.
The expected scattering behavior of a building permitted to estimate the position of the
double bounce stripe, the layover and shadow areas, and the eventual single bounce stripe
due to the building roof.

The study set included 55 buildings suitable for a double bounce stripe analysis (e.g.
the extraction of the mean RCS value of the expected double bounce area). We grouped
them in three categories: residential buildings surrounded by asphalt terrain (residen-
tial/asphalt), industrial buildings surrounded by asphalt terrain (industrial/asphalt) and
residential buildings surrounded by grass covered soil (residential/grass). The number of
samples for each category is summarized in Table 4.1. We considered buildings with dif-
ferent aspect angles in the range between 0° and 42°. For larger aspect angles the double
bounce areas of suitable buildings were not well distinguishable from the surroundings so
that we did not consider these buildings in the study. Single bounce backscattering from
the building roofs presents another difficulty for extracting the double bounce stripes, as
in many cases this contribution is superimposed with the double bounce stripe itself. In
our observations it occurs mainly when the roof is not facing the SAR sensor, which might
be due to the roof tile coverage. The theoretical models presented in literature show a
quadratic dependence of double bounce RCS on the building height [40], [43]. Hence, we
normalized the measured RCS in order to derive a set of values relative to a fixed reference
height (chosen to be 6.5 m, which is the mean height of the buildings in the data set).
As the azimuth resolution is smaller than the building length, we did not consider the
length in the normalization step [40]. The difference of the incidence angles between the
two scenes is about 3°. Based on theoretical models, we confirmed that this variation only
implies a marginal change of the RCS of the double bounce, which can be assumed to be
less than the error introduced by the analysis process. Hence, we considered the buildings

Table 4.1: Number of building samples per category.

Building type
Ground material
Asphalt Grass

Residential 17 19
Industrial 19 -

41



4.4. ANALYSIS OF ACTUAL SPACEBORNE VHR SAR DATA

-10

 0

 10

 20

 30

 40

 0  5  10  15  20  25  30  35  40

P
ow

er
 [
d
B

]

Aspect angle [deg]

Residential/asphalt

(a)

-10

 0

 10

 20

 30

 40

 0  5  10  15  20  25  30  35  40  45

P
ow

er
 [
d
B

]

Aspect angle [deg]

Industrial/asphalt

(b)

-10

 0

 10

 20

 30

 40

 0  5  10  15  20  25  30  35

P
ow

er
 [
d
B

]

Aspect angle [deg]

Residential/grass

(c)

Figure 4.9: Relation between double bounce RCS and aspect angle. (a) Residential/asphalt category.
(b) Industrial/asphalt category. (c) Residential/grass category.

in the two scenes as if they were contained in a single scene.

The results of the analysis are displayed in Figure 4.9, which shows the relation between
the RCS of the corner reflector and the aspect angle per building set. The graphs show
that buildings with similar aspect angles can have double bounce stripes that differ by
several dBs. This behavior reflects the fact that in real SAR data many variables affect
the scattering behavior of surfaces, which are mainly unknown, such as the soil moisture
content or different wall materials. Therefore, our goal was to analyze the overall trend of
the double bounce effect for each building category, rather than the double bounce stripe
of individual buildings.

Figure 4.9a is related to the residential/asphalt case. The graph shows that the double
bounce is significant in the first 10° aspect angle range, having values in the order of 30
dBs and then decreasing considerably. This is related to the strong coherent scattering
coming from the double bounce. On the other hand, for larger aspect angles the rele-
vance of incoherent scattering due to the surface roughness increases and the trend of the
strength of the double bounce becomes shallower. The analysis of the industrial/asphalt
category is reported in Figure 4.9b. The trend is similar to that for the residential/asphalt
category, but with generally higher power values. The difference in RCS between these
two classes is about 10 dBs. Moreover, the double bounce stripes of the buildings in
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the industrial/asphalt category present a sparser distribution. These two effects can be
explained by the variable and inhomogeneous materials used for industrial buildings, and
by the presence of more metal parts that are not as common as for residential buildings.
Finally, Figure 4.9c depicts the distribution of the double bounce RCS for the residen-
tial/grass category. Due to the impact of the roughness of the grass surrounding the
buildings (which is expected to be more relevant than for asphalt grounds) the contrast
between the double bounce peak at near 0° aspect angles and the remaining part of the
graph is lower than for buildings which are surrounded by asphalt. The peak power is
about 10 dBs lower compared to the residential/asphalt category, while the RCS decreases
with increasing aspect angles in a smoother way, suggesting a pronounced relevance of
incoherent scattering.

4.5 Discussion and conclusion

In this chapter we presented an empirical study of the double bounce scattering mechanism
of buildings in VHR SAR. We focused on the analysis of the strength of the double bounce
with respect to the aspect angle. The study first analyzed a series of images acquired under
well-controlled conditions on a scaled building model measured in the EMSL laboratory.
Then, these results were validated and refined by analyzing three categories of buildings
in two TerraSAR-X images.

The results pointed out that the double bounce effect has a strong power signature
for buildings which have the wall on the sensor close side almost parallel to the SAR
azimuth direction. Furthermore, the strength of the double bounce decays rapidly in a
narrow range of aspect angles, while it decays moderately for larger angles. The exact
characteristic of the decay depends on the materials and surface parameters. For buildings
which are surrounded by asphalt the strength of the double bounce decreases significantly
from 0° to 10° aspect angle, while it decreases moderately for higher values of the aspect
angle. Considering buildings which are surrounded by grass, the drop of the strength
for low values of the aspect angle is less evident, but it is more constant on the full
range of aspect angles. This result is especially important for the development of novel
automatic robust building damage assessment methods based on double bounce stripe
analysis, which need to take into account the non-linear relation between double bounce
and aspect angle.
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Chapter 5

Radar imaging simulation for
buildings

With the recent advent of the VHR SAR sensors, the potential to use radar imaging
simulators is increasing. They can be used to support the analysis of radar scattering
effects, assist in scene interpretation, and for training and teaching. Moreover, they can
be used for information extraction, by generating simulated images based on hypotheses
and comparing them with measured images. In this chapter, we propose a radar imaging
simulator that is relatively simple to implement and that focuses on the calculation of the
geometrical effects of the scattering. The main goal of the proposed method is to obtain
a precise simulation of the geometry of objects in SAR images rather than a detailed
radiometric simulation. The simulator is based on an adapted ray tracing procedure to
determine which surfaces of a generic object are visible. The backscatter contributions are
calculated by means of a Lambertian-specular mixture model. The proposed simulator is
employed successfully in methodologies for the information extraction from single detected
VHR SAR imagery, as detailed in the two subsequent chapters of this thesis. Here, we
show its results on two rather different structures, a rectangular gable roof building and
an Egyptian pyramid.

5.1 Introduction to radar imaging simulation

In the era of VHR SAR imagery, radar imaging simulators [60] are becoming increasingly
popular. They permit to investigate and understand the scattering effects of buildings
under a variety of configurations (e.g. different viewing angles), in a relatively easy,
inexpensive and fast manner. Furthermore, they have an important role in education,
when for instance scene interpreters are trained to manually analyze VHR SAR imagery
to extract specific information, or students are familiarized with SAR and its peculiarities
[61].

Various simulators with different simulation techniques and backscattering models have
been proposed in literature. Scattering based on PO and/or GO approximations were
proposed in [62], [63], and [64], while [65] uses the FDTD method, and [66] IEM. These
models take into account the roughness parameters (i.e. Root Mean Square (RMS) height
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and correlation length) and dielectric properties of the surfaces in the scene to calculate
the scattering. Instead, [67] and [68] use diffuse and specular reflection, similar to the
Phong shading model [69]. For larger scenes in particular, these scattering models are
often combined with ray tracing, where rays are transmitted from an antenna and traced
through the scene until they return to the sensor (e.g. used in [67] and [62]). Ray
tracing has the drawback that the rays are only reflected in specular direction, which is a
valid assumption for very smooth (metallic) surfaces. This implies that the non-specular
scattering contributions from rough surfaces are neglected. Ray casting, which is similar
to ray tracing without the possibility that rays are reflected when they hit a surface,
was used for the simulator described in [70]. Recently also a fast simulator based on
rasterization, which is supported by state of the art Graphical Processing Units (GPUs),
was presented [68].

In this thesis, we employ radar imaging simulators as part of information extraction
methods by generating simulated images based on hypotheses and comparing them with
measured data. In particular we use this concept in Chapter 6 for estimating building
heights from single detected VHR SAR imagery, and in Chapter 7 for detecting buildings
which were destroyed in a crisis event using VHR optical pre-event and VHR SAR post-
event imagery. These application scenarios need a fast simulator and aim at the extraction
of information from SAR scenes over areas for which surface roughness parameters and
dielectric properties of the materials in the scene are generally not known a priori, so that
GO, PO, IEM or FDTD cannot readily be adopted. Hence, simplified scattering models
need to be used instead, which take into account the radar imaging mechanism. Rather
than simulating absolute radiometric effects related to material properties and surface
roughness parameters, for such models it suffices to accurately represent the geometry of
the scene and to approximate the relative differences in backscatter.

In this chapter, we present in detail a simple to implement, yet effective radar imag-
ing simulator (disregarding synthetic aperture effects) for urban structures that aims to
precisely model the geometry of the objects in the SAR scene and to approximate the
relative radiometric differences. The proposed approach offers two novel contributions:
1) we extend standard ray tracing so that the rays are reflected in various directions.
Hence, also the non-specular scattering contributions from rough surfaces for instance
of buildings are considered in the simulation; 2) we introduce an adjustable mixture of
Lambertian and specular scattering as radiometric model to calculate the backscattering
from the surfaces, focusing on modeling effects related to the surface roughness while
neglecting the dielectric characteristics of the materials. The simulator includes multiple
bounce scattering, and can therefore simulate multiple interactions between objects, such
as neighboring buildings. The speckle effect is simulated using the Chi-Square distri-
bution [71]. We demonstrate the efficiency of the proposed radar imaging simulator in
two examples: 1) simulation of a rectangular gable roof building in Dorsten, Germany,
in comparison to submeter airborne SAR data; 2) simulation of the complex structured
Menkaure pyramid in Giza, Egypt, in comparison to meter resolution TerraSAR-X data.

The remainder of this chapter is organized as follows. Section 5.2 provides a detailed
description of the concepts of the simulator. In Section 5.3 we present the simulation
results. Finally, Section 5.4 draws some conclusions.
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Figure 5.1: Geometry of the radar imaging simulator in range direction.

5.2 Proposed methodology

5.2.1 Enhanced ray tracing

Let us consider the geometry of the radar imaging simulator as depicted in Figure 5.1,
with θmin denoting the incidence angle at the near range of the scene. We fixed the scene
for which the image shall be simulated (here it is a gable roof building) to start at the
origin of a three dimensional Cartesian coordinate system {x, y, z} = {0, 0, 0}. The scene
extends horizontally in positive X and Y direction and is elevated in positive Z direction.
The azimuth direction of the sensor is in positive Y direction. Considering θmin and hS,
the initial sensor position is given by ~S = {−hS · tan(θmin), 0, hS}. The distance from the

sensor to the first range bin is denoted as rmin = |~S|. The model does not include synthetic
aperture generation, but instead directly assumes a radar beam limited in azimuth by δa.
This contributes to the efficiency of the simulation, at the cost of disregarding specific
synthetic aperture effects.

The simulator starts with the calculation of all contributions of the first azimuth res-
olution cell before the sensor is moved in positive Y direction by δa to calculate the next
azimuth resolution cell. We model the radar illumination in range direction as composi-
tion of a series of small beams with a finite cone (narrow-beam approximation), the so
called rays ~ri, i = {1, . . . , I}. Two subsequent rays have a variation in the incidence angle
by ∆θ, which is fixed by the slant range resolution at near range as:

∆θ =

[
arccos

(
hS

rmin + δslr

)
− θmin

]
/o (5.1)
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Figure 5.2: Reflection of ray at surface.

with o > 1 being a factor to increase the number of rays per resolution cell to avoid
undersampling. Indeed, to choose o = 2 is enough, whereas higher values have only
a marginal effect on the simulation results, while increasing the computing time. The
corresponding incidence angles of the individual rays ~ri are denoted by θi.

The number of initial rays I, which are released from the sensor per azimuth resolution
cell, depends on the extent of the objects contained in the scene. It has to be high
enough so that all scattering effects in range direction (such as shadowing effects) are
captured by the rays, i.e. the range point xI needs to be illuminated by ray ~rI . Hence,
I = (θI − θmin)/∆θ, with θI = arctan{[xI + hS · tan(θmin)]/hS}.

Each ray illuminates a small surface element, which we detail in the next subsection
in Equation (5.5), giving rise to scattering from that element in all directions. Each
scattered ray is in turn traced to check whether it scatters at another surface element.
This is repeated, for a definable maximum number of bounces which shall be simulated.
Tests on different models of simplified 3-D structures show that contributions from more
than two bounces do not contribute significantly to the overall backscattering. All rays
that travel back in the direction of the radar contribute to the final backscatter.

As detailed in Section 2.4.2, the scattering of microwaves from a surface is composed
by a mix of specular and Lambertian scattering, depending on the surface roughness.
In standard ray tracing, the rays are only reflected in specular direction, which limits
the simulation to the specular contributions. However, to simulate also the non-specular
scattering from a rough surface we adapt this scheme so that rays are reflected from the
same surface element in all possible directions within the same azimuth resolution cell.
This is illustrated in Figure 5.2, with ~n denoting the surface normal, ~rl the incoming ray
coming either directly from the sensor or previously reflected from a surface (multibounce
contribution), θl the local incidence angle, ~rl,S the ray reflected in specular direction,
~rl,j, j = {1, · · · , J}, the rays reflected in other possible directions, and θl,j the reflection
angle for ray ~rl,j. The angle ζl,j is the angle between the reflected ray ~rl,j and the specular
direction ~rl,S given by:

ζl,j = arccos

( 〈~rl,j, ~rl,S〉
|~rl,j| · |~rl,S|

)
, (5.2)
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which we need in the following in order to calculate the amount of energy reflected in
direction of ~rl,j. Only scattering in the X,Z-plane is considered: rays which are scattered
outside the azimuth resolution cell are not considered anymore. By this, we disregard:
1) specular reflection that could be strong but only occurs for some elaborate geometries
that are not considered here; and 2) diffuse scattering back into the X,Z-plane that will
be at a very low level.

5.2.2 Radiometric model

At each intersection point between a ray and a surface (bounce), the amount of energy
which is returned to the sensor, as well as the amount which is scattered in direction of
a reflected ray, is calculated. The latter is the total amount of energy which is scattered
at the next bounce (if any). We separate the RCS σ into the Normalized Radar Cross
Section (NRCS) σ◦ and the effective area Ae according to the relationship:

σ = Ae · σ◦ (5.3)

For the NRCS we define the following Lambertian-specular mixture model, which is based
on the bistatic Lambertian model and a specular coefficient:

σ◦ =
cos(θl) · cos(θl,j) · cos

(
ζl,j

2

)q

∫
cos(θl) · cos(θl,j) · cos

(
ζl,j

2

)q

dθl,j

· C (5.4)

with C being a constant determining the absolute scattering level. Since we do not intend
to calculate absolute radiometry, C can be disregarded. The parameter q ≥ 0 denotes the
specularity of the surface and thus incorporates surface roughness and radar wavelength.
The smoother a surface is, the larger the value of q. In the extreme case of a perfectly
smooth surface q has to be set to infinity; to simulate a Lambertian surface, q has to be set
to 0. In Figure 5.3 we show the behavior of the NRCS with respect to the specularity of
the surface and the reflection angles. Negative reflection angles correspond to scattering
back into the quadrant of the radar, while a reflection angle of 0◦ shows the reflection
in direction of the surface normal, and positive reflection angles correspond to scattering
away from the radar. The graphs show for q = 0 a wide distribution with a maximum
in the direction of the surface normal, whereas for smoother surfaces, the distribution
becomes more peaked with a maximum in the direction of specular reflection. The value
of q is determined empirically in the context of the simulations for which the model is
used. Different values of q are tested, and the one that produces the best resemblance
to the observed image is retained. In our simulations, we use either a single value for all
surfaces or two values, i.e. one for the surrounding surface and one for the object.

The effective area is given by:

Ae =
|~r| · cos(θl)

[~nx · sin(θi) + ~nz · cos(θi)]
2 · ∆θ · δa (5.5)

with ~nx and ~nz denoting the x and z component of the surface normal, respectively. Note
that the local incidence angle θl and the angle θi, which is the incidence angle for the
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Figure 5.3: Normalized RCS of the Lambertian-specular mixture model (5.4) as a function of incidence
angle. The negative reflection angles correspond to backward scattering, while the positive angles are
forward scattering (40◦ incidence angle).

ray directly coming from the sensor (see Figure 5.1), are only the same for first bounce
contributions which occur at flat (horizontal) terrains.

Although the model implementation can accommodate coherent ray tracing simulation,
this is not used for the present application. The simulation of metallic structures, such
as cars, would need a coherent approach, even allowing the exclusion of non-specular
reflection. However, since we model urban surface structures we need to consider their
roughness at X-band. In this setting a incoherent simulation (allowing for some specular
reflection within the Lambertian-specular mixture model) is sufficient.

5.3 Experimental results

5.3.1 Simulation of a gable roof building

To demonstrate the results of our simulator, we choose as first example a mid sized
rectangular apartment building with a gable roof structure, which is shown in Figure 5.4,
in an airborne scene from the AeS-1 sensor from Intermap Technologies. The parameters
of the acquisition and the parameters used for the simulation are given in Table 5.1. We
preprocessed the airborne data by multilooking the image by four samples in azimuth and
two samples in range direction, which resulted in an equivalent number of looks of 2.59 and
an approximately quadratic pixel spacing (0.64 m in azimuth and 0.76 m in slant range).
The building has the dimensions 15.9 m × 27.1 m × 12.0 m, a roof inclination angle of
approximately 35°, and was measured with 42° local incidence angle and 35° aspect angle
(ground truth: measured in-situ, Light Detection And Ranging (LIDAR) DSM, and VHR
orthophoto).

50



CHAPTER 5. RADAR IMAGING SIMULATION FOR BUILDINGS

(a) (b)

Figure 5.4: Rectangular gable roof building example. (a) Subset in orthophoto. (b) Photograph from
the outside of the building. (Orthophoto: Landesvermessungsamt NRW, Bonn, 2007.)

Table 5.1: Acquisition and simulation parameters of examples.

Parameters Airborne / Building TerraSAR-X / Pyramid

Acquisition date 2003-03-13 2007-07-02
Mode - HS

Azimuth resolution 0.16 m 1.4 m
Slant range resolution 0.38 m 1.1 m

Incidence angle 28° - 52° 53°

q for surrounding 12 10
q for building 20 10

o 2 2

In Figure 5.5 we show the building in the actual SAR image (Figure 5.5a) in compar-
ison to the simulation results, once without speckle (Figure 5.5e) and once with speckle
corresponding to 2.59 looks (Figure 5.5f). Figure 5.5b shows the 3-D model in the viewing
configuration as the building was measured in the actual scene, which served as input for
the simulation. Overall, the simulations have a good correspondence with the actual scene.
The shadow area is accurately simulated, while the bright scattering features appear in
the simulations at the correct location. Geometrically the simulated and the measured
radar image coincide within 1.4 m. This discrepancy can be explained by inaccuracies
in the in-situ measurements on which the simulation is based. From the single bounce
contributions shown in Figure 5.5c it can be concluded that the major strong scattering
feature results from direct backscattering from the inclined roof. Instead, the L-shaped
stripes in the double bounce image (Figure 5.5d) result from the corner reflector composed
by the walls facing the sensor and the ground surface. These stripes are not apparent in
the final image, so that they are weak with respect to the single bounce contributions,
which is explained by the 35° aspect angle of the building (see Chapter 4). The actual
SAR image shows some bright spots close to the double bounce, which are not visible in
our simulation. They can be attributed to scattering from structures at the facade, such
as balconies or rain drains, which we disregarded in our simplified 3-D model. The sim-
ulation of the 62 x 49 pixel image took less than 6 seconds, with a memory consumption
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Comparison of simulations of a rectangular gable roof building with actual airborne data.
The viewing direction is from the bottom. (a) Airborne SAR image of the building. (b) 3-D model
of the simulated building with viewing configuration aligned with airborne scene. (c) Single bounce
contribution. (d) Double bounce contribution. (e) Final image without speckle. (f) Final image with
2.59 looks speckle. (SAR image: Intermap Technologies GmbH, 2003.)

52



CHAPTER 5. RADAR IMAGING SIMULATION FOR BUILDINGS

(a) (b)

Figure 5.6: Menkaure pyramid example. (a) Subset in QuickBird satellite image. (b) Photograph of a
side of the Menkaure pyramid, highlighting its staircase like structure. (QuickBird image: DigitalGlobe,
2007; Photo: Sandra Eckert, 2008.)

not exceeding 25 MB (Intel® Core™ 2 Duo Central Processing Unit (CPU) box with
2.53 GHz, 3 GB RAM and Ubuntu 9.04 32-bit operating system), highlighting the good
performance of the simulator.

5.3.2 Simulation of a pyramid

As a second demonstration, we compare the simulation of the Menkaure pyramid (29° 58’
21” N, 31° 7’ 42” E) in Giza, Egypt, to a recent TerraSAR-X image [72] (see Table 5.1
for the parameters of the acquisition and simulation). At present, the Menkaure pyramid
(Figure 5.6a) is 61.0 m high (original height was 65.5 m), with a square base of 103.4 m
and an inclination angle of about 51° [73]. The outside of the pyramid is constructed
of large stone blocks that are stacked stepwise (see Figure 5.6b). The pyramid has a
5° aspect angle with respect to the azimuth direction of the TerraSAR-X image.

In Figure 5.7 we show the simulation results for the Menkaure pyramid in compari-
son to the pyramid shown in the actual SAR data (Figure 5.7a), once without speckle
effect (Figure 5.7e), and once considering the speckle effect corresponding to 1.9 looks
(Figure 5.7f). Figure 5.7b shows the 3-D model of the pyramid which is simulated, con-
sidering the viewing configuration as the pyramid was measured in the actual scene.

The pyramid is characterized in the SAR image by three bright sides and a dark one,
plus a shadow of the apex on the ground extending behind the dark side of the pyramid.
However, the sides do not regularly converge into one clearly defined apex, and the ribs
that separate the four sides are well defined at the base of the pyramid but not anymore
towards its top. The top of the pyramid has a rather more complex structure. In addition,
there is a marked bright stripe at the foot of the radar-facing side.

Considering the single bounce contributions (Figure 5.7c), we can explain the bright
stripe at the radar-facing foot of the pyramid by classical layover. The radar incidence
angle at 53° is almost exactly the same as the pyramid’s slope of 51°. All the backscatter
from the front side is therefore imaged at one single range, namely at the base facing
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Comparison of simulations of the Menkaure pyramid with actual TerraSAR-X data. The
viewing direction is from the bottom. (a) TerraSAR-X image of the Menkaure pyramid. (b) 3-D model
of the simulated pyramid. The viewing is adjusted as it would have been seen by the sensor. (c) Single
bounce contribution. (d) Double bounce contribution. (e) Final image without speckle. (f) Final image
with speckle (1.9 looks). (SAR image: DLR, 2007.)
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the radar. The explanation for the lack of a well-defined apex was first described in [72].
It can be found in double bounce reflections (Figure 5.7d) between the front face of the
pyramid and the ground surface in front of the pyramid. The pyramid has a staircase
like structure, and the vertical faces of its steps form dihedral reflecting structures with
the ground. Each level gives a separate contribution at a different distance, longer for the
higher levels. Disregarded in the 3-D pyramid model, the very top of the actual pyramid
is smooth (not stepped) and therefore it does not show up as double bounce contribution
in the actual SAR image.

A comparison between the pyramid in the actual SAR data and the simulated image
shows that the simulator is able to reproduce the major scattering effects which are related
to the side looking geometry realistically. As in the previous case the discrepancies (3 m)
can be explained by inaccuracies in the in-situ data. The simulation of the 99 x 126 pixel
image took less than 46 seconds, with a memory consumption < 116 Mb, confirming the
efficiency of the simulator.

5.4 Discussion and conclusion

In this chapter, we proposed a relatively simple to implement, yet effective radar imaging
simulator. It is based on an adapted ray tracing scheme and a Lambertian-specular
mixture model, taking into account both specular and diffuse scattering. The method aims
at simulating precisely the geometry of objects in SAR rather than absolute radiometric
effects related to material properties and surface roughness parameters. For the later, the
simulator would need to be extended with a more detailed scattering model (e.g. IEM,
PO, GO, or FDTD) that takes into account these physical parameters. However, this
would sacrifice the computational efficiency that is essential for using the model in the
hypothesis-simulation-comparison loop. Moreover, due to the nature of problems analyzed
with remote sensing, the values of the physical parameters are often not known.

To highlight the effectiveness of our approach, we showed simulation results for a gable
roof building and the Menkaure pyramid in Giza, Egypt, in comparison to actual VHR
SAR data. We demonstrated that the simulator based on this simplified radiometric
model is sufficient to calculate effects which are related to the geometry, such as layover,
shadow, and multibounce scattering effects. If this simulator is used in combination
with techniques that compensate for the effects of an approximate radiometry it can be
used for advanced methodologies in information extraction scenarios, where the material
properties are generally not known (as we show in Chapter 6 and Chapter 7). Furthermore,
the simulator can be deployed for instance for educational purposes or to investigate
scattering effects of buildings.
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Chapter 6

A novel technique for building height
extraction from single detected VHR
SAR data

In this chapter1, we present a novel concept for the height estimation of buildings from
single detected SAR data. The proposed approach is based on the definition of a hypoth-
esis on the height of the building and on the simulation of a SAR image for testing that
hypothesis. A matching procedure is applied to the estimated and the actual SAR images
in order to test the height hypothesis. The process is iterated for different height assump-
tions until the matching function is optimized and thus the building height is estimated.
In addition, we propose an extension of this concept in order to investigate the accuracy
improvements on the height estimation which can be achieved by using an additional
aspect as input data. We test the proposed methods on a set of 40 flat and gable roof
buildings using two submeter VHR airborne and two 1 m resolution TerraSAR-X SAR
scenes all acquired from the same residential area in Dorsten, Germany.

6.1 Introduction to building height estimation

Urban building detection provides an indirect measure for population density, which is an
essential parameter in impact assessment that drives emergency response actions. Both,
the spatial extent of urbanized areas and the spatial characterization of building volume

1Part of this chapter appears in:
[74] D. Brunner, G. Lemoine, L. Bruzzone, and H. Greidanus, “Building height retrieval from VHR SAR imagery

based on an iterative simulation and matching technique,” IEEE Transactions on Geoscience and Remote
Sensing, in press, 2010.

[75] D. Brunner, G. Lemoine, and L. Bruzzone, “Extraction of building heights from VHR SAR imagery using
an iterative simulation and match procedure,” in Proceedings of IEEE International Geoscience and Remote
Sensing Symposium (IGARSS), vol. 4, Boston, MA, USA, July 2008, pp. 141-144.

[76] D. Brunner, G. Lemoine, and L. Bruzzone, “Building height retrieval from airborne VHR SAR imagery based
on an iterative simulation and matching procedure,” in Proceedings of SPIE Conference on Remote Sensing
for Environmental Monitoring, GIS Applications, and Geology VIII, vol. 7110, Cardiff, Wales, UK, September
2008, pp. 71100F-1-71100F-12.

[77] D. Brunner, G. Lemoine, and L. Bruzzone, “Estimation of building heights from detected dual aspect VHR
SAR imagery using an iterative simulation and matching procedure in combination with functional analysis,”
in Proceedings of IEEE Radar Conference (RadarCon09), Pasadena, CA, USA, May 2009.
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are crucial parameters to estimate affected population and infrastructural damage as well
as to enumerate economic losses resulting from the emergency event. Building volume
is the product of spatial extent of a built-up structure and its height. Furthermore, the
height of a building is a structural indicator about the status of a building after the event,
e.g. whether it is still structurally intact. Hence, height determination of buildings is a
key issue in post-emergency event information retrieval in urban areas. Successful height
characterization of buildings in VHR SAR data therefore, will add substantial value to
operational remote sensing applications in emergency response.

Several building height retrieval techniques have already been proposed for VHR SAR
imagery in the literature. Semi-automatic methods for the height estimation in detected
VHR SAR imagery by means of shadow or layover analysis are proposed in [35], [78], and
[79], while methods in [80], [81], and [82] make use of InSAR. The use of stereoscopic SAR
(radargrammetry) is proposed in [83], and [84]. Recently, methods based on multiaspect
SAR data, in which the same area is imaged from different flight paths, have been proposed
in [47] and [85]. A method based on multiaspect InSAR data is presented in [42]. In
[86] the use of multiaspect polarimetric InSAR data is investigated. First results with
circular SAR are shown in [87]. The presented methods have in common that the achieved
accuracy improves with the use of multidimensional data. However, the performance of a
proposed methodology is typically presented for a small set of test data, usually comprising
only few buildings, leaving a general applicability of the method in doubt.

The height extraction by radiometric analysis of the typical double bounce reflection
of a building (see Chapter 3 for details) using an electromagnetic scattering model [40]
based on the GO and PO approximations for a simplified rectangular flat roofed building is
demonstrated in [41]. This method has the potential to extract the height of the building
accurately from a single image, but needs extensive a priori knowledge of the material and
surface roughness properties (i.e. dielectric constant, RMS height, correlation length) of
the building and its surrounding, which may not always be available.

SAR simulators [60], [62], [63] are not only suitable for the analysis of scattering phe-
nomena, but also as part of information extraction methodologies for actual SAR imagery.
In [88], for instance, the polarimetric GrecoSAR simulator is deployed to detect vessel
scattering hotspots, which are then used to classify ships in actual SAR imagery. As an
extension, GrecoSAR was tested in [89] for the simulation of urban structures. In the
case of building reconstruction from multiaspect InSAR data, [36] proposes an iterative
procedure based on the predictions of height maps compared to the actual DEM.

In this chapter, we propose a novel automatic 3-D reconstruction concept for the ex-
traction of the height of buildings from single detected SAR (power) imagery under the
assumption that: 1) a map with the location of the building is available; and 2) the width,
length, and roof type of the investigated building is known. The approach is based on
a ”hypothesis generation - rendering - matching” procedure. A series of hypotheses are
generated and rendered by a radar imaging simulator taking into account the acquisition
parameters of the actual VHR SAR data. The simulations are compared to the actual
VHR SAR data; the estimated height corresponds to the hypothesis for which the sim-
ulated image best matches with the actual scene. The novelty of the presented concept
consists in the use of single detected VHR SAR images instead of multidimensional data
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(e.g. interferometric, polarimetric, multiaspect). It is worth noting that the use of a sin-
gle detected VHR SAR image for height estimation can support a wide range of current
applications including the use of the new spaceborne SAR sensors such as TerraSAR-X
and COSMO-SkyMed. Furthermore, the potential use of single detected SAR data can
provide significant economic efficiencies in emergency response (e.g. speed, cost).

The proposed height estimation process is applicable to different building shapes under
the full range of aspect angles. One of the key characteristics of the proposed procedure
is the simultaneous consideration of the major scattering characteristics of the building
in SAR (i.e. layover and shadow areas, multibounce contributions) for estimating the
height.

In addition, we present in this chapter a generalization of the method for estimating
the height from single detected VHR SAR imagery to the application to dual aspect data
sets2. Our aim is to investigate the accuracy improvements on the height estimation
which can be achieved by using an additional aspect as input data. Furthermore, we
analyze how the two aspects should be chosen so that the estimation procedure yields
best possible results.

We demonstrate the performance and the properties of the proposed approaches an-
alyzing a set of 40 flat and gable roof buildings in: 1) submeter dual aspect VHR air-
borne SAR data, which were acquired from approximately perpendicular flight paths; and
2) meter resolution ascending and descending TerraSAR-X scenes for a residential area
in Dorsten, Germany.

The remainder of this chapter is structured as follows. In Section 6.2 we describe the
proposed approach for estimating the height from single detected VHR SAR data in detail.
Then, in Section 6.3, we present the extension for dual aspect data sets. We introduce the
test data in Section 6.4, while Section 6.5 presents the results of the proposed method.
We finish with the discussion and conclusions in Section 6.6.

6.2 Proposed methodology for height estimation from single im-
ages

Let h and htrue be an assumption of the height and the true height of the analyzed building,

respectively. Let Xtrue denote the true SAR image and X̂ a simulated SAR image at

building height h. In order to find the best estimate ĥ for the height of the building,
we define a ”hypothesis generation - rendering - matching” approach, which is illustrated
in Figure 6.1. A building is simulated at different heights and compared to the actual
scene, under the assumption that the simulated and actual scenes are coregistered. The
simulation requires the knowledge of both a set of parameters related to the acquisition
of the actual SAR image and a set of parameters related to the shape and size of the
building. The last set also includes the hypothesis on the height of the building h. Thus
a simulation is defined by ~H ≡ {w, l, h, αr, θ, φ, δa, δslr}. The final estimated height of
the object corresponds to the hypothesis which matches best with the actual scene and

2Here, only the case of dual aspect data sets is discussed. However, the proposed approach can handle multiaspect data
in general.
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Figure 6.1: Block scheme of the proposed methodology for building height estimation from single detected
VHR SAR data.

is given by:

ĥ = arg max
h

{f(h)}, (6.1)

and
f(h) = ̥[X̂( ~H), Xtrue], (6.2)

with ̥ denoting the similarity measure. The highest value of ̥ corresponds to the best
match between the hypothesis and the actual scene. To calculate the match between the
simulation and the actual scene, both images need to be coregistered. In practice, coreg-
istration and height estimation are similar tasks which can be executed at the same time
in the matching procedure. The value of the measure ̥ for which the best coregistration
between a simulation and the actual scene is achieved, is also the final match value for this
pair, expressing in a quantitative way how well the simulation fitted with the actual scene.
Since the viewing configuration at which the object under investigation was sensed in the
actual scene is modeled by the radar imaging simulator, only translations are considered
as transformation. Hence, the similarity function in (6.2) becomes:

f(h) = max
~s

{̥[X̂~s( ~H), Xtrue]}, (6.3)

where X̂~s denotes the translation of the image X̂ by the two dimensional vector ~s =
{∆x, ∆y} associated with the coregistration process.

To solve the maximization problem of (6.1) we use the multidimensional Nelder-
Mead [90] (or downhill simplex) function optimization method. Alternatively, the use
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of simulated annealing [91] could also be considered to limit the effects of local max-
ima, though this would increase computational costs. In order to avoid instability in the
similarity measure, an averaging over the similarity values in a predefined height inter-
val, for instance [h − 0.4m; h + 0.4m] sampled in 0.2 m steps, can be performed. The
three methodological steps, namely, hypothesis generation, rendering, and matching, are
described next.

6.2.1 Hypotheses generation

For the height estimation process, only the height parameter is variable in ~H , while the
other parameters are constant throughout the estimation procedure. Planar dimensions w
and l are derived from a Geographic Information System (GIS) database (e.g. cadastral
maps, digitized maps from independent ancillary data, optical remote sensing images),
which contains the footprint of the building. For flat roof buildings αr = 0◦, while for
gable roof buildings αr is chosen according to the characteristic roof inclination angle
for the investigated area, which is for the test region considered in this chapter 35°. The
incidence angle and the SAR sensor parameters are defined by the acquisition conditions of
the actual SAR scene from which the height of the building is extracted. φ is obtained by
combining the information from the GIS database with the information on the flight track
of the airplane in the case of an airborne acquisition, or with the information about the
orbit of the satellite in the case that the actual scene was acquired by a spaceborne sensor.
A number of hypotheses are generated for the same building during the maximization of
(6.1). This can be achieved implicitly by the function optimization method which jointly
maximizes for h and ~s. For a better performance, an explicit hypothesis generation can
be performed by iterating h in a predefined range of expected building heights with a
given step size. Thus, the function optimizer has only the task to coregister a rendered
hypothesis with the actual scene by varying ~s.

6.2.2 Rendering

For evaluating which hypothesis matches best with the actual scene, a radar imaging
simulator is employed, which renders the hypothesis into the geometry of a SAR image.
First, a 3-D model is generated from the information in ~H, taking into account the building
parameters w, l, h, and αr. Second, the 3-D model is triangulated so that in the third step
its backscattering can be simulated considering the parameters θ, φ, δa, and δslr specified
in ~H.

Our application scenario aims at extracting building information from SAR scenes over
areas where surface roughness parameters and the dielectric properties of the materials in
the scene are generally unknown a priori. Thus electromagnetic models such as GO, PO,
IEM or the FDTD method cannot be adopted to calculate the backscattering. Hence,
we use the simulator proposed in Chapter 5 to calculate the dominant geometrical effects
of surface and dihedral scattering of the building models. Note that for the proposed
method any simulator which can calculate the effects related to the SAR geometry, can
be employed, irrespective of its exact radiometric model.

The output of the simulator is a 2-D rectangular image, whose dimension is determined
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such that it includes the scattering effects of the simulated object (i.e. single bounce
contributions, shadow, layover, and double bounce) plus a border area, which contains
backscattering from the ground. Note that the ratio ξ between the number of pixels
belonging to the scattering effects from the object (foreground pixels) and the number of
pixels belonging to the ground scattering of the surrounding (background pixels) varies for
different buildings or for the same building measured with different viewing configurations.
This can be observed for instance in Figure 3.4 for three simulations of the same building,
which differ only in φ: ξ of Figure 3.4a is larger than ξ of Figure 3.4b, which is larger than
ξ of Figure 3.4c. We will highlight the consequence of this effect and propose a solution
to compensate for it in the next section.

6.2.3 Matching

In order to estimate the height of a building according to (6.1), we need to optimize the
match between the simulated image and the actual scene with respect to h and ~s. Image
matching and registration are two operations which are closely linked to each other. A
slave image which must be coregistered to a master image is translated so that the match
between these two images reaches a maximum similarity based on a chosen similarity
measure. Hence, the matching between two images is an integral part of a coregistration
method, so that we can jointly optimize for h and ~s.

For image matching, two types of methods exist: area based and feature based methods
[92]. Area based methods calculate directly the correlation between all (or a subset of)
samples in the two corresponding images. For instance, [93] proposes a method for pattern
matching based on a profiling approach using morphological transforms. Feature based
methods, instead, first extract structural information such as lines and edges from the
images to be compared, and then in the second step match them in the feature space.
Depending on the underlying data, various features are in use, such as tie points [94],
gradients computed from grayscale intensity images [95], fractal features based on fractal
theory [96], and higher level features such as the shape of objects derived from their
edge information [97]. The use of the scale invariant feature transform method, which
extracts features that are invariant to image scale and rotation, and which are robust
with respect to affine distortions, change in 3-D viewpoint, addition of noise, and change
in illumination, is proposed in [98]. This method shows good performance for optical
images, while it has a decreased accuracy for SAR images, depending on the content of
the SAR scene [99].

Our matching task is faced with two challenges: 1) comparing the actual SAR data
with speckle to synthetic images without speckle, i.e. the geometry of the images are
similar, but the local statistics in the comparison are different; 2) the radiometry of the
simulated image does not match with that of the actual scene.

We proposed a feature based method in [100], which is based on the extraction of
shadow areas and edges. As match criterion we used the normalized cross-correlation
coefficient [101]. The drawback of feature based methods is the dependence of the effec-
tiveness and stability of the feature extraction procedures on parameter settings, which
is especially critical for SAR images. Therefore, we propose in this chapter an area based
method based on Mutual Information (MI) for ̥ in (6.3).
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MI is a measure derived from information theory, which is suitable for multimodality
image matching/registration tasks. It was independently proposed in [102] and [103] for
the registration of multimodality medical images, and studied by Xie et al. [104] for its

application in the SAR domain. The MI between X̂ and Xtrue is given by:

MI(X̂, Xtrue) = H(X̂) + H(Xtrue) − H(X̂, Xtrue), (6.4)

where H(X̂) and H(Xtrue) are the entropies of X̂ and Xtrue, respectively, and H(X̂, Xtrue)
is their joint entropy. Using xtrue and x̂ to denote the pixel values in the measured and
simulated image, respectively, the entropies can be computed by:

H(X̂) = −
∑

bx

p
bX
(x̂) · log p

bX
(x̂), (6.5)

H(X) = −
∑

xtrue

p
Xtrue

(xtrue) · log p
Xtrue

(xtrue), (6.6)

H(X̂, Xtrue) = −
∑

bx,xtrue

p
bX,Xtrue

(x̂, xtrue) · log p
bX,Xtrue

(x̂, xtrue), (6.7)

where p
bX
(x̂) and p

Xtrue
(xtrue) are the marginal probability mass functions, and

p
bX,Xtrue

(x̂, xtrue) is the joint probability mass function. They can be calculated by:

p
bX,Xtrue

(x̂, xtrue) = hist(x̂, xtrue)/
∑

bx,xtrue

hist(x̂, xtrue), (6.8)

p
bX
(x̂) =

∑

xtrue

p
bX,Xtrue

(x̂, xtrue), (6.9)

p
X
(xtrue) =

∑

bx

p
bX,Xtrue

(x̂, xtrue), (6.10)

where hist denotes the joint histogram of the two images. The reason for the independence
of this similarity measure to the absolute intensity values of the two images is that the MI

is only sensitive to the occurrence of the same pairs of intensity values in X̂ and Xtrue.
Depending on the speckle filtering of the SAR images, the number of bins for the joint

histogram is an uncritical parameter. It should be chosen so that the joint histogram has
on average at least one entry per bin [104]. Since the lowering of the number of bins has
a comparable effect to a low-pass filter, the number of bins should decrease the more the
data are affected by speckle. The simulations are without speckle, so that we choose 256

bins for X̂. Since we apply a speckle filter in the preprocessing step to the actual SAR
data (Section 6.4), we only decrease the number of bins for Xtrue to 128. A test with 64
bins did not yield an increased matching accuracy.

For the coregistration of X̂ and Xtrue we allow subpixel accuracy, which means that
we allow shifts in x and y directions, which do not match the grid spacing of the image.
Therefore, it is necessary to interpolate the values for the pixels that do not coincide with
a grid point of the original raster. With respect to the coregistration of two images with
MI, the Partial Volume (PV) interpolation method was proposed in [105], where instead
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(a) (b) (c)

Figure 6.2: Object masks of the corresponding simulations in Figure 3.4. (a) φ = 0◦. (b) φ = 22.5◦.
(c) φ = 45◦.

of interpolating new intensity values the joint histogram is updated directly. A series of
empirical tests showed that PV outperforms in accuracy other methods such as bilinear
interpolation.

In Section 6.2.2 we highlighted that the ratio ξ between foreground and background
pixels is not constant for different buildings and viewing configurations. In the case of
a building with φ = 0◦ (Figure 3.4a), ξ has a relative high value, which means that
the matching (and hence the height estimation) is dominated by the scattering of the
object itself. Instead, for φ = 45◦ (Figure 3.4c) the value of ξ is relatively low implying
that the estimation procedure is influenced more significantly by the background than
by the foreground pixels. Since an optimal height estimation accuracy is only achieved
for a certain trade-off between fore- and background pixels, we have to ensure that the
matching procedure always uses the same ξ. To fix ξ, we defined a binary object mask,
where all foreground pixels have the value 1 and all background pixels the value 0. This
object mask is generated by the simulator as a secondary result of the simulation run.
Figure 6.2 shows the corresponding object masks for the simulations of Figure 3.4. By
expanding the object masks using the morphological dilation operator [106] and by only
considering, for the calculation of the MI value, those pixels which have the value 1 in the
expanded object mask, ξ can be fixed for the matching procedure for different buildings
and viewing configurations. As structuring element for the dilation operator, we use a
disk, whose size is determined separately for each simulation to fulfill the desired ξ value.
A series of tests showed that the best accuracy for the height estimation is achieved for
ξ = 1, which means that the number of foreground pixels is equal to the number of the
background pixels.

6.2.4 Constraint for obtaining reliable estimations

The proposed method estimates the height of an individual building by simulating the
expected SAR signature of a simplified building model and evaluating the match with the
actual scene. However, the simulation process does not consider the effects of other struc-
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Figure 6.3: Minimum distance ∆min which is required between two buildings so that their scattering
effects do not interfere.

tures in the surrounding of a building under investigation, which might have an impact
on its actual backscattering. The minimum distance ∆min which is required between two
buildings in order that their scattering effects do not interfere with each other is given
by [36]:

∆min = h1 · tan(θ) + h2 · cot(θ), (6.11)

where h1 is the height of the building at the sensor close side and h2 denotes the height of
the building, which is behind the first building (see Figure 6.3). Hence, optimal accuracy
for the height estimation process for a building can only be achieved if the condition:

∆act > ∆min, (6.12)

is fulfilled, where ∆act denotes the actual distance between the buildings.

6.3 Proposed methodology for height estimation from dual as-

pect data sets

In order to investigate the accuracy improvements which can be achieved by using dual
aspect data sets, we extend the methodology for the height estimation from single detected
VHR SAR imagery. The resulting procedure can be separated in two steps. Firstly, the
height of a building is estimated from each of the two aspects separately using the height
estimation procedure for single detected imagery, which results in two individual height
estimates per building. Second, the quality of each of the two estimates is assessed by
functional analysis. This information is used to either select one of the individual estimates
as final height assumption, or to fuse the two individual estimates to derive a new height
assumption which is based on the two aspects.

For simplicity let us consider one of the dual aspect data sets. Let f1(h) and f2(h) be
the similarity functions (6.3) of a building in aspect 1 and 2 of a dual aspect data set,

respectively. Let ĥ1, and ĥ2 be the estimated heights resulting from the maximization of

f1(h) and f2(h), respectively. The final estimated height ĥ1,2 is obtained by merging the
two individual estimates, taking into account their respective qualities. The quality of an
individual height estimate reflects its plausibility to be a reliable estimate for the height
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Figure 6.4: Examples of similarity functions. (a) High quality estimate with one distinct global maximum.
(b) Low quality estimate without one distinct global maximum.

of the building, and is obtained by a functional analysis of the similarity function fn(h)
where n = {1, 2}.

An example of a height estimate with high quality is shown in Figure 6.4a. It shows
high values in the vicinity of the true height whereas the values decrease with increasing
the offset between true and assumed height. Hence, a height estimate with high quality is
characterized by a concave similarity function with a clear peak. Figure 6.4b instead shows
an example for a low quality estimate. It has two local maxima, which have similar values,
but at very different heights. Therefore, lower quality estimates are characterized by a
similarity function with several local minima and maxima without one distinct global
maximum. They are not smooth, which means that they change between convex and
concave.

In practice fn(h) has several very small local extrema. In order to conduct the func-
tional analysis, we first apply a 2-D thin plate spline [107], which smooths the function
and limits the effects of the local extrema for the assessment of the quality:

sn(h) = spline[fn(h)]. (6.13)

Note that sn(h) is only used for the assessment of the quality of the estimate, while the

fusion and the derivation of ĥ1,2 is based on the original similarity function fn(h).

For the assessment of the quality of an estimate and the calculation of ĥ1,2, the first
derivative s′n(h) and second derivate s′′n(h) of sn(h) are analyzed. In particular, the number
of local maxima of s′n(h) denoted by mn, and the number of zero crossings of s′′n(h) denoted
by zn, are considered. mn is a measure of the number of ascending slopes of sn(h). An
estimate for which mn = 1 is characterized by one distinct maximum. zn corresponds to
the number of inflection points of sn(h), which is equivalent to the number of changes
between convex and concave behavior of the function. Hence, it is a measure of the
smoothness of the similarity function. An unstable function, which changes often its
behavior between convex and concave, has a high value. An ideal concave similarity
function has zn = 0.
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The quality assessment and fusion strategy gives first preference to similarity functions
which have one distinct maximum. If both or none of the functions satisfy this, the quality
is assessed based on the smoothness of the function. In particular, if only one of the
estimates shows one distinct maximum (m1 = 1 or m2 = 1), the estimated height is based
solely on this estimate. If this is true for both similarity functions (m1 = 1 and m2 = 1),
zn is investigated in order to determine which estimate is superior. The smoothness of
the function is as quality measure less expressive, so that one similarity function is only
considered superior to the other function if it has a significant lower number of inflection
points. In this context, significant lower means that the difference between zn must
be bigger than two. The estimated height corresponds to the estimate which has the

higher quality. If none of the estimates is superior, ĥ1,2 results from the maximization of
the fusion (multiplication) of the two similarity functions. In case that both similarity
functions have several local maxima (m1 > 1 and m2 > 1), the decision which function is
superior is based again on the number of zero crossings (zn) of the function.

The process can be formulated as follows:

1. if f1(h) and f2(h) have one local maxima, or if both functions have several local
maxima, i.e. (m1 = 1 and m2 = 1) or (m1 > 1 and m2 > 1), then evaluate the
smoothness of f1(h) and f2(h):

ĥ1,2 =





arg max
h

{f1(h) · f2(h)} if |z1 − z2| ≤ 2

ĥ1 if |z1 − z2| > 2 and z1 < z2

ĥ2 if |z1 − z2| > 2 and z1 > z2

2. else if m1 = 1 and m2 > 1, then ĥ1,2 = ĥ1;

3. otherwise, i.e. m2 = 1 and m1 > 1, ĥ1,2 = ĥ2.

In the proposed strategy the range for which the qualities of the two similarity functions
are considered as similar are quite restrictive. It follows that the method tends to select
the final height estimate from one of the two individual estimates rather than to fuse the
estimates by multiplying the individual similarity functions. The rules can be made less
restrictive by choosing higher values than ’1’ for the comparison with mn and ’2’ for the
comparison with zn. This would imply that also lower quality estimates are considered
for the fusion. If both estimates show a low quality, the estimate for this building could
be rejected. If, as in our scenario, a height estimate shall be derived anyway, the fusion of
the estimates is preferable over the selection of an estimate, as it increases the probability
to derive an estimate which has good accuracy. As alternative to fusing the estimates by
multiplying the similarity functions, an averaging of h1 and h2 could be performed. The
advantage of the multiplication over the averaging is because the complete information of
each of the original similarity functions is used to derive the final height. This means that

at the estimated height both f1(ĥ1,2) and f2(ĥ1,2) have high values, whereas the averaging

could result in a height estimate whose function values f1(ĥ1,2) and f2(ĥ1,2) have both
low values.

An alternative approach to the functional analysis would be to simultaneously match
the rendered hypotheses for both of the dual aspect scenes and select the hypothesis for
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which the joint similarity function is at the global maximum. However, according to our
experience, this leads to more cases where the lower quality estimate influences the final
height estimate significantly. Rather, functional analysis as proposed in the scheme above
will lead to a qualitatively better final estimate in disparate matching quality cases.

6.4 Data set description

The test area chosen was a subset of the city of Dorsten (51°40’18” N, 6°59’34” E),
Germany, for which we considered both dual aspect airborne and a pair of ascending and
descending spaceborne VHR SAR data. Ancillary data, which was used to retrieve the
building footprint parameters for initializing the simulator, was provided by an orthophoto
acquired on June 09, 2006 with 0.3 m resolution. Furthermore, ground data was manually
collected in combination with a LIDAR DSM with approximately 0.1 m vertical resolution.
An overview of the composed data set is shown in Figure 6.5.

We consider two types of building structures for which we estimate the heights: flat
roof buildings and gable roof buildings. All buildings are assumed to be individual build-
ings with rectangular footprints. To evaluate the performance of the method under a
variety of conditions, we choose 40 individual industrial and apartment buildings with
different shapes at various aspect and incidence angles, which we categorized in three
groups. Category A contains flat roof buildings and category B contains gable roof build-
ings. Category C contains the buildings which do not fit the structural assumptions
of our building models completely. This category includes buildings which have a non-
rectangular footprint (such as buildings with a tower attached to it), or buildings which
have non-uniform heights. The majority of the selected buildings are gable roof build-
ings, which is the prevailing type of structure for residential houses in this area. Only few
flat roof buildings could be identified, some of which are apartment buildings (flats) and
some are industrial or commercial structures (e.g. factories, stores). Six buildings belong
to category A, 27 buildings to B, while seven buildings were classified as C. To distin-
guish between the different buildings in the various categories we use the naming scheme
<Category>-<Number of building in category>, e.g. A-3 denotes the third building in
the category for flat roof buildings.

Figure 6.6 shows a subset of the orthophoto and the corresponding DSM with some
example buildings for two of the three categories: buildings denoted by A-1, A-2, A-3,
and A-4 are flat roof buildings, while buildings B-1 to B-5, and B-18 to B-23 belong to
the class of gable roof buildings. An example of a building belonging to category C is
given in Figure 6.11 in Section 6.5.1.

The two airborne SAR scenes taken by the AeS-1 sensor from Intermap Technologies
[108], for which the corresponding subset of Figure 6.6 is displayed in Figure 6.7 (in slant
range geometry), were acquired in X-band on March 13, 2003 with 16 cm azimuth and
38 cm slant range resolution in HH polarization. The incidence angle ranges over the
swath from 28° (near range) to 52° (far range). The dual aspect data were measured in
almost perpendicular flight paths with a right pointing antenna so that the flight path for
the ”horizontal” scene was approximately from west to east, while the ”vertical” scene
was measured from north to south. The overlapping area in the two scenes, where we
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Figure 6.5: Overview of data set from Dorsten. Note that for the spaceborne data the azimuth dimension
of the images is smaller than the range dimension, while for the airborne data the azimuth dimension is
larger compared to the range dimension.

focus on in this study, is about 2.3 x 2.3 km2 and includes a medium dense residential
urban area, and several smaller industrial zones.

In order to use the MI as similarity measure for SAR image registration/matching,
speckle reduction is essential [104]. Hence, we preprocessed the airborne data by multi-
looking the image by four samples in azimuth and two samples in range direction, which
resulted in an equivalent number of looks of 2.59 and an approximately square pixel spac-
ing (64 cm in azimuth and 76 cm in range). Furthermore, we speckle filtered the image
with the Gamma Maximum A-Posteriori Probability (MAP) filter [109] and the mean
shift filter proposed in [110], which acts mainly on shadow areas.

The TerraSAR-X spaceborne data, for which the corresponding subset of Figure 6.6 is
shown in Figure 6.8, were acquired in HS mode with an azimuth and slant range resolution
of 1.1 m and 1.2 m, respectively. The data were processed so that the azimuth and the
slant range spacing is 0.9 m. The descending scene was acquired on December 13, 2007
with θ varying from 53.4° - 54.1° over the swath, while the ascending scene was taken
on January 22, 2008 with θ in the range of 50.3° - 51.0°. Due to the lower resolution of
the spaceborne data, we did not multilook the data before speckle reduction. Hence, the
preprocessing of the data was limited to the application of the Gamma MAP and the
mean shift filter.

6.5 Experimental results

The results of the height estimation process for our test data set are presented in this
section. Section 6.5.1 lists and discusses the results of the three groups of buildings for the
horizontal airborne scene in greater detail. In Section 6.5.2 we highlight the results for the
vertical airborne scene, especially with respect to the differences to the results from the
horizontal scene. To investigate the impact of the lower resolution of the TerraSAR-X data
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(a)

(b)

Figure 6.6: (a) Subset of the orthophoto (top corresponds to north), showing examples of buildings for two
categories: Buildings A-1, A-2, A-3, and A-4 belong to the category of flat roof buildings, while buildings
B-1 to B-5 and B-18 to B-23 are classified as gable roof buildings. (b) Corresponding subset of the DSM.
In the lower left corner it can be noted that due to some manual editing the height information of some
buildings was removed (e.g. buildings B-18 - B-23 ). For these buildings, manual height measurements
were carried out using a laser device. (Orthophoto: Landesvermessungsamt NRW, Bonn, 2007; DSM:
Fugro NPA, 2003.)
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(a)

(b)

Figure 6.7: Subsets of the airborne SAR scenes in slant range geometry. (a) Horizontal scene (acquisition
from west to east with right looking sensor) with viewing direction from the top. (b) Vertical scene
(acquisition from north to south with right looking sensor) with viewing direction from the right side.
(Intermap Technologies GmbH, 2003.)
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(a)

(b)

Figure 6.8: Subsets of TerraSAR-X scenes in slant range geometry, which corresponds to the subsets
shown in Figure 6.6. (a) Ascending with viewing direction from the left. (b) Descending with viewing
direction from the right. (Infoterra GmbH/DLR, 2007-2008.)
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Table 6.1: Results for flat roof buildings (category A) for horizontal airborne scene.

Buil-
ding

Width Length φ Local θ Height Estimate Difference Relative
Difference

A-1 12.1 m 35.8 m 16.6° 45.4° 12.5 m 12.4 m -0.1 m -0.8%
A-2 12.4 m 35.9 m 16.3° 45.4° 12.5 m 12.0 m -0.5 m -4.0%
A-3 12.3 m 36.3 m 16.6° 45.6° 10.0 m 9.5 m -0.5 m -5.0%
A-4 12.4 m 36.0 m 15.5° 45.7° 10.0 m 14.4 m 4.4 m 44.0%
A-5 15.8 m 45.7 m 14.0° 43.0° 7.0 m 5.4 m -1.6 m -22.9%
A-6 13.1 m 37.8 m 30.4° 43.0° 5.1 m 5.1 m 0.0 m 0.0%

Mean 0.3 m 1.9%
Standard deviation ± 2.1 m ± 22.3%

with respect to the airborne data on the accuracy of the height estimation, we summarize
in Section 6.5.3 the results for the ascending and descending TerraSAR-X scenes. In
Section 6.5.4 we show the results of the height estimation from the dual aspect data sets,
before we discuss in Section 6.5.5 some computational aspects of the method.

6.5.1 Horizontal airborne scene

Flat roof buildings (category A)

To highlight the results of our method in detail, we show in Figure 6.9 the output generated
by the method for building A-2, which is also included in Figure 6.6. A photograph of
the building is displayed in Figure 6.9c, and further details are listed in Table 6.1. The
plot in Figure 6.9a shows MI values normalized between 0 and 1, for hypotheses with
an height range from 3 m to 20 m using a 0.1 m step size. The graph shows a good
match around the true height of the building (12.5 m), while it drops off with increasing
difference between simulated and actual height. The global maximum is at 12.0 m which
is 0.5 m lower than the true height. Figure 6.9b shows the simulation of the building
at the estimated height in comparison to the actual SAR scene (Figure 6.9d), which is
coregistered with the simulation. It is obvious that the Lambertian-specular mixture
model used in the simulation does not reproduce the correct radiometry of the actual
SAR scene. However, qualitative differences in scattering effects, and their characteristic
image areas in the SAR geometry (i.e. double bounce, layover, and shadow), are reflected
accurately in the simulation. Since we use MI as similarity measure, the difference in the
radiometry between simulation and actual scene does not seem to degrade the accuracy
of the height estimate.

A summary of the results of the proposed height estimation procedure for the build-
ings in category A is given in Table 6.1, together with the details (dimensions and the
corresponding viewing configuration of the sensor) of the buildings. The overall mean dif-
ference is 0.3 m, which indicates that the method has no significant tendency for under-
or overestimation. The corresponding standard deviation of 2.1 m demonstrates a good
accuracy in the estimates for flat roof buildings.
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Figure 6.9: Results for building A-2. (a) Plot of the MI values normalized between 0 and 1, with a
maximum at 12.0 m. (b) Simulation of the flat roof building model with height 12.0 m. (c) Photograph
from the outside of the building. (d) Subset of airborne VHR SAR scene showing building A-2, which is
coregistered to the simulation shown in (b). (SAR image: Intermap Technologies GmbH, 2003.)

Gable roof buildings (category B)

The category of gable roof buildings contains the largest distinct set of buildings in the test
data set. Figure 6.10 shows in detail the results for building B-18, which is also shown
in Figure 6.6. A photograph of the building is displayed in Figure 6.10c, and further
characteristics are listed in Table 6.2. The plot in Figure 6.10a shows the match values
for the same height hypotheses as in Section 6.5.1. Similar to the plot in Figure 6.9a,
the maximum value at 10.2 m is close to the true height of the actual building (9.5 m).
Comparing the simulation in Figure 6.10b to the actual building shown in Figure 6.10d,
it can be noticed again that the SAR image geometries of the two images match well,
while there is a significant difference in the radiometries of the two images, which justifies
the use of MI as measure for the matching procedure.

The results of the height estimation for the 27 gable roof buildings are summarized in
Table 6.2. The mean difference is 0.9 m, which indicates that the method has a small
tendency to overestimate heights. The standard deviation is 1.5 m, which is slightly better
than what was achieved for the flat roof buildings.
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Figure 6.10: Results for building B-18. (a) Plot of the normalized MI values with a maximum at 10.2 m.
(b) Simulation of the flat roof building model with height 10.2 m. (c) Photograph from the outside of
the building. (d) Subset of airborne VHR SAR scene showing building B-18, which is coregistered to the
simulation shown in (b). (SAR image: Intermap Technologies GmbH, 2003.)

The method provides consistent results when matching buildings at different orienta-
tions. Let us consider for example buildings B-1 and B-4, which are similar in size and
structure. B-1 is oriented approximately perpendicular to B-4 (see Figure 6.6), while
they were imaged with about the same incidence angle. The results for the height estima-
tion, with an estimation difference of 1.5 m for B-1 and 1.0 m for B-4, are good matches
for both buildings, demonstrating the robustness of the method with respect to varying
aspect angles.

Buildings for which the structural type does not fit the models (category C )

For the present study we assume that buildings have a rectangular footprint and have ei-
ther a flat or a gable roof. However, these simplifying assumptions do not match all actual
buildings. To investigate the performance of the proposed height estimation procedure
for buildings that have a different structure than our assumptions, but are approximated
in the simulation step by rectangular flat or gable roof buildings, we summarize in Table
6.3 the results for seven buildings.

Building C-1 is a gable roof building, but with a very low roof inclination angle. It is
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Table 6.2: Results for gable roof buildings (category B) for the horizontal airborne scene.

Buil-
ding

Width Length φ Local θ Height Estimate Difference Relative
Difference

B-1 9.7 m 39.7 m 19.5° 46.1° 9.5 m 11.0 m 1.5 m 15.8%
B-2 10.5 m 30.3 m 21.2° 45.9° 9.5 m 13.7 m 4.2 m 44.2%
B-3 11.3 m 45.2 m 20.5° 45.8° 9.5 m 10.6 m 1.1 m 11.6%
B-4 10.8 m 45.2 m 24.8° 45.6° 9.5 m 10.5 m 1.0 m 10.5%
B-5 10.4 m 50.0 m 17.3° 46.2° 9.5 m 12.5 m 3.0 m 31.6%
B-6 9.8 m 16.9 m 44.5° 40.9° 9.5 m 10.3 m 0.8 m 8.4%
B-7 10.2 m 17.5 m 44.5° 41.1° 9.5 m 10.2 m 0.7 m 7.4%
B-8 9.9 m 17.5 m 44.5° 41.2° 9.5 m 10.6 m 1.1 m 11.6%
B-9 10.3 m 32.0 m 38.0° 40.2° 9.5 m 9.6 m 0.1 m 1.1%
B-10 12.7 m 24.6 m 37.9° 39.8° 10.5 m 10.5 m 0.0 m 0.0%
B-11 10.4 m 32.0 m 37.5° 40.5° 9.5 m 9.0 m -0.5 m -5.3%
B-12 10.3 m 32.0 m 37.6° 40.7° 9.5 m 9.6 m 0.1 m 1.1%
B-13 10.2 m 32.6 m 38.1° 40.9° 9.5 m 8.7 m -0.8 m -8.4%
B-14 11.3 m 27.6 m 40.1° 41.2° 9.5 m 9.5 m 0.0 m 0.0%
B-15 10.6 m 27.6 m 41.8° 41.8° 9.5 m 8.1 m -1.4 m -14.7%
B-16 15.9 m 27.1 m 35.5° 42.2° 12.0 m 12.3 m 0.3 m 2.5%
B-17 9.8 m 27.3 m 41.1° 42.0° 9.5 m 11.2 m 1.7 m 17.9%
B-18 10.0 m 48.1 m 23.8° 46.7° 9.5 m 10.2 m 0.7 m 7.4%
B-19 9.9 m 52.1 m 22.8° 46.6° 9.8 m 11.0 m 1.2 m 12.2%
B-20 10.0 m 48.3 m 23.6° 46.5° 9.8 m 8.5 m -1.3 m -13.3%
B-21 9.9 m 32.1 m 27.9° 46.7° 9.8 m 15.5 m 5.7 m 58.2%
B-22 10.6 m 46.9 m 23.5° 46.9° 9.5 m 10.1 m 0.6 m 6.3%
B-23 9.7 m 22.8 m 22.0° 46.5° 9.5 m 9.5 m 0.0 m 0.0%
B-24 10.9 m 38.4 m 11.1° 50.4° 9.5 m 8.8 m -0.7 m -7.4%
B-25 11.2 m 35.8 m 13.3° 50.5° 9.5 m 11.5 m 2.0 m 21.1%
B-26 10.0 m 47.6 m 8.1° 50.2° 9.5 m 11.0 m 1.5 m 15.8%
B-27 9.1 m 31.6 m 10.0° 50.5° 9.5 m 10.8 m 1.3 m 13.7%

Mean 0.9 m 9.2%
Standard deviation ± 1.5 m ± 16.2%

approximated by a flat roof building. In this case, the height is underestimated by 1.3 m,
which is in the range of the standard deviations for flat or gable roof buildings.

Building C-2 has a rectangular footprint, but with a tower attached to it, which is
oriented towards the SAR sensor. Furthermore, the roof structure is not a classical gable
roof structure, where two sides of the roof are inclined, but a hipped roof where all four
sides of the roof are inclined. We approximate this structure with a gable roof building,
neglecting the tower, which results in an underestimation of 1.6 m.

Building C-3 (Figure 6.11a and Figure 6.11b) is a flat roof building, which has three
different heights. The major part (middle part) of the building is 7.0 m high, while the
left and right parts are approximately 3.2 m and 0.5 m lower than the main part. We
approximate this building with a standard flat roof building, which is, given the complex
signature in the actual scene, a significant simplification. This is reflected in the estimation
result, which overestimates the height by 2.9 m.

The main part of C-4 is an industrial rectangular flat roof building, which has several
lower building parts attached to it. For the estimation of the height of the main part, we
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Table 6.3: Results for buildings where the structural shape of the actual building does not match our
rectangular flat or gable roof models (category C ) for the horizontal airborne scene.

Buil-
ding

Width Length φ Local θ Height Estimate Difference Relative
Difference

C-1 10.8 m 25.5 m 21.1° 44.0° 12.5 m 11.2 m -1.3 m -10.4%
C-2 12.0 m 38.8 m 31.4° 43.2° 14.5 m 12.9 m -1.6 m -11.0%
C-3 21.5 m 42.7 m 33.4° 45.7° 7.0 m 9.9 m 2.9 m 41.4%
C-4 13.1 m 36.1 m 38.4° 45.0° 12.6 m 10.5 m -2.1 m 16.7%
C-5 12.0 m 60.9 m 27.4° 43.4° 12.5 m 11.1 m -1.4 m -11.2%
C-6 11.5 m 57.6 m 40.9° 41.3° 12.0 m 12.7 m 0.7 m 5.8%
C-7 11.1 m 56.5 m 27.3° 45.4° 12.9 m 8.2 m -4.7 m -36.4%

Mean -1.1 m -5.5%
Standard deviation ± 2.4 m ± 24.1%

neglected the structures in the surrounding and assumed the building to be a standalone
rectangular flat roof building, which resulted in an underestimation of 2.1 m.

Each of the building groups C-5, C-6, and C-7 consists of three row houses with
similar dimensions, which are not arranged in a perfect row, but are slightly staggered. In
these cases we did not estimate the height for each building in the group separately, but
considered a group as one individual flat or gable roof building. This implies that we do
not model the correct footprint of the building group for the simulations, but approximate
it by one rectangle. In Figure 6.11c and Figure 6.11d we show the building group C-6
consisting of three gable roof buildings in the orthophoto and SAR image, respectively.
In this situation the estimated height is 0.7 m higher than the true height. The gable
roof building group C-7 has the buildings positioned significantly staggered to each other.
Hence the approximation as single gable roof building is quite rough, which can be seen
in the significant underestimation by 4.7 m.

The overall mean and standard deviation for this category is -1.0 m ± 2.4 m. This is
somewhat less accurate than in the other two categories, but still demonstrates that the
method is relatively robust with respect to the structural assumption of the buildings.

Quality of height estimation

In order to detect outliers and to derive a representative overall assessment of the accuracy
of the height estimation procedure, we carry out a statistical analysis of the results for
the 33 buildings of category A and B. Since category C only contains buildings which do
not fit the considered models, we do not take them into account for the assessment of the
overall accuracy.

Figure 6.12a shows a normal Quantile-Quantile-Plot (Q-Q-Plot) for the estimation
differences for the 33 buildings of category A and B. It highlights that the differences
are normal distributed, with some outliers above 4 m. Using the Chauvenet’s criterion
[111, pp.166-8] to detect statistical outliers from the set of observations, we identified the
estimations for the buildings A-4, B-2, and B-21 as outliers.

Building A-4 and B-2 were overestimated by 4.4 m and 4.2 m, respectively, since they
are largely surrounded by tall trees. This leads to a SAR signature which is different
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(a) (b)

(c) (d)

Figure 6.11: (a) Building C-3 in orthophoto. (b) Building C-3 in SAR image with viewing direction from
the top. (c) Building C-6 in orthophoto. (d) Building C-6 in SAR image with viewing direction from
the top. (Orthophoto: Landesvermessungsamt NRW, Bonn, 2007; SAR image: Intermap Technologies
GmbH, 2003.)

from the signature of a building not affected by objects in the surrounding (which can be
observed in Figure 6.7a by comparing the signature of B-2 for example to the signature
of building B-4 ). Since we do not model trees in the simulation procedure, they have an
impact on the accuracy of the height estimation.

Building B-21 was overestimated by 5.7 m since it is surrounded by a relatively smooth
surface, giving it a low backscatter, similar to the shadow. Hence, the matching function
does not capture well the edge of the shadow region of the building signature in the actual
SAR image, leading to the overestimate in height. Hence, the shadow region of a building
seems to be important for the method to estimate the correct height.

Figure 6.12b displays the Q-Q-Plot of the estimation differences where the three outliers
were removed, which shows a good correspondence of the set with the normal distribution.
The mean of the reduced set is 0.4 m, which demonstrates that the method has no
significant preference for over- or undersegmentation, while the standard deviation of
1.0 m highlights the good estimation performance of the proposed approach.
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Figure 6.12: (a) Normal Q-Q-Plot for the 33 buildings of category A and B. (b) Normal Q-Q-Plot for the
buildings of category A and B whereas three outliers were removed.

Effects of trees

Backscattering from trees positioned near a building tend to superimpose on the backscat-
tering signature of the buildings, and, therefore, affect the accuracy of the height estima-
tion. We analyze building A-3 and A-4, which are very similar and have identical viewing
configurations. The amount and the density of trees are similar for both buildings, whereas
the relative locations of the trees are different (see Figure 6.6a and Figure 6.6b). Since
the sensor images the buildings from the top of the image, the majority of trees which are
in the immediate surrounding of building A-3 are located in its layover area. For building
A-4, instead, the majority of the trees which are close to the building are located behind
the building, affecting its shadow area. The estimation errors of -0.5 m (A-3 ) and 4.4 m
(A-4 ), confirm that the shadow area of the building plays an important role in the height
estimation.

The density of trees surrounding the building weighs on the accuracy of the height
estimation as well. Consider the buildings B-2, B-4, and B-5, which are three gable roof
buildings with equal heights, located close to each other and with the same orientation
towards the sensor. Building B-4 has only some trees in the front, while building B-5
has a higher density of trees in the front and some additional trees in the back, which are
not as close and dense as for building B-2, which is completely surrounded by trees. The
height estimation for B-4 shows a difference to the actual height of 1.0 m, a difference of
3.0 m for building B-5, and 4.2 m for building B-2, demonstrating the limitation of the
height estimation method in situations that are not conform with the model assumptions.

6.5.2 Vertical airborne scene

The vertical scene of the dual aspect data set was acquired such that the angle between
the flight paths of the horizontal and vertical scenes is 84.5°. Hence, if the aspect angle of
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Table 6.4: Actual and minimum distances between buildings A-1 to A-4 for the vertical airborne scene.

Buildings ∆act ∆min

A-1 ↔ A-2 22.7 m 26.6 m
A-2 ↔ A-3 19.8 m 23.0 m
A-3 ↔ A-4 19.7 m 21.2 m

a building was defined in the horizontal scene by the angle between the azimuth direction
and the short wall of the building, it will be given in the vertical scene by the angle
between the azimuth direction and the long wall of the building (see also Figure 3.3). The
local incidence angle of a building might change significantly between the horizontal and
vertical scenes depending on the location of the building. In the extreme case, the same
building might be measured in one scene with 28° incidence angle, while it is measured
in the other scene with 52°.

For category A, the height estimation procedure resulted in a mean error of 0.8 m with
a large standard deviation of 5.4 m. The reasons for the low accuracy are buildings A-1,
A-2, A-3, and A-4, which have estimation errors ranging from -7.5 m to 7.5 m. This
is caused by the fact that these buildings are too close to each other, so that condition
(6.12) is not fulfilled. A part of the shadow area of building A-1 is superimposed by the
layover area of building A-2. The actual and minimum distances between the buildings
A-1 to A-4 are reported in Table 6.4.

The height estimation for the 27 buildings in category B resulted in a mean error
of -0.4 m with a standard deviation of 1.9 m. These values are in the same order of
magnitude as the ones from the horizontal scene.

For category C, the mean value of the error is 0.0 m with a standard deviation of
3.2 m. The reason for the higher standard deviations for categories B and C with respect
to the horizontal scene is the incidence angle, which is for the horizontal scene on average
44.5° and for the vertical scene 37.8° (considering buildings in category B and C ). The
lower mean incidence angle for the vertical scene causes that the shadow areas are smaller
with respect to the ones in the horizontal scene, confirming again the relative importance
of the shadow feature for the height estimation.

6.5.3 TerraSAR-X scenes

The goal of the analysis of the TerraSAR-X scenes is mainly to investigate the effect of
using a lower resolution spaceborne image compared to an airborne image. The ascending
and descending scenes were acquired approximately from a north-south and south-north
orbit, respectively, which are from an orientation point of view quite similar to the flight
path from which the vertical airborne scene was measured (see Figure 6.5). In fact,
the vertical airborne and the descending TerraSAR-X scenes were both acquired with a
right looking sensor from a similar north-south path. The ascending TerraSAR-X scene
was also acquired with a right looking sensor but from a south-north track, so that the
buildings were measured from nearly the opposite side with respect to the descending
TerraSAR-X and the vertical airborne scene. This implies that a building was measured
with similar aspect angles throughout the ascending and descending TerraSAR-X and the
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Table 6.5: Actual and minimum distances between buildings A-1 to A-4 for the ascending and descending
TerraSAR-X scenes.

Buildings ∆act ∆min ascending ∆min descending

A-1 ↔ A-2 22.7 m 25.5 m 26.2 m
A-2 ↔ A-3 19.8 m 22.4 m 24.3 m
A-3 ↔ A-4 19.7 m 20.3 m 20.9 m

vertical airborne scenes. The incidence angle varies within each of the TerraSAR-X scenes
by only 1° over the swath, while there is a difference of 3° between the ascending and
descending TerraSAR-X scenes (see Section 6.4).

In the ascending TerraSAR-X scene, the mean and standard deviation of the difference
in height estimation for category A is -3.3 m and 5.8 m, respectively. The results for the
descending TerraSAR-X scene show a similar mean of -3.4 m with a standard deviation
of 4.3 m. The low accuracy for this category has the same reason as for the buildings in
category A in the vertical airborne scene. The buildings A1 to A4 are located too close to
each other so that the scattering effects of different buildings overlap with each other (see
Section 6.5.2). In Table 6.5, we summarize the minimum distances required according
to equation (6.12) and compare these to the actual values. Even though ∆min between
buildings A-3 and A-4 is quite similar to ∆act, the height estimate of A-4 is imprecise
due to a high density of trees in the immediate surrounding of the two buildings.

The mean values for category B for the ascending and descending scenes are 1.9 m and
-0.5 m, respectively. The standard deviations are 3.1 m and 3.4 m, respectively. The fact
that they are very similar in both scenes points out a constant height estimation accuracy.

For the ascending scene, the estimation procedure for category C resulted in a mean
value of -2.2 m and a standard deviation of 4.6 m. Those figures are -0.8 m and 1.3 m,
respectively, for the descending scene. Since they are in the same order of magnitude as
for categories A and B, the structural differences from the basic building assumptions are
maybe less critical in lower resolution VHR spaceborne data.

The results for the TerraSAR-X data show that meter resolution VHR SAR data
are not sufficient to get an accurate height estimate for the building dimensions that
were investigated in this study. Nevertheless, if the height of a single floor of a building
is approximately known, the method permits to estimate the number of floors of the
building. This information can be of use for instance to distinguish between different
types of buildings, such as residential housing, apartment buildings, industrial buildings
or skyscrapers.

6.5.4 Dual aspect data sets

In this subsection we illustrate the results obtained by the joint usage of two aspects.
First, we show the different intermediate results for the height estimation for one flat
and one gable roof building from the airborne VHR SAR pair. On the basis of the three
building categories we discuss then the summarized results.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 6.13: Gable roof building example B-3. (a) Building in orthophoto. (b) Photograph from the
outside of the building. (c) Building in horizontal VHR SAR scene. (d) Simulation of building at
height 10.6 m, which is the height estimated from the horizontal scene, with the viewing configuration
of horizontal VHR SAR scene. (e) Simulation of building at height 9.6 m, which is the estimated height
resulting from the fusion of the individual estimates, with viewing configuration of horizontal VHR SAR
scene. (f) Building in vertical VHR SAR scene. (g) Simulation of building at height 6.9 m, which is
the height estimated from the vertical scene, with viewing configuration of vertical VHR SAR scene.
(h) Simulation of building at height 9.6 m, which is the estimated height resulting from the fusion of
the individual estimates, with viewing configuration of vertical VHR SAR scene. The SAR scenes and
simulations are with viewing direction from the top. (Orthophoto: Landesvermessungsamt NRW, Bonn,
2007; SAR image: Intermap Technologies GmbH, 2003.)

Detailed results for one flat and one gable roof building

To demonstrate the detailed results for an example for category B, we selected build-
ing B-3 . Its dimensions and viewing configuration in the horizontal and vertical air-
borne scenes are summarized in Table 6.6. The building is shown in the orthophoto in
Figure 6.13a and as photograph taken from the street passing in front of the building in
Figure 6.13b. Figure 6.13c and Figure 6.13f show the building in the filtered horizontal-
and vertical airborne VHR SAR scenes, respectively. The height estimation for the build-
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Figure 6.14: Intermediate results derived during the quality assessment and fusion procedure for building
B-3 in an interval from 3 m to 20 m. The left column shows the plots with respect to the horizontal
scene, while the plots in the right column refer to the vertical scene. (a) and (b) Original similarity
functions. (c) and (d) Splines of the similarity functions. (e) and (f) First derivatives of the splines.
(g) and (h) Second derivatives of the splines. (i) Merged similarity function by multiplication.

ing from the horizontal scene results in the similarity function shown in Figure 6.14a
having its maximum at 10.6 m, which is 1.1 m higher than htrue. The corresponding
simulation of the building at height 10.6 m is shown in Figure 6.13d. The similarity
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Figure 6.15: Intermediate results derived during the quality assessment and fusion procedure for build-
ing A-3 in an interval from 3 m to 20 m. The left column shows the plots for the horizontal
scene, while the plots in the right column refer to the vertical scene. (a) and (b) Original similar-
ity functions. (c) and (d) Splines of the similarity functions. (e) and (f) First derivatives of the splines.
(g) and (h) Second derivatives of the splines.

function in Figure 6.14b results from the height extraction for the building from the ver-
tical scene. The graph has a maximum at 6.9 m, which is 2.6 m lower than htrue. The
corresponding simulation at 6.9 m height is shown in Figure 6.13g. Both plots are charac-
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Table 6.6: Detailed characteristics of two test buildings in the airborne VHR SAR scenes.

Building Gable Roof (B-3 ) Flat Roof (A-3 )

Width 11.3 m 12.3 m
Length 45.2 m 36.3 m
Real Height 9.5 m 10.0 m
φ Horizontal Scene 20.5° 16.6°
θ Horizontal Scene 45.8° 45.6°
φ Vertical Scene 3.1° 1.4°
θ Vertical Scene 34.7° 35.6°

terized by smaller local minima and maxima, which are eliminated with a spline function.
This results in the graphs shown in Figure 6.14c and Figure 6.14d, capturing the general
behaviors of the similarity functions, which are analyzed during the functional analysis.
Each of their respective first derivatives (Figure 6.14e and Figure 6.14f) has one local
maxima. This indicates that f1(h) and f2(h) have relatively good estimation qualities.
s′′1(h) (Figure 6.14g) has three inflections points, while s′′2(h) (Figure 6.14h) has two. It
follows that neither of the two functions seems to be significantly better than the other,
so that the final height estimate is based on the multiplication of f1(h) and f2(h), which is
shown in Figure 6.14i. The maximization of f1(h) · f2(h) results in a final height estimate
for the gable roof building of 9.6 m, which is 0.1 m higher than the true height. The
corresponding simulations of the building are shown in Figure 6.13e and Figure 6.13h for
the horizontal and vertical scenes, respectively. Instead of multiplying the two similarity
functions, a simple averaging of h1 and h2 would result in a final estimate of 8.75 m, which
is 0.75 m off the true height and hence 0.65 m less accurate than what is achieved with
the fusion by multiplication.

As example for category A we selected building A-3 (Table 6.6). Estimating the
height for this building from the horizontal scene results in the similarity function shown
in Figure 6.15a. It reaches its maximum at 9.5 m which is 0.5 m lower than htrue of the
building. Instead, the similarity function resulting from the height estimation from the
vertical scene (Figure 6.15b) has its maximum at 17.5 m, which is 7.5 m higher than the
true height. Analyzing the splines of the two functions (Figure 6.15c and Figure 6.15d),
we find that s′1(h) (Figure 6.15e) has one local maximum, while s′2(h) (Figure 6.15f) has
two maxima. This means that f1(h) yields a significant better estimate of the height than

f2(h). Hence, the final height estimate ĥ1,2 is the one from the horizontal scene. The
second derivatives s′′1(h) and s′′2(h) (Figure 6.15g and Figure 6.15h) are not considered in
this decision, since the first derivatives were sufficient to determine f1(h) as the estimate
with higher quality, and are only shown for completeness.

Summary of height estimation results from dual aspect data sets for the test set of 40
buildings

In Table 6.7 we summarize the height estimation results for the full test set consisting
of 40 buildings for the different scenes. The results for category B, the largest group of
buildings, are consistent for the horizontal and vertical airborne scenes. The fusion invokes
a slight increase in the estimation accuracy, between 0.1 m - 0.4 m compared to the single
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Table 6.7: Summary of height estimation results from dual aspect data sets for the set of 40 buildings.

Category A Category B Category C A + B A + B + C

Horiz. 0.3 m ± 2.1 m 0.9 m ± 1.5 m -1.0 m ± 2.4 m 0.8 m ± 1.6 m 0.6 m ± 1.9 m
Vertic. 0.8 m ± 5.4 m -0.4 m ± 1.9 m 0.0 m ± 3.2 m -0.2 m ± 2.8 m -0.2 m ± 2.8 m
Fused 0.7 m ± 1.9 m 0.5 m ± 1.5 m 0.4 m ± 2.0 m 0.6 m ± 1.5 m 0.6 m ± 1.6 m

Asc. -3.3 m ± 5.8 m 1.9 m ± 3.1 m -2.2 m ± 4.6 m 0.9 m ± 4.2 m 0.4 m ± 4.4 m
Desc. -3.4 m ± 4.3 m -0.5 m ± 3.4 m -0.8 m ± 1.3 m -1.0 m ± 3.7 m -1.0 m ± 3.4 m
Fused -2.9 m ± 5.2 m 1.7 m ± 3.0 m -0.3 m ± 1.3 m 0.8 m ± 3.9 m 0.7 m ± 3.6 m

aspect horizontal and vertical scene results, respectively. The estimates for category C
have less accuracy than the ones for category B, which is expected since the models
which are simulated in category C do not fit the true situation. Here, the fusion of the
estimates results in a more significant increase in accuracy which is between 0.4 m - 1 m.
As already discussed in Section 6.5.2, the estimates for category A from the horizontal
scene (standard deviation of 2.1 m) are significantly more accurate than the ones from
the vertical scene (standard deviation of 5.4 m). The reason for this is that four out of
the six buildings are positioned in such a way that they build a row. Since the azimuth
direction of the horizontal scene is parallel to the row of buildings, it does not affect the
estimates from the horizontal scene. However, for the vertical scene, the building row is
approximately perpendicular to the azimuth direction. In this situation, the buildings
are located too close to each other so that the scattering phenomena of two neighboring
buildings interfere, which is not modeled in our approach. However, as highlighted in
the discussion of the flat roof building, the proposed analysis of the similarity functions
indicates that the estimates are not reliable and thus the quality assessment and fusion
strategy eliminates the wrong estimates. This results in an accuracy, which is slightly
better regarding the horizontal scene (0.1 m) and significantly better compared to the
vertical scene (3.5 m). Considering the improvement for the categories A + B for the
airborne data, the average estimation accuracy was improved by 0.1 m and 1.3 m with
respect to the horizontal and vertical scenes, respectively. The improvement for all three
categories is 0.3 m for the horizontal scene and 1.0 m for the vertical scene.

Similarly to the airborne data, the fusion of the estimates from the TerraSAR-X data
for category B results in a small improvement. The accuracy for category C for the
ascending scene is significantly lower than for the descending one. Here, the fusion proce-
dure could identify the good estimates so that the fused results for category C could be
improved significantly with respect to the results from the ascending scene. The orienta-
tion for the azimuth directions for the ascending and descending scenes are very similar
to the one from the vertical airborne scene. This implies that the row of buildings in
category A is approximately perpendicular to the azimuth directions of the ascending
and descending scenes, which explains the poor estimation quality for category A for the
TerraSAR-X data (see also Section 6.5.3). In this situation, the fusion of the different
estimates does not yield any increase in accuracy. Considering the results for categories
A + B and A + B + C for the spaceborne case, no significant improvements could be
achieved with respect to the estimation based only on single scenes.

In operational scenarios, the proposed quality assessment and fusion scheme can be
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employed in a fully automatic way resulting in the final height estimate. Furthermore, the
method is very well suited to be applied in a semi-automatic procedure, to integrate for
instance additional expert knowledge in the height estimation process. We have achieved
this by visualizing the functions and their derivatives for individual buildings (e.g in
Google Earth™), which are then analyzed and fused in an interactive manner by a domain
expert.

6.5.5 Computational aspects of method

The computational complexity of the proposed approach is still significant. A typical per-
formance of the full height estimation is illustrated with the run-time results for building
A-2 estimate using the airborne horizontal scene. The platform used is a PC with two
dual core 2.8 GHz Intel® Xeon™ CPUs and 3 GB RAM running the 32-bit Linux oper-
ating system (Ubuntu 8.04). Considering an explicit hypothesis generation from 3.0 m to
20.0 m in 0.1 m steps (171 hypotheses), the simulation process takes 67 minutes, while
the matching procedure takes 16 minutes.

In order to avoid simulating a building at a certain viewing configuration more than
once, we store all simulation results in a Database Management System (DBMS). If
the combination of a building and viewing configuration is retrievable from the DBMS,
then the simulation is simply loaded from the database. Otherwise, a new simulation is
triggered and added to the database. In this way, a library of SAR building signatures is
generated over time, decreasing, with increasing database size, the number of simulations
needed per estimation cycle. An alternative solution to speed up the simulation process,
which could be seamlessly combined with the DBMS, may use a very fast simulator based
on the GPU, as proposed for instance in [68], achieving simulation run times in the order
of milliseconds.

The matching procedure for a single building is a linear process (executed on a single
CPU), in which the position (~s) for which the best coregistration for one hypothesis is
found can be used as initialization for coregistering the subsequent hypothesis. How-
ever, additional building matches can be run in parallel. We use a clustered computing
environment with 32 CPU cores. This leads to a gain in performance which is roughly
proportional to the number of CPU cores available, apart from some minor overhead due
to the task distribution in the cluster.

6.6 Discussion and conclusion

In this chapter we proposed a novel concept for building height estimation from single
VHR SAR detected images and tested it on a representative set of residential area urban
structures in Dorsten. The approach is based on a hypothesis generation - rendering -
matching procedure, in which a series of building hypotheses with varying heights are
rendered by a radar imaging simulator and the results are matched with the actual scene.
The estimated height is given by the hypothesis whose simulation matches best with the
actual scene. In such a scenario, the simulator needs to calculate effects related to the
SAR geometry without modeling exact radiometry, since the use of detailed electromag-
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Table 6.8: Overview of height estimation errors for the different building categories and analyzed scenes.
A∗ and B∗ show the values for flat and gable roof buildings, respectively, where buildings which were
identified as outliers and which do not fit the model assumptions are removed.

A (6) A∗ B (27) B∗ C (7)

Width range
12.1 m -
15.8 m

9.7 m -
15.9 m

10.8 m -
21.5 m

Length range
35.8 m -
45.7 m

16.9 m -
52.1 m

25.5 m -
60.9 m

Height range
5.1 m -
12.5 m

9.5 m -
12.0 m

7.0 m -
14.5 m

Airborne
Horizontal

0.3 m ±
2.1 m

-0.5 m ±
0.6 m

0.9 m ±
1.5 m

0.6 m ±
1.1 m

-1.0 m ±
2.4 m

Vertical
0.8 m ±
5.4 m

- -0.4 m ±
1.9 m

-0.2 m ±
1.7 m

0.0 m ±
3.2m

TerraSAR-X
Ascending

-3.3 m ±
5.8 m

- 1.9 m ±
3.1 m

1.3 m ±
2.8 m

-2.2 m ±
4.6 m

Descending
-3.4 m ±

4.3 m
- -0.5 m ±

3.4 m
-0.8 m ±

2.4 m
-0.8 m ±

1.3 m

netic scattering models would imply the need for extensive a priori knowledge about the
roughness parameters and dielectric constants of the surfaces in the scene. Such detailed
parameters are generally not available in real world operational scenarios. The MI ap-
proach for matching model and observation is well suited in this context because it is
sensitive to the spatial arrangement of features rather than to the absolute radiometry of
the scattering effects.

We demonstrated the efficiency and generic nature of the proposed concept using dual
aspect airborne and ascending and descending TerraSAR-X VHR SAR scenes, all covering
the same test area. A test data set made up of 40 buildings, containing flat and gable roof
buildings at different viewing configurations (i.e. various aspect and incidence angles) was
used. To evaluate the robustness of the method with respect to the simplified assumptions
on the building structure, we also included in the test data set buildings that only partially
met our assumed rectangular flat or gable roof building models.

In Table 6.8 we list a summary of the accuracies for the three categories of buildings
achieved in the different scenes. Considering the results for categories A∗ and B∗ (build-
ings which were categorized as flat or gable roof buildings excluding the buildings whose
results were identified as outliers or which do not match the model assumptions) for the
two submeter resolution airborne data, the standard deviation of the height estimation is
1.4 m, which means the method has a good overall estimation quality. The correspond-
ing mean difference between estimation and actual height is 0.1 m indicating that the
proposed method has no tendency to over- or underestimate the height. The overall stan-
dard deviation of the buildings in category B∗ in the two TerraSAR-X scenes is 2.8 m.
This shows that for meter resolution VHR SAR data the method can only provide rough
height estimates, which can be used for instance to estimate the number of floors of the
buildings. Such information is still of interest to characterize urban landscapes.

The detailed analysis of the category A and B highlighted that the method can handle
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buildings with these two structural types. The results for the buildings which do not meet
our assumptions (category C ) show that the method is able to tolerate some degree of
deviation from the assumptions, with the estimation results getting less accurate for higher
degrees of simplification. This means that with a reliable information on the footprint
and the type of building an accurate estimate of the height can be achieved, while in case
of a limited availability of this information the method can still provide a rough estimate.

The approach is shown to be insensitive to the aspect angle of a building. This is an
important characteristic because buildings in urban settings are typically not oriented in
a systematic way. Airborne SAR has a higher flexibility to acquire imagery for multiple
aspects, although this is usually costly. For spaceborne SAR, aspect angles in imagery
are limited by the ascending and descending orbits of the satellite.

The analysis showed that the approach favors larger incidence angles. This is explained
by the shadow areas, which become larger with increasing (shallower) incidence angles,
suggesting an important role of the shadow area for an accurate estimate of the height.
Furthermore, the results demonstrated that large trees, which backscattering interfere
with the SAR shadow area of a building, decrease the accuracy of the method, which
confirms the relatively important role of the shadow feature. One of the reasons for this
is the approximation of the layover area by a homogeneous area. However, in reality, it
is rather heterogeneous due to windows, balconies and other structures present at the
front wall of a building having different materials and composing several smaller corner
reflectors. Hence, the similarity between the simulated and the actual layover area is lower
compared to the similarity between a simulated and actual shadow area. The importance
of the shadow areas could be relaxed by modeling the building facade more accurately
using facade grammar approaches [112]. The drawback of this would be the increased
complexity of the building model and the need for additional a priori information on
the building facades. Regarding the presence of trees or other disturbing objects in the
neighborhood of a building, it would be relatively straightforward to log them at the
footprint capturing stage, using VHR optical orthocorrected imagery. That information
would then be useful to filter height estimation results.

The method assumes that buildings are isolated. The rendering procedure does not
consider interferences between different buildings, which arise if they are positioned close
enough so that for example their shadow and layover areas are not separated any more,
but superimposed in a mixed area. This imposes the constraint that a building needs
to have a minimum distance to a neighboring building (only if they are in the same
azimuth position) so that no backscattering interferences from the different buildings
occur. If this constraint is not fulfilled, the height estimation for the building is not
accurate. The minimum distance between two buildings depends on the height of the
neighboring buildings and on the local incidence angle: 1) the higher the buildings the
larger the minimum distance; 2) the shallower the incidence angle, the larger the minimum
distance and vice versa. Hence we suggest to acquire the VHR SAR imagery for rural
and medium dense urban areas with a shallow incidence angle. In dense urban areas with
low buildings instead, the data should be measured with a steep incidence angle, which
relaxes the minimum distance constraint at the cost of a decreased estimation accuracy.
The approach is not suitable for dense urban areas with high buildings.
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In order to generate the hypotheses, we require information (i.e. footprint and type of
building) derived from ancillary data. This information can either be provided as cadastral
maps or can be directly extracted from the SAR image or other VHR optical data. With
the growing global availability of VHR data from urban areas these requirements while
demanding, appear to be realistic.

The results from the joint usage of dual aspect data sets showed that with a pair
of airborne perpendicular scenes some improvements in the height estimation accuracy
can be achieved. The usage of a TerraSAR-X scene pair acquired from ascending and
descending orbits does not resolve complex scattering behavior, for instance, overlapping
of backscattering signatures of adjacent buildings. Hence, no significant improvement in
accuracy is evident in the TerraSAR-X pair. Given the current cost of acquiring and
processing spaceborne VHR SAR data, the additional expenditure for a second scene is
not justified. Instead, to achieve best accuracy with spaceborne data, the acquisition mode
for the single scene should be selected such that complex scattering interferences between
buildings are limited. For instance, the incidence angle should be selected in such a way
that the actual distance between two buildings which are aligned as row perpendicular
to the azimuth direction is larger than the sum of the shadow length of the building at
the sensor close side and the layover length of the building at the sensor far side. The
use of dual aspect airborne data acquired with perpendicular flight tracks has not only
a positive effect on the estimation accuracy, but also increases the level of confidence in
the final height estimate, since it is derived giving preference to individual estimates with
high qualities. From our experience in analyzing the similarity functions we can state
that the proposed functional analysis is a good indicator for the accuracy of the height
estimate.

We want to stress that we addressed in this study an automatic information extraction
scenario capable of dealing with different types of buildings at various viewing configu-
rations. The proposed method was designed with a minimum number of constraints and
minimal requirements on the data. Taking into account the ambitious objective of this
study, and the fact that no a priori information on the height of buildings is used, we
believe that the achieved quality of the estimation results is reasonable. Moreover, this
study yielded first quantitative evidence of what can be expected from the new meter
resolution spaceborne SAR sensors in terms of automatic information extraction in urban
settings.
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Chapter 7

A novel technique for earthquake
damage assessment of buildings
using VHR optical and SAR imagery

In this chapter1, we present a novel method that detects buildings destroyed in an earth-
quake using pre-event VHR optical and post-event detected VHR SAR imagery. First, the
3-D parameters of a building are estimated from the pre-event optical imagery. Second,
the building information and the acquisition parameters of the VHR SAR scene are used
to predict the expected signature of the building in the post-event SAR scene assuming
that it is not affected by the event. Third, the similarity between the predicted image
and the actual SAR image is analyzed. If the similarity is high, the building is likely to
be still intact, while a low similarity indicates that the building is destroyed. A similar-
ity threshold is used to classify the individual buildings. We demonstrate the feasibility
and the effectiveness of the proposed method for a subset of the town of Yingxiu, China,
which was heavily damaged in the Sichuan earthquake of May 12, 2008. For the experi-
ment we use QuickBird pre-event optical imagery, and TerraSAR-X and COSMO-SkyMed
post-event SAR data. Post-event QuickBird and WorldView-1 imagery as well as ground
photography is used as reference data.

7.1 Introduction to damage assessment based on SAR imagery

Information on the impact of a catastrophic event, e.g. an earthquake, can be derived
from suitable satellite imagery by comparing data from a chosen reference before the event
(pre-event) to imagery acquired shortly after the event (post-event). Optical VHR sensors
have spatial resolutions finer than 1 m. Some of these sensors have existed for almost a
decade and have already imaged large parts of the earth. The increased availability of this
type of sensor and their growing image archives that are frequently updated, make VHR
optical data well suited as the pre-event reference data source. If post-event VHR optical

1Part of this chapter appears in:
[113] D. Brunner, G. Lemoine, and L. Bruzzone, “Earthquake damage assessment of buildings using VHR optical and

SAR imagery,” IEEE Transactions on Geoscience and Remote Sensing, in press, 2010.
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data are also available, general unsupervised change detection methods can be used to
investigate the impact of the event [13], [14], [15], [114], [115]. Methods focused on the
detection of damage to built-up structures are proposed in [116] and [117], but rely on a
rapid supply of high quality optical VHR data, thus requiring nearly cloud free weather
conditions and suitable solar illumination. Consequently, useful data of this type is not
guaranteed shortly after an event.

The advantage of SAR imagery is its relative insensitivity to atmospheric conditions
and independence from sun illumination. SAR data availability shortly after an event
is thus, in principle only based on the SAR sensor’s orbiting characteristics, i.e. the
sensor’s revisit capability. The COSMO-SkyMed sensor constellation currently has three
satellites, allowing to revisit a target every 2-3 days, while TerraSAR-X has a revisit time
of about 11 days. Unsupervised change detection methods using multitemporal SAR
data have been proposed in [9], [16], and [118]. Methods utilizing the interferometric
coherence to detect damages were proposed and demonstrated in [119] for the earthquake
example in Kobe (Japan, 1995), in [120] for the Bam (Iran, 2003) earthquake and in [121]
for the Izmir (Turkey, 1999) earthquake. Damage assessment methods for urban areas
using medium and/or high resolution pre- and post-event SAR images based on changes
in the backscatter coefficient and intensity correlation were proposed in [122] for the
2004 Indonesia earthquake, and in [123] and [124] for the Kobe earthquake. The latter
approach is tested in [125] for the Bam and in [126] for the 2003 Algeria earthquakes.
Methods for the generation of damage maps using pre- and post-event SAR and VHR
optical imagery were proposed in [127] for the Bam earthquake. Hybrid methods using
SAR in combination with GIS layers were proposed for the Bam earthquake in [10], for
the Algeria and 2007 Peru earthquakes in [128], and with respect to the high seismicity
of Tehran, Iran, in [129]. Terrain surface changes after the recent 2008 Sichuan, China,
earthquake were investigated in [130] analyzing the difference image of multitemporal
ALOS PALSAR data. A study about the appearance of damaged bridges in SAR was
presented in [131].

A major improvement of the new VHR SAR sensors with spatial resolutions down
to 1 m over coarser spatial resolution legacy spaceborne SAR sensors, such as Envisat
or RADARSAT-1, is that VHR SAR can be used to analyze the structural integrity of
individual urban structures, such as buildings and infrastructure elements. To derive this
information, the spatial image patterns of the objects must be explored rather than the
radiometric characteristics of individual pixels. Nevertheless, if change detection in a VHR
SAR image pair is to be performed by means of a direct comparison at the pixel level,
the image pair acquired must have the same acquisition parameters, and in particular the
same viewing configuration. Any deviation will result in local image differences which are
not necessarily related to changes on the ground. If such differences are not compensated
for appropriately, they may lead to a high rate of false alarms. The spaceborne VHR SAR
data archives are relatively recent and have limited pre-event imagery. In fact, since both
COSMO-SkyMed and TerraSAR-X can operate in different resolution modes, archives
are typically richer in coarser spatial resolution imagery (e.g. at 3 m - 10 m) than in 1
m resolution imagery. Consequently, VHR SAR is not yet a reliable source of pre-event
reference data.
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Considering the above mentioned practical difficulties, the best combination of imagery
for rapid damage assessment is spaceborne VHR optical for the pre-event imagery and
spaceborne VHR SAR for post-event imagery. However, it is difficult to compare them
directly in a change detection approach because both types of data have entirely different
radiometric and physical image formation characteristics. This challenge was addressed
in [132], by statistically relating the two different observations in order to use a classical
change detector, and was tested on a medium resolution SPOT-XS and ERS image pair.
The information content in VHR imagery based on statistics is limited for building dam-
age assessment because the spatial arrangement of pixels within an object provides the
necessary information to perform this type of change detection.

In this chapter, we propose a novel method to assess the structural status of individual,
rectangular buildings in an urban setting affected by a catastrophic event using pre-
event VHR optical and post-event detected VHR SAR imagery. Given a set of buildings
delineated from the pre-event image, the method determines from the post-event scene
whether a building was destroyed or is still likely to be intact. The procedure is based on
the concepts introduced in Chapter 6 for the estimation of building heights from single
detected VHR SAR scenes. First, the 3-D measurements of a building are estimated
from the pre-event imagery. The building information from step 1 and the acquisition
parameters of the post-event VHR SAR scene are used to simulate the expected SAR
signature of the building in the post-event SAR scene. Then, the similarity between the
simulated and the actual SAR data is computed. Similarity suggests no change and that
a building is likely to be intact, while dissimilarity suggests the opposite. The similarity
decision is based on a Bayesian classifier which is applied in the final step of the procedure.
We demonstrate the feasibility and analyze the performance of the proposed method on
a subset of Yingxiu (31°03’40” N, 103°29’13” E), Wenchuan County, China, which was
heavily damaged in the Sichuan earthquake on May 12, 2008. For the experiment, we
use QuickBird pre-event optical imagery, and TerraSAR-X and COSMO-SkyMed post-
event SAR data. Post-event QuickBird and WorldView-1 imagery as well as ground
photography is used as the reference data.

The chapter is structured as follows: In Section 7.2 we review the microwave backscat-
tering characteristics of damaged buildings defining the features of interest for our anal-
ysis. In Section 7.3 we describe the proposed similarity matching approach in detail. We
introduce the test data set in Section 7.4 before we discuss the results of the method in
Section 7.5. Finally, we draw the conclusions in Section 7.6.

7.2 Damaged building properties in VHR SAR

The backscattering characteristics of a damaged building in VHR SAR are strongly de-
pendent on the type and the extent of destruction. Some damaged buildings generate
SAR signatures similar and/or indistinguishable to those of undamaged buildings. Other
damaged buildings are characterized by the absence of the expected building signature,
and produce random scattering effects almost similar to speckle. In the following, we
discuss three building examples in VHR SAR imagery with varying degrees and types
of damage in comparison with optical satellite image samples and in-situ photographs.
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(a)

(b) (c)

Figure 7.1: Example of a flat roof industrial building severely damaged, but still standing. (a) The same
building in a TerraSAR-X image with 1 m resolution with viewing direction from the left. (b) The same
building in a WorldView-1 image after the earthquake. (c) An in-situ photo of the building. (SAR image:
Infoterra GmbH/DLR, 2008; WorldView-1 image: DigitalGlobe distributed by Eurimage S.p.A., 2008;
Photo: Eason Cheung, 2008.)

Corresponding image samples are taken from the study data set described in Section 7.4.
The figures are discussed from the perspective of the SAR sensor. It follows that before/in
front of refers in the image to something further to the left, while after/behind relates in
the image to something further to the right. The corresponding buildings in the optical
images are rotated with respect to the SAR data viewing configuration. The planar di-
mensions of the buildings given in the tables and throughout the text (width, length) are
measured directly from the optical images and can be considered to be fairly accurate.
Instead, building heights are derived by shadow analysis in the optical satellite imagery
and only provide a rough estimate.

In Figure 7.1c we show an in-situ photo of a flat roof industrial building, with dimen-
sions 25.6 m × 32.1 m × 16.8 m. The building is still standing but has obvious structural
damage to the facade as evidenced by broken windows, missing plaster and cracks and
holes in the walls. Figure 7.1b shows the building in a panchromatic WorldView-1 satel-
lite image. Even though the building was imaged with a parallax showing the side wall,
the damage as seen in Figure 7.1c is not evident due to the insufficient resolution. Fig-
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(a) (b) (c)

Figure 7.2: Example of a flat roof industrial building where 2/3 of the building are completely collapsed
and 1/3 is still standing but damaged. (a) The same building in a QuickBird image (panchromatic
channel) prior to the event. (b) The same building in a TerraSAR-X image with 1 m resolution with
viewing direction from the left after the event. (c) The same building in a WorldView-1 image after
the event. (QuickBird image: DigitalGlobe distributed by Eurimage S.p.A.; SAR image: Infoterra
GmbH/DLR, 2008; WorldView-1 image: DigitalGlobe distributed by Eurimage S.p.A., 2008.)

ure 7.1a shows the building in a TerraSAR-X scene with 1 m resolution, imaged with
θ = 49.1◦ and φ = 3.0◦. The shadow is distinguishable from the surrounding scattering
and has dimensions corresponding to the estimated height of the building derived from
the shadow length in Figure 7.1b. However, the double bounce is not as pronounced as
for the building in Figure 3.5, which may be due to the large openings caused by missing
windows and holes in the wall facing the SAR sensor (see Figure 7.1c). Therefore, the
single returns from the facade are pronounced leading to the bright backscattering spots
visible in the layover area. Furthermore, due to the openings, part of the energy can follow
multibounce paths in the inside of the building. These effects reduce the amount of energy
which follows the standard double bounce path, resulting in a less bright double bounce
stripe of the building. However, in the absence of a pre-event VHR SAR reference image,
it is difficult to verify whether these effects are attributable to the structural damage of
the building or not.

The flat roof industrial building shown in Figure 7.2a has dimensions 16.9 m × 50.4 m
× 10.0 m and was imaged by QuickBird prior to the earthquake. The dark stripe behind
the building is a metal fence. The same building is shown in Figure 7.2c after the event
in a WorldView-1 panchromatic image. The lower two-thirds of the building completely
collapsed leaving the rest damaged but still standing. A meter resolution TerraSAR-X
image with θ = 49.1◦ and φ = 1.0◦ of the same building is shown in Figure 7.2b. The fence
is very pronounced where the building collapsed because it acts as a metal corner reflector
oriented parallel to the azimuth direction. The part of the building which is still standing
produces the expected building signature with the double bounce, the roof scattering, and
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(a) (b) (c)

Figure 7.3: Example of a flat roof building, which is tilted to the side. (a) The same building in QuickBird
image (panchromatic channel) prior to the event. (b) The same building in TerraSAR-X image with 1 m
resolution with viewing direction from the left. (c) The same building in WorldView-1 image after the
event. (QuickBird image: DigitalGlobe distributed by Eurimage S.p.A., 2005; SAR image: Infoterra
GmbH/DLR, 2008; WorldView-1 image: DigitalGlobe distributed by Eurimage S.p.A., 2008.)

the shadow areas being visible. The bright stripe of the fence is interrupted since part of
it is occluded by the building and thus located in the shadow area. The collapsed part
of the building lacks a clear backscattering signature. It has no double bounce, layover-,
roof-, or shadow region and exhibits random scattering from the rubble of the collapsed
building, similar to SAR speckle found in homogeneous regions.

The final example in Figure 7.3a shows a flat roof building with dimensions 15.1 m ×
42.9 m × 26.1 m prior to the earthquake. The earthquake caused the whole building to
tilt to the side as shown in the post event WorldView-1 imagery (Figure 7.3c). Figure
7.3b shows the same building in a TerraSAR-X scene with θ = 49.1◦ and φ = 10.4◦. At
first glance, the scattering signature in the SAR image could be interpreted as the one
from a building which is still standing. It shows a bright stripe similar to a double bounce,
a distinct shadow region, and some brighter scattering area between the double bounce
and the shadow that could be interpreted as roof scattering. The bright point scatterers
in this area are likely related to metal structures on the roof. The absence of a visible
layover region is not a damaged building indicator because it is not always visible even for
undamaged buildings as shown in Section 3. However, given its original dimensions and
the viewing configuration of the SAR acquisition, it can be observed that the signature
does not correspond to the original building, i.e. the shadow area is too short, and the
roof scattering region is too long.

The examples presented above demonstrate that not all types of building damage are
readily discernible in meter resolution VHR SAR imagery as shown in Figure 7.1. The
damage of buildings can only be observed where at least parts of the corpus or the roof have
collapsed. Hence, we will focus in this chapter on the detection of completely destroyed
buildings rather than on buildings which have suffered damage but are still standing.
Furthermore, damaged buildings do not have a distinct scattering signature in VHR SAR,
which is challenging for the development of automatic detection methods. Moreover, a
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collapsed building may still produce a signature similar to undamaged structures, as
shown in Figure 7.3. Consequently, information about the situation prior to the event
are required to distinguish between damaged and undamaged buildings in the post-event
VHR SAR scene. In the following we will show how we incorporate the information from
the pre-event imagery in the damage detection approach.

7.3 Proposed methodology for damage assessment of buildings

using VHR optical and SAR imagery

Let us consider the subset of a VHR optical image X1 with a building and the corre-
sponding subset of a VHR SAR scene X2 acquired at different times t1 (pre-event) and t2
(post-event) with t1 < t2. Let Ω = {ωu, ωd} be the set of classes of undamaged and dam-
aged buildings, respectively. As demonstrated in Section 7.2, damaged buildings in VHR
SAR do not have an unique pattern with which they can be easily detected. Therefore,
we model the problem of classifying a building into the classes ωu and ωd by evaluating
in X2 the presence or absence of the expected VHR SAR signature of the undamaged
building. To do this, we extract the parameters of a building from the pre-event imagery,
predict its VHR SAR signature in the post-event SAR scene (assuming that the building
is undamaged), and compare the simulation with the actual scene. Similarity between
simulation and actual scene indicates that a building is likely to be intact, whereas dis-
similarity indicates that a building is likely to be destroyed. As shown in Figure 7.4, the
proposed methodology consists of three main sections: 1) parameter extraction; 2) Ren-
dering/Matching Analysis (RMA); and 3) classification of the RMA result into damaged
and undamaged building. The method works on each building footprint separately and,
thus is applied to each building tested for damage.

Figure 7.4 indicates that a direct pixel based coregistration between the optical pre-
event and SAR post-event image (including the conversion of the SAR image from slant
to ground range), which is a challenging topic [133], is not required. The extracted infor-
mation on a building from the optical image (parameter extraction) is transformed by a
simulator (rendering) into the slant range geometry of the actual SAR scene. In partic-
ular, a small image subset is rendered, containing only the scattering features belonging
to the building under investigation. Since the pre- and post-event images are georefer-
enced, the approximate position of the investigated building in the actual SAR imagery
is known. Therefore, only a local fine coregistration between simulation and actual SAR
scene is required prior to the matching. This coregistration is implicit in the proposed
matching procedure.

7.3.1 Building parameter extraction

As shown in Figure 7.4, two sets of parameters are extracted first: 1) the shape and size
of the building extracted from X1; and 2) acquisition parameters for X2.

The width, length, height, and the roof inclination angle of the building are estimated
from X1. For 1 m resolution satellite data it is sufficient to distinguish between flat and
gable roof buildings, because errors in the estimation of αr are not significant at this
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Figure 7.4: Block scheme of the proposed method for building damage detection from VHR optical and
VHR SAR images. The procedure is applied to each building which shall be investigated for damage
separately.

resolution. For flat roof buildings αr = 0◦. For gable roof buildings the roof inclination
angle can be set to a default angle, which is typical for the regional building style or class
of buildings (e.g. industrial, residential), for instance αr = 30◦. The building width and
length are manually extracted from the building footprint, while the height is computed
based on the length of the shadow cast by the building knowing the sun illumination at the
time X1 was acquired. While the width, length, and height were computed here manually,
semi-automatic [134], [135], and fully automatic building detection and reconstruction
methods [136], [137], are also available. Some of the required parameters could also be
extracted from other data sources such as cadastral maps, LIDAR data [138], [139], or
optical stereo pairs [140]. However, since the availability of these types of data is often
limited, we use only a single spaceborne VHR optical scene as the source for the pre-
event data. For a discussion on the effects of errors in the height estimation and how we
compensate for in this case, the reader is referred to Section 7.3.4.

From the post-event VHR SAR data we extract the azimuth resolution, the slant range
resolution, and the incidence angle. The aspect angle with which the building was imaged
by the SAR sensor is calculated based on the azimuth direction of the SAR acquisition
and the orientation of the building wall, which is facing the sensor, estimated from the
optical image. The simulation is parameterized in the following manner:

~H ≡ {w, l, h, αr, θ, φ, δa, δslr} . (7.1)
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7.3.2 Rendering and matching analysis

A SAR imaging simulator is used to render ~H to produce X̂2, i.e. the undamaged building
SAR signature. As already discussed in Section 6.2.2, electromagnetic models cannot be
adopted in our application scenario to calculate the backscattering, since we aim at ex-
tracting building information whereas roughness parameters and the dielectric properties
of the materials in the scene are generally unknown a priori. Hence, we use the simulator
proposed in Chapter 5, which approximates the relative differences in backscatter taking
into account the dominant geometrical effects of surface and dihedral scattering, but does
not calculate absolute radiometry based on material and surface roughness parameters.

For the evaluation of the match between X̂2 and X2, the two images are coregistered:

m = max
~s

{
̥[X̂2,~s( ~H), X2]

}
, (7.2)

with ̥ being the similarity measure and X̂2,~s the translation of the image X̂2 by the
two dimensional vector ~s = {∆x, ∆y}. The result of this maximization is also the final
result of the evaluation of the matching between the simulated and the actual scene.
Note that the orientation with which the building was imaged in the actual SAR scene,
i.e. the aspect angle φ, is considered in the simulation (see (7.1)), which means that the
simulated building is already oriented as it is in the actual VHR SAR scene. Hence, no
rotation is required for accurate coregistration, but translation is enough. Indeed, in order
to locate the considered building from the optical pre-event image also in the post-event
SAR scene, a high accuracy (in the order of few meters) of the geolocation of the two
scenes is assumed. This requires especially in mountainous areas geocoding with the use
of an accurate digital terrain model. In case the overall geocoding is not precise enough,
manual tie points may be selected to locally register the pre- and post-event SAR data.

For the coregistration and matching we compare the actual SAR data with speckle
to the synthetic images without speckle, i.e. the geometry of the images are similar but
the local statistics in the comparison are different. Furthermore, the radiometry of the
simulated image differs with that of the actual scene. Therefore, we used in (6.3) MI as the
similarity measure because of its suitability to multimodal image matching/registration
tasks. However, MI depends on the overlap/size of the two images that are compared [141].
Since we evaluate the absolute value of the matching analysis to distinguish between
damaged and undamaged buildings it needs to be invariant to the size of the overlap.
Thus, we use here the Normalized Mutual Information (NMI) [142] for ̥ in (7.2). Various
NMI measures were proposed in the literature so far. We consider here three different
versions, which we compare in the results section according to their performance for the
damage detection task:

• The symmetric uncertainty coefficient proposed by Saerndal [143]:

SAE(X̂2, X2) =
MI(X̂2, X2)

1
2
[H(X̂2) + H(X2)]

. (7.3)

99



7.3. PROPOSED METHODOLOGY FOR DAMAGE ASSESSMENT OF BUILDINGS USING VHR
OPTICAL AND SAR IMAGERY

• The NMI proposed by Joe [144]:

JOE(X̂2, X2) =
MI(X̂2, X2)

min[H(X̂2), H(X2)]
. (7.4)

• The NMI proposed by Studholme [141]:

STU(X̂2, X2) =
H(X̂2) + H(X)

H(X̂2, X2)
. (7.5)

The values of SAE and JOE range between [0, 1]. Note that SAE has not necessarily

the value 1 if there is a perfect dependence between X̂2 and X2 while this is guaranteed
for JOE [142]. In fact, STU is not a strict normalization of MI but rather a version that
is less sensitive to changes in the size of the overlap [145] and does not have a predefined
range of values (STU > 0).

For the rectangular simulation results, the ratio between the number of pixels be-
longing to the scattering effects from the object (foreground pixels) and the number of
pixels belonging to the ground scattering of the surrounding (background pixels) varies
for different buildings and viewing configurations. To ensure that the classification of
the buildings in the data set is neither guided by the foreground nor by the background,
we only consider for the similarity calculation those pixels that are part of an expanded
object mask, as explained in detail in Section 6.2.3.

7.3.3 Identifying damaged and undamaged buildings

After the RMA analysis, we classify the building into Ω = {ωu, ωd} by thresholding the
value of m. Assuming that both class distributions are Gaussian, we can perform this in
a supervised or an unsupervised way. Both methods are based on the Bayes rule:

Decide ωu if p(Y (i)|ωu) · P (ωu) > p(Y (i)|ωd) · P (ωd); otherwise decide ωd, (7.6)

where P (ωu) and P (ωd) are the prior probabilities of the classes ωu and ωd, respec-
tively. The conditional probability density functions are denoted by p(Y |ωu) and p(Y |ωd),
whereas Y is the random variable representing the m values of the I observations in the set
YRMA = {Y (i), 1 ≤ i ≤ I}. Using (7.6) as criterion is equivalent to applying a threshold
T0 calculated by solving the likelihood ratio with respect to Y [146]:

P (ωd)

P (ωu)
=

p(Y |ωu)

p(Y |ωd)
. (7.7)

In the Gaussian case, this is equivalent to solving the quadratic equation:

(σ2
u−σ2

d)·T 2
0 +2·(µu ·σ2

d−µd ·σ2
u)·T0+µ2

d ·σ2
u−µ2

u ·σ2
d−2·σ2

u ·σ2
d ·ln

[
σd · P (ωu)

σu · P (ωd)

]
= 0, (7.8)

with µu and µd denoting the mean values, and σu and σd the standard deviations of the
classes ωu and ωd, respectively. The resulting decision criterion is given by:

Decide ωu if Y (i) > T0; otherwise decide ωd. (7.9)
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For the supervised procedure, the parameters for (7.8) are calculated from a training
set. For the unsupervised procedure, T0 is calculated automatically [146] by deriving the
statistical parameters and the prior probabilities of the two classes using the Expectation
Maximization (EM) algorithm [147], [148]. In particular, the probability density func-
tion p(Y ) of Y is modeled as a mixture density distribution composed by two density
components:

p(Y ) = p(Y |ωu) · P (ωu) + p(Y |ωd) · P (ωd). (7.10)

Since we model p(Y |ωu) and p(Y |ωd) as Gaussian distributions, the statistical parameters
and the prior probabilities for the classes ωk, k = {u, d}, can be derived iteratively with
the EM algorithm by the following equations [149]:

P t+1(ωk) =

∑
Y (i)∈YRMA

P t(ωk)·pt(Y (i)|ωk)
pt(Y (i))

I
, (7.11)

µt+1
k =

∑
Y (i)∈YRMA

P t(ωk)·pt(Y (i)|ωk)
pt(Y (i))

· Y (i)

∑
Y (i)∈YRMA

P t(ωk)·pt(Y (i)|ωk)
pt(Y (i))

, (7.12)

(σ2
k)

t+1 =

∑
Y (i)∈YRMA

P t(ωk)·pt(Y (i)|ωk)
pt(Y (i))

· [Y (i) − µt
k]

2

∑
Y (i)∈YRMA

P t(ωk)·pt(Y (i)|ωk)
pt(Y (i))

, (7.13)

where the superscripts t and t + 1 refer to the current and next iterations, respectively.

7.3.4 Height estimation error compensation

The accuracy with which the width and length of a building can be estimated from the
VHR pre-event imagery is directly related to the spatial resolution of the pre-event image.
An acceptable precision for simulating a submeter resolution VHR SAR building signature
can be achieved using submeter X1 data. However, the height of the building must be
derived from the 2-D pre-event image by:

h = ls · tan(θs), (7.14)

with ls being the length of the shadow and θs the sun elevation angle. Considering for
instance the relatively fine spatial resolution of the panchromatic channel of the QuickBird
sensor (0.6 m) and a sun elevation angle of 75°, the height resolution assuming a 1 pixel
planar measurement error is δh = 2.2 m. For tall buildings, this height accuracy can be
slightly improved by oversampling the original 11-bit integer image and interpolate a line
along the strong shadow edge features giving a more precise measurement of the shadow
length. Nevertheless, the δh estimate given above is a practical compromise. It follows

that the height estimate can only be considered as a rough estimate h̃ of the building
height.

In Chapter 6 we demonstrated that the maximum similarity between the synthetic
image and actual scene is achieved for simulations of buildings which use the true build-
ing height. In other words, the matching values are lower if the difference between the
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Figure 7.5: Block scheme of the proposed method for building damage detection from VHR optical and
VHR SAR imagery including an error compensation step for building height estimation inaccuracies.

simulated and the true building height increases. By performing the RMA iteratively for
a range of building heights and classifying the best match value mmax which occurred
during the RMA iterations, inaccuracies in the height estimation process can be compen-
sated for. This procedure only affects undamaged buildings because they do not show
any characteristic building signature in the SAR post-event imagery anyway. The height

range used for the RMA is defined by h ∈ [h̃−2δh, h̃+2δh] and thus (7.2) can be extended
to:

mmax = max
~s,h∈[eh−2δh,eh+2δh]

{
̥[X̂2,~s( ~H), X2]

}
. (7.15)

The resulting matching process is illustrated in Figure 7.5 and is an extension of
Figure 7.4. We maximize (7.15) with respect to the two variables jointly, but in two
different ways. For the maximization with respect to ~s we use the multidimensional
Nelder-Mead [90] (or downhill simplex) function optimization method. For maximizing
with respect to h we perform a brute force search in the given interval with the height
sampling frequency ∆h. The smaller ∆h is, the more accurate the result, but the more
computationally expensive the process is. A value of 0.10δh was chosen as a good trade off
between accuracy and computation time. Alternatively, the Nelder-Mead or other func-
tion maximization methods such as simulated annealing could be directly used to jointly
maximize for ~s and h. In the first case, the number of simulations and the simulation
heights are fixed by ∆h, while in the second case they are variable and determined at
runtime influenced by the initialization parameters of the function maximization method.
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Table 7.1: Parameters of VHR optical data.

Sensor QuickBird QuickBird WorldView-1
Label pre-QB post-QB post-WV

Date of acquisition 2005-06-26 2008-06-03 2008-06-27
Resolution (Panchromatic) 0.6 m 0.6 m 0.5 m
Resolution (Multi-spectral) 2.4 m 2.4 m -

Indeed, just using the function optimizer to optimize with respect to both variables might
lead to a lower number of simulations with respect to the brute force solution. However,
the drawback is that function maximization is an intrinsically linear process, which means
that it is executed sequentially on a single processor. In order to decrease significantly
the computational time, we distribute the function optimization of (7.15) in a grid frame-
work in such a way that each CPU in the grid performs a simulation for a certain height
together with the maximization with respect to ~s. Another advantage of the brute force
solution is that an averaging over the NMI values in a height interval centered at h, for
instance [h− 0.4m; h+0.4m], can be performed efficiently, which avoids instability in the
similarity measure.

To distinguish between the different NMI versions with which mmax can be calcu-
lated we define mmax,SAE, mmax,JOE , and mmax,STU as being mmax calculated using

SAE(X̂2, X2), JOE(X̂2, X2), and STU(X̂2, X2), respectively.

7.3.5 Building location constraint

The RMA can handle different building types at various dimensions that were imaged
by the SAR sensor at different viewing configurations (i.e. changing θ and φ). However,
the simulation does not take into account interferences from other objects in the vicinity
of the buildings. Therefore, reliability of the method increases with building isolation,
which is given if the condition (6.12) (see Section 6.2.4) is fulfilled. If ∆min (6.11) is larger
than the actual distance between the buildings, the shadow region of the first building
interferes with the layover region of the second building which is not considered in the
simulation process. Other objects in the immediate surrounding, e.g. trees, are also not
taken into account in the simulation.

In practice, the RMA of a building whose backscattering signature overlaps with those
of other objects in the vicinity will have a lower match value than the RMA of a building
with no structures in the local surrounding. Consequently, the classification error will
be influenced depending on the number and type of objects in the surrounding area.
Commission errors, whereby undamaged buildings are classified as damaged, lead to an
overestimation of class ωd. Note that buildings with numerous objects in the surrounding
can already be flagged when building outlines are delineated earlier in the process.

7.4 Data set description

Sichuan province, China, experienced an earthquake with a magnitude of 8.0 on the
Richter scale on May 12, 2008. The earthquake’s epicenter was located in Wenchuan
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Figure 7.6: Overview of available scenes showing their temporal sequence.

County, Sichuan province and left 70,000 people killed, 375,000 people injured, and 4.8 mil-
lion people homeless [150]. The above method is tested on the town of Yingxiu (centered
at 31°03’40” N, 103°29’13” E), which had about 7000 inhabitants prior to the event [151].
It is located near the epicenter of the earthquake and was, with about 80% destruction, one
of the most affected areas. Weather conditions were cloudy in the period after the event,
and therefore the acquisition of cloud-free VHR optical data for assessing the damage
was difficult. The first satellite images after the event were acquired by COSMO-SkyMed
and TerraSAR-X on May 13, 2008 and May 14, 2008, respectively, but in lower resolution
mode (SM, 3 m spatial resolution). The earthquake occurred one year after the launch of
the first COSMO-SkyMed and TerraSAR-X VHR SAR sensors and was the first impor-
tant natural disaster for which meter resolution spaceborne VHR SAR post-event data
were available. No pre-event VHR SAR data exist for this region, however.

The only available pre-event VHR optical imagery was an archived QuickBird scene
(pre-QB) acquired on June 26, 2005, which we used to establish the reference situation
X1. For the post-event reference data there are two VHR optical scenes: one QuickBird
(post-QB), and one WorldView-1 (post-WV) (see Table 7.1 for a reference data summary).
The pre-QB image was acquired three years prior to the event. Comparing the pre- and
post-event optical images land cover changes were identified in some parts of the area.
Consequently, we have excluded areas with extensive pre-event change from the damage
assessment.

Two VHR SAR scenes were acquired (Table 7.2), which we used as post event data
X2. The TerraSAR-X scene (post-TSX) was taken in ascending mode while the COSMO-
SkyMed scene (post-CSK) was taken in descending orbit. Given that both scenes were
acquired with a right looking antenna, they show the same area from opposite viewing

Table 7.2: Parameters of SAR post-event acquisitions.

Sensor TerraSAR-X COSMO-SkyMed
Label post-TSX post-CSK

Date of acquisition 2008-06-07 2008-06-14
Mode HS Enhanced SL

Resolution (δa × δslr) 1.1 m ×1.0 m 0.7 m × 0.7 m
Original pixel spacing 0.5 m × 0.5 m 0.7 m × 0.5 m

Resampled pixel spacing 0.75 m × 0.75 m 0.75 m × 0.75 m
Incidence Angle 49.5° 50.5°
Look direction Right Right
Orbit direction Ascending Descending

104



CHAPTER 7. A NOVEL TECHNIQUE FOR EARTHQUAKE DAMAGE ASSESSMENT OF
BUILDINGS USING VHR OPTICAL AND SAR IMAGERY

(a)

(b) (c)

Figure 7.7: Image subsets of the optical scenes in the data set showing the same area in Yingxiu.
(a) Pre-QB image. (b) Post-QB image. (c) Post-WV image. (QuickBird images: DigitalGlobe distributed
by Eurimage S.p.A., 2005 and 2008; WorldView-1 image: DigitalGlobe distributed by Eurimage S.p.A.,
2008.)

directions. Both scenes were resampled, using the pixel aggregate function in ENVI,
to 0.75 m pixel spacing and speckle filtered with the Gamma MAP filter. Note that
only one scene is required to carry out the damage assessment. In case of the supervised
classification, both scenes are used in order to train the Bayesian classifier on one scene and
test it on the other one. Relative acquisition times of the available images are illustrated in
Figure 7.6. Note that the post-CSK and post-TSX postings do not illustrate the expected
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(a)

(b)

Figure 7.8: Image subsets of the SAR scenes in the data set showing the same area in Yingxiu as in
Figure 7.7. (a) Post-TSX image, with viewing direction from left to right. (b) Post-CSK image with
viewing direction from right to left. (TerraSAR-X image: Infoterra GmbH/DLR, 2008; COSMO-SkyMed
image: Italian Space Agency (ASI) distributed by eGeos S.p.A., 2008.)
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response time of post-event VHR SAR that is crucial in a damage assessment scenario.
This is due to saturation of the programming requests for both platforms at the time,
most of which were for lower resolution modes, and with higher priority. In the meantime,
two additional COSMO-SkyMed sensors have been launched providing greater acquisition
flexibility. Image subsets of all available scenes of the same area of Yingxiu are shown in
Figure 7.7 and Figure 7.8.

7.5 Results

After analyzing the optical pre- and post-event imagery, we selected for each class in Ω
a set of 15 individual candidate buildings. All are flat roof buildings, because this is
the prevailing building type in the area under investigation. The selection of candidate
buildings is driven by the need to test the methodology in an accurate way and was mainly
limited by the following issues:

1. The town is not very large, thus the number of candidate buildings is limited;

2. The pre-event image was acquired about three years prior to the event, thus, in our
analysis we had to exclude those areas of the town for the analysis which could be
identified as already changed prior to the event (e.g. newly developed areas, changes
in road outlay);

3. The earthquake itself was very destructive so that few undamaged buildings could
be found;

4. According to the present assumptions of the proposed method, buildings should be
isolated; thus structures in the dense part of the town were not considered;

5. After a destructive earthquake, the affected area typically experiences many signifi-
cant changes in a short period. For instance, buildings that are structurally damaged
but still standing may be quickly demolished. Temporary housings may also be build
to house the displaced population or to support humanitarian relief. The post-QB
and post-WV imagery straddle the acquisition period of the post-TSX and post-CSK
scenes (see Figure 7.6) and only buildings that appear in both the post-QB and the
post-WV data in the same state (either both damaged or both undamaged) were
chosen for this analysis. This excludes, for instance, three buildings which were ap-
parently undamaged in the post-QB image, but appeared to be demolished in the
post-WV scene. Hence, the true status of these buildings in the post-TSX and post-
CSK scenes is unknown. We visually interpreted the post-TSX and post-CSK scenes
to assess the status of these three buildings and found that one building appeared
damaged in the post-TSX scene, meaning that it must have been demolished in the
period from 2008-06-03 to 2008-06-07 and is considered belonging to ωd. The other
two buildings were found to be still standing in the post-CSK scene so that they
must have been demolished between 2008-06-14 and 2008-06-27. We classified these
building as ωu. Note that we do not consider the three buildings for the quantitative
evaluation of the performance of the proposed method. Instead, they are the topic
of the discussion at the end of this section.
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Figure 7.9: Footprints of selected buildings overlaid to the post-QB image, giving an overview of the
distribution of the candidates in the test set. Buildings of class ωd are marked with red polygons, while
blue polygons correspond to the class ωu. The yellow polygons show the three buildings where the
true status in the post-TSX and post-CSK is unknown. (QuickBird image: DigitalGlobe distributed by
Eurimage S.p.A, 2005.)

In Figure 7.9 we show the geographic distribution of the buildings in the test set overlaid
with the post-QB image. The buildings of class ωu and ωd are distributed uniformly over
the investigated area, as the entire city was stricken equally by the earthquake.

The parameters of the undamaged buildings in ωu are listed in Table 7.3 with each

building denoted as ω
[i]
u , where i is a building identifier. The kinds of buildings found in

this class are quite diverse. Their widths range from 9.7 m - 34.4 m, their lengths from
11.4 m - 68.5 m, and their heights from 7.1 m - 16.1 m. Since the two VHR SAR scenes
were acquired by spaceborne sensors, there is little variation in the local incidence angles
within each scene. Furthermore, the difference between the incidence angles of the post-
TSX and post-CSK scenes is only about 1°. The aspect angles with which the buildings
were imaged vary in the post-TSX scene between 4.2° - 40.2°, and for the post-CSK scene
between 0.8° to 36.6°. The two buildings that were visually assessed in the post-CSK and

post-TSX images are ω
[16]
u and ω

[17]
u .
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Table 7.3: Undamaged building parameters.

Name w l h post-TSX post-CSK
θ φ θ φ

ω
[1]
u 15.3 m 55.2 m 10.1 m 49.1° 8.2° 50.3° 9.3°

ω
[2]
u 34.4 m 68.5 m 11.2 m 49.1° 5.8° 50.3° 7.6°

ω
[3]
u 10.1 m 44.7 m 16.5 m 49.1° 9.0° 50.3° 4.5°

ω
[4]
u 17.7 m 36.7 m 10.1 m 49.1° 14.3° 50.3° 0.8°

ω
[5]
u 12.9 m 37.9 m 9.3 m 49.1° 20.3° 50.4° 35.9°

ω
[6]
u 13.9 m 52.2 m 11.2 m 49.1° 7.9° 50.4° 4.4°

ω
[7]
u 23.2 m 36.6 m 14.9 m 49.1° 21.1° 50.4° 36.1°

ω
[8]
u 9.7 m 44.5 m 12.3 m 49.1° 4.2° 50.4° 11.6°

ω
[9]
u 12.8 m 18.0 m 13.5 m 49.1° 34.8° 50.4° 21.2°

ω
[10]
u 10.9 m 22.6 m 8.9 m 49.1° 21.4° 50.4° 7.9°

ω
[11]
u 10.4 m 26.9 m 10.8 m 49.1° 40.2° 50.4° 36.6°

ω
[12]
u 15.0 m 16.2 m 7.8 m 49.1° 35.6° 50.4° 20.7°

ω
[13]
u 9.9 m 11.4 m 7.1 m 49.1° 33.9° 50.4° 20.4°

ω
[14]
u 10.0 m 31.7 m 7.1 m 49.1° 35.8° 50.4° 20.5°

ω
[15]
u 11.6 m 33.3 m 11.9 m 49.1° 17.2° 50.4° 2.8°

ω
[16]
u 10.9 m 26.4 m 11.2 m 49.1° 40.8° 50.4° 33.5°

ω
[17]
u 9.5 m 17.7 m 10.1 m 49.1° 37.4° 50.4° 19.8°

Table 7.4: Damaged building parameters.

Name w l h post-TSX post-CSK
θ φ θ φ

ω
[1]
d 11.2 m 35.1 m 9.7 m 49.1° 25.6° 50.4° 39.2°

ω
[2]
d 7.9 m 42.0 m 10.5 m 49.1° 25.2° 50.4° 40.9°

ω
[3]
d 13.5 m 38.0 m 14.9 m 49.1° 12.8° 50.3° 1.4°

ω
[4]
d 15.1 m 42.9 m 24.3 m 49.1° 10.4° 50.3° 2.3°

ω
[5]
d 16.9 m 50.4 m 11.2 m 49.1° 0.8° 50.4° 15.5°

ω
[6]
d 14.2 m 45.0 m 3.7 m 49.1° 5.7° 50.4° 8.7°

ω
[7]
d 13.2 m 32.7 m 14.9 m 49.1° 12.8° 50.4° 25.1°

ω
[8]
d 9.4 m 34.1 m 14.9 m 49.1° 0.9° 50.4° 15.7°

ω
[9]
d 11.1 m 39.9 m 18.3 m 49.1° 21.5° 50.4° 6.2°

ω
[10]
d 14.5 m 59.9 m 13.1 m 49.1° 3.3° 50.4° 17.7°

ω
[11]
d 12.7 m 60.5 m 11.2 m 49.1° 24.2° 50.4° 39.9°

ω
[12]
d 35.7 m 85.3 m 11.2 m 49.1° 22.3° 50.4° 7.7°

ω
[13]
d 17.5 m 46.5 m 13.1 m 49.1° 14.4° 50.4° 28.6°

ω
[14]
d 10.6 m 46.1 m 7.5 m 49.1° 11.2° 50.4° 9.1°

ω
[15]
d 10.8 m 63.9 m 16.1 m 49.1° 5.1° 50.4° 21.0°

ω
[16]
d 11.0 m 41.4 m 13.1 m 49.1° 26.7° 50.4° 41.4°
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Figure 7.10: RMA example for the undamaged building shown in Figure 3.5 using SAE (7.3) as the
similarity measure. (a) Image subset of building in filtered post-TSX scene. Simulation and actual scene
are coregistered. (b) Simulated building at height where the similarity is highest (h = 10.5 m). (c) Plot
of similarity as a function of height. (SAR image: Infoterra GmbH/DLR, 2008.)

The building characteristics of ωd are provided in Table 7.4 and distinguished by the

identifier i in ω
[i]
d . The set of buildings in class ωd is as diverse as those in ωu. The widths

vary between 7.9 m - 35.7 m, the lengths between 32.7 m - 63.9 m and the heights from
3.7 m - 24.3 m. The aspect angle varies in the post-TSX scene from 0.8° - 25.6° and in

the post-CSK scene from 1.4° - 40.9°. ω
[16]
d is the building which appeared undamaged in

the post-QB scene and damaged in the post-WV scene. The diversity of the buildings in
both classes is relevant to the testing of the robustness of the classification results and
to demonstrate that the proposed method can handle buildings having a wide range of
characteristics.

7.5.1 Results of RMA for damaged and undamaged buildings

Detailed results for an undamaged building example

In Figure 7.10 we show the detailed results of the proposed method for building ω
[1]
u . This

is the same building found in the post-WV image in Figure 3.5a. The corresponding
filtered image of the unfiltered subset (Figure 3.5b) is presented in Figure 7.10a. Based
on the pre-QB images we estimated the building height to be 10.1 m. With δh = 2.2 m
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Figure 7.11: RMA example for the damaged building shown in Figure 7.3 using SAE (7.3) as the
similarity measure. Viewing direction is from the left. (a) Image subset of building in filtered post-TSX
scene. (b) Simulated building at height where the similarity is highest (h = 27.8 m). (c) Plot of similarity
as a function of height. (SAR image: Infoterra GmbH/DLR, 2008.)

(see Section 7.3.4), the RMA is applied to simulations with varying heights in the range
of [5.7 m, 14.5 m]. This result is plotted in Figure 7.10c. The greatest similarity (mmax)
is achieved with a value of h = 10.5 m. All points of the plot are greater than 0.23. Such
high similarity values indicate that the simulations are similar to the actual scene and
that the building in the post-TSX image is undamaged. Indeed, comparing visually the
actual scene (Figure 7.10a) with the simulation at h = 10.5 m (Figure 7.10b), we find
significant similarity between the two images.

Detailed results for a damaged building example

Detailed results for the damaged building ω
[4]
d are provided in Figure 7.11. The correspond-

ing subsets of the post-WV and the original post-TSX scenes are found in Figure 7.3. The
computed similarity vs. height plot (Figure 7.11c) is characterized by dissimilarity because
the values are lower than 0.11 for heights ranging between [19.9 m,28.7 m]. Consequently,
the building is most likely damaged. In fact, a visual comparison between the simulation
at h = 27.8 m (Figure 7.11b) and the actual scene (Figure 7.11a) shows that the predicted
signature of the building does match the actual scene at all.
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Table 7.5: Match values of undamaged buildings.

Name post-TSX post-CSK
SAE JOE STU SAE JOE STU

mmax hest mmax hest mmax hest mmax hest mmax hest mmax hest

ω
[1]
u 0.291 10.5 m 0.499 10.6 m 1.170 10.5 m 0.238 10.1 m 0.382 10.5 m 1.135 10.1 m

ω
[2]
u 0.144 10.2 m 0.236 10.2 m 1.077 10.2 m 0.130 6.8 m 0.211 6.8 m 1.070 6.8 m

ω
[3]
u 0.179 14.2 m 0.343 14.2 m 1.098 14.2 m 0.231 11.8 m 0.377 11.8 m 1.131 11.8 m

ω
[4]
u 0.200 6.1 m 0.342 5.7 m 1.111 6.1 m 0.208 8.5 m 0.346 8.5 m 1.116 8.5 m

ω
[5]
u - - - - - - 0.207 6.9 m 0.368 6.2 m 1.115 7.0 m

ω
[6]
u 0.252 9.9 m 0.473 10.5 m 1.144 9.9 m 0.227 6.8 m 0.366 6.8 m 1.128 6.8 m

ω
[7]
u 0.226 14.1 m 0.398 14.1 m 1.128 14.1 m 0.184 10.5 m 0.305 10.5 m 1.101 10.5 m

ω
[8]
u 0.208 7.9 m 0.373 7.9 m 1.116 7.9 m 0.218 7.9 m 0.380 7.9 m 1.122 7.9 m

ω
[9]
u 0.300 10.1 m 0.515 10.3 m 1.176 10.1 m 0.278 9.0 m 0.456 9.1 m 1.161 9.0 m

ω
[10]
u 0.246 4.6 m 0.422 4.6 m 1.140 4.6 m 0.264 5.5 m 0.439 5.0 m 1.152 5.5 m

ω
[11]
u 0.279 10.3 m 0.513 10.3 m 1.162 10.3 m 0.292 8.5 m 0.505 8.5 m 1.171 8.5 m

ω
[12]
u 0.264 8.8 m 0.432 8.6 m 1.152 8.8 m 0.263 7.2 m 0.447 3.4 m 1.152 6.8 m

ω
[13]
u 0.331 6.1 m 0.512 6.0 m 1.198 6.1 m 0.327 6.7 m 0.564 6.7 m 1.195 6.7 m

ω
[14]
u 0.195 3.1 m 0.364 3.0 m 1.108 3.1 m 0.195 8.9 m 0.319 6.8 m 1.107 9.1 m

ω
[15]
u 0.199 11.9 m 0.329 11.5 m 1.110 11.9 m 0.243 9.3 m 0.436 9.5 m 1.138 9.3 m

ω
[16]
u 0.224 6.8 m 0.417 6.8 m 1.126 6.8 m 0.209 6.8 m 0.389 6.8 m 1.117 6.8 m

ω
[17]
u 0.265 9.5 m 0.447 9.5 m 1.153 9.5 m 0.267 5.7 m 0.450 5.7 m 1.154 5.7 m

µu 0.237 0.411 1.135 0.234 0.393 1.133
σu 0.053 0.085 0.034 0.048 0.086 0.031

1
1
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Table 7.6: Match values of damaged buildings.

Name post-TSX post-CSK
mmax,SAE mmax,JOE mmax,STU mmax,SAE mmax,JOE mmax,STU

ω
[1]
d - - - 0.163 0.296 1.089

ω
[2]
d - - - 0.155 0.305 1.083

ω
[3]
d 0.119 0.228 1.063 0.154 0.290 1.085

ω
[4]
d 0.104 0.200 1.055 0.124 0.227 1.066

ω
[5]
d 0.196 0.309 1.108 0.163 0.293 1.089

ω
[6]
d 0.185 0.291 1.102 0.185 0.293 1.102

ω
[7]
d 0.137 0.255 1.074 0.167 0.296 1.090

ω
[8]
d 0.179 0.312 1.099 0.145 0.273 1.078

ω
[9]
d 0.162 0.284 1.088 0.125 0.228 1.067

ω
[10]
d 0.167 0.303 1.091 0.137 0.241 1.073

ω
[11]
d 0.180 0.334 1.099 0.168 0.303 1.091

ω
[12]
d 0.078 0.142 1.041 0.080 0.160 1.042

ω
[13]
d 0.137 0.248 1.074 0.142 0.256 1.077

ω
[14]
d 0.165 0.326 1.090 0.171 0.315 1.093

ω
[15]
d 0.149 0.265 1.080 0.122 0.214 1.065

ω
[16]
d 0.142 0.248 1.077 0.145 0.250 1.078

µd 0.151 0.269 1.082 0.147 0.266 1.079
σd 0.035 0.055 0.020 0.026 0.086 0.015

Summarized results of all buildings in data set

In Table 7.5 and Table 7.6 we list the results of the RMA for the post-TSX and post-CSK

scenes, respectively. The buildings ω
[5]
u , ω

[1]
d , and ω

[2]
d were excluded from the analysis of

the post-TSX scene because they were in the shadow region produced by a mountain.
The mean matching values of ωd (µd) are smaller than for ωu (µu). The main difference
between the NMI versions is the value of µu and µd. The corresponding mean values
of SAE are smaller than the ones of JOE, which are smaller than the ones of STU .
The corresponding µd and µu values between the post-TSX and post-CSK scenes are
remarkably similar even though the buildings are viewed from opposite directions from
the ascending (post-TSX) and descending (post-CSK) orbits of the SAR sensors. This
demonstrates that the RMA effectively incorporates the effects in the SAR backscatter
signature that arise from different SAR geometries. The standard deviations (σd and σu)
are relatively small so that the difference in the mean values between the Ω classes can
be considered significant. For instance, considering mmax,SAE for the post-TSX scenes, ωu

has µu = 0.237 and ωd has µd = 0.151 which is a significant difference taking into account
that σu = 0.053 and σd = 0.035, respectively. Applying Welch’s t test [152] to the six sets
produces p-values less than 1.42 ·10−9, whereas class differences are considered significant
for p-values less than 0.05.

The hest values in Table 7.5 are the height values for which the highest NMI values
were computed. Assuming that the manual extracted heights reported in Table 7.3 and
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Figure 7.12: SAE values for ωd and ωu as a function of the height for post-TSX and post-CSK scenes.

Table 7.4 were not consistently overestimated, the heights calculated by the RMA are

overall too low, with results from JOE being the lowest. The heights of buildings ω
[2]
u ,

ω
[3]
u , and ω

[8]
u are significantly underestimated (bound by the lower bound of the evaluation

range) because the neighboring buildings are too close and therefore condition (6.12) is
not fulfilled (see discussion in Section 7.5.4). Applying NMI as the similarity measure is
not the best choice for estimating building heights and, instead, MI should be used as
proposed in Chapter 6.

In Figure 7.12, the SAE values are plotted against the estimated building height for ωd

and ωu computed in the post-TSX and post-CSK scenes. Visually, the two classes can be
reasonably separated. A clear outlier at 11.2 m can also be observed where an undamaged
building produced a low match value (the discussion in Section 7.5.4). It is worth noting
that the average pre-event heights of the buildings in ωd are slightly higher than those
found in ωu suggesting that the taller buildings may have been more vulnerable to the
earthquake.

7.5.2 Supervised classification results

We analyze the impact of the NMI version on the damage detection problem by train-
ing separate classifiers with each of the NMI versions. To test the robustness of the
proposed approach, we perform the training with the post-TSX data and the testing
with the post-CSK data and vice versa. In this manner, we define a total of six classi-
fiers that were named according to the following scheme: C[NMI Version],[Training Scene] with
[NMI Version] ∈ {SAE, JOE, STU} and [Training Scene] ∈ {post-TSX, post-CSK}. For
instance the classifier CSAE,post−CSK was trained using the mmax,SAE values from the
post-CSK scene and tested with the mmax,SAE values from the post-TSX scene. In Table
7.7 we list the parameters for the distributions per class and the corresponding T0 values
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Table 7.7: Parameters for conditional probability density functions p(Y |ωu) and p(Y |ωd) and correspond-
ing threshold values T0 of supervised classifiers.

µd σd P (ωd) µu σu P (ωu) T0

CSAE,post−TSX 0.151 0.035 0.481 0.237 0.053 0.519 0.192
CJOE,post−TSX 0.269 0.055 0.481 0.411 0.085 0.519 0.336
CSTU,post−TSX 1.082 0.020 0.481 1.135 0.034 0.519 1.107
CSAE,post−CSK 0.147 0.026 0.50 0.234 0.048 0.50 0.186
CJOE,post−CSK 0.266 0.086 0.50 0.393 0.086 0.50 0.327
CSTU,post−CSK 1.079 0.015 0.50 1.133 0.031 0.50 1.103

Table 7.8: Confusion matrices for the classification results for the six supervised classifiers.
(a) CSAE,post−TSX . (b) CSAE,post−CSK . (c) CJOE,post−TSX . (d) CJOE,post−CSK . (e) CSTU,post−TSX .
(f) CSTU,post−CSK .

post-TSX post-CSK

SAE

True class
ωd ωu

Estimated
class

ωd 15 2
ωu 0 13

Omissions 0.0% 13.3%
Commissions 13.3% 0.0%

Accuracy 93.4%

True class
ωd ωu

Estimated
class

ωd 12 2
ωu 1 12

Omissions 7.7% 14.3%
Commissions 15.4% 7.1%

Accuracy 88.9%
(a) (b)

JOE

True class
ωd ωu

Estimated
class

ωd 15 3
ωu 0 12

Omissions 0.0% 20.0%
Commissions 20.0% 0.0%

Accuracy 90.0%

True class
ωd ωu

Estimated
class

ωd 12 1
ωu 1 13

Omissions 7.7% 7.1%
Commissions 7.7% 7.1%

Accuracy 92.6%
(c) (d)

STU

True class
ωd ωu

Estimated
class

ωd 15 2
ωu 0 13

Omissions 0.0% 13.3%
Commissions 13.3% 0.0%

Accuracy 93.4%

True class
ωd ωu

Estimated
class

ωd 12 2
ωu 1 12

Omissions 7.7% 14.3%
Commissions 15.4% 7.1%

Accuracy 88.9%
(e) (f)

of the six classifiers. Indeed, given the similarity between the threshold values for the
same NMI version, there is no significant difference in training the classifier either with
the post-TSX or the post-CSK scenes. Note that the mean and standard deviations in
this table are the same than in Table 7.5 and Table 7.6, and are only listed again to
provide a good overview and to support a better comparison with the results from the
unsupervised classification.

In Table 7.8, the confusion matrices from testing the six classifiers are provided. The
omission errors for ωd vary between 0% - 7.7%, and can be interpreted as almost all dam-
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Table 7.9: Estimated parameters for conditional probability density functions p(Y |ωu) and p(Y |ωd) and
corresponding threshold values T0 for unsupervised classifiers.

µd σd P (ωd) µu σu P (ωu) T0

CSAE,post−TSX 0.165 0.036 0.731 0.278 0.029 0.269 0.235
CJOE,post−TSX 0.296 0.036 0.749 0.482 0.036 0.251 0.421
CSTU,post−TSX 1.090 0.021 0.728 1.162 0.020 0.272 1.132
CSAE,post−CSK 0.149 0.027 0.581 0.247 0.036 0.419 0.197
CJOE,post−CSK 0.271 0.046 0.619 0.425 0.063 0.381 0.350
CSTU,post−CSK 1.081 0.016 0.584 1.142 0.024 0.416 1.109

aged buildings are detected correctly. Their respective commission errors range between
7.7% - 20.0% indicating that the method tends to moderately overestimate the damage.
The accuracies vary in a narrow range between 88.9% - 93.4% with an overall mean ac-
curacy of 91.2%. On the one hand this demonstrates that the proposed method is well
suited for damage assessments using VHR optical pre-event and VHR SAR post-event
data. On the other hand, it also indicates that the NMI version does not affect the overall
performance of the method.

The classification of the buildings ω
[16]
u , ω

[17]
u , and ω

[16]
d with the six classifiers attributed

the buildings correctly. Considering that a VHR SAR post-event time series is available,
the proposed method can be used to monitor the cleaning and reconstruction process after
the disaster.

7.5.3 Unsupervised classification results

For the unsupervised classification we use a similar naming scheme than for the super-
vised classification: C[NMI Version],[Classification Scene] with [NMI Version] ∈ {SAE, JOE, STU}
and [Classification Scene] ∈ {post-TSX, post-CSK}. In Table 7.9 we list the parameters
(mean, standard deviation, and prior probabilities) for the conditional probability density
functions p(Y |ωu) and p(Y |ωd) derived by the EM algorithm together with the correspond-
ing T0 values of the classifiers. Comparing the estimated values with the actual ones from
the supervised classification (Table 7.7) it can be seen that the mean values are estimated
with a good accuracy. Furthermore, the estimated standard deviations are very small, so
that the difference between µd and µu can be considered as significant. The prior proba-
bilities estimated from the post-CSK scene show a good correspondence with the actual
values. Hence, the T0 values derived in an unsupervised manner from the post-CSK scene
match with a good accuracy the ones derived in a supervised way. However, comparing
the prior probabilities estimated from the post-TSX scene with the actual numbers, it can
be noticed that they have a significant error in such that the estimated P (ωd) are higher
than the true values. Therefore, T0 numbers estimated from the post-TSX scene show a
remarkable offset to the actual T0 values. In fact, the thresholds derived in an unsuper-
vised manner from the post-TSX scene are significantly higher than the thresholds from
the supervised classification.

The impact on the classification results can be seen in the confusion matrices listed
in Table 7.10. The classification results of the buildings in the post-CSK scene (right
column of table) show that class ωd has no omission errors, and only slightly higher
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Table 7.10: Confusion matrices for the classification results for the six unsupervised classifiers.
(a) CSAE,post−TSX . (b) CSAE,post−CSK . (c) CJOE,post−TSX . (d) CJOE,post−CSK . (e) CSTU,post−TSX .
(f) CSTU,post−CSK .

post-TSX post-CSK

SAE

True class
ωd ωu

Estimated
class

ωd 14 7
ωu 0 6

Omissions 0.0% 53.8%
Commissions 50.0% 0.0%

Accuracy 74.1%

True class
ωd ωu

Estimated
class

ωd 15 3
ωu 0 12

Omissions 0.0% 20.0%
Commissions 20.0% 0.0%

Accuracy 90.0%
(a) (b)

JOE

True class
ωd ωu

Estimated
class

ωd 14 7
ωu 0 6

Omissions 0.0% 53.8%
Commissions 50.0% 0.0%

Accuracy 74.1%

True class
ωd ωu

Estimated
class

ωd 15 4
ωu 0 11

Omissions 0.0% 26.7%
Commissions 26.7% 0.0%

Accuracy 86.7%
(c) (d)

STU

True class
ωd ωu

Estimated
class

ωd 14 7
ωu 0 6

Omissions 0.0% 53.8%
Commissions 50.0% 0.0%

Accuracy 74.1%

True class
ωd ωu

Estimated
class

ωd 15 3
ωu 0 12

Omissions 0.0% 20.0%
Commissions 20.0% 0.0%

Accuracy 90.0%
(e) (f)

commission errors (20.0% - 26.7%) compared to the supervised classification. This means
that no damaged buildings are classified as undamaged buildings, while some undamaged
buildings are assigned to the class of damaged buildings. The results from the post-TSX
scene (left column of table) show that class ωd has no omission errors, but 50% commission
errors. Hence, many undamaged buildings are classified as ωd, while there are no damaged
buildings which are classified as ωu. This is explained by (7.9) showing that a higher
threshold value causes the preferential classification of the buildings in class ωd. The
overall accuracies of the unsupervised classification of the post-CSK scene are still about
90% and only marginal lower than the results from the supervised classification. Instead,
the accuracies of the post-TSX scenes are 74%, which is about 15% lower than the ones
achieved in a supervised way. The overall mean accuracy of the six unsupervised classifiers
is 81.5%.

To analyze the reasons for the diverse unsupervised classification results, we plot in
Figure 7.13a and Figure 7.13b the supervised and unsupervised CSAE,post−CSK classifiers
in terms of their posterior probabilities. The actual mmax values of the buildings, are
plotted as “+” and “×” below the probability functions. Due to the low number of
samples a statistical test to verify whether the two classes actually follow the assumed
Gaussian distribution (e.g. using the Kolmogorov-Smirnov test), cannot be performed.
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Figure 7.13: Comparison between supervised and unsupervised CSAE,post−CSK classifiers. In this example
the EM algorithm estimated the parameters for the unsupervised classifier with a good accuracy. The
symbols “+” and “×” denote the actual mmax values of the buildings in class ωd and ωu, respectively.
(a) Supervised classifier. (b) Unsupervised classifier.
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Figure 7.14: Comparison between supervised and unsupervised CSAE,post−TSX classifiers. In this example
the EM algorithm estimated the parameters for the unsupervised classifier inaccurately. The symbols “+”
and “×” denote the actual mmax values of the buildings in class ωd and ωu, respectively. (a) Supervised
classifier. (b) Unsupervised classifier.

Looking at the distribution of the actual mmax values of the buildings per class, which
should show the majority of the samples centered at the mean value, this seems to be
verified for class ωd, but not necessarily for ωu. In this case, the EM algorithm is able to
find the actual priors, mean values, and standard deviations, with a good accuracy. As
second example, we plot in Figure 7.14a and Figure 7.14b the supervised and unsupervised
CSAE,post−TSX classifiers, respectively. For both classes it is not obvious that they verify
the Gaussian assumption. In this example the EM algorithm cannot determine the actual
parameters of the two classes with a good accuracy anymore. As a matter of fact, during
the definition of the supervised classifiers, prior information is used. Hence, the potential
non-Gaussianity of the Ω classes can be compensated for effectively. However, the EM

118



CHAPTER 7. A NOVEL TECHNIQUE FOR EARTHQUAKE DAMAGE ASSESSMENT OF
BUILDINGS USING VHR OPTICAL AND SAR IMAGERY

(a) (b) (c)

Figure 7.15: Interference of backscattering from buildings ω
[2]
u and ω

[3]
u (ω

[2]
u is left from ω

[3]
u ). (a) Subset

of post-TSX scene with viewing direction from left. (b) Subset of post-CSK scene with viewing direction
from right. (c) Subset of post-WV scene. (WorldView-1 image: DigitalGlobe distributed by Eurimage
S.p.A, 2008; TerraSAR-X image: Infoterra GmbH/DLR, 2008; COSMO-SkyMed image: ASI distributed
by eGeos S.p.A., 2008.)

algorithm, which assumes a Gaussian model, does not use any prior information but relies
only on the mmax values of the buildings. This information is not enough to offset the
deviations between the model and the actual data, highlighting the sensitivity of the EM
algorithm to the Gaussian model.

7.5.4 Impact of building location constraint

To investigate the impact of the building location constraint, we investigate the super-

vised classification results in detail. ω
[2]
u is the only building consistently misclassified by

all six classifiers. Indeed, ω
[2]
u and ω

[3]
u are next to each other, aligned in a row in the range

direction (see Figure 7.15) and the ∆act between these two buildings is about 10.0 m. In

the post-TSX scene, ω
[2]
u is at the sensor facing side so that given (6.11) ∆min = 26.7 m.

However, in the post-CSK scene, ω
[3]
u is at the sensor facing side and ∆min = 29.6 m. For

both scenes, condition (6.12) is not fulfilled and the shadow region of the first building

overlaps with the layover region of the second. Building ω
[2]
u in fact is relatively short,

so that its theoretical shadow- and layover areas are not large. It follows that the inter-
ference with the neighboring building can result in an almost complete absence of these

areas. Hence, the predicted image signature of the undamaged building ω
[2]
u does not

correspond to the signature in the actual scene, generating a low match and classifying

the building as ωd. This also occurs for the building ω
[3]
u that is misclassified by two out

of the six (supervised and unsupervised) classifiers. Since building ω
[3]
u is higher than

ω
[2]
u , the interference with the lower building only results in a moderate shortening of

its respective layover and shadow regions. Thus, most classifiers still make the correct

decision. Building ω
[8]
u , which is attached to its neighbor, was correctly classified by all

six classifiers demonstrating that the violation of constraint (6.12) does not necessarily
lead to a misclassification.
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7.6 Discussion and conclusion

In this chapter we presented a novel damage assessment method for single (isolated)
rectangular buildings using pre-event VHR optical and post-event VHR SAR images. The
method is tuned to work at the individual building level and determines whether a building
is completely destroyed (collapsed) after a catastrophic event or whether it is still standing.
First, a reference pre-event VHR optical image is used to extract the 3-D parameters of
a building which is tested for damage. This information is combined with the acquisition
parameters of the actual post-event SAR data to simulate the VHR SAR signature of the
undamaged building. The predicted signature is compared quantitatively to the actual
VHR SAR scene. Based on the Bayes rule, the resulting comparison determines whether
the building is destroyed or still standing. Similarity between the simulated and the
actual scene indicates an undamaged building, while dissimilarity results in classifying
the building into the damaged building class.

We demonstrate the effectiveness and the properties of the proposed approach using
spaceborne pre-event VHR optical and post-event VHR SAR data from Yingxiu, China,
which was heavily damaged in the Sichuan earthquake in May 2008. The results show
that the method is able to distinguish between damaged and undamaged buildings with
high overall accuracy of about 90% using the supervised classification procedure, and
about 80% accuracy for the unsupervised classification based on the EM algorithm. The
analysis was based on a set of 30 buildings of various sizes and heights. Furthermore, we
tested the method using both ascending and descending scenes from two different space-
borne SAR sensors (TerraSAR-X and COSMO-SkyMed) demonstrating the robustness of
the proposed method. Overall, the method misclassifies more undamaged buildings as
damaged buildings than vice versa providing an upper limit for building damage. This
misclassification is related to the fact that individual buildings in the image with complete
and undisturbed SAR backscattering signatures provide the best results.

At present, we do not model building configurations for which backscattering signatures
overlap. Furthermore, other objects which are located in the immediate surrounding of a
building, such as trees or cars, are currently disregarded in the method. This effect can be
partly anticipated with knowledge on tree positions, relevant to the building orientation
in the SAR scene, taken from the pre-event optical scene. However, the effect of moving
objects, such as cars, and the resulting interference with the backscattering signature of
the building cannot be taken into account, as no prior knowledge on exact location is
available. The overall effects of objects in the scene that are not taken into account in
the simulation will lead to misclassification of undamaged buildings, i.e. confirming that
ωd provides an upper bound for the estimation of building damage.

Change detection and damage assessment methods, which directly compare pixels or
pixel regions in pre- and post-event acquisitions, are often developed to be used with
low/medium resolution SAR imagery. Their performance strongly depends on the accu-
rate coregistration of the two scenes. These methods suffer when registration noise is high,
which leads to an increase in the false alarm rate. This fact becomes more important if
those methods are applied to VHR SAR imagery. In this case, coregistration methods
specifically developed for VHR SAR imagery, such as proposed in [47], might limit this
effect. The method proposed in this chapter does not rely on an accurate pixel based
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coregistration of the pre- and post-event scenes. Instead, the matching procedure uses
a local coregistration procedure between simulated and actual VHR SAR scene, which
offsets the coregistration accuracy requirements.

The presented scenario used pre-event VHR optical data to visually detect and man-
ually measure building dimensions. However, automatic building detection and recon-
struction methodologies [136], [153] have significantly improved over the last years and we
believe that this step can be automated. Moreover, pre-event data from other geospatial
registries (e.g. cadastral maps) can be used to estimate the 3-D building parameters [154].
If available, even VHR SAR could be used for this purpose [47], [42]. The advantage here
is the independence between the pre- and post-event data, i.e. orbit and incidence angle
can change between the two acquisitions.
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Chapter 8

Distributed geospatial data
processing functionality to support
collaborative and rapid emergency
response

This chapter1 presents a novel approach to integrate the latest generation VHR earth
observation imagery into the operational workflow of geospatial information support for
emergency response actions. The core concept behind this approach is the implementation
of an image pyramid structure that allows each image tile to be addressed separately.
We propose a novel way to collate geospatial feature data from distributed sources and
integrate them in visualization and image processing. The system components enable
rapid collaborative mapping, support for in-situ data collection, customized on-demand
image processing, geospatial data queries and near instantaneous map visualization. We
adapt functional software modules that are available in the public and open source domain.
The approach is demonstrated with a test case in a rapid damage assessment scenario
using VHR optical satellite QuickBird and IKONOS imagery over Southern Lebanon
from 2006. Furthermore, we test the system for the 2008 Sichuan earthquake to highlight
the integration of the method introduced in the previous chapter and consequently to
demonstrate the use of the system in the context of VHR SAR.

8.1 Introduction to collaborative and rapid emergency response

Recent advances in software development have significantly expanded the role of remote
sensing imagery and geospatial features data as important and up-to-date information
sources. This is primarily driven by the uptake of web mapping applications, virtual

1Part of this chapter appears in:
[155] D. Brunner, G. Lemoine, F.-X. Thoorens, and L. Bruzzone, “Distributed geospatial data processing functionality

to support collaborative and rapid emergency response,” IEEE Journal of Selected Topics in Applied Earth
Observation and Remote Sensing, vol. 2, no. 1, pp. 33–46, March 2009.

Figure 8.9 was selected as cover for the Vol. 2, No. 1, of the IEEE Journal of Selected Topics in Applied Earth Observation
and Remote Sensing.
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globe viewers, the pervasive use of Global Positioning System (GPS) based tracking and
routing devices, and novel collaborative geotagging applications. Much of the relevant
functionality is available as free or open source software modules or as web-hosted appli-
cations, which has led to the expansion of geospatial processing capabilities well beyond
the traditional community of remote sensing and GIS experts. Furthermore, new public
and commercial data supply models are evolving for high quality remote sensing data
which will challenge the traditional supply mechanisms, in particular for near real time
supply of post-event satellite data in emergency or conflict situations.

The characteristics of earth observation imagery and geospatial data integration in
emergency response are distinctly different from those in typical environmental thematic
use. Emergency response actions tend to be localized (e.g. at local or regional, rather than
national or continental scales), thematically specific (e.g. classification of individual urban
structures, rather than generic land use classes), and have stringent timing requirements
for the delivery of the relevant derived data layers. A typical sequence of geospatial
support activities responding to a call to support an emergency response is as follows:

1. In the pre-alert stage, early warning indicators may trigger the search for suitable
archive earth observation data that could be used to establish the pre-event reference
situation. This stage is relevant only for events of a probabilistic nature for which
adequate early warning mechanisms are in place (e.g. tropical cyclones [6], forest fire
risk [156] and flood forecasts [157]);

2. Either at a predetermined high alert level or directly after the event there is an
immediate need to provide access to digital repositories of appropriate earth obser-
vation imagery and geospatial feature data at the required scale and accuracy to
establish the reference situation. Data layers derived from these data sets need to be
specific to the thematic needs of the response effort (i.e. populated area delineation,
infrastructure mapping, vicinity analysis). At this stage, the ability to distribute
the analysis workload amongst domain experts and image analysts and assemble the
contributions from a large number of contributors is paramount;

3. Directly after the event, high resolution (airborne or satellite) imagery is tasked to
be acquired over the event site. The primary use of this data is for the assessment of
the post-event situation compared to the reference situation. Automatic classification
and change detection algorithms [13], [14], [15], [16], are particularly relevant in this
context, because they assist in the visual inspection and feature capturing stage to
quantify the impact of the event. At this stage, early post-event collateral information
may become available, e.g. the exact impact area, logistics of the relief effort, and
media reports, that will help guide the geospatial analysis effort;

4. After the initial geospatial analysis results are disseminated to emergency response
actors, new queries may be formulated that require the data layers to be revisited
or the geospatial analysis to be fine-tuned. Depending on the nature of the event,
several situation updates may be necessary (e.g. forest fires, extended conflicts).

In reality, due to the absence of a common collaborative rapid mapping platform, the
individual steps in this workflow are only met in a non-standardized, ad hoc manner.
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Different tasks are assigned to the team members, which typically conduct the analysis
locally at their workstations with tools they are most familiar with. This implies that
the various results produced throughout the analysis are often not compatible and im-
mediately accessible by other team members. Therefore, additional efforts are necessary
to synchronize the produced data within the team as well as to harmonize and compose
the derived information to one product so that it is actually beneficial for the decision
makers. Furthermore, the individual processing of the different tasks challenges the ef-
ficient organization and the overall monitoring of the progress of the geospatial support
activity. Note that both points are crucial to meet the stringent timing requirements for
delivering the relevant information. The outlined difficulties become even more profound
if the team is spread across institutional boundaries.

In this chapter, we propose common steps for using geospatial data in general, and in
particular earth observation imagery, to support emergency response actions using a com-
mon collaborative rapid mapping platform. This effort aims at increasing the efficiency of
analyzing the data and hence the overall effectiveness of using geospatial data to support
the relief effort. In particular, we propose a system integration effort that leverages the
functionalities of publicly available and open source components to enable collaborative
and rapid processing of distributed geospatial data, including large high resolution image
coverages. We introduce a novel concept for the integration of privately held very large
VHR images both in customized visualization environments and accessible to extensible
image processing capacities via a web service mechanism. The system enables distributed
access to geospatial feature sets that can be collected as digitized feature sets from a com-
munity of contributors and exposed through web services. Geospatial feature data can be
integrated into the distributed image processing capacity, which is optionally backed up
by a grid computing architecture to enhance processing speed. We demonstrate the use
of the system in the emergency response context using both VHR optical and VHR SAR
imagery.

The remainder of the chapter is organized as follows: Section 8.2 introduces the system
architecture. In Section 8.3 we discuss how we integrate very large image data sets
providing the algorithm implementation details and illustrating the procedure with an
example (Section 8.3.6). In Section 8.3.7 we describe how we can trigger image processing
requests on the image data sets. We then highlight the feature capturing (Section 8.4)
and visualization (Section 8.5) capabilities of the system. In Section 8.6 we describe the
integration of the automatic damage assessment method from Chapter 7 into the system
architecture. In Section 8.7 and Section 8.8 we demonstrate the system for rapid damage
assessments during the Southern Lebanon armed conflict in 2006 and after the Sichuan
earthquake in 2008, respectively. The conclusions are presented in Section 8.9 with a
summary of the key aspects of our system.

8.2 System architecture

The requirements to share data between teams suggests the need for a common distributed
software platform based on a client-server model [158]. This architectural model allows
communication between several distributed clients with one or more servers using network
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connections. The client initiates server requests and waits for and receives server replies. It
is typically a graphical user interface through which the user can interact with the data sets
and the server. The server responds to client requests by performing a triggered processing
task and providing the result. The use of the client-server model is generic to many current
web applications. Its use in web mapping applications is an alternative to desktop or
locally networked GIS applications because it functions across the boundaries between
diverse organizations, stimulates the use of standard formats and exchange protocols, and
permits the distribution of geospatial functionalities to relevant user communities in a
tailored fashion. Drawbacks of the client-server model are the need for increased efforts
supporting transactional management, including authentication, and possibly limitations
in client functionality. A full discussion on the pros and cons of web mapping platforms
is given in [159].

The overall system architecture is illustrated in Figure 8.1 using the Unified Modeling
Language (UML) notation [160]. To manage the functional and computational complexity
of geospatial data processing on the server, we use a three-tier architecture [158] following
the so-called Model-View-Controller design pattern for distributed systems [161]. The
first tier is the client (the View) which captures user data and composes client requests,
forwards these to the application server and visualizes the application server’s response
to the user. The second tier is the application server (the Controller), which handles all
the business logic required to process a client request (e.g. selection, processing actions,
response compilation). The third tier (the Model) communicates with the data stores.

8.2.1 View

The View, which is the interface running on the client side, distinguishes three functional
roles: 1) the geospatial analyst; 2) the project manager; and 3) the decision maker. The
geospatial analyst inspects the satellite imagery and manually extracts features using
the client interface. The analyst can either be a local expert familiar with the area
under investigation, a domain expert specialized in urban areas, or an user who has been
introduced to geospatial feature capturing using the client (see Section 8.4).

In our scenario, we use the Google Earth™ virtual globe viewer as the client platform
for this role. Google Earth™ can be downloaded for free and runs on the Windows,
Mac and Linux operating systems and has a very large user base. Furthermore, Google
Earth™ provides ready access to a global archive of high and VHR imagery stored on the
Google Earth™ server which is regularly updated, providing a background for reference
situation mapping. In Section 8.3, we demonstrate how the Google Earth™ background
imagery can be complemented with access to full resolution image products held in private
archives.

The project manager is responsible for managing, controlling and supporting the overall
collaborative analysis effort. Initially, she prepares the system by creating the project
structure, uploading relevant archive data for the Region Of Interest (ROI), and processing
the satellite images for display in Google Earth™. Based on requests and instructions
received from the emergency response coordinator, the project manager distributes the
work effort amongst collaborators, for instance, by assigning analysis tasks by theme or
subregion of interest. At this stage, the use of ancillary and collateral information to
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Figure 8.1: UML overview of a multi-tier client-server architecture for collaborative feature capturing
and visualization.
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stratify the ROI into priority zones is very important. The project manager is the main
contact point for technical problems and collection of feedback on the use of the system.
She uses the Google Earth™ client or other specialized GIS clients for data editing, quality
control and management. In practice the project manager, or her technical team, will also
have direct access to the various components of the server infrastructure to intervene when
appropriate.

The decision maker roles are taken up by the emergency response coordinators who
incorporate the geospatial analysis outputs and steer the intervention effort. They access
the system in read-only mode receiving customized reports and maps that are compiled
in real time from the available data via the web server interface of the system.

We have implemented a simple role-based authentication mechanism to ensure that
the user of the system is only able to accomplish the actions in the system that his role
prescribes. The analyst is allowed to create new vector data and update or delete data
he has previously created. The project controller is the system administrator and is able
to create, change, and delete globally any kind of data (i.e. raster and vector data). The
decision maker is only granted read access to generate customized situation reports and
map products. All data submissions are tagged with the user identifier and timestamped
allowing changes to be tracked by user over time.

The client-server communication is synchronized via the Hypertext Transfer Protocol
(HTTP). The refresh mechanism in Google Earth™ ensures that any data submitted by
an analyst is distributed to other users who are connected to the system. In cases where
there is no reliable Internet connection, which may be the case in developing countries or
areas that are affected by a catastrophic event, client data can alternatively be forwarded
by email to a functional mailbox. Google Earth™ can also work with locally stored feature
data sets in offline mode.

Note that the choice of using Google Earth™ as the client places a number of con-
straints on data formats and standards. Imagery integrated into Google Earth™ must be
reprojected to Plate-Carrée (or geographic) projection using the WGS 84 ellipsoid. The
mandatory geospatial feature data format for Google Earth™ is the Keyhole Markup
Language (KML) [162]. The Geospatial Data Abstraction Library (GDAL) [163] is par-
ticularly useful for converting other feature data formats (e.g. ESRI shape files) to KML
and reprojecting imagery as required.

8.2.2 Controller

The second tier consists of the application server which is made up of five components: a
web server, an email parser, the geospatial processing logic, a database abstraction layer,
and a static SuperOverlay (see Section 8.3) web server. The web server is an Apache
TOMCAT instance and receives the HTTP requests from the clients. The requests are ei-
ther for data access or requests for data submission. An email parser makes asynchronous
uploading to the system possible via a functional mailbox. The web server and the email
parser delegate the requests to the geospatial processing logic component, which provides
functionality for querying and manipulating geospatial data (create, read, update and
delete). This component communicates indirectly via the database abstraction layer with
the geospatial feature database. The static SuperOverlay web server serves static im-
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agery as SuperOverlays accessing the image repository directly and thus does not need
to use the database abstraction layer. Our application server is implemented in Java and
runs on a Linux platform. However, given the inherent platform independence of Java, the
server can be deployed on any system for which a Java run-time environment is available.

8.2.3 Model

The geospatial database manages geographical feature data and their attributes. For
organizing the geospatial information the object-relational PostgreSQL DBMS, with the
PostGIS extension is used. It is available for Windows and Linux platforms. PostGIS
allows storage of geographical objects and includes support for spatial indexing and func-
tionality for the analysis and processing of geographical objects. The database layer in
the controller, however, abstracts the implementation specific details of the geospatial
database so that it is possible to change the DBMS quite easily.

The proposed separation between the geospatial feature data server and image data
server is not obligatory. In fact, one web server would be enough to handle both feature
and image data requests from the clients. Our setup does not include direct interaction
between the two server parts. Such interaction is logically separated in the controller,
which enhances portability and scaling of individual server components. This also makes
it easier to integrate other data access protocols (e.g. the File Transfer Protocol) to serve
specific purposes.

8.3 Integration of very large image data sets

The distribution of large image coverages among project collaborators, either for image
processing or for the visualization of the processed data is a well known issue. This
is particularly evident in operational scenarios such as emergency response, when large
areas are analyzed at large scales for impact assessment, usually within stringent tem-
poral constraints. The OpenGIS Consortium (OGC) [164] proposes the use of the Web
Coverage Service [165] and the Web Map Service (WMS) [166] image serving protocols
respectively, for image subselection and recomposition. Both services can provide repro-
jection functionality. These services however, tend to be computationally expensive and
unable to handle a large user base in real time, i.e. the typical scenario in collaborative
rapid mapping.

For the rapid visualization of large terrain data sets, [167] proposes the use of image
pyramids (also known as MIP maps), i.e. a multiresolution stacked representation of the
image. Each level of the pyramid is usually a 2 by 2 up-sampled version of the underlying,
higher resolution level. The intrinsic relation between level of detail, tiling coordinates
and the relative address in the stored image file allows for very fast access to the raw
data. Image pyramids may either be stored inside a (propriety) binary image format (e.g.
GeoTIFF, ENVI, ERDAS) or stored as individual files in a physical tile structure on disk.
The latter is used in combination with an unique fixed tile coding convention by virtual
globe server software such as Google Earth™, Microsoft Virtual Earth™ and NASA’s
World Wind [168] in order to efficiently visualize their global remote sensing archives.
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8.3.1 SuperOverlay generation

To display privately owned static image pyramids within the Google Earth™ virtual
globe viewer, the SuperOverlay [169] element was introduced in version 2.1 of KML.
KML has recently become an OGC implementation standard (the current version is
2.2). A SuperOverlay is a hierarchical tree-like structure of NetworkLinks of regional-
ized GroundOverlays, which is the standard KML element to display small georeferenced
image tiles within Google Earth™. At the top of the tree, a Region element defines the
geographical extents of the image composing the SuperOverlay. This Region loads the
top level (i.e. lowest resolution) up-sampled image as a GroundOverlay. The top level
KML file contains four NetworkLinks to the four quad-regions of the next tiling level. The
”level of detail” (minLodPixels, maxLodPixels KML elements) controls the visibility of
each tile level in such a way that the higher resolution levels become visible when the
user zooms in closer. This mechanism ensures that only those tiles are loaded that are
needed to fill the zoom window of the viewer. Google Earth™ suggests the use of tiles of
256 by 256 for optimum performance, but the user is free to decide the actual tile size. A
key difference between static SuperOverlays and standard MIP maps is that each image
tile is individually addressable and loadable as a single file. In other words, it can be
accessed at the static web server via an Uniform Resource Locator (URL) address. An
added advantage of static SuperOverlays is that they can be provided on separate media
for offline integration into Google Earth™. For mobile platforms having limited disk space,
caching parts of a SuperOverlay, e.g. to support in-situ data collection, requires a simple
synchronization operation.

Several software implementations for generating a SuperOverlay are available (e.g. as
part of the GDAL toolkit). We have implemented a Java application for batch generation
of SuperOverlays. Their creation can be broken down in the following processing steps
[170]:

1: Reproject the image to Plate-Carrée projection and extend row and column dimen-
sions to a quad-multiple of 256;

2: Tile the extended image into tiles of 256 by 256;
3: Create up-sampled tiles for each of the lower resolution pyramid level;
4: Create the SuperOverlay KML tree structure.

The actual processing steps are described in the following subsections.

8.3.2 Image reprojection and extension

Typically, images used in a project or local scope are in a local projection system (e.g.
Universal Transverse Mercator (UTM)) and retain the original spatial and spectral reso-
lution of the sensor. Visualization in Google Earth™ requires the data to be reprojected
to Plate-Carrée projection and spectrally resampled to 8-bit. The spatial resolution can
normally be retained, but some resampling is performed in the reprojection process.

Reprojection often results in imagery that is rotated with respect to the north-south
orientation, with zero filled boundary areas. In order to avoid complex resampling at the
lower resolution pyramid levels, it is useful to extend the reprojected image to an image
size that is a quad-multiple of 256 (i.e. 2, 4, 8, 16, ... times 256 in both the row and
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column dimensions). For instance, an image with a width and height of 800 by 800 pixels
is extended to 1024 by 1024 pixels, corresponding to quad-level 2, resulting in 4 by 4 tiles.
Our implementation centers the original image inside the extended image frame.

8.3.3 Image tiling

The tiling operation is only performed for tiles that are not completely in the back-
ground, i.e. either in the zero filled boundary area of the projected image or the zero
filled quad-multiple extension. Before writing each tile to disk, all zero filled pixels are
made transparent so that they do not hide the background imagery when visualized in
Google Earth™. Tiles are written as Portable Network Graphics formatted files (*.png)
that provide lossless compression and retain the transparency properties of the image
tiles.

8.3.4 Creation of up-sampled image pyramid layers

The quad-level sizing of the reprojected image is particularly useful at this step, because
it guarantees a 1 to 4 (2 by 2) relationship between tiles at each higher quad-level2. That
is, each up-sampled tile is the result of a 2 by 2 resampling of exactly 4 higher resolution
tiles. If a higher resolution tile does not exist, e.g. because it lies in the zero filled
background, the relevant quadrant in the up-sampled tile remains zero filled, which is
made transparent before the tile is written. A side effect of this operation is that all zero
valued pixels become transparent.

We iterate the process until we reach the top quad-level, which results in a single 256
by 256 tile. In the previous example, the 1024 by 1024 pixels large extended original
image has 3 quad-levels 2, 1 and 0 with 16, 4, 1 tiles respectively.

8.3.5 Creation of the SuperOverlay KML tree structure

Each tile at each of the quad-levels is a georeferenced image in Plate-Carrée projection.
The SuperOverlay KML tree structure persists both the geolocation of each tile and the
hierarchical pyramid tile structure in KML constructs. For each of the lowest quad-level
(highest resolution) tiles, the KML document defines the geographical Region covered by
the tile defined in a GroundOverlay element. Since these tiles are the leaf nodes of the
tree, they do not link to others. Leaf node tile KML files are only created for tiles that
are already on disk, i.e. created in the previous steps.

For each of the higher quad-levels, the KML document is similar to the one for the leaf
node tiles, except that each has in addition up to four NetworkLinks giving the Region

definition and link to the underlying tile KML descriptors.

8.3.6 A SuperOverlay example

To illustrate the process with a practical example, we show the typical output for a VHR
(2.4 m pixel size) multispectral QuickBird image. The image is orthorectified to the

2The quad-levels are numbered according to their hierarchy in the image pyramid. The ”top of the pyramid” corresponds
to quad-level 0 and has 1 tile. Each lower pyramid level has an increasing quad-level index ql, each with 22ql tiles.
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Figure 8.2: Schematic overview of the tiling process for the sample image. The input image in Plate-
Carrée projection is first extended to a grid at quad-level 4, centered on the image. The grid is then
tiled into 16 by 16 tiles. Tiles exclusively in the zero filled background values (light blue in the figure)
are not saved to disk. Tiling at each of the higher quad-levels 3, 2, 1 and 0 results from composing
each subsequent level from the up-sampled 4 tiles at the preceding level. (Satellite image: DigitalGlobe
distributed by Eurimage S.p.A., 2006.)

relevant UTM projection, masked to remove a significant section that covers the sea, and
reprojected to Plate-Carrée projection resulting in an image of 3378 by 3875 pixels.

In the first step of the algorithm, the image is extended to 4096 by 4096 pixels (quad-
level 4) and then tiled into 16 by 16 tiles of 256 by 256 pixels. This process is illustrated
in Figure 8.2. The tile naming format is QQQ NNN MMM, where QQQ is the quad-
level, NNN is the column index and MMM is the row index in the tiled grid. Three
digits are used in this naming scheme so that a maximum tile index of 512 (i.e. quad-
level 9) is possible. This maximum tile index corresponds to a grid size of 131072 by
131072, equivalent to an upper limit of 48 GB for the input image. This limitation can be
relaxed by using more than three digits for the tile index. An alternative for processing
images which are larger than 48 GB is to split up the image into blocks of not more
than 48 GB and SuperOverlay each block separately. The results can then be linked
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using KMLs NetworkLinks. However, the handling of files larger than 12 GB becomes
difficult in practical terms because it exceeds the single-band 4 GB limits of the widely
used GeoTIFF image format, which corresponds to an upper quad-level of 256 or a grid
size of 65536 by 65536. Most single-scene satellite image data sets are well below the
12 GB limit. For very large data sets (e.g. image mosaics), raw or proprietary input
file formats, which do not have a size limitation, may be used. For performance reasons
SuperOverlays are currently pregenerated from the imagery and stored with their full
structure in the image repository.

A screenshot of the integration of the large QuickBird test image into
Google Earth™ using SuperOverlays is shown in Figure 8.3. Using the Google
Earth™ navigation widgets, we are able to zoom into each of the subsequent quad-levels
seamlessly, visualize the data in the 3-D landscape mode and overlay geographical
features from other KML sources. Of special interest is the transparency slider that
is associated with the SuperOverlay. We can control the transparency of the added
SuperOverlay from fully opaque to fully transparent. If more than one SuperOverlay

is loaded, we can use this control to look at each visualization separately. This is very
useful in manual change detection scenarios, e.g. comparing ”before” and ”after” states
in multitemporal series, which we can then capture with KML annotations.

SuperOverlays are also suitable for the visualization of multitemporal imagery.
The KML standard provides the TimeStamp element to allow rendering of the KML
GroundOverlay at specific time intervals. Animation of time series can be controlled via
Google Earth™’s time navigation widget.

8.3.7 SuperOverlays for image processing

The above example refers to using the SuperOverlay in a visualization environment,
such as the Google Earth™ client. However, SuperOverlays can also be used to support
image processing tasks. Image processing algorithms that run on byte-formatted input,
can integrate the SuperOverlay directly. If radiometric resolution requires the image to
be kept in a different number format (i.e float or 16-bit integer format) the SuperOverlay
algorithms can be adapted to produce image tiles in the TIFF format.

SuperOverlays are especially suited to dedicated and CPU-intensive image processing
tasks (e.g. image segmentation and/or classification) to be performed on a predetermined
ROI. The pyramid tile structure can be used directly for multiscale image analysis and
with feature extraction algorithms. This structure is also suitable for integrating image
processing and pattern recognition algorithms specially designed for managing large im-
ages in split-based approaches [9]. In such cases, the tile structure can be automatically
associated with the image split necessary for multilevel processing. The SuperOverlay

also implicitly supports the use of multisource and multitemporal data sets since all are
georeferenced to the same projection. Outputs generated by the image processing tasks,
whether applied to the entire image pyramid or specific layers or tiles, can be made
available as SuperOverlay structures for integration into the project data collection.
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Figure 8.3: A screenshot of the Google Earth™ viewer after opening the SuperOverlay’s top level KML
file. (Satellite image: DigitalGlobe distributed by Eurimage S.p.A., 2006.)

Integrating image processing functionality

Our distributed system is able to provide dedicated image processing services that can
be incorporated as third party web services. The relevant SuperOverlay URL and ROI
feature (typically a polygon) can be forwarded, together with relevant processing param-
eters, to the published web service address. The public web service interface is separate
from the privately hosted implementation of the image processing functionality. This is
an especially attractive feature for specialized processing algorithms that are not available
in off-the-shelf image processing software packages, for experimental routines, or where
code protection is essential.

The workflow for integrating image processing into our system is shown in Figure 8.4.
The process is divided into two systems: a public system that contains the data to be
processed as a SuperOverlay and a private system that encapsulates the image processing
routines. The project controller or expert analyst selects in a first step the ROI, which
might be a predefined area or the result of a geospatial query (e.g. the automatic detection
of built-up areas in optical VHR imagery within a 1 km buffer area around a river flood
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Figure 8.4: A schematic overview of the integration of image processing into the system. This process
is divided into a public and a private system. The data to be processed are stored as SuperOverlay in
the public image repository. The image processing routine is triggered by specifying the SuperOverlay

and the ROI to be processed by an algorithm that is provided by a partner on their private system. The
results are stored in the private image repository which is accessible by the public system.

plain). In a second step, the imagery is selected, which is addressed by the URL of the
SuperOverlay. In a third step, the image processing request is triggered by forwarding the
URL and the ROI to the public interface of the web service hosting the private algorithm
implementation. Depending on the algorithm and its implementation, it may be necessary
to compose the tiles of the SuperOverlay in a fourth step to a single or several larger
images before the algorithm can be applied. In such cases, the resulting imagery has to be
tiled back in a fifth step to the SuperOverlay structure so that it can be made accessible
to the project partners through the Google Earth™ client via a NetworkLink posted to
the server (sixth step).

Combining image processing and grid computing

In order to decrease the processing time of the image processing server, the algorithm
designer may incorporate grid computing facilities as shown in [171]. Grid computing [172]
is a hardware and software infrastructure that provides high-performance computational
capabilities by combining the processing capacities of distributed CPUs to handle large
processing tasks. The individually addressable tiles in the SuperOverlay structure are
uniquely qualified to be processed in a grid environment, especially when image processing
tasks can be easily parallelized as tile operations. Figure 8.5 illustrates the combination
of SuperOverlays and grid-enabled image processing. This figure is an extension of the
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Figure 8.5: The SuperOverlay integrated into a grid-enabled image processing task.

right hand side of Figure 8.4. The key difference is that the image processing server, which
receives the processing requests, acts as a task broker to subdivide the workload between
available grid computing nodes based on the analysis of the ROI and SuperOverlay

descriptors received in the request. Each grid node acts in the same way as a stand-
alone instance processing the tile subset identified by the broker and storing the output
in the private repository. The task broker monitors the processing nodes and publishes
the address of the repository upon completion in exactly the same manner as the stand-
alone process described in Figure 8.4. Note that the SuperOverlay integration enables
the distribution of image tile identifiers, rather than image tiles themselves, leading to
a significant reduction in intra-node communication. Each of the processing nodes only
loads the relevant tile(s) for the identifiers passed to it by the broker. This mechanism
allows for sophisticated processing load balancing, leading to a significant increase in
image processing throughput.
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8.4 Collaborative feature capturing

Our concept of “collaborative feature capturing” is some form of organized collation of
geospatial feature data sets to support a given mapping task. The collaborative part
assumes that more than a single person contributes to the collection, more or less simul-
taneous, but at different (machine) locations. The feature sets to be captured may be
existing KML layers, those converted from other formats, or freshly digitized features in
Google Earth™.

In our system, we exploit the forwarding mechanism found in Google Earth™ to collect
the captured feature sets via the application server, into the spatial data repository. Cap-
turing tasks can be organized either by geographical area, outlined as a polygon defining
the ROI, by thematic layer (e.g. roads, buildings, etc.), or by a combination of both.
Instructions to individual contributors can, in fact, be communicated using the system
setup. We have implemented a basic authentication mechanism for contributors, based
on preregistered login and password credentials, which are linked to a project identifier.
Credentials are propagated and checked each time new features are submitted. Other
checks can be incorporated in the application server logic, e.g. to limit contributions to
the predefined ROI or thematic layer for that contributor.

In order to be able to collect captured data in a systematic way, we use predefined
class hierarchies. A hierarchy includes a tree-like class definition and sub class defi-
nition up to the third level. For instance, a captured highway may be stored in the
Road/Paved/Highway node of the hierarchy tree. In Google Earth™ the class hierarchy
takes the form of a set of folders and subfolders, much like a directory structure in a
file manager. The class hierarchy is stored for each of the submitted features. The pos-
sibility to link a project to a predefined class hierarchy allows for a flexible mechanism
to address specific capturing tasks that need to conform to a user-defined map legend
(e.g. topographic maps). Furthermore, the persisted class hierarchy or parts thereof can
be transformed into hierarchies that are used in other mapping domains (e.g. tactical
maps).

The feature capturing task supports feature updating and deletion. The spatial data
repository uses feature versioning to keep track of changes to individual features. Ver-
sioning is an important mechanism in the support of feature updating, rollbacks, replays
and release tagging. It protects the process from malfunctioning or from human error
that could lead to unwanted data removal.

A feature can include a number of attributes that describe relevant properties (e.g.
the road surface type and width). The system also allows the inclusion of additional
multimedia information such as photographs, videos, or audio files. This is particularly
interesting for integration of ground observations. Links to data held on other systems
can be forwarded as NetworkLinks that relate to a geographic feature. The latter is a
simple way of publishing the availability of a new image SuperOverlay to the project
team.
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8.5 Data visualization

All geospatial feature data are held in the spatial repository. A separate system com-
ponent provides controlled access to the data stored in the system. The open source
module GeoServer, which is an OGC compliant web map server, is used for visualization.
GeoServer supports both the WMS and Web Feature Service [173] protocol standards
that are relevant in our context. GeoServer exposes geospatial features from the spa-
tial repository in a number of standard formats for integration into map clients, including
KML. Feature querying and conditional styling capabilities [174] that are part of the OGC
standards can present the GeoServer outputs in predefined class hierarchies and in map
presentations that can be tailored to the required end-use. Data access and customization
is based on predefined users and roles specified in the data repository.

Using the built-in refresh mechanisms in the Google Earth™ client, the user is able to
display an instantaneous view of the data holdings even while the feature capturing process
is ongoing. Since all submitted feature data is timestamped, the Google Earth™ time
animation functionality can be deployed to display the collaborative effort chronologically.
This is particularly useful for project managers, who must monitor work progress, identify
processing bottlenecks and provide progress reports and intermediate map outputs to help
inform the emergency response decision makers.

The use of the PostgreSQL database extended with PostGIS permits data access to
geospatial clients that can perform enhanced processing beyond the feature capturing and
visualization capabilities of Google Earth™. This may include data integrity checking,
topology creation, spatial querying, and data conversion tasks that are performed by
a limited number of project actors. This functionally extended Google Earth™ client
interface is particularly useful because of its widespread exposure to the community of
potential contributors.

8.6 Integration of VHR SAR damage assessment method

In Section 8.3.7 we explained how SuperOverlays can be used for image processing.
The image processing algorithm takes a SuperOverlaid raster image as input, performs
the processing on the tiles of the previously selected ROI, and stores the result again in
raster format as SuperOverlay. However, the damage assessment method from Chapter 7
requires additional input parameters and can store the results directly in the geospatial
database, which is in this situation more efficient than storing the result as SuperOverlay.
To integrate the damage assessment method into the system, we change the proposed
scheme for performing image processing.

The damage assessment method, which is based on the usage of VHR optical pre-event
and VHR SAR post-event data, determines on the level of individual buildings if it was
destroyed by a catastrophic event or if it is still intact. For each building under inves-
tigation, a number of parameters are required, as described by (7.1). These parameters
can be calculated from the building footprint, the shadow length of the building, and the
acquisition parameters from the pre-event (e.g. sun incidence angle) and post-event im-
agery (e.g. azimuth direction, incidence angle). The footprint and the shadow length are
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Figure 8.6: A schematic overview of the integration of the damage assessment method into the system.

derived manually from the VHR optical pre-event imagery, while the image parameters
are given by the data providers in the header files. With this information, the automatic
assessment of the structural status of a building can be triggered. The result is the classi-
fication into damaged or undamaged building. We store this information as feature data
into the geospatial database. However, it is straight forward to save the results also in
raster format as SuperOverlay.

The adaption of the workflow from Figure 8.4 for the integration of the damage as-
sessment method is shown in Figure 8.6. In a first step, the project controller or expert
analyst selects the buildings from the database which shall be analyzed according to their
structural status. Then, the post-event SAR SuperOverlay is selected. In the third step,
the damage assessment method is triggered via the public interface of a web service host-
ing the private implementation of the algorithm, passing the footprints and the URL to
the SAR post-event SuperOverlay. Then the algorithm requests the individual tiles for
evaluating the structural status of the buildings. Note that the algorithm operates in slant
range geometry while the SuperOverlay tiles are geocoded. Hence, the tiles need to be
transformed (scaling and rotation) into the original acquisition geometry prior to process-
ing. Alternatively, if available, the slant range SAR image can be uploaded to the image
repository so that the algorithm accesses the image directly without the SuperOverlay

mechanism. In the fifth and final step, the results of the processing (classification into
damaged or undamaged building) are stored in the geospatial database. For the proposed
integration of the damage assessment method we assume that the classification is either
performed using the unsupervised procedure, or, in case the supervised procedure is used,
that the classifiers are already trained.
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8.7 Test case 1: Lebanon armed conflict

8.7.1 Test case description

The system presented in the previous sections is generic and can be deployed within several
application contexts that require collaborative and rapid geospatial analysis integration.
It was specifically applied to a damage assessment scenario during the Lebanon crisis
which was an international armed conflict between Lebanese and Israeli forces in July
2006. Geospatial data were collected to assess the situation in the conflict areas in order
to estimate European Union (EU) support for funding of reconstruction and humanitarian
aid in South Lebanon after the conflict. The scenario is particularly demanding for four
reasons: 1) strict time constraints were imposed because the situation assessment had
to be produced within 2 weeks; 2) very large data volumes had to be processed because
the damage assessment analysis required VHR imagery for the entire Southern Lebanon
area; 3) the accuracy of the orthorectified imagery had to be high for the comparative
analysis; and 4) the distribution of the workload between two geographically dispersed
image analyst teams.

Several mosaicked IKONOS scenes from 2005 covering the entire South Lebanon
area (covering approximately 30 km north-south and 40 km east-west centered around
33°11’24” N, 35°21’36” E), with 4 m spatial resolution in four multispectral channels
and 1 m resolution in the panchromatic channel were used as pre-event base data. The
preprocessing of the image, with dimensions of 56260 x 41417 pixels and a size of
7.1 GB, comprised of pan-sharpening [175], orthorectification [176] and radiometric
scaling to 8 bits. The preprocessed image was SuperOverlaid using the algorithm
outlined in Section 8.3 resulting in 30016 tiles with a total size of 2.3 GB. The total
processing time to produce the SuperOverlay on a standard workstation (two dual core
Intel® Xeon™ 2.8 GHz CPUs, 3 GB RAM, Ubuntu 8.04) was slightly more than 2
hours (125 minutes and 45 seconds).

The post-event image was made up of a mosaicked QuickBird scene, which was ac-
quired after the conflict ended in August 2006. This image mosaic has a panchromatic
spatial resolution of 0.6 m and a spatial resolution of 2.4 m for the three multispectral
channels. Preprocessing was the same as for the pre-event IKONOS mosaic. Applying the
SuperOverlay algorithm on this 10.6 GB image whose dimensions were 73136 x 51821
pixels resulted in 49188 tiles and 4 GB in size. Total processing time was 176 minutes
and 44 seconds.

Both pre- and post-event SuperOverlays were uploaded to the web server by the
project manager. The geospatial feature database was initialized with ancillary data that
were made available through the Lebanese Council for Development and Reconstruction.
Data sets included cadastral limits at 1:200,000 map scale, major populated places, roads
and airports at 1:100,000 map scale, and rivers at 1:50,000 scale, which were converted
and reprojected from ESRI shape files in UTM 33 N to Plate-Carrée projection.

As control data, we had a large set of point features that were digitized during a
standard photointerpretation exercise by the EU Satellite Center immediately after the
crisis, at which time our system was not yet available. Point features outlined partially
or fully damaged structures based on the visual interpretation of pre- and post-event
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imagery. Furthermore, field missions to the area in the aftermath of the crisis had yielded
a large set of GPS-tagged photos that were very useful in assessing the quality of the
visual interpretation.

8.7.2 Results and discussion

The collaborative effort is triggered when the pre-event imagery and ancillary feature data
sets are available in the system. First, the analyst familiarizes himself with the area under
investigation and checks whether the uploaded vector data are correctly geolocated based
on the reference VHR image coverage. This is important because the data with which
the system is initialized usually has its origins from different sources with varying spatial
resolution, projection, and quality. If the precision of the initial data is not sufficient,
it can be post-processed within the system. For instance, a western offset was found in
the 1:100,000 scale road data set with respect to the georeferenced IKONOS pre-event
mosaic. The analysts digitized a set of ground control points across the ROI to assess the
overall shift and submitted these corrections to the system. This permitted the project
manager to calculate the mean shift of 82.3 m ± 0.8 m and apply a translation to the
road data set correcting for the shift. After a refresh request of the road layer, all users
have access to the corrected road set.

The primary task of the project manager, at this stage, is to divide the ROI into man-
ageable areas for eventual visual inspection and digitization. Since the damage assessment
focuses on populated areas (humanitarian situation assessment) and infrastructure (lo-
gistics, damage value estimates) the priority is focussed on locating potentially affected
settlements. The ancillary feature data on populated places was too coarse to be useful
beyond queuing. A web service processing algorithm for the calculation of a built-up
presence index [177] on the tiles of the pre-event SuperOverlay was used instead. The
algorithm is based on the fuzzy rule based composition of anisotropic textural measures
derived from the gray level co-occurrence matrix of the byte-scaled panchromatic image
channel and highlights built-up areas. The results of this image processing algorithm is
accessible as a SuperOverlay (see Figure 8.7) to the analysts, who can then outline the
populated areas to be analyzed at the damage assessment stage. Groups of outlined areas
were assigned to individual analysts to avoid duplication of digitization efforts (assign-
ment is stored as an attribute to each polygon outline). Note that at this point media
reports related to the conflict can be used to further focus on the areas most impacted
by the conflict and store these as flagging features in the project data store.

For logistical support of the reconstruction effort road networks and specifically cross-
roads and bridges, are strategically important targets, which had a higher priority during
the early assessment stage. One analyst team was tasked to digitize the road network,
completing, as much as possible, the 1:100,000 scale feature set that includes only a non-
exhaustive set of highways and primary roads. Another team digitized water ways, which
were mostly irrigation channels and dry riverbeds in the South Lebanon scene (only the
Litani river was available in the ancillary feature set). Note that automatic or semi-
automatic algorithms for feature extraction can be applied at this stage to derive relevant
layers in support of the digitization tasks.

The project manager can trigger spatial queries on the road and river network data sets
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Figure 8.7: Example of the output of the built-up presence index algorithm applied to the pre-event
IKONOS SuperOverlay. The pre-event image in the background is overlaid with the output, which
depicts in the red channel the density of the built-up structure. Non-built-up areas are made transparent
so that they do not obscure the background. Settlements are outlined as yellow polygons, using the
built-up presence index as reference. (Satellite image: Space Imaging International Ltd. distributed by
European Space Imaging GmbH, 2005.)

to locate the relevant crossings and store these as point features, as shown in Figure 8.8.
Each point feature is assessed by the analysts at the damage assessment stage. Further-
more, the point features may be used as seed points for a change detection algorithm
which automatically assesses whether the region around those points has changed.

The actual damage assessment phase started as soon as the post-event QuickBird
mosaic image was integrated as a SuperOverlay. The digitization proceeded according to
a predefined class hierarchy as discussed in Section 8.4. Figure 8.9 shows the result of the
digitization of a portion of the Bent Jbail settlement (33°7’8.40” N, 35°26’6.00” E) which
was in a heavily damaged area of the conflict zone. Digitized paved and unpaved roads are
shown with red and brown lines, respectively. Moderately damaged buildings are outlined
with light blue polygons, while completely destroyed buildings are highlighted with dark
blue polygons. Impact craters causing damage to the terrain rather than infrastructure
are indicated by yellow polygons. In the “Places” section in the left part of Figure 8.9, the
class hierarchy is shown. The class hierarchy was decided in a rather ad hoc manner, as
classification standards for damage assessment are not yet available. Future application
of our system in similar damage assessment efforts would benefit from standardization
efforts at both the data capturing and map styling stages.

Ground truth data collected during the assessment phase can be uploaded to the
system. In particular, GPS-referenced reports and field photography are very useful to
the analysts. For example, damaged buildings may be annotated with the corresponding
images taken in the field with a digital camera. The Google Earth™ client pops up
the relevant photo once the building polygon is selected, as shown in Figure 8.9. In an
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Figure 8.8: An example of automatic derived road-water crossings. The geospatial intersection function
was applied to the road (red) and river (blue) networks resulting in the highlighted crossings. (Satellite
image: Space Imaging International Ltd. distributed by European Space Imaging GmbH, 2005.)

armed conflict, ground truth collection is a hazardous task and Internet connectivity is
erratic at best. Our ground data was collected after the conflict and was uploaded in
an offline fashion. Various community sites on the Internet provided detailed geolocated
photographs that were taken during and immediately after the conflict. We were able to
correlate these photographs with visible damage in the QuickBird scenes, demonstrating
the potential of this methodology, especially in less challenging emergency scenarios. It
is also possible to deploy our system to identify objects or areas of interest for in-situ
inspections and communicate these to local field teams.

All activities related to the creation, modification, and deletion of data in the system
were timestamped and associated with a user. This allowed us to monitor the system and
retrieve information on the progress of digitization tasks. This was not only important for
the identification of bottlenecks during the digitization phase, but also for post-analysis of
the rapid mapping project to draw pertinent conclusions in order to improve collaborative
feature capturing for the next crisis response.

8.8 Test case 2: Sichuan earthquake

In this section we demonstrate the proposed system applied in a damage assessment sce-
nario with VHR SAR imagery. As practical example we illustrate the automatic detection
of destroyed buildings after the Sichuan earthquake in 2008 for the town of Yingxiu using
the method proposed in Chapter 7. The data set is described in Section 7.4 in detail. In
particular, we use the pre-QB image to extract information about the buildings from the
reference situation, while the assessment of the structural status is performed with the
post-CSK scene.

Directly after the earthquake the image archives from the satellite providers were
searched for suitable pre-event scenes. Once the pre-QB scene arrived, the project man-
ager uploaded the data as SuperOverlays to the system. First, she scaled the radiometry

143



8.8. TEST CASE 2: SICHUAN EARTHQUAKE

Figure 8.9: A screenshot of the Google Earth™ client interface showing the result of the feature capturing
for an area in Bent Jbail, South Lebanon. Paved roads are marked red, unpaved streets are shown in
brown. Moderately damaged buildings are outlined with light blue and destroyed buildings with dark
blue polygons. The yellow polygons mark impact craters in non-built-up terrain. The pop-up shows the
image of a destroyed building which is associated with the corresponding blue polygon. (Satellite image:
DigitalGlobe distributed by Eurimage S.p.A., 2006.)

of each channel to 8 bits and reprojected the image from UTM 48 N to the Plate-Carrée
reference system. Then she extracted the Red-Green-Blue (RGB) channels from the scene
and converted the 3368 x 4488 pixels image (43.3 Mb) in 38 seconds to a SuperOverlay

with 301 tiles (34 Mb). The transformation of the panchromatic channel, which has
13472 x 17952 pixels (244.0 Mb), to a SuperOverlay took 10 minutes and 43 seconds and
resulted in 4025 tiles with 245 MB total size.

When the pre-event data are uploaded to the system, the collaborative analysis effort
starts. The ROI is defined, split in subregions, and assigned to the analysts in the
team. Then, the building footprints which fulfill the model requirements of the automatic
damage assessment method (e.g. rectangular footprint, building isolation), are digitized
by the analysts. Furthermore, the shadow length of the buildings are measured. For this
both (RGB and panchromatic) pre-event SuperOverlays can be used. The multispectral
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Figure 8.10: A screenshot of the Google Earth™ client interface showing the pre-QB scene and the
outlined footprints (in blue) of the buildings which shall be analyzed according to their structural status.
(QuickBird image: DigitalGlobe distributed by Eurimage S.p.A., 2005.)

SuperOverlay allows for a better scene understanding, while the higher resolution of the
panchromatic SuperOverlay supports a more accurate measurement of the shadow length.
The result is shown as Google Earth™ screenshot in Figure 8.10, where the blue polygons
mark the footprints of the buildings which shall be investigated according to damage. The
shadow length is stored as attribute of the building footprint, as shown in the left column
of the Google Earth™ client. Not all buildings fulfill the model requirements so that only
a subset can be chosen for the automatic damage assessment procedure. To get a realistic
overview of the situation in the city after the event and to analyze whether there is a
spatial dependence between damaged and undamaged buildings, the candidate buildings
should be spread out equally over the investigated area, as it is the case in Figure 8.10.

The post-CSK scene was received in single look complex format, so that the project
manager transformed it first to 8 bit amplitude. Then she converted it to ground range
and coregistered it via manual tie point selection to the pre-QB scene. The resulting
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(a)

(b)

Figure 8.11: A screenshot of the Google Earth™ client interface showing the result of the automatic
assessment of the structural status of the buildings. Green symbols refer to undamaged buildings, while
the red symbols show damaged buildings. (a) Result overlaid to pre-QB scene. (b) Result overlaid
to post-CSK scene. (QuickBird image: DigitalGlobe distributed by Eurimage S.p.A., 2005; COSMO-
SkyMed image: ASI distributed by eGeos S.p.A., 2008.)
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image, which has 13525 x 10861 pixels image (140.3 MB) was SuperOverlaid, which took
5 minutes and 1 second, resulting in 2408 tiles (177.0 MB). Note that for the automatic
damage assessment method it would be in theory enough to upload the original data to
the image repository. But since Yingxiu is located in a mountainous area it is likely that
the two scenes are not accurately geolocated. Hence, the manual coregistration of the
two scenes ensures that the damage assessment method investigates, starting from the
building footprints which were derived from the optical pre-QB scene, the correct subset
in the post-CSK scene.

When the post-CSK scene is uploaded to the system, the damage assessment algorithm
is triggered by the project controller or expert analyst. Note that the manual interpre-
tation of the pre-QB scene does not need to be finished at this point. Since individual
buildings are selected for the automatic assessment, it is possible to execute the algorithm
only for buildings which were added to the geospatial database after the last assessment
run, without the need to reassess already processed buildings. Via the automatic refresh
mechanism of the GoogleEarth™ client, all users have access to the results of the au-
tomatic damage assessment procedure. In Figure 8.11a we show the typical output of
the method overlaid to the pre-QB scene. The green house symbols indicate that the
building was not damaged, while the red symbols show damaged buildings. Since also the
post-CSK scene was made available as SuperOverlay, the results can also be displayed
overlaid to the SAR scene, as shown in Figure 8.11b. This can be beneficial if the re-
sults shall be validated by a SAR specialist. From the visualization of the results in the
GoogleEarth™ client we see that the damaged and undamaged buildings are spread in a
relatively homogeneous way over the investigated area. Hence, there is no spatial depen-
dence between the two classes of buildings so that the earthquake affected the investigated
area in an equal manner.

It is worth pointing out that much of the time consuming manual work can be done
as soon as the pre-event image from the archive is available. Once the post-event scene is
uploaded to the system, the evaluation of the structural status is performed automatically.
The required time only depends on the available computational infrastructure. In this
context state of the art grid or general purpose GPU computing solutions can help to
handle the computational complexity [178].

8.9 Discussion and conclusion

In this chapter, three fundamental issues were addressed that, in our opinion, hinder the
wide spread take up of earth observation information in operational applications. Firstly,
we showed how very large image coverages can be made accessible to a geographically dis-
tributed audience by implementing the SuperOverlay mechanism available within Google
Earth™. Secondly, it was shown how the use of SuperOverlays can be extended to accom-
modate novel mechanisms for integrating dedicated image processing tasks. The image
processing tasks can optionally be supported by grid computing resources. Finally, we
demonstrated that access to distributed geospatial feature data in typical workflows that
require an integrated analysis of image and feature information in support to decision
making can be implemented.
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We have demonstrated the proposed system use in the context of emergency response
scenarios following the armed conflict in South Lebanon in 2006 and after the recent
Sichuan earthquake (China, May 2008). The system was also used during the Georgia
armed conflict (August 2008) in support of damage assessment. Note that for the Sichuan
earthquake, VHR satellite pre- and post-event imagery was also provided for public access,
as SuperOverlays, directly by the satellite image providers [179]. More recently, NOAA
has demonstrated a similar approach for the analysis of airborne orthophotos supporting
relief efforts after the September 2008 Hurricane Ike [180].

The system functionality is sufficiently generic to be used in other contexts. We be-
lieve it is particularly useful in applications that require near real time access to event
information for which in-situ or domain expert knowledge is essential in automated and
manual image interpretation.

Our system is composed of free software and open source components, but the system
structure is sufficiently generic to accommodate other proprietary or free software modules
that implement the same functionality. The choice of the Google Earth™ client is op-
tional and may be replaced with other client software that implements the SuperOverlay
construct. We are currently evaluating the Java release of the open source World Wind
client as an alternative. We believe that open source and public software components
better address our long term goal to distribute geospatial processing capabilities to rele-
vant end users and contributers within the emergency response domain, without the need
for significant and recurring investment. This belief is in line with the mission of the
United Nations SPIDER program whose goal is to ”ensure that all countries have access
to and develop the capacity to use all types of space-based information to support the
full disaster management cycle” [181].
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Chapter 9

Conclusions

This chapter concludes this dissertation by summarizing and discussing the results ob-
tained in the development of the different research topics. Finally, it gives an outlook for
future work.

9.1 Summary and discussion

This thesis investigated the use of remote sensing data for damage assessment in urban
areas as part of the emergency response cycle. In this context, we proposed novel (semi-)
automatic methods to extract information on the level of individual buildings from single
detected spaceborne VHR SAR (e.g. TerraSAR-X and COSMO-SkyMed) data. First, we
investigated the potential of the double bounce of a building to be exploited in automatic
damage assessment techniques by analyzing empirically the relation between the double
bounce effect and the aspect angle of a building for different ground materials. Then,
we proposed a radar imaging simulator for urban structures based on an adapted ray
tracing procedure and a Lambertian-specular mixture model. Furthermore, we developed
a method to estimate building heights from single detected VHR SAR imagery, which
can be used as indicator to analyze the structural integrity of buildings. Moreover, we
defined an approach that detects destroyed buildings after a crisis event (e.g. earthquake)
using VHR optical pre-event and VHR SAR post-event data. Finally, addressing the
practical challenges of integrating remote sensing imagery into the operational workflow of
geospatial information support for emergency response actions, we proposed an IT system
infrastructure which is based on publicly available and open source software modules.

The empirical analysis of the behavior of the double bounce stripe of a building with
respect to changes in the aspect angle of a building was conducted in two phases. First,
we analyzed a set of polarimetric images which we measured on a scaled building model
in the EMSL under controlled conditions and varying viewing configurations. These
measurements are subject to a number of simplifying assumptions. For instance, the same
factor which is used to scale the building model should be used to scale the wavelength
for the measurements. However, in our case, the resulting frequency was not supported
by the laboratory so that we selected a lower frequency. Hence, the scaled building model
measurements should be used to find general trends of an effect, rather than to investigate
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its exact behavior. In order to validate and further refine the results from the EMSL
experiment, we analyzed in the second phase a set of residential and industrial buildings
surrounded by two different ground materials in actual spaceborne VHR SAR data. The
analysis pointed out that the double bounce effect gives a strong power signature to
buildings with walls almost parallel to the SAR azimuth direction. It drops rapidly in
the low aspect angle range, while it decreases moderately for larger angles. The exact
characteristic of the decay depends on the materials and surface parameters. For smoother
surfaces (e.g. asphalt) the strength of the double bounce decreases more significantly in
a smaller range of aspect angles, while for rougher surfaces (e.g. grass) it decreases less
steep but more constant over the full range of aspect angles.

The proposed radar imaging simulator for urban structures offers two novel contri-
butions. First, it extends standard ray tracing so that the rays are reflected in vari-
ous directions. Hence, also the Lambertian scattering contributions from rough surfaces
for instance of buildings are considered in the simulation. Second, it introduces an ad-
justable mixture of Lambertian and specular scattering as radiometric model to calculate
the backscattering from the surfaces, focusing on calculating geometrical effects of the
scattering rather than absolute radiometry. We tested the proposed simulator for a rect-
angular gable roof building in submeter airborne SAR data and a complex structured
pyramid in meter resolution TerraSAR-X data. The results showed that the spatial pat-
tern of the scattering of the structures is simulated with an accuracy in the order of few
pixels. This demonstrates that the simulator is effective to calculate effects which are
related to the geometry, such as layover-, shadow-, and multibounce scattering.

The proposed method for estimating the height of a generic building from single de-
tected VHR SAR imagery is based on the simulation of the building at different heights
and the comparison of the predicted signatures with the building signature in the actual
scene. The estimated height is given by the simulation which has the highest similarity
with the signature in the actual scene. We tested the approach on a set of 40 flat and gable
roof buildings using two submeter VHR airborne and two 1 m resolution TerraSAR-X SAR
scenes. The results show that, in the absence of disturbing effects (e.g. trees or other
buildings in the immediate surrounding), the method is able to estimate the height of flat
and gable roof buildings in the submeter data to the order of 1 m, while the accuracy
for the meter resolution spaceborne data is lower but still sufficient to estimate the num-
ber of floors of a building. The approach is shown to be insensitive to the aspect angle
of a building, while it favors larger incidence angles. A generalization of the proposed
method to the application to dual aspect data sets demonstrated that with a pair which
was acquired with perpendicular flight paths some improvements in the height estimation
accuracy can be achieved, while a pair of ascending and descending scenes does not yield
any significant improvement.

The novel approach for detecting destroyed buildings (e.g. after an earthquake) using
pre-event VHR optical and post-event detected VHR SAR imagery evaluates the similarity
between the predicted building SAR signature and the corresponding subset in the actual
post-event SAR scene. If this similarity is high, the building is likely to be intact, whereas a
low similarity indicates that the building is partially or completely destroyed. A Bayesian
technique is used to classify the individual buildings. We tested the proposed method
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for a subset of the town of Yingxiu, China, which was heavily damaged in the Sichuan
earthquake in 2008, using QuickBird pre-event and TerraSAR-X and COSMO-SkyMed
post-event imagery. The results showed that the method distinguishes between damaged
and undamaged buildings with a high overall accuracy of about 90% using a supervised
classification procedure and about 80% using an unsupervised technique. It misclassifies
more undamaged buildings as damaged buildings than vice versa providing an upper
bound for building damage. This misclassification is explained by the fact that we do not
model scatter interferences from neighboring objects in the building signature prediction
step. Consequently, undamaged buildings which are affected by scattering from other
objects in its surrounding (e.g. from trees, other buildings, or cars) can be misclassified
as damaged building and hence raising the false alarm rate.

The proposed IT system infrastructure, which we designed to efficiently integrate re-
mote sensing data in the workflow of geospatial data based emergency response, enables
rapid collaborative mapping, support for in-situ data collection, customized on-demand
image processing, geospatial data queries, and near instantaneous map visualization. The
approach was demonstrated with a test case in a rapid damage assessment scenario using
VHR spaceborne optical imagery over Southern Lebanon from 2006. Furthermore, we
integrated our method for detecting destroyed buildings to highlight the suitability of the
system for VHR SAR based damage assessment, using the 2008 Sichuan earthquake as
test case. The core of the system is the implementation of the SuperOverlay mechanism
available within Google Earth™. It makes privately owned very large image coverages ac-
cessible to a geographically distributed audience. Furthermore, the use of SuperOverlays
can be extended to accommodate novel mechanisms for integrating dedicated image pro-
cessing tasks, optionally supported by grid computing. Most importantly, the system
allows the integrated analysis of distributed image and feature information to support
efficient decision making. It is worth noting that the proposed IT system infrastructure
does not rely on the Google Earth™ client. It can be replaced with other software clients
which support the SuperOverlay standard.

9.2 Concluding remarks and future work

One of our concerns regarding the usage of VHR SAR imagery was to analyze the effects
of the aspect angle on the SAR signature of the building. Indeed, the proposed methods
for building height estimation and damage assessment were designed to handle buildings
at various viewing configurations, i.e. different aspect and incidence angles. However,
the main limitation of the proposed methods is the assumption of building isolation. In
particular, the scattering effects from objects (e.g. trees and other buildings) in the close
surrounding of a building are not modeled. In fact, we analyzed the impact of a violation
of this assumption and demonstrated empirically that the proposed methods can handle
some deviations from this assumption, but tend to fail if significant objects are located in
the surrounding of the building under investigation. In order to use VHR SAR to analyze
dense urban areas (e.g. inner parts of cities), future work should focus on the analysis
and the modeling of the effects of neighboring objects on the SAR signature of buildings
leading to the definition of more generic building detection and reconstruction methods.
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In the proposed damage assessment method the decision whether a building is damaged
or undamaged is made either in a supervised or unsupervised way. Indeed, considering
the supervised classification, it is not always necessary to train manually the classifier
on a training set. For spaceborne VHR SAR, the classifiers reported in this thesis give
reliable classification results as we tested them on both, meter resolution TerraSAR-X
and COSMO-SkyMed data. In order to increase the practical relevance of the presented
approach especially with regard to the availability of submeter data, we tested the use
of an unsupervised classifier based on the Gaussian assumption. In order to improve the
classification accuracy, future work should focus on using a more general distribution, e.g.
the generalized Gaussian distribution, which parameters can also be derived using an EM
algorithm as proposed in [182].

The proposed damage assessment method operates sequentially in such that it extracts
first information from the VHR multispectral pre-event data before they are used after a
conversion procedure in the VHR SAR post-event scene. Hence, also the use of advanced
data fusion techniques, which consider simultaneously the VHR multispectral and SAR
images, should be investigated.

With the completion of the COSMO-SkyMed constellation and the longer availability
of VHR SAR sensors, the archives of spaceborne VHR SAR pre-event data will become
richer. Hence, future work should focus on the integration of VHR SAR as pre-event data
source in the proposed damage assessment method. In this context, the advantage of the
rendering and matching analysis is the independence between the pre- and post-event data,
i.e. orbit and incidence angle can change between the two acquisitions, which is especially
beneficial if the available data set is composed by acquisitions from different sensors. If
the pre- and post-event SAR data are acquired from the same viewing configuration, the
use and effectiveness of interferometric methods for the VHR X-band data should be
investigated.

The launch of the TanDEM-X sensor is scheduled for late 2009 - early 2010. It will orbit
as constellation with TerraSAR-X and permit to acquire single pass InSAR data. Hence
it offsets the need to revisit the same location after several days in order to complete the
InSAR acquisition, making it a candidate as source for post-event SAR imagery. Here,
future work should focus on integrating the proposed building height extraction method
into a damage assessment procedure. In particular, building reference heights derived
from single pre-event SAR scenes can be compared to the heights resulting from the post-
event InSAR DSM in order to estimate the structural status of buildings. Again, the
major advantage is the independence of the viewing configuration between the pre- and
post-event SAR data.
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