
DISI - Via Sommarive, 5 - 38123 POVO, Trento - Italy
http://disi.unitn.it

CLASSIFICATION OF SIP
MESSAGES BY A SYNTAX FILTER
AND SVMs

Raihana Ferdous, Renato Lo Cigno, Alessandro
Zorat

July 2012

Technical Report # DISI-12-027

A short version of this Technical Report appears in the proceed-
ings of the IEEE Global Communications Conference (GLOBE-
COM 2012), California, USA, December 3-7, 2012.

Classification of SIP Messages by
a Syntax Filter and SVMs*

(Extended Version)
Raihana Ferdous, Renato Lo Cigno, Alessandro Zorat

Department of Information Engineering and Computer Science – DISI
University of Trento – Italy

Email: {ferdous, locigno, zorat}@disi.unitn.it

Abstract—The Session Initiation Protocol (SIP) is at the root
of many sessions-based applications such as VoIP and media
streaming that are used by a growing number of users and
organizations. The increase of the availability and use of such
applications calls for careful attention to the possibility of trans-
ferring malformed, incorrect, or malicious SIP messages as they
can cause problems ranging from relatively innocuous distur-
bances to full blown attacks and frauds. To this end, SIP messages
are analyzed to be classified as “good” or “bad” depending on
whether this structure and content are deemed acceptable or not.
This paper presents a classifier of SIP messages based on a two
stage filter. The first stage uses a straightforward lexical analyzer
to detect and remove all messages that are lexically incorrect with
reference to the grammar that is defined by the protocol standard.
The second stage uses a machine learning approach based on
a Support Vector Machine (SVM) to analyze the structure of
the remaining syntactically correct messages in order to detect
semantic anomalies which are deemed a strong indication of a
possibly malicious message. The SVM “learns” the structure of
the “good” and “bad” SIP messages through an initial training
phase and the SVM thus configured correctly classifies messages
produced by a synthetic generator and also “real” SIP messages
that have been collected from the communication network at our
institution. The preliminary results of such classification look very
promising and are presented in the final section of this paper.

I. INTRODUCTION

Thanks to its flexibility and descriptive power, the Session
Initiation Protocol (SIP) is becoming the support not only
for Voice over IP (VoIP) and Internet telephony, but also for
many other so called session-based applications, such as most
multimedia streaming, chats, and many others integrating web-
services with telephone and voice. While VoIP and Internet
telephony remain the core SIP applications, all of these
mentioned above have added value and thus have enjoyed
rapid acceptance and use, which - in turn - has attracted
the attention of the protocol’s resilience and security in the
presence of incorrect or malformed messages. This is of
particular importance for the session-based applications since
they appear to be much more sensitive than web services or
e-mails to intrusion and mis-functions.

SIP analysis and anomaly detection has thus become an
active area of research, as discussed below in the Related
Work part (I-A). SIP is a plain, text-based protocol defined by

*A short version of this Technical Report appears in [1]

an extensible formal grammar (see RFC 3261 [2] and related
documents, i.e., all the RFCs that are cited by and cite it) for
the definition and scope of SIP). While SIP might be plain, it
is not a simple protocol. Its extensibility, the fact that it must
maintain an often complex status of the session, the structure
of proxy agents and servers that define the global organization
of services like telephony, conferencing, and so forth, make
it very sensitive not only to malicious attacks, but also to
errors, malformed messages, and incorrect interpretation of the
standard. All these factors give raise to an enormous number of
possible states which makes conformance testing not feasible
(as for most Internet protocols).

The first step in any analysis and anomaly detection process
is the control of single messages: are they “good” or “bad”?
and most of all . . . how do we define a “good” message? Fig. 1
shows a simple classification tree that introduces the termi-
nology used in this paper. A good message is simply a valid
SIP message that can be correctly interpreted by its recipient.
This means the message is syntactically correct, semantically
meaningful, and comes at the right time to trigger a correct
and useful application decision. From a theoretical point of
view, bad messages could be identified as the complement
of the set of good messages, but this will not help much
in the classification process, especially when considering that
in realistic cases one needs a fast classification that can be
performed in real time over a stream of SIP messages.

In this paper, the set of bad messages comprises malformed,
crooked, and malicious messages. Malformed messages are
those that simply are syntactically wrong. Crooked messages
are those that, while syntactically correct, have no meaning,
cannot be interpreted, are ambiguous, or lead to a deadlock,
etc. Finally, malicious messages, are those that are correct
and meaningful, but will harm the system: normally these
are forged on purpose, but they can also be the outcome of
malfunctioning devices, badly implemented instances of the
protocol or, more likely, of its extensions.

Anomaly detection of a stateful protocol would also require
to correlate different messages, e.g., to identify unsolicited
calls in telephony, or to identify messages attempting to
impersonate another user during a call. However, the first
step in traffic analysis is always a message filtering subsystem
able to separate bad from good messages. The contribution

Fig. 1. Simple binary classification of SIP messages highlighting the
terminology used in the paper.

of this paper is in this direction and to this end a two
stage filtering methodology is proposed. The first stage is a
lexical analyzer derived directly from the SIP formal grammar
specification, while the second stage is based on machine
learning techniques, specifically on Support Vector Machines
(SVM) [3].

The first stage identifies all mistakes and malformations
that violate the grammar; this is a deterministic and efficient
process that is quite straightforward. For the second stage, an
SVM has been previously “trained” to classify SIP messages
by statistically learning from examples of good an bad mes-
sages. Once configured, the SVM can operate at run time by
examining the SIP messages that have passed the first stage
to identify the majority of crooked and malicious messages.

In addition to the initial description of this simple two-stage
architecture, the paper provides insights on the identification
and selection of the kernels of the SVM for its efficient
implementation, as well as on the its training to achieve a
high accuracy in the classification process.

After the initial presentation of related work, the paper is
organized as follows. Sect. II discusses the proposed filtering
methodology, explaining the reasons of our choices; Sect. III
presents the performance of the system and Sect. IV ends the
paper.

A. Related Work

Works on traffic analysis and intrusion detection in general
are too numerous for a comprehensive presentation here, so
this section focuses on papers that consider those issues in the
context of SIP, highlighting the different approaches adopted
by various researchers.

Niccolini et al. in [4] extended the basic functionalities of
the very popular “signature-based” network intrusion detection
system Snort1 to SIP protocol, showing that it can perform
well also for this protocol.

Similarly, Geneiatakis et al. [5] and Li et al. [6] defined
a specific “signature” considering the syntax of well-formed
SIP message defined in the IETF standard of SIP protocol

1Snort home page, http://www.snort.org/

RFC 3261 [2]. Any message that does not comply with that
“signature” is considered as malformed and discarded. Seo
et al. [7] proposed an intrusion detection system for SIP-
based VoIP system utilizing rule matching algorithm and state
transition models. Authors of [5] and [7] point out that the rules
of SIP messages defined in RFC 3261 [2] cannot cover all
kinds of malformed SIP messages (for example, RFC 3261 [2]
does not define any range for scalar fields) and hence [7] has
proposed an extension to RFC 3261 by introducing additional
rules to make it (more) secure. Generally, such signature-
based intrusion/anomaly detection systems work well when
no entirely new, uncataloged attacks occur and the “attack
signatures” database is not huge. However, handling of intru-
sion/anomalous detection problem in the context of SIP with
a table-drive approach (rule/signature database) is destined
to run up against the combinatorial explosion, as there are
endless ways of forming a malformed or malicious message.
Again, there are multiple ways of structuring a correct SIP
message. Sengar et al. [8] proposed an intrusion detection
system for SIP protocol using a finite state machine, which
try to identify violations of the protocol behavior. Menna et
al. in [9] concentrate specifically on unsolicited calls trying to
isolate users that fall outside expected behaviors.

Other researchers have proposed machine learning tech-
niques for SIP messages analysis, like in [10], [11], [12],
[13] where the anomalous content is identified by parsing
SIP messages. A self-learning anomaly detection system is
proposed by Rieck et al. [10] which emphasizes the detec-
tion of unknown and novel attacks. In a manner similar to
our own proposal, incoming SIP messages are mapped into
feature spaces and the anomaly detection model is trained
using normal/well-formed SIP traffic. Anomalous messages
are identified as those whose Euclidean distance from those in
the model of normality is higher than a given threshold. [12],
however, reports that classifiers based on Euclidean distance
computation do not produce adequate results for well-crafted
malicious messages that differ very slightly from normal
messages and hence its authors suggest a classifier based on
Levenshtein distance [14] to measure the similarity between
good and bad SIP messages.

II. FILTERING METHODOLOGY

As mentioned in the introduction, “bad” SIP messages are
all those messages that do not belong to a valid, correct
and legitimate SIP session. They can be generated when SIP
protocol implementations or applications do not fully comply
with the standards or they contain errors in the implementation
code. In addition, attackers can manipulate SIP messages to
take advantage of existing security problems in the target
system, or to exploit SIP weak points.

In this paper we have considered various kinds of bad
messages, as shown in Fig. 1, comprising malformed, crooked,
and malicious messages. While malformed messages can be
detected by a straightforward check on their syntax, crooked
and malicious messages need different techniques to be prop-
erly classified.

Fig. 2. Architecture of LEX SIP.

Based on the considerations above, we have developed a 2-
stage SIP message filter called LEX SIP to detect anomalous
messages within a stream of SIP messages. The main goal
here was to obtain an efficient classifier that could operate in
real time, without disrupting underlying services such as VoIP.
LEX SIP can be run on the same machine of the agent, or, if
performance requires it, as a kind of firewall in front of it.

Fig. 2 shows the architecture of LEX SIP where the first
block is the lexical/syntactic2 analyzer and the second block
is the structure and content analyzer.

The work-flow of the two filtering stages are described in
following sub-sections.

A. First Stage: Lexical Analyzer

The first stage filtering is performed by the lexical analyzer
which investigates each SIP message, extracts from it a se-
quence of tokens/words that are then parsed to determine if
they are part of the language generated by the formal grammar
which specifies the SIP protocol [2]. The formal syntax of
SIP protocol is defined by a context-free grammar specified
in Augmented Backus-Naur Form (ABNF)3, a metalanguage
based on Backus-Naur Form (BNF) which is one of the
main notation techniques for context-free grammars. Given the
formal grammar definition of the SIP protocol (and thus, the
syntax of all SIP messages), the implementation of the lexical
analyzer is a well defined task that can be realized by using
any of the standard tools, for example lex available under Unix,
used to parse a language. Unlike in parsing of programming
languages, here the processing can be stopped immediately
upon detection of the first syntax error rather than continue
parsing to the end of that message since there is no need to
extract a list of errors present in the whole message.

Before passing them to the next level filtering, the lexical
analyzer further processes the syntactically well-formed mes-
sages. This process can be thought of as a specialized kind of
tokenization, where the token are significant features extracted
from the SIP messages which are now represented as vectors
in features space.

B. Second Stage: Structure and Content Analyzer

SIP messages that have passed the lexical analyzer filter may
still be “bad”. For example, Fig. 3 shows a SIP message with

2We use the terms lexical and syntactical as synonyms in this paper although
in other contexts they may acquire slightly different meanings.

3David H. Crocker and Paul Overell. Augmented BNF for Syntax Specifi-
cations: ABNF. Internet RFC 5234, January 2008.

an unknown request method, and an unknown URI scheme
in the Request-URI. The message is syntactically valid but a
server receiving this message will fail to process this type
of message and may be perform time-consuming analyses
to determine the request message type and the information
necessary to route this kind of request.

Fig. 3. Syntactically well-formed malicious SIP message.

To cull out these bad messages from those syntactically
well-formed SIP messages that have been accepted by the
lexical analyzer, the second stage filter analyzes the structure
and the contents of the messages to flag those that are either
crooked or malicious. Any hope of tackling this problem
with an algorithmic or table-drive approach is destined to
run up against the combinatorial explosion of the cases that
need to be considered, as there are endless ways of forming
a crooked or malicious message. ([2] there are 14 request
message types, 6 response message kinds, there are neither
maximum lengths of the headers, nor upper limits for some
values, some fields are mandatory while other are optional and
—finally— there are multiple ways of structuring a correct
SIP message. This results in the practical impossibility of
systematically examining all possible cases of corruption —
casual or voluntary— of a message).

An attractive alternative is that of correctly classifying
those messages that have a structure and content that appear
frequently in a stream of messages. This can be done by
applying one of the “supervised machine learning” techniques
that recently have found many useful applications in numerous
problem areas. The basic idea is to provide a sufficiently rich
set of examples with their correct classification and “train”
a machine automaton to carry out such classification, even
on messages that were never seen before. An added bonus
of this approach is in its flexibility to fit new kinds of bad
messages that might become common at a later time, perhaps
as a new breed of malicious messages is introduced when
some weakness of the protocol is uncovered. The adaptation
to the changed operating scenario can be obtained simply by
retraining the machine automaton while including the new
messages, duly identified as bad.

Various approaches to supervised machine learning have
been proposed. Recently the so called Artificial Neural Net-
works (ANN) and the Support Vector Machines (SVM) have

received much attention since they have performed quite well
in a variety of problem contexts. For our second stage filter
of LEX SIP we have selected to use an SVM for the reasons
that will be discussed below.

Support Vector Machines have been introduced by Vapnik
in [15] and have been successfully applied to many fields such
as Bio-informatics, Natural Language Processing, Handwritten
Character Recognition and many others. Unlike Artificial Neu-
ral Networks, SVMs do not have the problem of getting stuck
in a local minimum while searching for an optimal configu-
ration of its operating parameters (see for example [16], [3],
[17]). In addition, SVMs are scalable since the computational
complexity does not depend on the dimensionality of the input
space. Finally, SVMs optimization by training (or re-training)
is quite fast problem which can represent an important point if
online-intrusion (re)configuration is of paramount importance.

The basic idea of SVM classification is to interpret the
d-dimensional feature vectors derived from SIP messages
as points in an d-dimensional space. Some of these points
correspond to “good” messages (label them as −1) and the
others correspond to “bad” messages (label them as +1).
The classification problem can then be seen as finding an
hyperplane that separates the space in two sub-spaces: one
containing all the −1 points, the other all the +1 points. If the
set of points is linearly separable into two classes, there are in-
finite planes that will work. Notice, however, that there is only
one “best” hyperplane that maximizes the distance between it
and the nearest data points of each class. Unfortunately, it is
often the case that no such hyperplane exists (the set of points
is not linearly separable) and hence some points would be
misclassified, as they would lay on the “wrong” side of the best
hyperplane. However, while not linearly separable, the points
could be separable if some other, more complex, surface were
used instead of the (simple) hyperplane. Informally, the SVM
computation does this by projecting all points into a higher-
dimensional space and in that space the complex separating
surface becomes a hyperplane, thus linearly separating the set
of projected points.

More precisely, given a set of n SIP messages, let ~xi be the
i-th message which is transferred into a d dimensional feature
vector and let yi ∈ {−1,+1} be and indicator function where
−1 indicates that the i-th message belongs to the class of good
message class while +1 indicates that the i-th message is in the
bad message class. The equation of the hyperplane separating
the training set

{
(xi, yi) |xi ∈ <d, yi ∈ {−1, 1}

}i=1

n
can be

defined as:

~w · ~x+ b = 0 (1)

where ~w is the vector normal to the hyperplane and b
‖~w‖ is

the perpendicular distance from the hyperplane to the origin.

For the linearly separable data, SVM finds the optimum
separating hyperplane with the largest margin (Fig. 4) by solv-
ing the Quadratic Programming (QP) optimization problem

Fig. 4. Linear Support Vector Machine: optimum separation hyperplane.

described by eq. (2).

min

{
‖~w‖2
2

}
, subject to yi (~w · ~xi + b) ≥ 1 , ∀i (2)

If the set of points is not linearly separable, then instead
of trying to fit a non-linear model, the set of points can
be mapped to a higher-dimensional space by a non-linear
mapping function φ, ~x → φ(~x) so that the points become
linearly separable in this higher dimensional space.

The classification function in dual space becomes:

h (x) = sgn (φ (~w) · φ (~x) + b) (3)

= sgn

(
i=1∑

n

αiyiφ (~xi) · φ (~x) + b

)
(4)

In the quadratic optimization problem for non-linearly sep-
arable data SVM, the training vectors appear only in the form
of dot products, (φ (~xi) , φ (~xj)) which imply that computa-
tionally expensive dot product calculation would have to be
needed. However, by using the so called “kernel functions”
one can apply a “kernel trick” that avoids the expensive dot
products. Kernel functions that have been favored in the recent
literature include:
• Linear kernels: k (~xi, ~x) = ~xi · ~x;
• Polynomial kernels of degree d: k (~xi, ~x) = (~xi · ~x)d;
• Radial Basis Functions (RBF) kernels:
k (~xi, ~x) = exp

(
−||~xi − ~x||2/2σ2

)
.

Thus, the classification function of eq. (3) becomes:

h (x) = sgn

(
i=1∑

n

αiyik (~xi · ~x) + b

)
(5)

Fig. 5 represents the polynomial projection of non-linear
data into high-dimentional feature space where they are lin-
early separable.

For our classifier of well-formed SIP messages we have
used LibSVM [18], a freely available library for Support
Vector Machines. First, the SVM was trained with a set of
500 pre-classified examples of 40 features (details information
about these features are described in Appendix) derived from a

Fig. 5. Non-linear SVM: polynomial mapping

balanced mix of good and bad messages. This training phase
determines a configuration of the SVM that will result in a
good classification of subsequent messages contained in a test
set. The test set contains unlabeled SIP message vectors that
are passed from lexical analyzer. Our experimental results
shows that SIP message vectors are not linearly separable,
so we need to choose a kernel and relevant parameters in
the hope that in higher dimension the data would become
linearly separable. To this end, experiments were carried out
with various kernels and parameters. It was very obvious that
the linear kernel did not yield any interesting result and hence
the experimentations focused on polynomial kernels of degree
2, 3, and 4 and on RBF kernels. The latter are reported in
the literature as leading to good results and so are deemed
preferable despite their higher computational cost. However, in
the support documents available with LibSVM it is mentioned
that in the case of data with a large number of features
(as in our case), sometime a low degree polynomial kernel
is preferable. Our experiments confirmed the validity of this
suggestion —at least for our specific application. The detailed
performance results of the various experiments are reported in
the next section.

III. RESULTS AND PERFORMANCE

The goal of LEX SIP is to maximize detection accuracy of
SIP malformed message, while reducing message processing
time since the latter plays a vital role in applicability of an
intrusion detection system in a real-time environment like
VoIP.

A. Synthetic Traffic Generation

Performance evaluation of any classifier can be established
by analyzing the results over a statistically relevant collection
of data. For LEX SIP this means that a large number of SIP
traces would be needed. However, reliable real world VoIP
traces are hard to get because of the user privacy agreement
of VoIP providers. Furthermore, VoIP traces of malicious
messages during an attack are quite infrequent. Considering
this situation, we have developed “SIP-Msg-Gen”4, a synthetic
SIP message generator, capable of generating both “good” or
“bad” SIP messages. “SIP-Msg-Gen” is available under GPL

4http://disi.unitn.it/∼ferdous/SIP-Msg-Gen.html

TABLE I
DESCRIPTION OF DATASET CONTAINING SIP MESSAGES.

Scenario Number of Msg
“Good” Messages 984,000
Syntax Error in “First-Line” of a message 94,815
Syntax Error in header fields of a message 181,944
Null entry for mandatory header fields 94,723
Multiple “First-Line” in a message 47,672
Unknown/Invalid Protocol version 23,836
Missing mandatory header fields a message 95,245
Duplicate entry for unique header fields 95,560
Presence of garbage string after message body 47,554
Hierarchical disorder of message structure 23,935
Overlarge value of scalar field 46,789
Missing/multiple empty line in a message 11,918
Msg Length larger than “Content-Length” value 47,553
Unknown scheme for “Content-Type”, “Authen-
tication” and “Accept” header

59,788

Unknown Method Name 23,935
Unknown scheme for “Request-URI” 46,788
Unknown scheme for message body 36,073
Unknown Response status 36,072

license terms. “Good” messages are generated by following
the basic parsing constructs of SIP protocols defined in RFC
3261 [2], while generation of “bad” messages is influenced
by SIP torture test messages defined in RFC 4475 [19] and
PROTOS test suite5. Torture test messages contain all kinds of
variations on the basic structure of a “normal” message, as, for
example, numerous line foldings and white spaces all over the
message, escaped characters within quotes, a mix of short and
long form for the same header, unknown header fields, unusual
header ordering, unknown parameters of a known header, etc.

B. Performance Evaluation

The performance of LEX SIP is measured through effi-
ciency which is defined by the message classification capa-
bility, and effectiveness which is the time/effort needed for
classification.

The experimental dataset consists of two million SIP mes-
sages generated by “SIP-Msg-Gen” where 984,000 are “good”
messages and 1,016,000 are “bad” messages. Included in the
“good” messages there are 123,000 valid “torture” messages
to measure the efficiency of lexical analyzer. Among the “bad”
messages, 371,482 messages contain syntax error and 644,518
messages are syntactically well-formed but are not meaningful,
those that we called “crooked” messages. A detailed descrip-
tion of the composition of the data set is found in Table I.

The lexical analyzer of LEX SIP analyzed all messages in
the data set and has successfully identified all the 371,482
malformed messages. The remaining 1,628,518 syntactically
correct messages were processed to extract from them 40
significant features which were passed on to the second level
filter to be classified by the SVM-based structure and content
analyzer.

In our work we have used C-SVC, which is a modified
maximum margin idea of SVM proposed by Cortes and

5PROTOS Project page, https://www.ee.oulu.fi/research/ouspg/PROTOS Test-
Suite c07-sip

Vapnik [20] that allows the decision margin to separate the
data set with a minimal number of errors (outliers or noisy
examples that are inside or on the wrong side of the margin).
This method introduces slack variables ξi which measure the
degree of misclassification of the data xi. The corresponding
formulation of the SVM optimization problem with slack
variables becomes:

min

{
‖~w‖2
2

+ C
∑

ξi

}
(6)

subject to yi (~w · ~xi + b) ≥ 1− ξi , ∀i (7)

By definition, ξ > 0; 0 < ξ ≤ 1 indicates a data point that
lies somewhere between the margin and the correct side of
hyperplane, while ξ > 1 denotes a misclassified data point.
Here C is a regularization parameter defined as “soft margin
constant” that controls the trade-off between maximizing the
margin and minimizing the training error and is usually
thought of as a way to control overfitting.

Although SVM is a widely used classifier, effective use of
SVM requires an understanding of its parameters and their
influence over classification accuracy. In particular, the selec-
tion of kernel function and tuning of the kernel parameters
(e.g., degree of polynomial kernel, σ for RBF kernel) and
soft margin constant C, are very important decisions for
classification with SVM. Unfortunately, there is no specific
algorithm to select a kernel function, since, much like in other
machine learning techniques, this is also data dependent. The
user guide of LibSVM [21] suggests to use cross-validation to
obtain an estimate the performance of a predictive model with
various parameters and then select a specific set of parameters
based on these estimates. In search of suitable parameter
setting, we have performed a k-fold cross-validation where
the idea is to divide the training set into k subsets of equal
size (we have used k=5). Each subset is then tested (validated)
using the classifier trained on the remaining k−1 subsets using
a specific set of parameters. The k results are then combined
(e.g. averaged) to obtain a single index. The entire process is
repeated for each set of parameters and the set of parameters
with the best cross-validation index is finally selected. We
have performed this test for three kernel functions (e.g., linear,
radial basis function, and polynomial) and various values of
the relevant parameters, as shown in Table:II.

For our analysis we have started with a simple linear kernel,
since, having only the soft-margin constant C, it is easier to
tune. The linear kernel with the best value of C provided us
with a baseline against which we could assess the performance
of the other kernels and parameters.

Although in general RBF is often recommended despite its
higher computational cost, for this particular dataset the RBF
kernel was not the most suitable. Table II shows that the cross-
validation accuracy using RBF kernel (with 0 < σ ≤ 1) is
very low for small value of C (soft margin constant), though
the accuracy increases as the value of C increases. In general,
small values of C tend to emphasize the margin while ignoring
the outliers in the training data. Conversely, large values of C

TABLE II
ACCURACY OF DIFFERENT KERNEL FUNCTIONS ON DATASET OF SIP

MESSAGES.

Soft Margin
Constant,C

Kernel Function Accuracy

Polynomial (degree 2) 99.62%
Polynomial (degree 3) 99.56%

2−1 Polynomial (degree 4) 99.27%
Radial basis function (σ=0.4) 46.40%
Linear 47.64%
Polynomial (degree 2) 99.62%
Polynomial (degree 3) 99.56%

20 Polynomial (degree 4) 99.27%
Radial basis function (σ=0.4) 52.74%
Linear 47.64%
Polynomial (degree 2) 99.62%
Polynomial (degree 3) 99.56%

22 Polynomial (degree 4) 99.27%
Radial basis function (σ=0.4) 88.21%
Linear kernel 47.64%
Polynomial (degree 2) 99.62%
Polynomial (degree 3) 99.56%

23 Polynomial (degree 4) 99.27%
Radial basis function (σ=0.4) 91.03%
Linear kernel 47.64%

TABLE III
RESULT OF SVM CLASSIFIER FOR 1628518 SYNTACTICALLY

WELL-FORMED MESSAGES.

True positive A “bad” messages is correctly
identifies as “bad”

643,008

False positive A “good” message is incorrectly
identified as “bad”

119

True negative A “good” message is correctly
identified as “good”

983,881

False negative A “bad” message is incorrectly
identified as “good”

1,510

increase the possibility to overfit the training data. Hence, a
small value of soft margin constant C is usually preferable.

Finally, we turned our attention to polynomial kernels of de-
gree d. To estimate the suitable degree d of polynomial kernel
(k (~xi, ~x) = (~xi · ~x)d), we performed a “grid-search” on two
parameters (soft margin constant C, and polynomial degree
d) using cross-validation. The performance for various pairs
of (C, d) values (C = 2−1, 20, 22, 23... and d = 2, 3, 4,)
were evaluated through cross-validation. The best combination
was obtained for the pair, indicating that a second degree
polynomial flexible enough to discriminate between the two
classes with a reasonably small soft margin.

Results produced by SVM classifier are found in table III
We have represented the efficiency of classifier in table IV

through a few metrics which are widely used in the area of
Pattern Recognition and Information Retrieval to measure the
performance of classification.

The average time for LEX SIP to classify a SIP message is
0.45 millisec/msg. This time is the aggregation of processing
time of individual filtering stage. It is found that about 0.35
millisec/msg time is requred for lexical analyzer to perform
syntax checking of a SIP message and the remaining time is
required for classification with SVM. All experiments are done
in a machine of Intel Core i7 CPU, 2.0 GHz Quad-core and

TABLE IV
EXPERIMENTAL RESULTS:EFFICIENCY OF CLASSIFIER

Metrics Metric Description Percentage
Recall/
Sensitivity

Fraction of malformed messages
that are identified

99.76%

Accuracy Proportion of true results (both true
positives and true negatives)

99.89%

TABLE V
RESULT OF LEX SIP FOR REAL SIP TRACES.

Description Number of Messages
Total Message 13,836
True positive 10
False positive 2
True negative 13824
False negative 0
Metric Percentage
Recall/ Sensitivity 100%
Accuracy 99.9%

8 GB RAM memory.

C. Preliminary Test with Real Traffic

The final goal of a classifier is working with real traffic —
possibly on-line. To this end, we established an agreement with
our institution that allowed us to start collecting SIP traces by
mirroring the port in front of the SIP Proxy server. Due to
privacy issues, so far we could only collect very few messages
(less than 20,000), but anonymized data collection is on its way
for future use. The lexical analyzer successfully passed all the
messages as syntactically well-formed messages towards the
classifier for next level filtering. Performance of LEX SIP on
real SIP traces is summarized in Table V.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, a two-stage filtering approach is proposed for
SIP anomalous message detection. The first stage is a straight-
forward lexical analyzer, whose goal, besides controlling the
validity of the message syntax, is the extraction of relevant
features to be used by the second stage, a supervised classifier.

As a supervised classifier, we have selected an SVM. The
advantages of SVM is that very few parameters are required
for tuning the learning machine and a small sample set can
build the model to classify huge unlabeled dataset. But the ef-
ficiency of SVM depends on selection of kernel functions and
its parameters. Though [21] suggests to use cross-validation
procedure for model selection as it prevents the overfitting
problem, for large training set it becomes time-consuming
to use cross-validation. Similarly, due the exhaustive nature
of search, selection of kernel parameters becomes tedious
and cumbersome using “grid-search” techniques, specially
for large dataset. Moreover, the use of cross-validation and
exhaustive techniques does not fit well with the goal of on-
line use of the classifier.

Instead of performing a complete “grid-search”, we have
reduced the searching space by identifying a set of possible
value for parameter pair (C, d) (soft margin constant and de-
gree of polynomial), then the parameter pair with best accuracy

is selected. In this case, the “grid-search” can be accelerated
by parallel search as each pair (C, d) is independent.

The selection of features to use for the classification,is
fundamental for efficient and precise classification. The results
obtained both with artificial traces, and with an initial set of
real-traffic traces collected in the production network of our
University, are very promising, leading to extremely accurate
classification.

Future work includes extended analysis of real traces, as
well as deeper insight on feature extraction. Moreover, the
possibility of defining a methodology for on-line continuous
training of the SVM will be explored in the attempt of
realizing an autonomic, self-training system for SIP message
classification.

REFERENCES

[1] R. Ferdous, R. Lo Cigno, and A. Zorat, “Classification of sip messages
by a syntax filter and svms,” in (To Appear) Global Telecommunications
Conference, 2012, 2012.

[2] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “Sip: Session initiation proto-
col,” RFC 3261, jun 2002.

[3] C. J. Burges, “A tutorial on support vector machines for pattern recog-
nition,” Data Mining and Knowledge Discovery, vol. 2, pp. 121–167,
1998.

[4] S. Niccolini, R. Garroppo, S. Giordano, G. Risi, and S. Ventura, “Sip
intrusion detection and prevention: recommendations and prototype
implementation,” in 1st IEEE Workshop on VoIP Management and
Security, april 2006, pp. 47 – 52.

[5] D. Geneiatakis, G. Kambourakis, C. Lambrinoudakis, T. Dagiuklas,
and S. Gritzalis, “A framework for protecting a sip-based infrastructure
against malformed message attacks,” Comput. Netw., vol. 51, no. 10, pp.
2580–2593, jul 2007.

[6] H. Li, H. Lin, X. Yang, and F. Liu, “A rules-based intrusion detection and
prevention framework against sip malformed messages attacks,” in 3rd
IEEE International Conference on Broadband Network and Multimedia
Technology (IC-BNMT), oct. 2010, pp. 700 –705.

[7] D. Seo, H. Lee, and E. Nuwere, “Detecting more sip attacks on voip
services by combining rule matching and state transition models,” in
Proceedings of The International Federation for Information Processing
(IFIP), vol. 278. Springer Boston, 2008, pp. 397–411.

[8] H. Sengar, D. Wijesekera, H. Wang, and S. Jajodia, “Voip intrusion
detection through interacting protocol state machines,” in International
Conference on Dependable Systems and Networks, (DSN 2006), june
2006, pp. 393 –402.

[9] F. Menna, R. Lo Cigno, S. Niccolini, and S. Tartarelli, “Simulation
of spit filtering: Quantitative evaluation of parameter tuning,” in IEEE
International Conference on Communications (ICC ’09), June 2009.

[10] K. Rieck, S. Wahl, P. Laskov, P. Domschitz, and K.-R. Müller, “A self-
learning system for detection of anomalous sip messages,” in Principles,
Systems and Applications of IP Telecommunications. Services and Secu-
rity for Next Generation Networks. Springer Berlin / Heidelberg, 2008,
vol. 5310, pp. 90–106.

[11] M. Rafique, Z. Khan, M. Khan, and K. Alghatbar, “Securing ip-
multimedia subsystem (ims) against anomalous message exploits by
using machine learning algorithms,” in Eighth International Conference
on Information Technology: New Generations (ITNG), april 2011, pp.
559 –563.

[12] N. Hentehzadeh, A. Mehta, V. Gurbani, L. Gupta, T. K. Ho, and
G. Wilathgamuwa, “Statistical analysis of self-similar session initiation
protocol (sip) messages for anomaly detection,” in 4th IFIP International
Conference on New Technologies, Mobility and Security (NTMS), feb.
2011, pp. 1 –5.

[13] M. Nassar, R. State, and O. Festor, “Monitoring sip traffic using support
vector machines,” in Recent Advances in Intrusion Detection (RAID ’08).
Springer Berlin / Heidelberg, 2008, vol. 5230, pp. 311–330.

[14] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press, 1997.

[15] V. N. Vapnik, The nature of statistical learning theory. NY, USA:
Springer-Verlag New York, Inc., 1995.

[16] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of
supervised learning algorithms,” in Proceedings of the 23rd international
conference on Machine learning (ICML ’06), New York, USA, 2006,
pp. 161–168.

[17] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis.
Cambridge, UK: Cambridge University Press, 2004.

[18] C. Chang and C. Lin, “Libsvm: A library for support vector
machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, pp. 1–27, 2011, software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[19] R. Sparks, A. Hawrylyshen, A. Johnston, J. Rosenberg, and
H. Schulzrinne, “Session initiation protocol (sip) torture test messages,”
RFC 4475, May 2006.

[20] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, pp. 273–297, 1995.

[21] C. Hsu, C. Chang, and C. Lin, “A practical guide to support vector
classification,” Department of Computer Science, National Taiwan Uni-
versity, Tech. Rep., 2003.

APPENDIX A : List of Features

Table 1: List of Features for classification of SIP messages using SVMs

ID Feature Description Value Range
1 Message Type This feature indicates the type (Re-

quest/Response) of a SIP message
0= Unknown Method, 1-14 =Request
Method, 15=Response Message

2 Request Line Status This feature indicates the status and
frequency (absence/multiple) of Request-
Line in a Request Message.It is required
to identify error in Request-Line

-1= In wrong position, 0 = No Request-
Line, 1 = In perfect postion , >1 = Multi-
ple Request-Line

3 Protocol Version This feature contains information about
SIP protocol version. It is required to de-
tect error such as unknown or higher pro-
tocol version

SIP protocol version

4 Empty Line Status This feature indicates the status and oc-
curance of empty line in a message. It is
required to hierarchical dirorder in a mes-
sage due to multiple/incorrect presence of
empty line in a messge

-1=in wrong position, 0= no empty line,
>1= multiple empty line

5 Message order This feature contains information about
the hierarchical order of a SIP message. It
holds information of any kind of disorder
in a message

1=message in order, -1= message is not in
order

6 Presence of garbage string This features indicates the presence of
garbage string in a message

-1=presence of garbage string, 1= no
garbage string

7 Response Line Status This feature indicates the status (ab-
sence/multiple) of Response-Line in a Re-
sponse Message

Frequency of Request-line in a message

8 Scalar value of “CSeq”
header

This feature contains the value of the
scalar field in ’CSeq’ header

Value of scalar field in “CSeq” header

9 Scalar value of “Max-
Forwards” header

This feature contains the value of the
scalar field in “Max-Forwards” header

Value of scalar field in ’Max-Forwards’
header

10 Scalar value of “Content-
Length” header

This feature contains the value of the
scalar field in “Content-Length” header

Value of scalar field in ’Content-Length’
header

11 Missing Mandatory Header This feature contains the information
whether any specific mandatory header
field is missing in a Response message.

0 = All mandatory fields are present, -1
= missing mandatory header fields in Re-
sponse message

12 Method Name This feature indicates the method name of
a Request message

0= Unknown Method Name, 1 -14 = Valid
Request Method

13 Request-URI status This feature contains the status of
Request-URI. This featue is used to iden-
tify unknown Request-URI scheme in a Re-
quest message

-1 = Unknown Request-URI scheme, 1=
Correct Request-URI scheme

14 IP address in “Via” header This feature contains the IP address of
“Via” header field of a Response message.
This feature is required to identify Re-
sponse message which intends to broadcast
due to IP addreess (“255.255.255.255”) in
’Via’ header

1= header ok, -1 = error in IP address

15 Size of Response code This feature indicates the length of a Re-
sponse Message. It is used to detect very
large Response message

Length of the Response Message

Continued on next page

Table 1 – continued from previous page
ID Feature Description Value Range
16 Mandatory header field

“Call-ID” status
This feature indicates the occurance of
header field “Call-ID” in a message

Frequency of header field ’Call-ID’ in a
message. 0= Missing, 1= Single appear-
ance, 2= Duplicate appearance... of “Call-
ID” in a message

17 Mandatory header field
“CSeq” status

This feature indicates the occurance of
header field “CSeq” in a message

Frequency of header field “CSeq” in a mes-
sage. 0= Missing, 1= Single appearance
and ok, >1= Multiple appearances

18 Unknown Header Field This feature indicates the presence of un-
known header field in a message.

1= no unknown header field, -1= unknown
header field

19 Mandatory header field
“Contact” status

This feature indicates the occurance of
header field “Contact” in a message. It is
used to detect error such as missing or mul-
tiple occurance of “Contact” header field
in a message.

Frequency of header field “Contact” in a
message. 0= Missing, 1= Single appear-
ance, >1= Multiple appearances

20 Mandatory header field
“From” status

This feature indicates the occurance of
header field “From” in a message. It is
used to detect error such as missing or mul-
tiple occurance of “From” header field in a
message.

Frequency of header field “From” in a mes-
sage. 0= Missing, 1= Single appearance,
>1 = Multiple appearances

21 Mandatory header field
“Max-Forwards” status

This feature indicates the occurance of
header field “Max-Forwards” in a message.
It is used to detect error such as missing
or multiple occurance of “Max-Forwards”
header field in a message.

Frequency of header field “Max-Forwards”
in a message. 0= Missing, 1= Single ap-
pearance, >1= Multiple appearances

22 Mandatory header field “To”
status

This feature indicates the occurance of
header field “To” in a message. It is used
to detect error such as missing or multiple
occurance of “To” header field in a mes-
sage

Frequency of header field “To” in a mes-
sage. 0= Missing, 1= Single appearance,
>1 = Multiple appearances

23 Frequency header field “Via”
status

This feature indicates the occurance of
header field “Via” in a message. It is used
to detect error such as missing or multiple
occurance of “Via” header field in a mes-
sage

Frequency of header field “Via” in a mes-
sage. 0= Missing, 1= Single appearance,
>1 = Multiple appearances

24 “Authentication Info”
header field status

This feature contains information about
the “Authentication Info” header fields.
This feature is used to detect any error in
this field, such as unauthorized scheme

-1= Contains Eerror, 1= No error in
header field.

25 “Accept” header field status This feature contains information about
the “Accept” header fields. This feature is
used to detect any error in this field, such
as unauthorized scheme

-1= Contains Eerror, 1= No error in
header field.

26 “Content Type” header field
status

This feature contains information about
the “Content Type” header fields. This
feature is used to detect any error in this
field, such as unauthorized scheme

-1= Contains Eerror, 1= No error in
header field.

27 “Organization” header field
status

This feature contains information about
the “Organization” header fields. This fea-
ture is used to detect any error in this field,
such as unauthorized scheme

-1= Contains Eerror, 1= No error in
header field.

28 “Date” header field status This feature contains information about
the “Date” header fields. This feature is
used to detect any error in this field, such
as unauthorized date format

-1= Contains Eerror, 1= No error in
header field

Continued on next page

Table 1 – continued from previous page
ID Feature Description Value Range
29 “Expires” header field status This feature contains information about

the “Expires” header fields. This feature is
used to detect any error in this field, such
as unauthorized scheme

-1= Contains Eerror, 1= No error in
header field

30 “Allow” header field status This feature contains information about
the “Allow” header fields. This feature is
used to detect any error in this field, such
as unauthorized scheme

-1= Contains Eerror, 1= No error in
header field

31 “Authorization” header field
status

This feature contains information about
the “Authorization” header fields. This
feature is used to detect any error in this
field, such as unauthorized scheme

-1= Contains Eerror, 1= No error in
header field

32 “Proxy Authenticate”
header field status

This feature contains information about
the “Proxy Authenticate” header fields.
This feature is used to detect any error in
this field, such as unauthorized scheme

-1= Contins Eerror, 1= No error in header
field

33 “Timestamp” header field
status

This feature contains information about
the “Timestamp” header fields. This fea-
ture is used to detect any error in this field,
such as unauthorized scheme

-1= Contains Eerror, 1= No error in
header field

34 “Subject” header field status This feature contains information about
the “Subject” header fields. This feature is
used to detect any error in this field, such
as unauthorized scheme

-1= Contains Eerror, 1= No error in
header field

35 “Alert Info” header status This feature contains information about
the “Alert Info” header fields. This fea-
ture is used to detect any error in this field,
such as unauthorized scheme

-1= Contains Eerror, 1= No error in
header field

36 “Accept Language” header
field status

This feature contains information about
the “Accept Language” header fields. This
feature is used to detect any error in this
field, such as unauthorized scheme

-1= Contains Eerror, 1= No error in
header field

37 “Content Language” header
field status

Contains information about the “Con-
tent Language” header fields. This feature
is used to detect any error in this field, such
as unauthorized scheme

-1= Contains Eerror, 1= No error in
header field

38 Combination of Request-line
& Response-Line

This feature contains information about
the presence of both Request-line and
Response-line in the same message

-1= Contains Eerror, 1= No error

39 Message Body status This feature contains information about
the scheme of message body. This feature
is used to identify messages with unknown
message scheme

-1= Unknown scheme of Message body ,
1= SDP/xml scheme for message body

40 Message Body Size Contains information about the length of
message body. This feature is required
to identify messages where message length
indicated by “Content Length” header is
larger than the received message body

Length of received message body

