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Abstract

The stochastic kinetics of a well-stirred mixture of molecular species
interacting through different biochemical reactions can modelled by the
chemical master equation. Till now the scientific computing commu-
nity has focussed mostly on the development of numerical techniques
to approximate the solution of the chemical master equation many re-
alizations of the associated Markov jump process. Consequeltly, the
domain of exact algorithms for directly solving a chemical master equa-
tion is still an open research area.

In this work we present a method to solve analytically a chemi-
cal master equation to describe a reversible molecular reaction and we
propose a method to solve a system of such equations. In this method
molecular populations are considered as time-dependent, integer-valued
random variables. Moreover, we developed mathematical procedures
for solving a system of chemical master equations referred to a set of
parallel and interdependent biochemical interactions. The causal de-
pendence between reactions is modeled on the time scale in the follow-
ing way: a reaction starts when its antecessor has produced a sufficient
quantity of reactants.
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1 Background

The master equation is a differential form of the Chapman-Kolmogorov
equation

p→(x1, t1|x3, t3) =

∫

p→(x1, t1|x2, t2)p→(x2, t2|x3, t3)dx2 (1)

.
The terminology differs between different authors. Sometimes the term

master equation is used only for jump processes. Jump processes are char-
acterized by discontinuous motion, that is there is a bounded and non-
vanishing transition probability per unit time

w(x|y, t) = lim
∆t→0

p→(x, t + ∆t|y, t)

∆t

for some y such that |x− y| > ǫ. Here, the function w(x|y; t) = w(x|y). The
master equation for jump processes can be written

∂p(x, t)

∂t
=

∫

(

w(x|x′)p(x′, t)− w(x′|x)p(x, t)
)

dx′ (2)

The master equation has a very intuitive interpretation. The first part of
the integral is the gain of probability from the state x′ and the second part
is the loss of probability to x′. The solution is a probability distribution for
the state space. Analytical solutions of the master equation are possible to
calculate only for simple special cases.

1.1 The chemical master equation

A reaction R is defined as a jump to the state ~X to a stare ~XR, where
~X, ~XR ∈ Z

N
+ . The propensity w( ~XR) = ṽ( ~X) is the probability for transi-

tion from ~XR to ~X per unit time. A reaction can be written as

~XR
w( ~XR)
−→ ~X

The difference in molecules numbers ~nR = ~XR − ~X is used to write the
master equation (2) for a system with M reactions

dp( ~X, t)

dt
=

M
∑

i=1

w( ~X + n)p( ~X + ~nR, t)−
M
∑

i=1

w( ~X)p( ~X, t) (3)

This special case of master equations is called the chemical master equation

(CME). It is fairly easy to write: however, solving it is quite another matter.
The number of problems for which the CME can be solved analytically is
even fewer than the number of problems for which the deterministic reaction-
rate equations can be solved analytically. Attempts to use master equation
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No. Reaction Rate equation Type

1 ∅
v1([A])
−−−−→ A v1([A]) = k1

1+[A]K1
synthesis

2 A
v2([A])
−−−−→ ∅ v2([A]) = µ[A] degradation

3 ∅
v3([B])
←−−−− B v3([B]) = k2

1+[B]/K2
synthesis

4 B
v4([B])
−−−−→ ∅ v4([B]) = µ[B] degradation

5 A + B
v5([A],[B])
−−−−−−→ ∅ v5([A], [B]) = k3[A][B] bimolecular reaction

Table 1: Reactions of the chemical model displayed in Fig. 1. No. corresponds to
the number in the figure.

to construct tractable time-evolution equations are also usually unsuccessful,
unless all the reaction in the system are simple monomolecular reactions. Let
consider for instance a deterministic model of two metabolites coupled by
a bimolecular reaction, as shown in Fig. 1. The set of differential equation
describing the dynamic of this model is given in Table 1, where the [A] and
[B] are the concentrations of metabolite A and metabolite B, while k, K,
and µ determine the maximal rate of synthesis, the strength of the feedback,
and the rate of degradation, respectively.

Figure 1: Two metabolites A and B coupled by a bimolecular reactions.

In the formalism of the Markov process, the reactions in Table 1 are written
as in Table 2. The CME equation for the system of two metabolites of Fig.
1 looks fairly complex as in Table 3.
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No. Reaction w(~x) ~nT
R

1 ∅
w1(a)
−−−→ A w1(a) = V k1/(1 + a/V K1)) (−1, 0)

2 A
w2(a)
−−−→ ∅ w2(a) = µa (1, 0)

3 ∅
w3(b)
−−−→ B w3(b) = V K2/(1 + b/(V K2)) (0,−1)

4 B
w4(b)
−−−→ ∅ w4(b) = µb (0, 1)

5 A + B
w5(a,b)
−−−−→ ∅ w5(a, b) = k2ab/V (1, 1)

Table 2: Reactions of the chemical model depicted in Fig. 1, their propensity and
corresponding ”jump” of state vector ~nT

R. V is the volumes in which the reactions
occur.

∂p(0, 0, t)

∂t
= µp(1, 0, t) + µp(0, 1, t) +

k3

V
p(1, 1, t)− V (k1 + k2)p(0, 0, t)

∂p(0, b, t)

∂t
= V

k2

1 + b−1
V K2

p(0, b− 1, t) +

+ µp(1, b, t) + µ(b + 1)p(0, b + 1, t) +
k3

V
(b + 1)p(1, b + 1, t)−

−

(

V

(

k1 +
k2

1 + b
V K2

)

+ µb

)

p(0, b, t)

∂p(a, 0, t)

∂t
= V

k1

1 + a−1
V K1

p(a− 1, 0, t) +

+ µ(a + 1)p(a + 1, 0, t) + µp(a, 1, t) +

+
k3

V
(a + 1)p(a + 1, 1, t)−

−

(

V

(

k1

1 + a
V K1

+ k2

)

+ µa

)

p(a, 0, t)

∂p(a, b, t)

∂t
= V

k1

1 + a−1
V K1

p(a− 1, b, t) + V
k2

1 + b−1
V K2

p(a, b− 1, t) +

+ µ(a + 1)p(a + 1, b, t) + µ(b + 1)p(a, b + 1, t) +

+
k3

V
(a + 1)(b + 1)p(a + 1, b + 1, t)−

−

(

V

(

k1

1 + a
V K1

+
k2

1 + b
V K2

)

+ µ(a + b) +
k3

V
ab

)

p(a, b, t)

Table 3: Set of chemical master equations describing the metabolites interaction
showed in Fig. 1.
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2 Stochastic master equations to describe reversible

molecular reactions

Let suppose to have a set of reversible molecular reactions of the type

L + R
kf

⇋
kr

C

where L, R and C represent ligands, receptors and complexes, respectively.
Integer-valued random variables L(t), R(t) and C(t) give the populations
of the three species of molecules in a closed, small and well mixed volume
initially containing λ, ρ and γ molecules of L, R and C.
In each of the four phases, the probability P (l, r, c, t) that L(t), R(t) and
C(t) have values l, r and c, respectively is determined by a stochastic master
equation, which can be written as

P (l, r, c, t + ∆t) = kf (l + 1)(r + 1)∆tP (l + 1, r + 1, c− 1, t) +

+ kr(c + 1)∆tP (l − 1, r − 1, c + 1, t) +

+ (1− kf lr∆t− krc∆t)P (l, r, c, t) +

+ O(∆t), (4)

where kf and kr are the forward reaction rate and the reverse reaction rate,
respectively.
When ∆t→ 0, we obtain the following:

dP (l, r, c, t)

dt
= kf (l + 1)(r + 1)P (l + 1, r + 1, c− 1, t)−

− kf lrP (l, r, c, t) + kr(c + 1)P (l − 1, r − 1, c + 1, t)−

− krcP (l, r, c, t). (5)

Looking at the stoichiometry of the chemical reaction and relating l, r and
c as γ + λ− l = γ + ρ− r = c, the probability P (l, r, c, t) can be expressed
as a function of just one species population (let’s say L(t)):

dPl(τ)

dt
= (l + 1)(ρ− λ + l + 1)Pl+1(τ)−

− [l(ρ− λ + l) + K(γ + λ− l)]Pl(τ) +

+ K(γ + λ− l + 1)Pl−1(τ), (6)

where τ = kf t and K = kr/kf .
Laplace transformation of these equations yields to the linear system

pV = MV + P̂ , (7)
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where V and P are the (γ + λ + 1)-dimensional vectors

V =











V0(p)
V1(p)

...
Vγ+λ(p)











, where Vl(p) =

∫ ∞

0
e−pτPl(τ)dτ (8)

and

P̂ =











P0(t = 0)
P1(t = 0)

...
Pγ+λ(t = 0)











=











0
0
...
1











. (9)

The (γ + λ + 1)× (γ + λ + 1) matrix M is defined as follows:

M =





















−u0 h1 0 0 · · · 0
u0 −(h1 + u1) h2 0 · · · 0
0 u1 −(h2 + u2) h3 · · · 0

0 0 u2 −(h3 + u3)
. . .

...
...

...
...

. . .
. . . hγ+λ

0 0 0 · · · uγ+λ−1 −(hγ+λ + uγ+λ)





















(10)

where hl = l(ρ− λ + l) and ul = K(λ− l + γ).
Solving the system (7) for V and using the definition of the inverse matrix
in terms of the adjoint and the determinant of the matrix, we obtain

V = [pI −M ]−1P̂ =
adj(pI −M)

det(pI −M)
. (11)

Moreover, we can write V only in terms of the cofactors of the last row of
[pI −M ], obtaining a simple way to calculate Vl(p) [1]

Vl(p) =
λ!ρ!

ρ− λ + l

Dl(p)

Dλ+γ+1(p)
, (12)

where Dl(p) is the determinant of the submatrix of [pI −M ] composed of
its first l rows and column, that is to say that Dl(p) is the characteristic
polynomial of an l × l matrix (l ∈ [0, γ + λ]).
Since eq. (12) is the exact solution of eq. (6), we only have to find the
polynomials Dl(p). Once we have found these polynomials, we obtain the
probability distribution Pl(τ) as

Pl(τ) =
1

(ρ− λ + l)l!

λ!ρ!

(ρ− λ)!
×

×

λ+γ
∑

j=0

Dl(µj)

∂pDλ+γ+1(µj)
eµjτ , (13)
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where

∂pDλ+γ+1(µj) =

(

∂Dλ+γ+1(p)

∂p

)

p=µj

(14)

and µj are the eigenvalues of the matrix M .

2.1 Uniqueness of the solution of the system

pV = MV + P̂

Numerical computations for systems which have more than one solution
usually yield meaningless results and numerical computations for systems
which have no solutions are always meaningless. This is the reason why
we are interested to find the conditions which assure us that the system
pV = MV + P̂ has a unique solution.
For this purpose we can use the following [3]

Theorem 2.1 Let

Ax = b (15)

be a general linear algebraic system of n equations in n unknowns; it has

one and only one solution if and only if the determinant of A is different

from zero.

Instead of directly evaluating the determinant, some properties of the coef-
ficient matrix of the system may be useful to assure that it is different from
zero.

Definition 2.1 System (15) is said to be diagonally dominant if and only

if

|ai,i| >
n
∑

j=1

j 6=i

|ai,j | i = 1, 2, . . . , n (16)

with strict inequality valid for at least one value of i.

Definition 2.2 System (15) is said to be tridiagonal if and only if all ele-

ments of A are zero except ai,i, aj,j+1, aj+1,j, i = 1, 2, . . . , n; j = 1, 2, . . . , n−
1, and none of these is zero.

Using these definitions, we can prove that det(M) 6= 0 applying the following

Theorem 2.2 Let the system Ax = b be tridiagonal, diagonally dominant,

and satisfy

ai,i < 0 i = 1, 2, . . . , n
aj,j+1 > 0 j = 1, 2, . . . , n− 1
aj+1,j > 0 j = 1, 2, . . . , n− 1

Then the solution of the system exists and is unique.
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Since a matrix and its transpose matrix have the same determinant be-
cause of their similarity, we can prove that det(M t) 6= 0 obtaining the non-
singolarity of M .
The matrix M t

M t =





















−u0 u0 0 0 · · · 0
h1 −(h1 + u1) u1 0 · · · 0
0 h2 −(h2 + u2) u2 · · · 0

0 0 h3 −(h3 + u3)
. . .

...
...

...
...

. . .
. . . uγ+λ−1

0 0 0 · · · hγ+λ −(hγ+λ + uγ+λ)





















(17)

shows a tridiagonal form; if ul > 0 and hl > 0 ∀ l ∈ [0, γ + λ] the
coefficients of M t verify the conditions of Theorem 2.2.
Moreover we have that the coefficients of M t verify condition 16, thus the
matrix M t verify all the conditions of Theorem 2.2. Therefore det(M) =
det(M t) 6= 0, that is to say that if ul > 0 and hl > 0 ∀ l ∈ [0, γ + λ] the
system (7) has one and only one solution.

2.2 How to find polynomials Dl(p)

The polynomial Dl(p) (l ∈ [0, λ + γ]) is a characteristic polynomial, defined
as det[pI −M ] where [pI −M ] is a l × l matrix obtained considering the
first l rows and columns of [pI −M ]; being characteristic, Dl(p) is a monic
lth order polynomial of p.
The matrix [pI − M ] has a tridiagonal form, so its determinant can be
evaluated using a recursion relation. Let’s consider A, a tridiagonal m×m
matrix

A =





















a1 b1 0 0 · · · 0
c1 a2 b2 0 · · · 0
0 c2 a3 b3 · · · 0

0 0 c3 a4
. . .

...
...

...
...

. . .
. . . bm−1

0 0 0 · · · cm−1 am





















; (18)

by reducing it to an upper-triangular form, the following recursion relation
for its determinant can be obtained:

Dm(p) = amDm−1 − cm−1bm−1Dm−2 (19)

D0(p) = 1 (20)

D1(p) = a1 (21)

where Dn−j are the determinants of the submatrixes of A obtained removing
the last j columns and rows.
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Since [pI −M ] takes the following tridiagonal form




















p + u0 h1 0 0 · · · 0
u0 p + h1 + u1 h2 0 · · · 0
0 u1 p + h2 + u2 h3 · · · 0

0 0 u2 p + h3 + u3

. . .
...

...
...

...
. . .

. . . hγ+λ

0 0 0 · · · uγ+λ−1 p + hγ+λ + uγ+λ





















,

(22)

it is possible to apply equations (19)-(21) with al = p+ul−1+hl−1, bl = −hl

and cl = −ul−1 so as to obtain

Dl(p) = (p + ul−1 + hl−1)Dl−1 + ul−2hl−1Dl−2 (23)

D0(p) = 1 (24)

D1(p) = p + u0 + h0 = p + u0, since h0 = 0. (25)

Given (23), it is possible to compute the coefficients of Dl by a recursive
method [2]:

dl,j = dl−1,j−1 + (ul−1 + hl−1)dl−1,j − ul−2hl−1dl−2,j (26)

d0,0 = d1,1 = 1
d1,0 = u0

d1,−1 = d1,2 = d0,−1 = d0,1 = 0
d−1,0 = d−1,−1 = 0

(27)

The main idea to solve a system of causally related chemical interactions
is that each reaction depends on the previous one, that is to say that a
reaction starts when the previous one has produced a sufficient quantity of
complex; thus we propose to make master equations interact on the time
scale, by choosing as initial time of each reaction the one at which the
number of complexes produced by the previous one becomes stable and use
the method presented here to solve each equation.
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