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Abstract
We give an upper-bound for the X -rank of points with respect to a non-degenerate
irreducible variety X in the case that sub-generic X -rank points generate a hypersur-
face.
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1 Introduction

All along the paper we will always work with an algebraically closed field K of
characteristic 0 and a projective variety X ⊂ P

N which will be always assumed to
be irreducible and non-degenerate. For a given point P ∈ P

N there is a well-defined
notion of X -rank rX (P) of P which is the least number of points of X whose span
contains P . Such a notion, before becoming part of the algebraic geometric language
as X -rank (referring to the underlined variety X , cf. [4]), was previously used in the
context of tensors (i.e. when X parametrizes particular type of tensors) and better
known in the applied world as structured rank putting the accent on the particular
structure of the tensors (cf. e.g. [17]). From the applied point of view the knowledge
of the maximal possible X -rank that an element in 〈X〉 may have (e.g. [2, 20–22])
turns out to be extremely important. This raises a very interesting pure mathematical
problem: being able to give a sharp upper bound on the maximal X -rank rmax. One
natural bound over an algebraically closed field of characteristic 0 is given by the
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codimension, i.e. rmax � codim X +1 (cf. e.g. [25, Proposition 5.1, p. 348]). The next
important result valid for any irreducible non-degenerate variety X is presented in
[11]. Let g be the so-called generic X-rank, i.e., the first integer such that the Zariski
closure of the set of points of rank smaller than or equal to g fills 〈X〉 (this is again a
very much studied value, nowadays there are also numerical algorithms to compute it
in certain cases, cf. e.g. [8, 23]). Then [11, Theorem 1, p. 1022] shows that rmax � 2g.
In the case in which X is not a hypersurface but the points of subgeneric rank generate
a hypersurface, [11, Theorem 6, p. 1024] proved that rmax � 2g − 1.

In [14, Theorems 3.7 and 3.9, p. 118] this last bound for the hypersurfaces cases
is improved to rmax � 2g − 2 in the special setting of X being either a curve or a
homogeneous variety.

There are some other bounds worth noting in the case of maximum symmetric
rank, i.e. the X -rank when X is a Veronese variety. The first two are due to Jelisiejew
[24, Corollary 6, p. 331] and to Ballico–De Paris [5, Remark 4.18, p. 913], which
both obtain a bound on the open symmetric rank, a higher notion of rank which is
always greater than or equal to the symmetric one (we will recall them in (2) and (3)
respectively). Eventually there is also a bound given by [19, Proposition 3.3, p. 28]
(see (4)) for Veronese surfaces. An asymptotic bound is also presented.

In this note, we focus on the case of X being a variety such that the Zariski closure
of the points of subgeneric rank σg−1(X) is a hypersurface. In Theorem 2.4 we will
show that the bound for rmax can be reduced to

rmax � rmax,g−1 + 1,

where rmax,g−1 is the maximum X -rank attained on the variety σg−1(X).
We end the paper by comparing our bound with the existing ones highlighting the

cases where our bound gives more accurate estimates than the known ones.

2 Notation andmain result

Definition 2.1 Let X ⊂ P
N be an irreducible non-degenerate projective variety. The

Zariski closure of the set σ 0
s (X) of points of P

N of X -rank at most s is an irreducible
projective variety called the s-th secant variety of X and denoted by σs(X).

Secant varieties are nested and there exists an integer g such that σg(X) fills the
ambient space:

X ⊂ σ2(X) ⊂ · · · ⊂ σi (X) ⊂ · · · ⊂ σg(X) = P
N .

Definition 2.2 Let X ⊂ P
N be an irreducible non-degenerate projective variety. The

least integer g such that σg(X) = P
N is the generic X -rank.

The generic X -rank may not coincide with the maximum X -rank appearing in P
N.

There are cases in which the generic is the same as the maximum X -rank and cases in
which there exist points with X -rank greater than the generic one, for example points
on tangent lines of a rational normal curve of degree d > 2 (cf. [31]). Hence one may
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seek for a bound for the maximum rank and one may try to see if it is attained or not.
When K is not algebraically closed there are different notions of X -rank, cf. [12].

Proposition 2.3 Let X ⊂ P
N be an irreducible non-degenerate projective variety of

dimension n and let W be a hypersurface strictly containing X. Let P ∈ P
N \W be

such that rX (P) �= 2, and let

YP := cone(P, X) =
⋃

x∈X
〈x, P〉.

Then YP ∩ W is reducible of dimension n. Moreover there exists a line in YP through
P that meets X in one point only and W \ X in at least one other point.

Proof The cone YP is irreducible of dimension n + 1, then the components of the
intersection YP ∩ W have dimension at least n + 1+ N − 1− N = n = dim(X) (cf.
[30, Theorem 1.24, p. 75]). Actually, since YP is not contained inW , those components
have dimension exactly n. Clearly X ⊂ YP ∩W . Assume for the sake of contradiction
that YP ∩ W = X . If this is the case, then every line contained in YP and passing
through P meets W only on X and moreover such intersection is made by one point
only, otherwise the point P would have X -rank 2 which is against our hypothesis.
Now we show that the fact that every line l ⊂ YP through P meets W only in one
point of X , i.e.:

l ∩ W = Q ∈ X

leads to a contradiction.
SinceW is a hypersurface, it is cut out by a single homogeneous equation of degree

d > 1, W = V ( f ). As just shown every line PQ ⊂ YP , with Q ∈ X , meets W only
in Q. We can parametrize PQ as

PQ = {sP + t Q : [s : t] ∈ P
1} ∼= P

1

where in this notation the point Q is represented by the point [0 : 1] ∈ P
1. Substituting

the coordinates sP + t Q of PQ in the equation f of the hypersurface we get a
homogeneous equation of degree d in two variables which must vanish only at the
point Q, i.e. we have an equation of the form

f (sP + t Q) = kQs
d (1)

for some constant kQ ∈ K. We show that if this happens for every line PQ, with
Q ∈ X , then we will get a contradiction. Indeed, suppose that f can be written as the
polynomial

f (x0, . . . , xN ) =
∑

(b0,...,bN )∈NN+1

b0+···+bN=d

a(b0,...,bN ) x
b0
0 . . . xbNN .
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The coefficient of the monomial sd−1t after the substitution (1) has to be zero. More-
over it turns out to be the directional derivative of f at P in the direction of Q:

DfP (Q) = a(b0,...,bN )

[
b0 · pb0−1

0 pb11 . . . pbNN · q0
+ b1 · pb00 pb1−1

1 pb22 . . . pbNN · q1
+ · · · + bN · pb00 . . . pbN−1

N−1 p
bN−1
N · qN

]
.

Since for a fixed P the form DfP is linear in Q, X is contained in the hyperplane
DfP = 0, which is non-trivial by the Euler formula and the fact that the evaluation of
f at P is different from zero. This is in contradiction with non-degeneracy hypothesis
on X . Hence there exists a line l inside YP containing P that intersects W in at least
another point in W \ X . 	

Theorem 2.4 Let X ⊂ P

N be a smooth non-degenerate projective variety of dimension
n and let g be the generic X-rank. If σg−1(X) is a hypersurface, g > 2, then

rmax � rmax,g−1 + 1

where rmax,g−1 is the maximum X-rank achieved on σg−1(X).

Proof Let P ∈ P
N \σg−1(X) and YP := cone(P, X) = ⋃

x∈X 〈x, P〉 as in Propo-
sition 2.3 with W = σg−1(X), where we have shown that there exists a line of YP

through P which intersects σg−1(X) in at least two distinct points, say Q1, Q2 such
that Q1 ∈ X and Q2 ∈ σg−1(X)\ X . Therefore P ∈ 〈Q1, Q2〉. If Q2 ∈ σ 0

g−1(X)

then rX (P) � g, while if the components of YP ∩ σg−1(X) different from X are all
contained in σg−1(X)\σ 0

g−1(X) we can only say that rX (P) � rmax,g−1 + 1. 	

We would like to point out some interesting consequences of this result.

Remark 2.5 Suppose that X ⊂ P
N is a non-degenerate irreducible variety such that

the last non-filling secant variety σg−1(X) is hypersurface, with g �= 2, and let
P ∈ P

N \σg−1(X). The intersection YP ∩ σg−1(X) cannot be contained in σ 0
g−2(X)

otherwise the point P ∈ P
N \σg−1(X) must lie in σg−1(X) which is impossible.

Remark 2.6 Suppose that X ⊂ P
N is a non-degenerate irreducible variety such that

the last non-filling secant variety σg−1(X) is a hypersurface, with g �= 2, and let
P ∈ P

N \σg−1(X). The rank of the point P ∈ P
N \σg−1(X) is g if and only if

the intersection YP ∩ σg−1(X) contains at least one point of σ 0
g−1(X) but we were

not able to distinguish whether there exist points P for which (YP ∩ σg−1(X)) ⊂
(σg−1(X)\σ 0

g−1(X)). Of course if P is generic it is obvious that YP ∩ σ 0
g−1(X) �= ∅,

and indeed the generic rank is g.
This leads us to the following conjecture.

Conjecture 2.7 Let X ⊂ P
N be a smooth non-degenerate projective variety and let

g > 2 be the generic X-rank. If σg−1(X) is a hypersurface, then

rmax = max {rmax,g−1, g}
where rmax,g−1 is the maximum X-rank achieved on σg−1(X).
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Table 1 Comparison of bounds on the maximum Waring rank when a secant variety of a Veronese variety
is a hypersurface and where the maximum rank is known. See [9, Theorem 40, p. 48, and Theorem 44, p. 50]
and [18]

2g − 1 in [11] 2g − 2 [14] [19] [5] [24] Our bound rmax

X2,2 5 4 4 3 3

X2,3 7 6 7 9 6 5

X2,4 11 10 10 17 18 8 7

3 Comparison

In this section we compare our boundwith the existing ones on some known examples.
Themost studied case is the one of symmetric tensors where the rank is with respect

to a Veronese variety. Let Xn,d be the Veronese embedding of P
n via O(d). To the

best of our knowledge, some of the best upper bounds for the Waring rank are due to
Jelisiejew [24, Corollary 6, p. 331] and to Ballico–De Paris [5, Remark 4.18, p. 913].
In both these works, the bounds are given on a different notion of rank known as open
Waring rank, we refer to [24, Definition 2, p. 330] for a definition. Since the open
Waring rank is always greater than or equal to the usual Waring rank, from [24] and
[5] one gets these bounds on the maximum symmetric rank

rmax �
(
n + d − 1

n

)
−

(
n + d − 5

n − 2

)
(2)

for n � 2, d � 3, and

rmax �
(
n + d − 1

n

)
−

(
n + d − 5

n − 2

)
−

(
n + d − 6

n − 2

)
(3)

for n � 2, d � 4, respectively. Another known bound is given by [19, Proposition
3.3, p. 28] for all homogeneous polynomials of degree d in three variables. In this case
[19] shows that

rmax �
⌊
d2 + 6d + 1

4

⌋
. (4)

Eventually, consider any Veronese variety Xn,d . As pointed out in [11], it is worth
noting that the bound which they give rmax � 2g in the general case is asymptotically
better than (2) and (3), even though these last ones are better for small cases. See
Table 1 for a comparison between all the bounds on the maximum symmetric rank.

For the skew-symmetric tensors case one has to study the rank with respect to
Grassmann varieties Gr(Pk, P

n) ⊂ P(
∧k+1V ), 2k � n − 1. We checked among 1 �

n, r � 500 and, if the conjecture on defectiveness of secant varieties of Grassmannians
holds (cf. [6, 16], see also [1, 10, 15, 26]), we found only three cases in which there
exists an r such that σr (X) is a hypersurface: Gr(P1, P

3) for r = 1 (but in such a case
our theorem does not apply), Gr(P2, P

6) for r = 3, Gr(P7, P
16) for r = 333.

The case of Gr(P1, P
3) is trivial since elements of

∧2
C
4 are skew-symmetric matri-

ces. The second example is a defective case, the well-known σ3(Gr(P2, P
6)) (cf. [29]
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and [1, Section 5]). The maximum skew-symmetric rank of a point belonging to
σ3(Gr(P2, P

6)) is 3, so our main theorem shows that the maximum skew-symmetric
rank of a point in P(

∧3
C
7) is the generic one, i.e. 4. Indeed in [3] it is shown that

the maximum rank is actually 4. This is an example that shows the sharpness of our
result (remark that [11, Theorem 6, p. 3] in this case provides a bound of 7, while [14,
Theorem 3.9, p. 118] gives 6).

For the case of Segre variety we highlight only the example of X being the Segre
of three copies of P

2 where the maximum rank is known to be 5 (cf. [13, Theorem 5.1,
p. 412], [27, Theorem 4, p. 815]) and our Theorem 2.4 gives a bound of 6; this is not
sharp but it is better than [11, Theorem 6, p. 3] which gives rmax � 9. The reason why
we highlight this example is that in this case our Conjecture 2.7 holds and by Remark
2.6 the intersection YP ∩ σ4(X) contains at least one point of σ 0

4 (X).
For the case of flag varieties we underline only the case of the adjoint varieties of

the Lie algebra sln+1. In this case the flag variety contained inP(sln+1) � P
(n+1)2−2 is

the variety F(P0, P
n−1; P

n)whose points are flags P
0 ⊂ P

n−1 in P
n . It is a known fact

that for any n � 1 this variety parametrizes the (n + 1)× (n + 1)-traceless matrices
of rank 1. As showed by [7, Theorem 1.1], the k-th secant variety of this flag variety
is given by traceless matrices of rank at most k, for any k � n + 1. See also [28] for a
description of this in terms of lower semi-continuous rank function. Moreover by [7,
Corollary 1.2], it is easy to see that σn+1(F(P0, P

n−1; P
n)) fills the ambient space, and

that the dimension of the k-th secant variety of X is 2k(n + 1) − k2 − 2. In particular
for k = n it is readily seen that σn(F(P0, P

n−1; P
n)) is a hypersurface in P(sln+1). By

what we have said we get that rmax,n = n. By Theorem 2.4 we get that rmax � n + 1.
Applying the bound in [11, Theorem 6, p. 3] one gets rmax � 2(n + 1) − 1 = 2n + 1,
while by [14, Theorem 3.9, p. 118] one gets rmax � 2n. Note that also in this case
Conjecture 2.7 holds.
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