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An Innovative Real-Time Technique for Buried
Object Detection

Emanuela Bermani, Andrea Boni, Salvatore Caorsi, and Andrea Massa

Abstract

In this paper, a new on-line inverse scattering methodologyis proposed. The original problem is recast into
a regression estimation one and successively solved by means of a support vector machine (SVM). Although the
approach can be applied to various inverse scattering applications, it results very suitable to deal with the buried
object detection. The application of SVMs to the solution ofsuch kind of problems is firstly illustrated. Then,
some examples, concerning the localization of a given object from scattered field data acquired at a number of
measurement points, are presented. The effectiveness of the SVM method is evaluated also in comparison with
classical neural networks (NNs) based approaches.

Index Terms

Buried objects, real-time detection, support vector machines, inverse scattering problems.

I. I NTRODUCTION

The solution of inverse scattering problems is usually verydifficult due to their inherent non linear nature and
ill-posedness. Now-a-day, the leading way to face them is torecast the original problem into an optimization
one, which is successively solved by means of a minimizationtechnique (see for example [1], [2], [3] and
the reference therein). Unfortunately, the use of iterative procedures often makes the reconstruction process
computationally expensive. As a consequence, serial implementations of optimization techniques cannot be
generally used for real-time applications.

Therefore, the development of alternative strategies, when on-line reconstructions are required (i.e, industrial
process control, leak detection, materials characterization during manufacturing and while in use, landmine
detection, etc...), is mandatory. Recently, a great attention has been devoted to inverse scattering methodologies
based on neural networks. Methods based on both multilayer perceptron (MLP) [4][5] and radial basis function
(RBF) [6] NNs have been successfully proposed.

However, in spite of their success, NN-based approaches suffer from typical problems of neural networks
(e.g., the over-fitting, etc...) which make the method accuracy highly training dependent. A solution to these
problems is the use of RBF-based techniques trained with orthogonal least squares [7].

In this paper, the effectiveness of an alternative procedure, based on a support vector machine [8], is presented.
SVMs are built on a solid theoretical framework, the statistical learning theory (SLT) [9]. Similarly to NNs, (after
the training phase) the SVM allows to obtain reconstructionresults in quasi-real time (few tenth of seconds),
with a percentage of time saved with respect to iterative methods greater than90% [10][11]. Moreover, SVM-
based procedures allow the control of the generalization accuracy of the approximating function. More in detail,
the arising optimization problem is aimed at finding the besttrade-off between the capability of the SVM to
learn from the given set of examples and a measure of the complexity of the model itself. Since the model
complexity has a straightforward consequence on the generalization accuracy [9], this leads to the determination
of models that outperform standard NNs.

In the following, a brief description of the electromagnetic problem and of the basic theory of the support
vector machine will be presented (Section 2 and Section 3, respectively). In Section 4, the performances of
the proposed SVM-based inverse scattering technique will be assessed and compared with those obtained with
a NN-based approach by considering the localization problem. In particular, the attention will be focused on
the localization of a cylindrical geometry with circular cross-section. This problem is largely encountered in
practical applications as, for example, the detection of buried pipes, tubes, or cables in urban environments.
Finally some conclusions and final remarks will be provided.

II. M ATHEMATICAL FORMULATION

Let us consider the two-dimensional half-space problem shown in Figure 1. A homogeneous pipe is buried in a
lossy region with relative dielectric parameters, generally inhomogeneous,εb (x, y) andσb (x, y). The unknown
homogeneous scatterer is characterized by constant permittivity, εr, and conductivity,σ, values. The geometric
characteristics (position, shape, and size) of the scatterer are defined by the center coordinates, (x0,y0), and by
the parametric description
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Fig. 1. Problem Geometry.

of its cross-section given by

x = x0 + ρcosθ, y = y0 + ρsinθ, 0 ≤ θ < 2π (1)

For computational purposes, let us assume a square investigation domain (D) large enough (L-sided) so that
the scatterer lies inD. Multiple illuminating sources and measurement points arelocated above or on the air-
ground interface at the same height (yt = yr). When the electric source is a line source, located at(xt, yt) and
radiating a monochromatic electromagnetic field, the electric field scattered by buried targets and collected at
the observation points,(xr , yr), r = 1, ..., R, is expressed as

Escatt(xr, yr|xt, yt) = Escatt
b (xr, yr|xt, yt)+

+k2
∫

D
Eb(x, y|xt, yt)

G(xr , yr; x, y)O {(x, y)|x0, y0, ρ, εr, σ} dxdy

(2)

whereEscatt andEscatt
b are the scattered electric fields at the measurement points when the reconstruction

domain contains or not the unknown scatterer, respectively; Eb is the electric field inside the reconstruction
domain filled with the background medium;G is the Green’s function of the inhomogeneous medium [12]; and
O(x, y) is the relative dielectric profile defined as follows

O(x, y) =






εr − εb(x, y) − j
σ−σb(x,y)

2πf

if

√
(x − x0)

2
+ (x − y0)

2
≤ ρ

0
otherwise

(3)



Inverse scattering procedures aim at retrieving the location, the shape and the dielectric properties of the
scatterer starting from the knowledge ofEscatt(xr, yr|xt, yt). Mathematically, the problem reduces to determine
the following relation

χ = Φ
{
Escatt

}
(4)

whereχ is the scatterer array (χ = [χi; i = 1, ..., P ] = [x0, y0, ρ, εr, σ] beingP the number of parameters which
completely describe the scatterer) andEscatt is the data array defined asEscatt = [Escatt(xr, yr|xt, yt); r = 1, ..., R; t = 1, ..., T ].
This problem can be reformulated as aregression problem, where the unknown function (Φ) must be approxi-
mated from the knowledge of a number of known input-output pairs of vectors

{(
χ
)
n

, (Escatt)n

}
; n = 1, ..., N .

III. SVM- BASED INVERSESCATTERING PROCEDURE

Generally speaking, a regression problem is the process through which an unknown function,Φ : ℜ2R×T → ℜ,
is approximated by means of a functionΦ̃ on the basis of some samples{(υn, en)}n=1,...,N , beingυn an input
pattern anden the corresponding target (en = Φ {υn}). As far as buried-object detection problems are concerned,
the location (x0, y0), the dimension (ρ), and the complex permittivity (εr, σ) of the scatterer must be retrieved
and each unknown parameter is dealt with separately. Consequently,υn = (Escatt)n anden = (χi)n.

Usually, a problem is formulated as a regression one when it is possible to observe and to measure the
input/output signals of the system under test, but the system dynamic is unknown (i.e., an analytic expression
for Φ is not available). SVMs are a new paradigm that have been recently proposed for the solution of pattern
recognition and function approximation tasks. Briefly (thereader can refer to [8] for more details), the SVM-
based procedure aims at finding a smooth functionΦ̃ having at mostǫ deviation from the targetsen for all
samples. The functioñΦ is given by

Φ̃ (υ) =

N∑

n=1

(αn − α∗

n) k (υn, υ) + b (5)

wherek is a kernel function while functional parameters(α, α∗, b) and structural parameters
(
ǫ, C, σ2

)
are

unknown quantities. The parameterC measures the trade-off between the capability ofΦ̂ (ν) to approximate
the input samples and the error on the new samples [8] whileσ2 is the variance of the kernel function, when
Gaussian functions are taken into account. It is important to note that expression (5) has the same form as for
RBF approaches. As a matter of fact, Gaussian SVMs can be viewas a special case of standard RBF networks
[13] whose centers and weights are computed following a different procedure, as detailed later on.

The arraysα andα∗ in (5) are computed by solving the following constrained quadratic programming problem
(CQP)

minβ

{
1

2
βT Q β + rT β

}
(6)

subjected to the constraints0 ≤ βn ≤ C, ∀n = 1, . . . , 2N andβT t = 0, being

Q =

[
K −K

−K K

]
β =

[
α

α∗

]

r =

[
ǫ − e

ǫ + e

]
t =

[
1
−1

] (7)

and kij = kji = k(υi, υj), ǫi = ǫ, ∀i; dim (Q) = 2N × 2N ; dim
(
β
)

= dim (r) = dim (t) = 2N . The
structure of the optimization problem (6) is a key point of the proposed approach. Its solution is the global
minimum of the arising cost function and the local minima problem, which affects classical back-propagation
algorithms, is completely avoided. In order to solve (6), traditional optimization techniques [14] can be used.
To this end, a very effective procedure, described in [15], is adopted in this work.

The thresholdb is computed by means of the Karush-Kuhn-Tucker (KKT) conditions of the CQP at optimality
[14] while thehyperparameters of the problem are determined according to a model selectionprocess (namely,
the bootstrap procedure [16]) aimed at minimizing the control parameter,h, given by

h = R2
∑

n,m

(αn − α∗

n) (αm − α∗

m) k (νn, ν) (8)

beingR the radius of the smaller hyper-sphere containing all the training data [9].
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Fig. 2. Test case.

IV. N UMERICAL RESULTS

In order to assess the effectiveness of the proposed approach, numerical simulations and comparisons with a
MLP NN-based procedure [17] have been performed.

The geometry under test is illuminated by means of an electric line source locatedλ0

6 above the air-soil
interface. This source model avoids the drawbacks arising from the modeling of complex electromagnetic sources.
Consequently, the attention is focused on the assessment ofthe proposed procedure. Moreover, the electric line
source is a simplified model of realistic antennas when 2D problems are addressed. A buried lossless (εr = 5.0)
circular (ρ = λ0

12 ) cylinder lies into the domainD. The dielectric parameters characterizing the sub-surface
region areεb = 20.0 and σb = 10−2 S

m
and represent a worse case with respect to the realistic soil[19].

The investigation area is a square regionL = λ0-sided, beingλ0 the wavelength in the upper region and also
the order of magnitude of the skin depth [19]. The scattered data at each measurement point are synthetically
computed by using a finite-element code and a PML truncation technique [20]. For an accurate representation
of the scattered electric field [18], sixteen equally-spaced (λ0

15 ) measurement points are arranged on a line placed
in region 1 atyt = yr = 2

3λ0 (Fig. 1).
Let us consider the localization problem. For comparison purpose, a two-layers MLP, characterized by 32 input,

32 hidden and 2 output neurons (previously proposed and assessed in [17]), is firstly trained by considering a
standard back-propagation algorithm. In the “learning phase”, a data set of 700 examples, sinthetically computed
by uniformly varying the position of the scatterer insideD (xn,train = −λ0

2 +n∆x, n = 0, 1, ...9,∆x = 0.112λ0,
yn,train = −λ0

2 +m∆y, m = 0, 1, ...7, ∆y = 0.167λ0), is considered. As shown in [17], 700 equally distributed
examples define a suitable set to train NN for the solution of localization problems. Input data for the NN are
the real and the imaginary parts of the scattered field collected at the measurement line. The center coordinated,
x0 andy0 are the NN’s outputs.

In order to compare NN and SVM performances under the same “conditions”, the same training set has been
considered during the SVM learning phase. However, since SVMs have been developed to solve one-output
learning problems (see [9] for further details), two different SVMs, one for each coordinate of the target, are
trained by using the CQP algorithm. Gaussian functions are considered as kernel functions due to their capability
to work as universal approximator [13]. After the bootstrapprocedure, the values of the
hyperparameters result:

(
σ2

)
x0

= 0.12,
(
σ2

)
y0

= 0.1, (C)x0
= 1280, (C)y0

= 5120, andǫ = 0.001.
The performances of the classical NN and SVM-based procedure are illustrated and compared in the following

by firstly considering a noiseless test set made up of160 examples. These examples are synthetically obtained
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Fig. 3. SVM-based approach. Estimated versus real scatterer properties. (a) x0
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by randomly varying the position of the cylinder insideD. The cylinder locations are different from those of
the training set (Fig. 2). Figure 3 and 4 show the estimated versus the actual scatterer properties when the
SVM-based and the NN-based approaches are taken into account, respectively. Both actual and estimated values
are normalized to the maximum admissible errorΛ (set equal to the investigation domain side,Λ = λ0). Let
us observe that, as far as the scatterer depth estimation is concerned, SVM greatly reduces the error of the NN
and the correlation coefficient (Ωy =

y0,act

y0,est
, where the subscriptsact andest indicate the actual and estimated

values, respectively) results much more close to1. Such an improvement is mainly due to the definition of the
kernel deviationǫ that guarantees targets to deviate at mostǫ form the function itself. Moreover, larger errors
occur when the targets are positioned just below the air-ground interface. This is probably due to the interaction
between the object and the interface and it is more evident when targets are positioned near the left and right
side of the investigation domain.

In order to quantitatively evaluate the localization accuracy, let us define some error figures:

ξx =
|x0,act − x0,est|

Λ
(9)

ξy =
|y0,act − y0,est|

Λ
(10)

Figure 5 shows the mean value and the variance for both the error figures when the NN and the SVM are
used. As expected, SVM enhances the performances achieved with the standard NN approach due to optimal
generalization properties guaranteed from the SLT.

In order to analyze the robustness of the proposed approach,target objects of circular cross-section, with radii
and dielectric permittivities different from those of the training set, have also been taken into account. Firstly,
different locations of the target inD have been considered (x0 = 0, y0 ∈ [0; 028λ0] ). In correspondence
with radius variations, the mean values of the error figures are < ξx >SV M= 0.022, < ξy >SV M= 0.12 and
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< ξx >NN= 0.095, < ξy >NN= 0.31, respectively. Similar results have been obtained also when the SVM
approach is adopted for localizing objects with different values of permittivity. The values of the average error
are equal to< ξx >SV M= 0.017 and< ξy >SV M= 0.10. For the same test set, the results achieved by using
the NN-technique are< ξx >NN= 0.045 and< ξy >NN= 0.14.

Moreover, the dependence of the localization accuracy versus the target shape has been analyzed. To this
aim, the target is a cylinder with square cross-section. Thearea of the cylinder is the same of the reference
circular cylinder used in the training phase. The achieved average localization errors (< ξx >SV M= 0.021 and
< ξy >SV M= 0.09) confirm the generalization capability of the SVM and the effectiveness of the proposed
approach with respect to the NN-technique (< ξx >NN= 0.12 and< ξy >NN= 0.39).

Finally, a noisy environment has been considered. Noisy data have been obtained by adding a uniform Gaussian
noise to simulated measurement data. The obtained results are given in Table I.

TABLE I

NOISY MEASUREMENT DATA. AVERAGE VALUES: (a) ξx AND (b) ξy FOR DIFFERENT SIGNAL-TO-NOISE RATIOS(SNRS).

SNR [dB] 50 35 20 10 5

SVM 0.017 0.019 0.036 0.080 0.130
NN 0.035 0.053 0.110 0.210 0.270

(a)

SNR [dB] 50 35 20 10 5

SVM 0.058 0.060 0.070 0.130 0.170
NN 0.100 0.110 0.220 0.350 0.350

(b)

V. CONCLUSIONS

In this paper, an innovative on-line inverse scattering methodology, based on the implementation of a support
vector machine, has been presented and applied to the detection of buried objects. The training of SVM requires
the solution of a constrained quadratic optimization problem. This is a key point of the proposed approach and
it represents the main advantage of the method (with respectto MLP NN-based procedures). It avoids typical
drawbacks as over-fitting or local minima occurrence.

The effectiveness of the proposed approach has been checkedby considering the localization of a given target.
An exhaustive numerical analysis has been performed and selected numerical results (statistically significant)
have been presented in order to assess the robustness of the method. The obtained results clearly demonstrated
significant improvements in the quasi real time localization of pipes buried in inaccessible domains. Moreover,



the generalization capability of the SVM procedure has beenalso pointed out. Future works, currently under
development, will be devoted to further assess the method and to introduce, in a convenient way, somea-priori
information into the retrieval procedure.
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