
Machine Learning for Utility Prediction in
Argument-Based Computational Persuasion

Ivan Donadello1, Anthony Hunter2, Stefano Teso4, Mauro Dragoni3

1 Free University of Bozen-Bolzano, Italy
2 University College London, United Kingdom

3 Fondazione Bruno Kessler, Italy
4 University of Trento, Italy

ivan.donadello@unibz.it, anthony.hunter@ucl.ac.uk, stefano.teso@unitn.it, dragoni@fbk.eu

Abstract

Automated persuasion systems (APS) aim to persuade a user
to believe something by entering into a dialogue in which ar-
guments and counterarguments are exchanged. To maximize
the probability that an APS is successful in persuading a user,
it can identify a global policy that will allow it to select the
best arguments it presents at each stage of the dialogue what-
ever arguments the user presents. However, in real applica-
tions, such as for healthcare, it is unlikely the utility of the
outcome of the dialogue will be the same, or the exact oppo-
site, for the APS and user. In order to deal with this situation,
games in extended form have been harnessed for argumenta-
tion in Bi-party Decision Theory. This opens new problems
that we address in this paper: (1) How can we use Machine
Learning (ML) methods to predict utility functions for differ-
ent subpopulations of users? and (2) How can we identify for
a new user the best utility function from amongst those that
we have learned? To this extent, we develop two ML meth-
ods, EAI and EDS, that leverage information coming from
the users to predict their utilities. EAI is restricted to a fixed
amount of information, whereas EDS can choose the informa-
tion that best detects the subpopulations of a user. We evalu-
ate EAI and EDS in a simulation setting and in a realistic case
study concerning healthy eating habits. Results are promising
in both cases, but EDS is more effective at predicting useful
utility functions.

Introduction
Persuasion is an activity that involves one party trying to
induce another party to believe something. It is an impor-
tant and multifaceted human facility. Often, it can involve a
dialogue in which arguments and counterarguments are ex-
changed between the persuader and the persuadee. For ex-
ample, a doctor can use arguments to persuade a patient to
eat a more healthy diet, and the patient can give counterar-
guments based on their understanding and preferences. Also,
the doctor may provide counterarguments to attempt to over-
turn misconceptions held by the patient.

An automated persuasion system (APS) is a software sys-
tem that takes on the role of a persuader, and a user is the
persuadee (Hunter et al. 2019). It aims to use convincing ar-
guments in order to persuade the user. Whether an argument
is convincing depends on its own nature, on the context of

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the argumentation, and on the user’s characteristics. An APS
maintains a model of the user to choose the best moves in the
dialogue (Hadoux and Hunter 2019). During the turn of the
APS, it presents an argument to the user and then user can
select their counterarguments from a menu. An APS can also
use a natural language interface to allow users input their ar-
gument in free text (Chalaguine and Hunter 2020).

In order for an APS to choose the moves it makes in
the dialogue (i.e., the arguments it presents), it needs to
use a strategy. Within the literature on computational mod-
els of arguments, key approaches to strategies are: Mecha-
nism design where it is a one-step process rather for multi-
step dialogues (Rahwan and Larson 2008; Rahwan, Lar-
son, and Tohmé 2009; Fan and Toni 2012); Planning sys-
tems to optimize choice of arguments based on belief in
premises (Black, Coles, and Bernardini 2014; Black, Coles,
and Hampson 2017) or minimize the number of moves made
(Atkinson, Bench-Capon, and Bench-Capon 2012); Ma-
chine learning of strategies such as Reinforcement Learn-
ing (Monteserin and Amandi 2013; Rosenfeld and Kraus
2016b; Rach, Minker, and Ultes 2018; Katsumi et al. 2018;
Riveret et al. 2019; Alahmari 2020) and transfer learning
(Rosenfeld and Kraus 2016a); Probabilistic methods to se-
lect a move based on what an agent believes the other is
aware of (Rienstra, Thimm, and Oren 2013), to approxi-
mately predict the argument an opponent might put forward
based on data about the moves made by the opponent in pre-
vious dialogues (Hadjinikolis et al. 2013), using a decision-
theoretic lottery (Hunter and Thimm 2016), using POMDPs
when there is uncertainty about the internal state of the op-
ponent (Hadoux et al. 2015); and Local strategies based for
example on the concerns (i.e., issues raised or addressed by
an argument) of the persuadee (Hadoux and Hunter 2019;
Chalaguine and Hunter 2020).

Apart from local strategies based on concerns, the above
proposals do not take the user’s needs into account. Yet, if
an APS is to persuade someone to accept some arguments,
then how those arguments relate to their needs is fundamen-
tal in deciding how to argue with them. This can be captured
by considering the utility of each argument from the point
of view of both the APS and the user (i.e., we have a util-
ity function for each agent). For this we can harness games
in extensive form (Osborne and Rubinstein 1994). For argu-
mentation, this has led to Bi-party Decision Theory (BDT)

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

5592

(Hadoux, Hunter, and Polberg 2018) that generates a pol-
icy that is a good compromise in maximizing the APS and
user utilities. However, BDT requires a utility function to be
constructed for groups of users. We address this by using
Machine Learning (ML) methods that learn utility functions
from data about subpopulations of users. Then, an appropri-
ate utility function for a new user (i.e., which subpopulation
the user belongs to) has to be determined. This can be per-
formed by asking questions. However, a user might be re-
luctant to answer too many questions (e.g., because they be-
come bored, or it takes too much effort). So the challenge is
to ask fewer questions and still get a useful utility function.
We address these novel problems by studying the follow-
ing research questions: RQ1 How do we use ML-methods
to identify a utility function for each subpopulation of a set
of users? RQ2 How do we optimize the number of questions
we ask a new user to identify an appropriate utility function?

Differently from Recommender Systems (RSs) (Ricci,
Rokach, and Shapira 2015), our proposal is based on BDT
and, therefore, it does not provide “one-shot” recommenda-
tions based only on users’ utilities but a dialogue that con-
siders both users’ and system (i.e., biparty) utilities. BDT
explicitly models the persuader’s and user’s needs. This al-
lows a better customization of the APS according to the
specific domain and subpopulation. Conversational RSs
(CRSs) (Jannach et al. 2021) go beyond standard “one-shot”
RSs by creating a dialogue with users. However, as far as
we know, no method tackles the problem of learning a utility
function in a BDT setting for CRSs. Reinforcement Learn-
ing (RL) (Rosenfeld and Kraus 2016b) is orthogonal to our
proposal but it is data inefficient as it involves large amounts
of interaction. Our method is less data hungry as it only
requires some utility elicitation from users with question-
naires. We addresses the limitations of BDT by developing
two ML methods that compute the utility functions from a
dataset of user needs. These ML methods allow the opti-
mization of the number of questions to ask. The evaluation
using synthetic data reveals promising results and answers
to RQ1 and RQ2.

Bi-party Decision Theory
Decision trees (DT) are an important approach to making
optimal decisions (Peterson 2009). In computational persua-
sion, a DT is used for representing all possible dialogues be-
tween two agents: each path from the root to a leaf alternates
decision nodes with chance nodes. The former are associ-
ated with the persuader (a.k.a. the proponent) and represent
the argument to be posed by the APS. The latter are associ-
ated with the persuadee (a.k.a. the opponent) and represent
the argument posed by the user. Each arc (n, ni) is labelled
with the argument posited by the corresponding agent that
has been selected at node n. Figure 1 contains an example
of DT for the persuasion goal of reducing the red meat con-
sumption. A policy associates a decision node with the best
argument to pose by the proponent by considering the points
of view of both the proponent and the opponent. In Bi-party
Decision Theory, these viewpoints are modelled using two
utility functions Up and Uo. These provide each leaf with a
utility value that represents the benefit, for the correspond-

n1

n2

n3 n4

n5 n6 n7 n8

[a1] Low red meat consumption is neces-
sary for a healthy diet.

[a2] It is really difficult
to change diet.

[a3] I really like the
taste of meat.

[a4] Think about
the benefits of re-
ducing red meat.

[a5] Try
to reduce
red meat
slowly.

[a6] White
meat can be
an alternative.

[a7] Fish is a
tasty alterna-
tive to meat.

Figure 1: A decision tree for a persuasive dialogue for the red
meat persuasion goal. Proponent (decision) nodes are solid
boxes and opponent (chance) nodes are dashed boxes.

ing agent, of accepting the APS arguments in the dialogue
from the root to that leaf

A bimaximax policy maximizes Up at a decision node
and Uo at a chance node. Some notation is necessary before
a formal definition of the policy. Let T be a DT, L be a label-
ing function that associates an argument to each arc (n, ni)
between two nodes of T and Children(T, n) be the set of
children of n. The AMax(T, U, n) function returns the chil-
dren of n with highest utility U : AMax(T, U, n) = {n′ ∈
Children(T, n) | ∀n′′ ∈ Children(T, n), U (n′) ≥ U(n′′)}
Let δ ∈ R be a discount factor that decreases the utility of
longer branches. Indeed, shorter dialogues can be more per-
suasive than longer ones that require more attention from the
user. Definition 1 defines the bimaximax policy.

Definition 1. A bimaximax policy for (T, L, Up, Uo, δ)
is Π : Nodes(T) → Nodes(T) defined as follows using
the calculation of the Qp : Nodes(T) → R and Qo :
Nodes(T)→ R functions.

• If n is a leaf node, then Qp(n) = Up(n) and Qo(n) =
Uo(n).

• If n is a chance node, and ni ∈ AMax(T,Qo, n), then
Qo(n) = δ ×Qo(ni) and Qp(n) = δ ×Qp(ni).

• If n is a decision node, and ni ∈ AMax(T,Qp, n), then
Qo(n) = δ × Qo(ni) and Qp(n) = δ × Qp(ni) and
Π(n) = 〈ni, L(n, ni)〉.

For the example in Figure 1, the APS aims to persuade the
user to adopt healthy alternatives to red meat, the leaf utility
values are then Up(n5) = 2, Up(n6) = 3, Up(n7) = 4,
Up(n8) = 6. The user is interested in consuming white
meat and to slowly reduce his/her consumption of red meat:
Uo(n5) = 2, Uo(n6) = 6, Uo(n7) = 7, Uo(n8) = 4.
The utility values are then propagated to the higher levels of
the tree as follows, whereQp/o(n) denotes (Qp(n), Qo(n)):
Qp/o(n1) = (3, 6), Qp/o(n2) = (3, 6), Qp/o(n3) = (3, 6),
Qp/o(n4) = (6, 4), with δ = 1, Π(n1) = (n2, L(n2)),
Π(n3) = (n6, L(n6)) and Π(n4) = (n8, L(n8)).

Definition 1 does not provide a criterion for the choice of

5593

ni when |AMax(T,Q, n)| > 1. We therefore adopt a random
choice that improves the variability of the APS messages.

Simulated Dialogues
The bimaximax policy defines a rule for choosing the la-
bel/argument to pose given a decision node n. Given a
chance node ni, the next decision node nj is selected by the
user via, for example, a menu. However, when real users are
not available the next decision node has to be computed ac-
cording to some simulated opponent policy Πo. This policy
can be computed by statistical methods that rely on datasets
of conversations with users, by harvesting arguments from
the web or with the use of questionnaires. Here, we sim-
ply define the opponent policy as Πo(ni) = 〈nj , L(ni, nj)〉
with nj ∈ AMax(T,Qo, ni). In our example Πo(n2) =
(n3, L(n3)). We implement Definition 1 in a procedure,
called Bimaximax, that propagates up the leaf utilities at the
parents, with a post-order tree traversal, and outputs Π, Πo.
A simulated dialogue procedure, Algorithm 1, consists in
the computation of the policies Π,Πo (line 2) and in alternat-
ing between the proponent and opponent arguments (given
by Π,Πo) from the root to a leaf (lines from 4 to 9). The
output path p contains the proponent/opponent nodes from
the root to a leaf. In our example, p = 〈n1, n2, n3, n6〉.

Algorithm 1: SimDialogue(T, L,up,uo, δ)

Input: T, L,up,uo, δ
Output: The path p = 〈root(T), n1, . . . , nheight(T)〉

1: p := 〈〉
2: Π,Πo := Bimaximax(T, L,up,uo, δ)
3: n := root(T)
4: while isNotLeaf(n) do
5: if isDecision(n) then
6: 〈n, ln〉 := Π(n)
7: else
8: 〈n, ln〉 := Πo(n)
9: p.append(n)

10: return p.append(n)

Let up = 〈Up(n1), Up(n2), . . .〉 and uo = 〈Uo(n1),
Uo(n2), . . .〉 be the proponent and opponent utility vectors
respectively, with ni ∈ leaves(T). The values of up can be
authored by domain experts from the substantial evidence
in healthcare literature on the health benefits of specific be-
haviour changes, e.g., the value of changing from high red
meat consumption to white meat consumption (Abete et al.
2014). Instead, the setting of uo is an open challenge. In the
next section, we define two ML methods able to predict an
accurate estimation for uo from a dataset of users’ utilities.
These methods can be used also in a dialogue procedure with
real users where the policy Πo will be replaced, for example,
by a menu in a smartphone app that implements the APS.

Machine Learning for Utility Prediction
Let T be a DT, a corresponding utility dataset Uo contains
the utility values for a population sample. We encode Uo

as a matrix where each row j contains the utility vector
uo
j of the arguments in leaves(T) for a given user. Such a

dataset can be gathered by using, for example, utility elicita-
tion techniques based on questionnaires (Lenert et al. 1997;
Lenert, Sherbourne, and Reyna 2001). Here, we assume that
Uo contains samples of subpopulations (as commonly done
in RSs), that is, clusters of users who have similar utilities.
For example, according to the leaf arguments in Figure 1,
we can have three subpopulations/clusters in Uo:C1,C2 and
C3. The users in C1 like to eat food containing animal pro-
teins, the users in C2 have difficulties changing their diet
habits whereas the users in C3 are more open minded. Such
a dataset can be gathered with cluster sampling techniques
(Turk and Borkowski 2005).

We develop two ML methods, trained on Uo, for predict-
ing an estimation of the opponent utility vector ûo, for a
given user, as close as possible to the true vector uo. This
implies choosing some features of the users as input to our
ML methods to predict ûo. These can be demographic infor-
mation or some arguments in leaves(T). We consider these
input utilities as the evidence to be obtained in order to pre-
dict the rest of the utility vector. Therefore, the predicted
utility vector is composed from the evidence uo

1:e, with
e ∈ [1, Le−1] and Le = |leaves(T)|, and the predicted util-
ities: ûo

e = 〈uo
1:e; û

o
e+1:Le〉. In our example, let us suppose

that a user in cluster C1 has true utilities uo = 〈5, 4, 8, 9〉.
A ML method, trained on Uo, can ask as evidence the util-
ities for n5, n6 (e = 2 out of 4 possible questions) to pre-
dict the utilities of n7, n8: 9 and 7, for example. Therefore,
ûo
2 = 〈5, 4, 9, 7〉 and this is a good prediction as the true path

returned by SimDialogue is p = 〈n1, n2, n4, n8〉 whereas
the path returned by using ûo

2 is p̂ = 〈n1, n2, n4, n7〉 that is
quite similar to the true one. Indeed, both n7 and n8 contain
arguments related to the animal proteins cluster.

Our proposal consists of providing SimDialogue with
the opponent utility vectors ûo

e predicted with ML meth-
ods as input. The evidence e obtained from the user has
to be enough to have a good dialogue path p̂ but with-
out asking too many questions of the user (otherwise they
may disengage). For example, asking 50 utilities of a DT
with 60 leaves will bring reliable paths but would be too
many questions. More formally, let ML be a machine learn-
ing method trained on Uo to compute the opponent utility
vector ûo

e from uo
1:e, that is, ML(uo

1:e) = ûo
e, and let R

be a regret function that measures the difference from the
path returned by SimDialogue with the one returned by
SimDialogue(ML), here the notation SimDialogue(ML)
is a shortcut for SimDialogue(T, L,up,ML(uo

j,1:e), δ)).
Given a test set Uo

TE , the optimal number e∗ of evidence
to ask about is:

e∗ = argmin
e∈[1,Le−1]

|Uo
TE |∑

j=1

R(SimDialogue(T, L,up,uo
j , δ),

SimDialogue(T, L,up,ML(uo
j,1:e), δ)) + E(e) (1)

with E a monotonic-increasing function that models the user
effort in answering the asked evidence whose parameters
can be estimated, for example, by measuring the user dis-
engagement rate. This is to avoid having an APS that asks

5594

all the possible questions as evidence. The following sub-
sections present our ML methods for utility prediction.

Evidence as Amount of Information
An evidence as amount of information (EAI) method uses
a portion of the arguments in Uo (limited by the evidence
e) to train a supervised regressor to predict the utility val-
ues of the other arguments. This is the standard regression
task performed with supervised learning techniques where
a training set X × Y is used to compute an estimator func-
tion f for Y . The setX contains feature vectors xwhereas Y
contains numeric values y to be estimated from x. The train-
ing is performed such that the output ŷ of f(x) has to be as
close as possible to the true value y. In our case, given an ev-
idence index e, the set X is given by the first e arguments in
Uo and Y is one of the remaining arguments. More formally,
the training set is Uo

∗,1:e×Uo
∗,e+l with l ∈ [1, Le−e]. The no-

tation A∗,i:j indicates the columns from i to j (included) of
matrixA. Therefore, for each evidence index e ∈ [1, Le−1]
multiple regressions have to be performed from Uo

∗,1:e: one
for predicting the utility values for each remaining argument
with index in [e+1, Le]. As the ML method for computing f ,
we use a Support Vector Regression SVR that linearly pe-
nalizes the predictions ŷ that are at least ε away from the true
value y. The advantage of an EAI method is that many off-
the-shelf ML methods for computing f can be used. How-
ever, such methods are restricted to the provided portion
Uo
∗,1:e of the dataset to learn the other utility values, with-

out any possibility of automatically choosing a better set of
arguments to ask about. The next method addresses this is-
sue. We opted for SVR (and RF in the next section) because
it is a known-working technique that does not require large
training set to reach reasonable performance. Our focus is
not on the choice of the ML method but on the usefulness of
adopting ML for effective, data driven, argumentation.

Evidence as Depth of Searching
An evidence as depth of searching (EDS) method has a lim-
ited amount of evidence e to be obtained from users, but,
differently from the EAI-based approach, the EDS method
is given access to the whole dataset Uo. Therefore, the EDS
method can search the most appropriate evidence for the re-
gression of the utility function. This search is limited by the
quantity e. We call the method Cluster and RAndom for-
est MEan Regressor (CRAMER) and, in brief, it performs
clustering on Uo to find subpopulations. Then a Random
Forest (RF) is trained to learn the most important utilities
of arguments to ask in order to classify a new user into a
subpopulation. The utility vector ûo

e is given by the asked
utilities and by the centroids of the subpopulation. We detail
the method with the running example.

Firstly, CRAMER performs clustering on Uo and dis-
covers the underlying clusters and computes their centroids.
These are the mean of the utilities of each user in the cluster.
Numeric examples for the centroids for C1, C2 and C3 are:
c(C1) = 〈5.0, 4.0, 9.2, 9.1〉, c(C2) = 〈3.1, 8.5, 7.2, 1.9〉
and c(C3) = 〈8.1, 8.6, 2.7, 7.3〉. The second step of
CRAMER is to train a RF classifier on Uo to learn from

user utilities what are the main arguments that characterize a
cluster. RF classifiers require a max depth parameter for set-
ting the maximum depth of their classification trees, i.e., de-
cision trees trained for classification tasks. We set this with
e, that is the number of arguments to be asked. A high value
for max depth could generate classification trees that overfit
Uo (with consequently low performance) and could be too
demanding for the users. In our example, if we set e = 2, a
random forest is able to classify a new user by simply asking
the utilities only for n8 (fish) and n7 (white meat). Indeed,
high utilities for both these arguments mean that the user is
in C1, whereas a low utility for the fish argument classifies
the user inC2. A high utility for the fish and a low one for the
white meat argument bring the classification to C3. Lastly,
the method joins the asked (true) utilities with the centroid
(inferred) utilities in the predicted cluster to obtain the util-
ity vector ûo

e of the user. For example, the utility vector of a
user answering with utility value of 8 for the white meat ar-
gument and with utility 7 for the fish argument (cluster C1)
is ûo

2 = 〈5, 4, 8, 7〉.

Empirical Evaluation
The aim of the evaluation is to test the ability of
SimDialogue(ML) (prediction of ûo with ML and conse-
quent use of ûo in Algorithm 1) of returning persuasive
arguments as good as the ones returned by SimDialogue.
However, as big datasets of APS dialogues with real users
are not available, we test SimDialogue(ML) on synthetic
datasets with the use of simulations. We use the output of
the SimDialogue procedure as a gold standard and evalu-
ate how much the output of SimDialogue(ML) differs from
the gold standard. The source code and the supplementary
material are online at shorturl.at/oyKV3

Simulation Design
We compare SimDialogue and SimDialogue(ML) on dif-
ferent abstract DTs and population samples with their own
utilities. Our aim is to perform a fair comparison between the
gold standard and SimDialogue(ML) trying to avoid possi-
ble bias. Good simulation results reveal possible good re-
sults in real cases too. The simulation steps are as follows:

Trees Generation: given a tree height and a list of
branching factors as input, a random abstract DT is gener-
ated with a breadth-first algorithm. This recursively gener-
ates random children of a node according to a branching
factor taken from the input list. This is repeated until the
input height has been reached. We repeat this process to ob-
tain a set T = {T1, T2, . . .} of abstract DTs. As they have
no particular meaning, the labelling L is not necessary. Each
DT represents the structure of a possible persuasion dialogue
between an APS and a user.

Datasets Generation: for each T ∈ T, we synthe-
size a set Uo

T = {Uo
T,1,Uo

T,2, . . .} of datasets of oppo-
nent utilities. Each dataset Uo

T,i = {uo
T,i}j represents sam-

ples of subpopulations containing the utility vector uo
T,i,j

for a user indexed by j belonging to a particular subpop-
ulation. This allows the EAI and EDS methods to learn
utility functions for subpopulations. Each dataset is used

5595

for: i) training by procedure SimDialogue(ML), ii) test-
ing by both SimDialogue(ML) and SimDialogue. Several
datasets of sobpopulations allow us to check the results of
SimDialogue(ML) in a robust way.

We synthesize a dataset Uo
T,i by: i) creating clusters of

users; ii) assigning each user a utility vector uo
T,i,j such that

users in the same cluster have similar utilities. Let T be a
DT, C ∈ N be an input number of clusters and CW ∈ R
be an input center width, i) we sample C center points (vec-
tors with leaves(T) dimensions) from a multivariate uniform
distribution with values in [−CW,CW]. These vectors are
the centers of the clusters. ii) For each center vector c, we
samplem vectors (with leaves(T) dimensions) from a multi-
variate normal distribution with mean µ = c and covariance
matrix Σ = σ2

CI , with I the identity matrix and σ2
C the clus-

ter variance given as input. We sample them vectors such as
every cluster has roughly the same number of vectors. All
these sampled vectors compose the dataset Uo

T,i.
Simulation Run: for each pair 〈T,Uo

T,i〉 and for a
given evidence index e ∈ [1, Le − 1], we split Uo

T,i
into a training set, for training a given ML method, and
a test set. Let j be the index of a sample in the test
set, we run SimDialogue(T, L,up,ML(uo

T,i,j,1:e), δ) and
SimDialogue(T, L,up,uo

T,i,j , δ). Remember that an EAI
method takes a portion of the training set given by e, whereas
an EDS method takes the whole training set but can ask
only e questions. For a statistical significance of the results,
we use the k-fold cross validation technique. The dataset
Uo
T,i is split into k parts, k − 1 parts are used as training

set for SimDialogue(ML) and the remaining part is left as
test set for both SimDialogue(ML) and SimDialogue. In
this way, k splits/folds of the original dataset Uo

T,i are ob-
tained and for each split we run both SimDialogue(ML) and
SimDialogue.

Comparison: the paths p̂T,i,j,e,k and pT,i,j,k returned by
the SimDialogue(ML) and SimDialogue procedures, re-
spectively, are compared according to the following metrics.

Metrics for the Empirical Evaluation
Given a user in Uo, let ûo

e be their estimated
utility vector and uo be the true one. Given
p̂ = SimDialogue(T, L,up, ûo

e, δ) and p =
SimDialogue(T, L,up,uo, δ) (hereafter we remove
the subscripts T, i, e, k if not necessary), we consider the
last (leaf) nodes of these paths: n̂ = p̂h, n = ph with h the
height of T , we call n the true node and n̂ the predicted node
and we compute the evaluation metrics by only comparing
n with n̂. This strategy is motivated by the random choice of
ni when |AMax(T,Q, n)| > 1: this randomness can easily
select a different branch in T for SimDialogue(ML) w.r.t.
SimDialogue for the same utility vector. This side effect
would highly penalize the performance if we compared the
whole paths resulting in a non-fair comparison.

The aim of the evaluation is to test the ability of
SimDialogue(ML) to return similar nodes to SimDialogue.
This similarity can be easily tested with the standard ac-
curacy, i.e., whether nj = n̂j for a given user indexed
with j in Uo. However, as random choices can easily fail

this testing, the similarity between nj and n̂j is relaxed by
measuring an argument distance between the arguments in
nj and in n̂j , respectively. This is the R term in Equation
(1). The nodes nj and n̂j have a small argument distance
if the opponent and proponent utilities of the argument in
nj are close to the corresponding ones of the argument in
n̂j . Good performance would indicate that an APS based
on SimDialogue(ML) is able to provide arguments as simi-
lar as possible (w.r.t. the utilities) to the gold standard argu-
ments returned by SimDialogue. More formally, the mean
argument distance (Mad) is the mean, over all the dataset
samples, of the Manhattan distance between the proponent
and opponent utilities of the true node and the predicted
one: Mad = 1

|Uo|
∑|Uo|

j=1 |Up(nj) − Up(n̂j)| + |Uo(nj) −
Uo(n̂j)|. Notice that, if we decompose the mean argument
distance according to the proponent (1

|Uo|
∑|Uo|

j=1 |Uo(nj) −
Uo(n̂j)|) and the opponent (1

|Uo|
∑|Uo|

j=1 |Up(nj)−Up(n̂j)|)
dimensions we obtain the mean absolute errors (Mae) which
are standard metrics for regression tasks. These metrics de-
pend on T, i, e, k, therefore the output of the simulations is
a set of argument distances. These values need to be aggre-
gated to have a global estimation of the performance.

k-fold aggregation The first aggregation is performed on
the number of folds k of the k-fold cross validation. For each
triple 〈T, i, e〉 we compute the mean and the standard devia-
tion of the metrics over all the k values obtaining the values
µ(Mad)T,i,e and σ(Mad)T,i,e.

Evidence aggregation The second aggregation regards
the evidence e requested as input to users in order to com-
pute the utility values of the remaining arguments. We want
to study the trend of the performance metrics with a increas-
ing amount of evidence. This amount is measured as the
percentage of asked utility arguments over all possible ar-
guments/leaves of a DT. This allows us to check whether
there exists a percentage of evidence from which the perfor-
mance is acceptable. We therefore aggregate the mentioned
means by averaging over T and Uo

T according to the evi-
dence percentage. Let Ep ∈ {0.1, 0.2, . . . 1.0} be the evi-
dence percentage and E = dEp · (Le− 1))e be the amount
of utility of arguments to ask for T and for a given Ep, the
mean argument distance aggregation is the average of the set
{µ(Mad)}T,i,e, with e ∈ {1, 2, . . . E}. The standard devi-
ation of this aggregations is computed from this set by esti-
mating the pooled variance.

Simulation Setting
Some values of the parameters in the simulation are uni-
formly (randomly) selected from a set of alternatives. This
avoids the bias of having only one value resulting in more
general results. These are: the tree height in {4, 5, 6},
the proponent utility in {1, 2, . . . 11}, the number of clus-
ters C ∈ {4, 6, 8, 10} and the center width CW ∈
{0.5, 1.0, 2.5, 3.0}. This setting for CW , allow us to have
different levels of clustering performance avoiding the bias
of population samples that are perfectly separable into clus-
ters. The branching factor for generating the children of a
node is 2 or 3 for 90% of the time, 4 for 10% of the time. This

5596

allows us to have realistic DTs with a reasonable number of
leaves. Other parameters have a single value: the number of
synthetic trees (|T| = 10) and datasets (|Uo

T | = 10), the
size of Uo

T,i is 2000, the cluster variance σ2
C is 1.0, the dis-

count factor δ in Bimaximax is 1 as it is not relevant for the
simulations and k = 5 for the k-fold cross validation. The
hyperparameters for SVR are C = 1, ε = 0.1 and the radial
basis function as a kernel. For the clustering in CRAMER
we used KMeans with the number of clusters found through
grid search in {4, 6, 8, 10}. The random forest in CRAMER
has 100 estimators with the minimum number of samples re-
quired: i) to split a node is 2, ii) to be a leaf is 1.

Results
We measure the performance of SimDialogue(ML) (with
the average mean argument distance) according to different
levels of evidence percentage Ep. This allows us to check:
i) whether ML methods are able to learn utility functions
from data in comparison to non-ML baselines (RQ1) and ii)
whether there exists a percentage of evidence from which
the performance are acceptable (RQ2). We compare some
baselines with the gold standard in the same way done for
SimDialogue(ML):

• Random Regressor (RandR) randomly selects integer
utility values between the maximum and the minimum
utility for each argument in the columns of of Uo

∗,e+1:Le.
• Mean Regressor (MeanR) computes the mathematical

mean (over all the users) of the utility values of each ar-
gument in the columns of Uo

∗,e+1:Le.

• CLUster and MEan Regressor (CLUMER) performs
clustering to find the subpopulations in Uo

∗,1:e. Once a
new user is assigned to a cluster, the centroids of the clus-
ters are used as utility values for the remaining arguments
in the columns of Uo

∗,e+1:Le.

Aggregated performance are reported in Figure 2 whereas
Appendix A of the supplementary material provides exam-
ples of performance for some random DTs and datasets.
As expected, the EAI method and the baselines increase
their performance as the evidence percentage Ep increases.
Indeed, more asked questions allow more accurate perfor-
mance. In addition, the increase of the performance is also
due to a robustness property of the bimaximax policy: i.e.,
the system ability to capture regions of high user’s utility
regardless the other regions. If few leaves have a random
utility most probably their utility will not be the highest
one. Indeed, during the bottom-up utility propagation phase
in Bimaximax, the utility of these few leaves will be dis-
carded in favour of higher utilities from other branches as
the bimaximax policy selects the highest utility at each node.
These few leaves do not have the power to change the predic-
tion of the true node. AsEp increases, the number of random
utilities decreases. This explains also the unexpected perfor-
mance improvement of RandR as Ep increases.

Discussion for RQ1 The results for the argument dis-
tances are promising as with 10% of evidence SVR obtains
a Mad of 2.8. This means that the predicted node has pro-
ponent and opponent utilities that on average have distance

1.4 from the true node. As the utility values range in a Lik-
ert scale from 1 to 11, a 1.4 distance is an acceptable error.
Therefore, the ML methods are able to compute the utility
values for the population sample by predicting nodes that
contain arguments that are very close (from the utilities point
of view) to the arguments contained in the true nodes.

Discussion for RQ2 An acceptable number of questions
as evidence is not trivial to identify. For example, 10% of ev-
idence could present low performance for small trees (e.g.,
with 20 leaves only 2 questions are asked) therefore choos-
ing 30% could represent a better choice. However, this could
result in a high amount of requested information (e.g., 30
questions for a tree with 100). To this extent, CRAMER
gives us a different view. For this method, 10% of evidence
is required to identify the subpopulation and the utilities are
the centroids of each subpopulation. Therefore, for a tree
with 20 leaves, a depth of 2 for the random forest is sufficient
to identify 4 subpopulations. In general, a depth ofD identi-
fies 2D subpopulations. It is important to notice that the level
of depth of search is a maximum level for the random forest,
that is, the random forest can use less information to iden-
tify subpopulations. This can be seen in the picture as the
performance of CRAMER are stable as the depth of search
increases. The EAI methods need 50% of evidence to have
the same performance of CRAMER.

The advantage of an EDS method relies in its ability of au-
tomatically selecting the most appropriate arguments to ask
from Uo obtaining good performance with a low Ep. Dif-
ferently, an EAI method has only a partial view of the whole
information but it increases the performance with higherEp.
The drawback of CRAMER is its rough computation of
ûo
e given a subpopulation. SVR instead has a more accurate

computation based on the error optimization of the predicted
utility. This can be seen by its better performance with re-
spect to the EAI method CLUMER. In addition, CLUMER
and SVR have similar performance as the former explicitly
leverages the cluster structure of the users, the latter achieves
the same through the underlying Gaussian kernel.

A Realistic Case Study
We evaluate SimDialogue(ML) on a realistic case study
where the DT contains real arguments regarding the reduc-
tion of red meat consumption. Both the DT and the synthetic
dataset are provided. This is the first step for implementing
an APS for following healthy lifestyles. This was commis-
sioned by the Local Healthcare Department of Trento (Italy),
for the deployment in the Trentino area.

Regarding the DT, we gathered the arguments and their
relations from diet and behavior change literature (Abidi
et al. 2014; Stankevitz et al. 2017). We obtained a DT with
23 leaves and height of 4. Concerning up, we labeled each
leaf with a topic describing the content of the arguments
in the corresponding path from the root. In our example,
the path n1, n2, n4, n8 is labeled with “Fish as alternative”.
Each topic is assigned with a proponent utility according to
the topic importance from a diet point of view. Each leaf
n is assigned with the proponent utility of the correspond-
ing topic. These topics are: vegetarianism (Up(n) = 8),
fish as alternative (Up(n) = 6), white meat as alternative

5597

20 40 60 80 100
Percentage of evidence

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Avg. mean argument distance

20 40 60 80 100
Percentage of evidence

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6
Avg. mean abs. error proponent utility

20 40 60 80 100
Percentage of evidence

0.5

1.0

1.5

2.0

2.5

3.0

Avg. mean abs. error opponent utility
CLUMER
CRAMER
MeanR
RandR
SVR

Figure 2: Performance of SimDialogue(ML). Results are aggregated according to the trees, the datasets and the evidence.
Vertical bars represent the sampled standard deviation. Best viewed in colors.

0 5 10 15 20
Number questions asked

1

2

3

4

5
mean argument distance

0 5 10 15 20
Number questions asked

0.4

0.6

0.8

1.0

1.2

1.4

1.6
mean abs. error proponent utility

0 5 10 15 20
Number questions asked

1.0

1.5

2.0

2.5

3.0

3.5
mean abs. error opponent utility

CRAMER
RandR
SVR
MeanR
CLUMER

Figure 3: Performance of SimDialogue(ML) for the red meat case study. Results are aggregated according to the k folds.
Vertical bars represent the standard deviation. Best viewed in colors.

(Up(n) = 4), thinking of alternatives (Up(n) = 3) and re-
ducing red meat consumption (Up(n) = 2).

Regarding the dataset, we created 6 user profiles with their
demographics (sex, age, school degree, level of meat con-
sumption and level of physical activity) and utility values
according to the profile, e.g, young student or woman in ca-
reer. Each profile is then transformed into a numeric vector.
This dataset of 6 examples is expanded to 2000 examples by
repeating and shuffling the 6 example vectors. Then a matrix
of gaussian random noise (µ = 0, σ2 = 1) is added to the
expanded dataset in order to have variability. DT topics and
dataset profiles are in Appendix C.

The evaluation has been performed as in the previous sec-
tion. As there is only one DT and dataset, we present the
non-averaged metrics in Figure 3. This realistic case study
shows similar findings to the simulations. However, differ-
ently from the simulations, here demographic information is
available as evidence for all the methods. The Mad is good
as with only the demographic information we have a Mad
of around 1.7 for CRAMER and around 2.1 for both SVR
and CLUMER. Here, the simple clustering and centroids
approach of CLUMER is sufficient to achieve the same
results of SVR. CRAMER presents stable performance.
As the number of questions increases both CLUMER and
SVR require 5 questions (out of 22 possible questions, i.e.,
23% more of questions) to get a Mad close to the one of
CRAMER. The mean absolute error of the proponent util-
ity is much lower compared to the opponent one. This is due
to a bias in the dataset as most of the final true nodes have

8 as proponent utility value. This bias does not regard the
opponent utility, see the statistic in Appendix D. A quali-
tative comparison of the arguments returned by CLUMER
and SVR for each profile is in Appendix E.

Conclusion
Bi-party Decision Theory is a promising approach for an
APS to choose the best arguments to persuade a user. These
strategies are based on utility functions. However, no meth-
ods deal with the construction of such functions for a new
user in an efficient way. In this paper, we addressed this
problem by developing two ML models (EAI and EDS) to
learn these utility functions from datasets. The evaluation
with simulations and with a realistic case study show that
both EAI and EDS are able to learn utility functions of sub-
population of users with comparable performance. However,
EDS is more efficient as it requires less user information.

As future work, we want to test these methods with real
users in a living lab. In addition, a combination of EAI with
EDS could improve the performance requiring a lower num-
ber of questions to ask about. The use of neural networks
for learning the utilities will be studied also in an interactive
APS that it adapts the utilities as it interacts with the user
(Dragone, Teso, and Passerini 2017).

Acknowledgements
The research of ST was partially supported by TAILOR, an
EU Horizon 2020 project, GA No 952215.

5598

References
Abete, I.; Romaguera, D.; Vieira, A. R.; de Munain, A. L.;
and Norat, T. 2014. Association between total, processed,
red and white meat consumption and all-cause, CVD and
IHD mortality: a meta-analysis of cohort studies. British
Journal of Nutrition, 112(5): 762–775.
Abidi, S.; Vallis, M.; Abidi, S. S. R.; Piccinini-Vallis, H.; and
Imran, S. A. 2014. D-WISE: Diabetes Web-Centric Infor-
mation and Support Environment: conceptual specification
and proposed evaluation. Canadian Journal of Diabetes,
38(3): 205–211.
Alahmari, S. 2020. Reinforcement Learning for Argumenta-
tion. Ph.D. thesis, University of York, York, UK.
Atkinson, K.; Bench-Capon, P.; and Bench-Capon, T. J. M.
2012. Efficiency in Persuasion Dialogues. In ICAART (2),
23–32. SciTePress.
Black, E.; Coles, A. J.; and Bernardini, S. 2014. Automated
Planning of Simple Persuasion Dialogues. In CLIMA, vol-
ume 8624 of Lecture Notes in Computer Science, 87–104.
Black, E.; Coles, A. J.; and Hampson, C. 2017. Planning for
Persuasion. In AAMAS, 933–942. ACM.
Chalaguine, L.; and Hunter, A. 2020. A Persuasive Chatbot
Using a Crowd-Sourced Argument Graph and Concerns. In
COMMA, volume 326 of FAIA, 9–20. IOS Press.
Dragone, P.; Teso, S.; and Passerini, A. 2017. Constructive
Preference Elicitation. Frontiers Robotics AI, 4: 71.
Fan, X.; and Toni, F. 2012. Mechanism Design for
Argumentation-based Persuasion. In COMMA, volume 245
of Frontiers in Artificial Intelligence and Applications, 322–
333. IOS Press.
Hadjinikolis, C.; Siantos, Y.; Modgil, S.; Black, E.; and
McBurney, P. 2013. Opponent Modelling in Persuasion Di-
alogues. In IJCAI, 164–170. IJCAI/AAAI.
Hadoux, E.; Beynier, A.; Maudet, N.; Weng, P.; and Hunter,
A. 2015. Optimization of Probabilistic Argumentation with
Markov Decision Models. In IJCAI, 2004–2010.
Hadoux, E.; and Hunter, A. 2019. Comfort or Safety? Gath-
ering and Using the Concerns of a Participant for Better Per-
suasion. Argument & Computation, 10: 113–147.
Hadoux, E.; Hunter, A.; and Polberg, S. 2018. Biparty De-
cision Theory for Dialogical Argumentation. In COMMA,
volume 305 of Frontiers in Artificial Intelligence and Appli-
cations, 233–240. IOS Press.
Hunter, A.; Chalaguine, L.; Czernuszenko, T.; Hadoux, E.;
and Polberg, S. 2019. Towards Computational Persuasion
via Natural Language Argumentation Dialogues. In KI, vol-
ume 11793 of LNCS, 18–33. Springer.
Hunter, A.; and Thimm, M. 2016. Optimization of Dialec-
tical Outcomes in Dialogical Argumentation. International
Journal of Approximate Reasoning, 78: 73–102.
Jannach, D.; Manzoor, A.; Cai, W.; and Chen, L. 2021. A
Survey on Conversational Recommender Systems. ACM
Comput. Surv., 54(5): 105:1–105:36.
Katsumi, H.; Hiraoka, T.; Yoshino, K.; Yamamoto, K.; Mo-
toura, S.; Sadamasa, K.; and Nakamura, S. 2018. Op-
timization of Information-Seeking Dialogue Strategy for

Argumentation-Based Dialogue System. In Proceedings of
DEEP-DIAL@AAAI’19, volume abs/1811.10728. ArXiv.
Lenert, L.; Morss, S.; Goldstein, M. K.; Bergen, M.; Faust-
man, W.; and Garber, A. M. 1997. Measurement of the va-
lidity of utility elicitations performed by computerized inter-
view. Medical Care, 35(9): 915–920.
Lenert, L. A.; Sherbourne, C. D.; and Reyna, V. 2001. Util-
ity elicitation using single-item questions compared with a
computerized interview. Medical Decision Making, 21(2):
97–104.
Monteserin, A.; and Amandi, A. 2013. A reinforcement
learning approach to improve the argument selection effec-
tiveness in argumentation-based negotiation. Expert Systems
with Applications, 40: 2182–2188.
Osborne, M.; and Rubinstein, A. 1994. A Course in Game
Theory. MIT Press.
Peterson, M. 2009. An Introduction to Decision Theory.
Cambridge University Press.
Rach, N.; Minker, W.; and Ultes, S. 2018. Markov Games
for Persuasive Dialogue. In COMMA, volume 305 of Fron-
tiers in Artificial Intelligence and Applications, 213–220.
Rahwan, I.; and Larson, K. 2008. Pareto Optimality in Ab-
stract Argumentation. In AAAI, 150–155. AAAI Press.
Rahwan, I.; Larson, K.; and Tohmé, F. A. 2009. A Character-
isation of Strategy-Proofness for Grounded Argumentation
Semantics. In IJCAI, 251–256.
Ricci, F.; Rokach, L.; and Shapira, B., eds. 2015. Recom-
mender Systems Handbook. Springer. ISBN 978-1-4899-
7636-9.
Rienstra, T.; Thimm, M.; and Oren, N. 2013. Opponent
Models with Uncertainty for Strategic Argumentation. In
IJCAI, 332–338. IJCAI/AAAI.
Riveret, R.; Gao, Y.; Governatori, G.; Rotolo, A.; Pitt, J.; and
Sartor, G. 2019. A probabilistic argumentation framework
for reinforcement learning agents - Towards a mentalistic
approach to agent profiles. Autonomous Agents and Multi-
Agent Systems, 33(1-2): 216–274.
Rosenfeld, A.; and Kraus, S. 2016a. Providing Arguments
in Discussions on the Basis of the Prediction of Human Ar-
gumentative Behavior. ACM Transactions on Interactive In-
telligent Systems, 6(4): 30:1–30:33.
Rosenfeld, A.; and Kraus, S. 2016b. Strategical Argumen-
tative Agent for Human Persuasion. In ECAI, volume 285
of Frontiers in Artificial Intelligence and Applications, 320–
328. IOS Press.
Stankevitz, K.; Dement, J.; Schoenfisch, A.; Joyner, J.;
Clancy, S. M.; Stroo, M.; and Østbye, T. 2017. Perceived
barriers to healthy eating and physical activity among par-
ticipants in a workplace obesity intervention. Journal of Oc-
cupational and Environmental Medicine, 59(8): 746–751.
Turk, P.; and Borkowski, J. J. 2005. A review of adaptive
cluster sampling: 1990–2003. Environmental and Ecologi-
cal Statistics, 12(1): 55–94.

5599

