
NEvoFed: A Decentralized Approach to Federated
Neuroevolution of Heterogeneous Neural Networks

Leonardo Lucio Custode
leonardo.custode@unitn.it

University of Trento
Trento, Italy

Ivanoe De Falco
ivanoe.defalco@icar.cnr.it

ICAR-CNR
Naples, Italy

Antonio Della Cioppa∗

adellacioppa@unisa.it
NCLab, DIEM, University of Salerno

Salerno, Italy

Giovanni Iacca
giovanni.iacca@unitn.it
University of Trento

Trento, Italy

Umberto Scafuri
umberto.scafuri@icar.cnr.it

ICAR-CNR
Naples, Italy

ABSTRACT

In the past few years, Federated Learning (FL) has emerged as
an e�ective approach for training neural networks (NNs) over a
computing network while preserving data privacy. Most of the
existing FL approaches require the user to de�ne a priori the same
structure for all the NNs running on the clients, along with an
explicit aggregation procedure. This can be a limiting factor in
cases where pre-de�ning such algorithmic details is di�cult. To
overcome these issues, we propose a novel approach to FL, which
leverages Neuroevolution running on the clients. This implies that
the NN structures may be di�erent across clients, hence providing
better adaptation to the local data. Furthermore, in our approach,
the aggregation is implicitly accomplished on the client side by
exploiting the information about the models used on the other
clients, thus allowing the emergence of optimal NN architectures
without needing an explicit aggregation. We test our approach on
three datasets, showing that very compact NNs can be obtained
without signi�cant drops in performance compared to canonical
FL. Moreover, we show that such compact structures allow for a
step towards explainability, which is highly desirable in domains
such as digital health, from which the tested datasets come.

CCS CONCEPTS

• Computing methodologies→ Distributed arti�cial intel-

ligence; Neural networks; Genetic algorithms; • Theory of

computation→ Evolutionary algorithms.

KEYWORDS

Federated Learning, Neuroevolution, Supervised Learning

ACM Reference Format:

Leonardo Lucio Custode, Ivanoe De Falco, Antonio Della Cioppa, Giovanni
Iacca, and Umberto Scafuri. 2024. NEvoFed: A Decentralized Approach to
Federated Neuroevolution of Heterogeneous Neural Networks. In Genetic

∗Also with ICAR-CNR.

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0494-9/24/07.
https://doi.org/10.1145/3638529.3654029

and Evolutionary Computation Conference (GECCO ’24), July 14–18, 2024,

Melbourne, VIC, Australia. ACM, New York, NY, USA, 9 pages. https://doi.
org/10.1145/3638529.3654029

1 INTRODUCTION

Recently, data privacy has become an extremely important concern
in the �eld ofMachine Learning (ML) [12]. This led to the emergence
of Federated Learning [15, 16] (FL) as an alternative to traditional
(stand-alone) ML to train models over a computing network while
maintaining data privacy.

FL is an ML methodology in which a model, typically in the
form of a Neural Network (NN), is trained collaboratively on a set
of computing nodes (the clients) without the need for exchanging
data. The canonical form of FL takes place through the use of a
server on which an initial NN is de�ned and then sent to the clients;
on each such client, the NN performs a typical supervised learning
phase, running an independent training session on a client-local
dataset (with the di�erent local datasets supposed to be hetero-
geneous). After this step, the resulting trained NNs (but not the
data) are sent back to the server. The latter receives a set of NNs
with the same structure but with di�erent connection weights, and
performs an aggregation phase; in this phase, a new NN (called the
“global” model) is obtained that shows the same structure as the
incoming NNs, whereas the weight of each connection is computed
aggregating (e.g., averaging) the corresponding values from each
incoming NN. The resulting global model is then sent again to the
clients, and the process iterates until a given stop criterion is met.

This approach allows for e�ectively dealing with the issue of
data privacy, which is particularly signi�cant in all the application
�elds where the data should remain private and not disclosed to any
other participant such as, e.g., in digital health, loan granting, legal
procedures, etc. However, while FL proved to work very well in
practical applications [39], it still yields major challenges, namely:
• Choice of the NN architecture: in most FL approaches, the architec-
ture is �xed by the system designer, which prevents the clients
from learning more e�ective NNs for the task at hand, often
resulting in overly complex models.
• Distribution of the inputs: often, the data of each client violates the
IID (i.e., Independent and Identically Distributed) principle, which
is fundamental for e�ective ML. Thus, canonical FL methodolo-
gies could learn suboptimal models.
In this paper, we make an attempt at mitigating these two prob-

lems by leveraging principles from Neuroevolution [32] (NE), a

295

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3638529.3654029
https://doi.org/10.1145/3638529.3654029
https://doi.org/10.1145/3638529.3654029
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3638529.3654029&domain=pdf&date_stamp=2024-07-14


GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia L. L. Custode, I. De Falco, A. Della Cioppa, G. Iacca, U. Scafuri

branch of Evolutionary Computation that aims to automatically
�nd, at the same time, the most suitable structure for an NN along
with the optimal values of its parameters (i.e., the weights). Starting
from the seminal papers published in the 1990s [23, 26, 38, 40],
many NE algorithms have been proposed which, roughly speaking,
can be classi�ed into either direct-encoding or indirect-encoding
ones, depending on whether or not the genotype directly maps to
the phenotype. So far, only a few works have attempted to link NE
and FL. Yet, to the best of our knowledge, none of the existing works
combining NE and FL speci�cally aim to evolve heterogeneous NNs
in a decentralized way, which is the distinctive feature of work.

Our proposed method, that we call NEvoFed, performs FL in
such a way that, at each time, the structures of the NNs may di�er
from client to client. To obtain this, we run an independent NE
algorithm on each client, where a set of NNs is randomly generated,
and then undergoes a learning phase on the local dataset. Then, the
evolutionary process allows to obtain new populations of NNs with
di�erent structures and connection weights. At a given number of
generations, the clients exchange the local best NNs: the incoming
NNs replace bad-performing local ones, and the evolution contin-
ues. In this way, the NNs that were good on the clients they came
from are tested on other clients, hence on di�erent local data. The
rationale behind this mechanism is that, as the number of genera-
tions (and thus NN exchanges) increases, the NNs that are able to
behave well on more local datasets will emerge.

Two main di�erences between the approach we propose here
and canonical FL can be seen. Firstly, the structure of the NNs may
be di�erent both within each client and from client to client; this
helps to �nd, in an evolutionary way, a good structure, whereas as
said in canonical FL such structure (in terms of the number of layers
and neurons per layer) should be decided before the execution of
the algorithm. Secondly, unlike canonical FL, in NEvoFed there is no
need for an explicit aggregation phase to be performed on the server;
rather, the NN exchange mechanism we introduce corresponds to
an implicit aggregation phase that is driven by evolution.

We experimentally compare our proposed approach against the
canonical FL in terms of classi�cation results achieved over three
biomedical datasets that are well-suitable for FL. Our results show
that, overall, NEvoFed outperforms in most cases the canonical FL
at both client and global levels.

The rest of the paper is structured as follows. Section 2 reports
the related work in the areas of NE and FL and highlights the orig-
inality of our proposal. Section 3 describes the general structure
of our proposed algorithm. Section 4 accounts for the experimen-
tal setup and the datasets on which our experimentation takes
place. Section 5 discusses the results, and �nally Section 6 gives our
conclusions and suggests future work.

2 BACKGROUND AND RELATED WORK

During the last years, a good number of papers have investigated
the intersection between NE and FL; a comprehensive survey on
this topic is presented in [45], where the emphasis is given on
the evolution from canonical FL to federated neural architecture
search (FNAS). In this survey, �rstly, NE is considered on its own.
In the past few decades of research, the authors identify three main
groups of search strategies for �nding optimal NN architectures,

namely those based on reinforcement learning [11, 42, 46], those
relying on Evolutionary Algorithm (EAs) [8, 9, 14, 20, 33], and those
making use of gradient-based methods [10, 19, 37]. Further meth-
ods, less frequently used, include random search [5, 17], Bayesian
optimization [29, 34], and multinomial distribution learning [41].

When NE has to be applied to FL, i.e., when evolutionary FNAS
is considered, things get more complicated, given the nature of FL.
This results in only a few papers being available in the literature
despite an increasing interest in this direction. The approaches
presented so far di�er in several aspects, summarized below.

1 The �rst di�erence lies in how the EA is used, depending on
whether it is run only on the server and the clients execute the
training on local data, or an EA instance runs on every client.

2 A second di�erentiation is represented by the object of this
optimization being performed through EAs: it could be the set of
the learning parameters, the NN structure (in terms of number of
layers, number of nodes per layer, etc.), the values of the connection
weights (which can be optimized by using an EA instead of back-
propagation), or more than one of these at the same time.

3 A third feature concerns the aggregation phase: this could
occur over either models or �tness values.

4 A fourth characterization of these approaches can be made
on the information exchange taking place between the server and
the clients, as well as possible communication among clients: either
all the models could travel, just a subset, or none.

Moreover, concerning communication, the approaches intro-
duced in those papers can be divided into o�ine and online.

In o�ine approaches, e.g., [7, 18, 28, 35, 43], each NN in the popu-
lation on the server must be trained on (a subset of) the clients, and,
at each generation, each client has to train all the NNs in the current
population. This implies a large demand for both computation and
communication resources, yielding high execution times, especially
on mobile devices. This prevents these methods from being used
for real-time applications.

In online approaches, e.g., [25, 44], instead, each client only has
to train sub-networks rather than whole NNs, so the number of
parameters to be sent from the server to the client is much lower.
Therefore, online approaches are much less resource-consuming
and communication-intensive, which means that they can be used
online for real-world applications.

The description of the above papers reveals that, in all the NE
approaches to FL described in the recent literature, an EA to evolve
NNs runs on the server while, on each client, one or more solutions
generated on the server are received, evaluated on the local data,
and slightly modi�ed, which implies an explicit aggregation phase
on the server; moreover, for each NN, an FL-based �tness can be
computed on the server by averaging the local �tness values.

In our proposal, instead, as it will be described in detail in Sec-
tion 3, on each client there is an independent EA running a local
population of NNs on local data, and only the best individuals on
each client are sent (in this, it can be seen as an instance of island-
based models [13]). Moreover, in our approach there is no �tness
averaging during the evolution; rather, the �tness of each individual
is computed locally, and only the migrating individuals must have
their �tness re-computed on the local data of the new clients they
arrive at. These are signi�cant di�erences that allow us to consider
our approach as original.

296



GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

It should be remarked here that, although strictly speaking our
approach is o�ine, it nevertheless allows for fast evaluation of the
candidate NNs because, in general, NE tends to generate structures
that are as small as possible; this means that, in principle, our
approach can be as resource-e�cient as the online approaches.

Table 1 summarizes the main features of the approaches to FL
based on NE proposed so far in the literature and compares them
against those of our proposed algorithm. For each algorithm, we
indicate: whether it optimizes through an EA the learning parame-
ters, the NN structure, and the NN weights; if an EA instance runs
on the clients; if the aggregation phase is performed on the local
�tness values; if all the models travel between the server and the
clients; and, if the approach is online.

3 PROPOSED METHOD

Before discussing our method, we brie�y sketch out the canonical
FL approach as introduced by Konečny et al. in [15, 16]. Accord-
ing to it, the aim is to identify a general model M6 by aggregat-
ing a set of < local models M = {M1, . . . ,M<} trained on a
number of di�erent clients C = {C1, . . . , C<} on their local data
D = {D1, . . . ,D<}, whose communication can be arranged either
centrally by a server S or in a peer-to-peer manner. In the follow-
ing, we will refer to the centralized FL (i.e., based on a server) both
for the sake of conciseness and in that little changes apply to the
peer-to-peer one.

Centralized FL (Algorithm 1) consists of the following steps:
(1) Model initialization: the server initializes a model M6 .
(2) Client selection: the server selects at random a subset of

clients, and distributes M6 to them.
(3) Local model training: each selected client C8 performs a learn-

ing phase on its own local data, thus obtaining its own updated
version of the model M8 . Then, M8 is sent back to the server.

(4) Aggregation: once the server has received all the local updated
models M8 , it aggregates them (typically, this is accomplished
by averaging the values of the models’ parameters, e.g., in the
case of an NN, the weights of the neurons) thus obtaining a new
global modelM6 . Then, such a model is sent to all the selected
clients, and the process continues from step (2) until a stopping
criterion is met.
By doing so, the FL goal becomes to train separately a general

model M6 on all the local datasets of the di�erent clients, in order
to optimize the following performance function:

k (M6) =
1

<
·

<∑

8=1

q (M8 ) (1)

where q (M8 ) is the local performance function value of the model
M8 on the 8-th client. While it is possible to evaluatek (M6) each
time at the end of step (3), actually it is computed by the server only
at the end of the whole learning process. In fact, before stopping,
the clients send the last model update to the server along with their
local performance; then, the server aggregates all the updates into
the �nal global model, computesk (M6), and sends the �nal global
model back to the clients.

A �rst criticism of this canonical FL model is that all clients must
share the same NN architecture. This assumes that information
about the architecture of the NN to be used somehow must be
shared among all clients prior to the training phase. Several di�erent

Algorithm 1 Federated Learning (canonical version)

1: procedure FederatedLearning

2: Initialize global model M6

3: for each round C = 1, 2, . . . ,) do

4: Select a subset CC ⊆ C of = ≤ < clients
5: for each client C8 ∈ CC in parallel do

6: M8 ← ClientUpdate(8,M6)
7: end for

8: M6 ← AggregateModels(M1, . . . ,M=)
9: end for

10: end procedure

11:

12: procedure ClientUpdate(:,M6)
13: Initialize local model M: with M6

14: for each local epoch 8 = 1, 2, . . . , � do

15: Update M: using local data of C:
16: end for

17: return M:

18: end procedure

19:

20: procedure AggregateModels(M1, . . . ,M=)
21: Mnew ← Aggregate M1, . . . ,M=

22: return Mnew
23: end procedure

methodologies have been proposed in the literature to overcome
such a limitation:
• Knowledge Distillation [24], where a teacher-student model is
used, i.e., client models (teachers) are used to train a centralized
model (student). The central model learns to mimic the outputs
of the distributed models.
• Model Personalization [1], where rather than trying to aggregate
di�erent architectures into a single global model, the aim is to
personalize the global model for each client. Techniques like
adding small, client-speci�c layers to a shared base model are
typically used, allowing for diverse model architectures while
maintaining a common core.
• Layer-wise Aggregation [21], where the focus is on aggregating
models at the layer level rather than as a whole. This approach
may involve standardizing speci�c layers among all models while
allowing diversity in other layers.
• Sub-model Aggregation [2], where models are decomposed into
sub-models. Such sub-modules are then trained independently
and aggregated separately, thus allowing di�erent clients to con-
tribute to di�erent parts of a model.
• Hybrid Models and Meta-Learning [31], where a meta-model is
trained using di�erent architectures to learn how to aggregate
models.
However, each of these approaches comes with its own set of

challenges, such as increased computational complexity and po-
tential privacy concerns, and requires a careful design to ensure
e�ective learning across di�erent models.

As mentioned earlier, in our proposed NEvoFed, instead, each
client evolves a population of heterogeneous NNs using an NE
algorithm, in our case NEAT [32, 33] (although, in principle, any

297



GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia L. L. Custode, I. De Falco, A. Della Cioppa, G. Iacca, U. Scafuri

Table 1: The main features of the approaches proposed in the literature and their comparison against our proposal. Seven

features of interest are considered, namely: 1 Learning parameter optimization: does the approach use an EA to optimize the

learning parameters of the NN? 2 NN structure optimization: does the approach use an EA to optimize the structure of the NN?

3 NN weight optimization: does the approach use an EA to optimize the connection weights of the NN? 4 EA runs on clients:

does an EA algorithm also run on any client? 5 Aggregation is done on local �tness: is the �tness computed as an aggregation

over the local �tness values? 6 Not all the models travel: are not all the NN models sent at each generation? 7 Approach is

online: is the approach online? (✓: yes; ✗: no; ✓(+S): the same EA is run on both server and clients; N/A: not available).

Paper Year

Learning

parameter

optimization

NN

structure

optimization

NN

weight

optimization

EA runs

on

clients

Aggregation

is done on

local �tness

Not all the

models

travel

Approach

is

online

[35] 2019 ✗ ✗ ✓ ✗ ✗ ✗ ✗

[43] 2019 ✓ ✓ ✗ ✗ ✓ ✗ ✗

[44] 2021 ✓ ✓ ✗ ✗ ✗ ✗ ✓

[25] 2022 ✗ ✗ ✓ ✗ ✗ ✗ ✓

[18] 2022 ✓ ✓ ✓ N/A ✗ ✗ ✗

[7] 2023 ✓ ✓ ✗ ✗ ✓ ✗ ✗

[28] 2023 ✗ ✗ ✓ ✓(+S) ✓ ✓ ✗

NEvoFed ✗ ✓ ✓ ✓ ✓ ✓ ✗

other NE method could be used). The proposed approach is based
on the following key assumptions:
• The architecture of the NN should not be a priori set, but it should
naturally emerge from the learning process.
• The model complexity should be as low as possible.
• The aggregation step should not be performed by the server, but
it should be done on the client side by exploiting the information
about the exogenous models used on either all of the other clients
or a subset of them.
• The aggregation should not be accomplished in an explicit way
(e.g., by averaging the values of the models’ parameters), but
it should be related to the exogenous models’ performance on
the local data. In other words, no explicit aggregation should
be devised, but rather it should take place in an implicit way
during the NE process thanks to the recombination and mutation
mechanisms, thus pushing the learning process to induce the
emergence of an e�ective global model.
The steps that NEvoFed undergoes are the following:

(1) Client selection: the server selects randomly a subset of clients.
(2) Local training phase: each client participating in FL performs

a learning phase on its own local data. At the end of the learning
phase, the most performing model M8 is sent to the server.

(3) Aggregation: once the server has received the local models
M8 , it sends them to all the selected clients. Then, the received
exogenous models replace the worst local models, if better,
on local data, and the process continues from step (1) until a
stopping criterion is met.
Finally, at the end of the whole training, the model with the best

global performance, measured according to Eq. (1), is taken as the
�nal global model. Algorithm 2 depicts the whole NEvoFed process.

It should be remarked here that, notwithstanding it produces
an overhead of communication with respect to canonical FL, the
aggregation step allows each client to receive and consequently
exploit the information about the best models on all the clients
involved in each FL round. In this way, we favor the emergence

of a general global model while preserving a personalized local
model. On the other hand, the communication overhead can be
signi�cantly reduced if the NNs sent have a small complexity.

4 EXPERIMENTAL SETUP

Wenow present the datasets used in the experimentation and details
concerning the implementation and parameter setting.

4.1 Datasets

The choice of the datasets has been based on the consideration that
they should be speci�c to FL and should have been gathered to be
perfectly suited to FL. In fact, many papers in the literature exist
that apply FL methodologies to datasets that were not explicitly
created for FL; for example, wide use is made of datasets such as
MNIST1, CIFAR2, or even much simpler ones, such as the Pima
Indians diabetes dataset3. In these cases, a global dataset is typically
split into subsets, each of which is placed on a client. However, as
there could be relationships, even strong, between di�erent subsets
of data placed on di�erent clients, this approach could lead to an
easier learning task, because locally learning on a client’s subset
could yield unwillingly learning also on the data contained in the
other subsets available to the other clients.

Therefore, in this paper, we consider the following three datasets
from the scienti�c literature, which are instead speci�c to FL tasks:
• Apnea-ECG: The apnea-ECG database was originally presented
in [27]. The original dataset contains 70 recordings, each obtained
at night through single-lead ECG continuous monitoring of a
subject. 35 of these recordings are annotated for each one-minute
segment with respect to the presence of Obstructive Sleep Apnea
(OSA) in that minute. 20 of these recordings refer to subjects def-
initely su�ering from OSA. In [30], a new dataset was obtained
from each of the 35 recordings, through Heart Rate Variability

1https://paperswithcode.com/dataset/mnist
2https://www.cs.toronto.edu/~kriz/cifar.html
3https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

298

https://paperswithcode.com/dataset/mnist
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database


GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

Algorithm 2 Federated Learning (proposed NEvoFed)

1: procedure NEvoFed

2: M← ∅

3: for each round C = 1, 2, . . . ,) do

4: Select a subset CC ⊆ C of = ≤ < clients
5: for each client C8 ∈ CC in parallel do

6: if C8 not inizialized then

7: ClientInizialize(8)
8: end if

9: M8 ← ClientUpdate(8)
10: end for

11: for each client C8 ∈ CC in parallel do

12: ClientAggregate(8,M1, . . . ,M=)
13: end for

14: end for

15: for each client C8 ∈ CC in parallel do

16: q8 (M1), . . . , q8 (M=) ← ClientEval(8,M1, . . . ,M=)
17: end for

18: Compute global performancek8 (Eq. (1))
19: M6 ← max {k8 }8∈{1,...,=}
20: return M6 ⊲ model with best global performance
21: end procedure

22:

23: procedure ClientInitialize(:)
24: Initialize a population of local models {M1 . . . ,M? }
25: end procedure

26:

27: procedure ClientUpdate(:)
28: for each local epoch 8 = 1, 2, . . . , � do

29: Perform a NE generation using local data D: of C:
30: end for

31: M1 ←M1
:

⊲ best local model found so far
32: return M1

33: end procedure

34:

35: procedure ClientAggregate(:,M1, . . . ,M=)
36: Evaluate M1, . . . ,M= on local data D:

37: Sort the population of local models
38: Replace the = worst models with {M1, . . . ,M= } if better
39: end procedure

40:

41: procedure ClientEval(:,M1, . . . ,M=)
42: Evaluate M1, . . . ,M= on local data
43: return q: (M1), . . . , q: (M=)

44: end procedure

(HRV) analysis. In this new dataset, for each minute, each item
contains the values of 12 HRV parameters plus the class express-
ing whether or not in that item the subject experienced apnea.
This is the version of the dataset we used in the experiments.
For this dataset, we have not considered the data from all the
healthy subjects; moreover, we discarded two sets of data where
the class imbalance is too high. On this dataset, we performed
binary classi�cation.
• Ohio T1DM: The Ohio T1DM dataset [22] consists of the data
recorded by continuously monitoring 12 subjects su�ering from

Table 2: Datasets used in the experimentation.

Dataset
Reference Number of Number Number

paper(s) parameters of classes of clients

Apnea-ECG [30] 12 2 12
Ohio T1DM [8, 9] 39 7 12
HAR70+ [36] 161 7 15

Type 1 Diabetes Mellitus (T1DM). Each subject underwent con-
tinuous glucose monitoring for about 8 weeks while on insulin
pump therapy. The original goal was to perform an as-accurate-
as-possible forecasting of blood glucose levels for each subject. In
[8, 9], the original regression problem was cast into a seven-class
classi�cation problem, where each class represents a range of the
glucose values predicted for the next 30 minutes, with the various
ranges corresponding to the occurrence of dangerous situations
such as hyper-glycemic peaks or hypo-glycemic events. This is
the version of the dataset we used in the experimentation.
• HAR70+: The Human Activity Recognition (HAR) database [36]
contains data from 18 older adults (70 years old or more) gathered
through the use of cameras to identify six di�erent daily physical
activities: walking, stairs (up / down), shu�ing, standing, sitting,
and lying. For each of the 18 participants, each item in the corre-
sponding subset contains the values of 161 parameters extracted
from �ve-second time windows (250 samples at 50 Hz), plus the
class corresponding to the action being performed in those �ve
seconds. Since the data from three subjects showed very high
class imbalance, we have discarded them and have considered
only the data from the other 15 subjects. On this dataset, we
performed seven-class classi�cation.
It is worth noting that each of these datasets makes reference to

the digital health �eld and contains sets of data, each of which is
speci�c to a subject, so an FL approach is well suited for them.

Table 2 summarizes the characteristics of the datasets, namely
the reference to the version of the dataset used in the experiments;
the number of parameters in the dataset; the number of output
classes; and, the number of subjects considered in the experiments,
which corresponds to the number of clients used.

4.2 Implementation and parameter setting

The NEvoFed algorithm has been implemented in Python starting
from the NEAT-Python library, which is freely downloadable from
[3]. It uses a con�guration �le inwhich di�erent types of parameters
have to be set [4]. The setting of the parameters modi�ed with
respect to the default values as a result of a preliminary tuning
process is reported in Table 3. Note that the kind of NNs is di�erent
for the Ohio T1DM dataset in that it is a time series forecasting
problem (hence requiring recurrence), cast into a classi�cation one,
while the other two datasets are related to pure classi�cation.

As regards the canonical FL algorithm we compare with, we
have used the framework Flower [6] for building an FL algorithm
with aggregation based on averaging (FedAvg). Also for FedAvg,
a preliminary tuning phase has been performed for each dataset
to identify a suitable NN architecture. Figure 1 reports the NN
architecture con�gurations used for the FedAvg algorithm, with
their related parametrization.

299



GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia L. L. Custode, I. De Falco, A. Della Cioppa, G. Iacca, U. Scafuri

Table 3: NEvoFed parameter con�guration.

Parameter Value

Neural network
recurrent (Ohio T1DM)
feed-forward (Apnea-ECG, HAR70+)

Initial connections no hidden layer

Population size 200
No. of epochs 50
No. of generations per epoch 1
Activation functions sigmoid, tanh, relu, sin, softplus
Aggregation functions sum, product
Activation/Aggregation mut. rate 0.4/0.4
Connection add/delete probability 0.4/0.1
Node add/delete probability 0.4/0.1
Elitism, species elitism 1, 1
Species max stagnation 10

It should be noted here that, given that in the three datasets
considered the number of subjects is relatively low, we have chosen
to avoid the client selection step for both NEvoFed and FedAvg,
thus allowing, for both algorithms, all the clients to communicate
with the server at each epoch (note that, in this way, every epoch
corresponds to one generation of NE). Finally, 20 independent runs
(with random initialization) with a number of epochs equal to 50
have been run for each algorithm.

To evaluate the e�ectiveness of the solutions found, we have
adopted the weighted F1 score F1F , which takes into account the
contributions of the F1 scores computed for each class, weighted
based on the number of instances belonging to the class:

F1F =

1

2

2∑

==1

?8 · F18 (2)

where 2 represents the number of classes present in the data set,
?8 indicates the percentage of instances in the 8-th class, and F18
stands for the F1 score calculated for the 8-th class.

Finally, the Apnea-ECG and HAR70+ datasets have been split
into a 70/30% training and test set, while, for the Ohio T1DMdataset,
we have used the splitting provided in [22].

5 RESULTS

Table 4 report the results for Apnea-ECG, Ohio T1DM, and HAR70+,
respectively, computed on all the 20 runs by considering for each of
them the performance exhibited by the best global model over each
subject. Moreover, Table 5 shows the aggregated results of the best
models found among all the runs, obtained by averaging the per-
formance across all the subjects of each dataset. While we observe
that FedAvg obtains the best subject-wise accuracy in about 64%
of the cases, we also observe that, when aggregating performance,
NEvoFed obtains better average performance over all the datasets.

Statistical analysis has been conducted by considering the dis-
tributions of the �tness values of the global best solutions found
by the two algorithms; namely, a two-tailed non-parametric Mann-
Whitney U test has been run for each dataset, with a con�dence
level U = 0.05. The null hypothesis of statistical equivalence can be
rejected on the Apnea-ECG (? = 0.001) and Ohio T1DM (? = 10

−5)
datasets, while it cannot be rejected for HAR70+ (? = 0.8534).

One possible explanation for the better performance of NEvoFed
could be that our paradigm allows for �nding models that are
more tailored to the entire dataset. This is signi�cantly di�erent
from the canonical FL paradigm. In fact, while the canonical FL
methodology optimizes the models locally and then aggregates
the models’ weights, in our approach the best model is evolved
simultaneously by all the clients, meaning that the phenotype (i.e.,
the NN) of the best solution has been shaped by all the clients
simultaneously, making each promising candidate directly interact
with all the dataset. This property is highly desirable, as it allows
learning a model that maximizes the performance on the entire
dataset (i.e., the union of all the clients’ datasets) and not only on
each speci�c local subset.

A more detailed view of the distribution of the best model perfor-
mance across clients is shown in Figure 2. Here, we observe that the
performance distribution of NEvoFed tends to be skewed towards
higher values of weighted F1 scores with respect to FedAvg.

5.1 Discussion

Based on the results obtained in our experiments, we can highlight
multiple advantages of our approach:
• Lower NN complexity: NEvoFed allows obtaining NNs with much
lower complexity (i.e., with a very low number of neurons); as
said, this implies that these NNs can be executed consuming fewer
hardware resources, so they are better suited for low-power and
memory-limited devices.
• A step towards explainability: the NNs evolved by NEvoFed tend
to be very compact, potentially allowing for the interpretation
of their behavior. In fact, given the conciseness of the achieved
NNs, for the three problems considered, the best NNs obtained
show an easy-to-spot connection between a very small subset of
the dataset input parameters and the di�erent classes; this can
be seen in Figure 3.
For the Apnea-ECG dataset, it can be seen that, out of the 12
input parameters, just three are relevant for the classi�cation (see
Figure 3a): the parameters V-9 and V-7 have a direct relationship
with the unhealthy status (subject experiencing apnea), whereas
V-10 implies a healthy status.
For the Ohio T1DM dataset, instead, out of the 39 available in-
put parameters, the best NN evolved (Figure 3b) uses as inputs
only the glucose level at time C and three of its backward �nite
di�erence derivatives. By inspecting the weights of the NN, we
observe that the model can be written as:

� (C + 6) = '4!* (0.97 ·� (C) + 0.09 · ∇12� (C)

+ 0.69 · ∇11� (C) + 2.26 · ∇9� (C) + 0.22)
(3)

which clearly shows that the prediction of the glucose at step
C + 6 depends on the current level plus an o�set depending on
the backward �nite di�erence derivatives of the glucose level at
C−12, C−11, and C−9 timesteps prior to the prediction (i.e., 1 hour,
55 minutes, and 45 minutes earlier, respectively). In other words,
the glucose level in the future depends on both the current level
and a combination of the variations of its trend in the recent past.
Conciseness is even more evident for the HAR70+ task, where
only 5 out of the 161 parameters are employed to recognize
human activities. This means that an automatic selection of the

300



GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

?×1×12

dense_3_input

Dense

activation = relu
bias_constraint =
kernel_constraint =
units = 64

Activation

activation = relu

Dropout

noise_shape =
rate = 0.5
seed =

Dense

activation = relu
bias_constraint =
kernel_constraint =
units = 32

Activation

activation = relu

Dense

activation = softmax
bias_constraint =
kernel_constraint =
units = 2

Activation

activation = softmax

Flatten flatten_1

(a) Apnea-ECG

input

Bidirectional

LSTM

implementation = 2
recurrent_activation = sigmoid
time_major = false
units = 64

Activation

activation = tanh

Dropout

noise_shape =
rate = 0.5
seed =

Dense

activation = relu
bias_constraint =
kernel_constraint =
units = 64

Activation

activation = relu

Dense

activation = softmax
bias_constraint =
kernel_constraint =
units = 7

Activation

activation = softmax

dense_11

(b) Ohio T1DM

?×1×160

dense_12_input

Dense

activation = tanh
bias_constraint =
kernel_constraint =
units = 256

Activation

activation = tanh

Dropout

noise_shape =
rate = 0.5
seed =

Dense

activation = tanh
bias_constraint =
kernel_constraint =
units = 128

Activation

activation = tanh

Dropout

noise_shape =
rate = 0.5
seed =

Dense

activation = tanh
bias_constraint =
kernel_constraint =
units = 64

Activation

activation = tanh

Dense

activation = softmax
bias_constraint =
kernel_constraint =
units = 7

Activation

activation = softmax

Flatten flatten_2

(c) HAR70+

Figure 1: Neural network architectures used for the FedAvg algorithm.

Table 4: Comparison, computed on the 20 runs available for each subject, of the weighted F1 score exhibited on the test set by

the global models found on the three datasets by FedAvg and NEvoFed.

Method
Apnea-ECG – Subject ID

3 5 7 8 9 11 13 14 15 16 19 20

FedAvg 0.86 ± 0.02 0.80 ± 0.02 0.88 ± 0.02 0.76 ± 0.01 0.86 ± 0.03 0.66 ± 0.03 0.75 ± 0.04 0.85 ± 0.01 0.71 ± 0.02 0.79 ± 0.02 0.86 ± 0.00 0.69 ± 0.01

NEvoFed 0.86 ± 0.02 0.80 ± 0.04 0.77 ± 0.02 0.74 ± 0.02 0.86 ± 0.03 0.70 ± 0.02 0.87 ± 0.02 0.85 ± 0.03 0.78 ± 0.03 0.82 ± 0.01 0.72 ± 0.03 0.88 ± 0.03

Method
Ohio T1D – Subject ID

540 544 552 559 563 567 570 575 584 588 591 596

FedAvg 0.68 ± 0.00 0.78 ± 0.00 0.69 ± 0.01 0.76 ± 0.00 0.68 ± 0.00 0.71 ± 0.00 0.82 ± 0.00 0.68 ± 0.01 0.70 ± 0.00 0.73 ± 0.01 0.64 ± 0.01 0.70 ± 0.01
NEvoFed 0.69 ± 0.00 0.77 ± 0.01 0.72 ± 0.00 0.77 ± 0.00 0.74 ± 0.00 0.70 ± 0.01 0.81 ± 0.01 0.71 ± 0.00 0.71 ± 0.00 0.73 ± 0.00 0.68 ± 0.00 0.73 ± 0.00

Method
HAR70+ – Subject ID

501 504 505 507 508 509 510 511 512 513 514 515 516 517 518

FedAvg 0.92 ± 0.01 0.94 ± 0.00 0.91 ± 0.03 0.86 ± 0.01 0.90 ± 0.02 0.92 ± 0.00 0.92 ± 0.00 0.87 ± 0.01 0.85 ± 0.01 0.83 ± 0.02 0.78 ± 0.04 0.87 ± 0.00 0.83 ± 0.01 0.84 ± 0.01 0.89 ± 0.01

NEvoFed 0.91 ± 0.03 0.93 ± 0.03 0.90 ± 0.07 0.86 ± 0.05 0.93 ± 0.05 0.83 ± 0.07 0.85 ± 0.08 0.81 ± 0.06 0.87 ± 0.02 0.85 ± 0.06 0.80 ± 0.08 0.88 ± 0.06 0.84 ± 0.03 0.85 ± 0.09 0.87 ± 0.11

0.7 0.8 0.9 1

NEvoFed

FedAvg

Weighted F1 score on test set

Apnea-ECG

0.7 0.8 0.9 1

Weighted F1 score on test set

Ohio T1DM

0.7 0.8 0.9 1

Weighted F1 score on test set

HAR70+

Figure 2: Performance of the best global model found for each dataset by NEvoFed across each client.

301



GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia L. L. Custode, I. De Falco, A. Della Cioppa, G. Iacca, U. Scafuri

Table 5: Weighted F1 score on the test sets of the best models

found among all the runs on all the clients.

Dataset FedAvg NEvoFed

Apnea-ECG 0.7955 ± 0.0784 0.8156 ± 0.0518

Ohio T1DM 0.7122 ± 0.0500 0.7314 ± 0.0366

HAR70+ 0.8695 ± 0.0540 0.9091 ± 0.0372

(��## �## A"((�

Healthy
A.: ReLU
B: 0.72

Unhealthy
A: TanH
B: 1.47

A: TanH
B: 0.81

A.: Sigm.
B: 0.71

A.: ReLU
B: 0.51

A.: ReLU
B: 0.20

3.20 −0.85

0.24

−3.54

0.90 −1.72

2.04

0.47

(a) Apnea-ECG

� (C ) ∇12� (C ) ∇11� (C ) ∇9� (C )

� (C + 6)

A: ReLU
B: 0.22

0.97 0.09 0.69
2.26

(b) Ohio T1DM

V−80

V−80

V−29V−15 V−110V−121 V−151

A.: Soft+
B: -0.45

A.: ReLU
B: -0.65

A.: ReLU
B: 0.69

A.: Soft+
B: -1.79

A.: Soft+
B: 1.34

A.: Soft+
B: 0.43

A.: Soft+
B: 0.79

A.: Sin
B: 0.82

A.: Sigm.
B: 0.42

A.: Sigm.
B: -1.05

4.82

0.54 −2.36 −1.04

−1.30

−0.08

2.30

1.54

0.78

1.40

1.50

−0.32

−0.77

(c) HAR70+

Figure 3: Best NNs evolved by NEvoFed. Grey rectangles rep-

resent inputs, white circles represent inner nodes, and azure

circles represent output nodes. “A” stands for “Activation”,

while “B” stands for “Bias”.

most relevant features is performed and can be provided to the
experts for an evaluation of their meaningfulness.
• Simpler design phase: in the FL approach implemented in Flower,
the structure of the NNs must be the same for all the clients. This

poses problems in the design phase because the user must make
decisions a priori on the structure in terms of the number of
layers, number of nodes, etc.; these decisions could in�uence the
quality of the obtained results, which could lead to a trial-and-
error design approach. This is clearly not the case with NEvoFed,
which does not require to specify the NN architecture before-
hand. Instead, such architecture is automatically evolved by all
the involved clients together. Thus, we can say that the process
automatically learns the best architecture for the problem at hand
without requiring any prior knowledge. Moreover, as shown in
Figure 3, the NNs evolved with NEvoFed are extremely small
compared to those usually designed for canonical FL (e.g., the
ones shown in Figure 1). This allows for smaller communication
costs, as the amount of information that has to be sent to the
clients is substantially lower, and also enables inference on tiny
devices, as the NNs use very small amounts of FLOPs, which can
be computed by essentially any embedded system.
Yet, our approach presently su�ers also from some limitations:

• Number of clients: We have considered datasets requiring the use
of up to 20 clients, whereas we know that many datasets exist for
FL that require the use of hundreds or even thousands of clients.
We will be working on this issue and will improve our present
methodology so that this issue will be positively solved.
• Types of data: All the datasets are structured in the form of tables
and are well-suited for classi�cation purposes. However, some
changes and improvements will be needed to use our method for
evolving deep NNs capable of directly classifying images. We will
overcome this limitation in the next version of our methodology
by considering NE algorithms speci�cally devised for deep NNs.

6 CONCLUSIONS

In this paper, a new approach to FL called NEvoFed has been pro-
posed, in which NE takes place independently on clients. This
implies that the NN structures may be di�erent both on the same
client and on di�erent clients; this feature prevents users from deal-
ing with the burden of needing to decide a priori the NN structure
to be used on all clients.

This approach has been tested on three datasets well suited to
FL. The experiment outcomes have shown that very compact NNs
can be obtained, without compromising the classi�cation ability
compared to a canonical FL approach. Furthermore, the compact-
ness of the NNs allows for a step towards explainability, which is
highly desirable in application areas such as digital health, from
which the three datasets come.

As part of future developments, we plan to conduct larger exper-
iments that incorporate more challenging datasets, such as image
datasets, and test our approach on a greater number of clients. Addi-
tionally, we intend to make use of di�erent NE algorithms to evolve
deep NNs able to solve more demanding tasks.

ACKNOWLEDGMENT

This work was partially supported by: the grant Hub Life Science-
Advanced Diagnosis (HLS-AD), PNRR PNC-E3-2022-23683266 PNC-
HLS-DA, INNOVA – CUP: E63C22003780001, funded by the Italian
Ministry of Health under the National Complementary Plan Inno-
vative Health Ecosystem - Unique Investment Code: PNC-E.3; and
the European Union (project no. 101071179).

302



GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

REFERENCES
[1] Agarwal, Mayank and Yurochkin, Mikhail and Sun, Yuekai. 2022. Personalization

in Federated Learning. Springer, Cham, Switzerland, 71–98.
[2] Alam, Samiul and Liu, Luyang and Yan, Ming and Zhang, Mi. 2022. FedRolex:

Model-Heterogeneous Federated Learning with Rolling Sub-Model Extraction. In
Advances in Neural Information Processing Systems, Vol. 35. Neural Information
Processing Systems Foundation, San Diego, CA, USA, 29677–29690.

[3] Alan McIntyre and Matt Kallada and Cesar G. Miguel and Carolina Feher da Silva.
2019. NEAT-Python. https://github.com/CodeReclaimers/neat-python.

[4] Alan McIntyre and Matt Kallada and Cesar G. Miguel and Carolina Feher da
Silva. 2020. NEAT-Python Documentation: Con�guration �le description. https:
//neat-python.readthedocs.io/en/latest/con�g_�le.html

[5] Bergstra, James and Bengio, Yoshua. 2012. Random search for hyper-parameter
optimization. Journal of Machine Learning Research 13, 2 (2012), 281–305.

[6] Beutel, Daniel J and Topal, Taner and Mathur, Akhil and Qiu, Xinchi and
Fernandez-Marques, Javier and Gao, Yan and Sani, Lorenzo and Kwing, Hei
Li and Parcollet, Titouan and Gusmão, Pedro PB de and Lane, Nicholas D. 2020.
Flower: A Friendly Federated Learning Research Framework. arXiv preprint
arXiv:2007.14390.

[7] Chai, Zheng-Yi and Yang, Chuan-dong and Li, Ya-Lun. 2023. Communication e�-
ciency optimization in federated learning based on multi-objective evolutionary
algorithm. Evolutionary Intelligence 16, 3 (2023), 1033–1044.

[8] De Falco, I and Della Cioppa, A and Koutny, T and Scafuri, U and Tarantino, E.
2024. Model-Free-Communication Federated Learning: Framework and applica-
tion to Precision Medicine. Biomedical Signal Processing and Control 87 (2024),
105416.

[9] De Falco, Ivanoe and Della Cioppa, Antonio and Koutny, Tomas and Ubl, Mar-
tin and Krcma, Michal and Scafuri, Umberto and Tarantino, Ernesto. 2023. A
Federated Learning-Inspired Evolutionary Algorithm: Application to Glucose
Prediction. Sensors 23, 6 (2023), 2957.

[10] Fang, Jiemin and Sun, Yuzhu and Zhang, Qian and Li, Yuan and Liu, Wenyu and
Wang, Xinggang. 2020. Densely connected search space for more �exible neural
architecture search. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition. IEEE, New York, NY, USA, 10628–10637.

[11] Hinton, Geo�rey and Vinyals, Oriol and Dean, Je�. 2015. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531.

[12] Horvitz, Eric and Mulligan, Deirdre. 2015. Data, privacy, and the greater good.
Science 349, 6245 (2015), 253–255.

[13] Iacca, Giovanni. 2013. Distributed optimization in wireless sensor networks: an
island-model framework. Soft Computing 17, 12 (2013), 2257–2277.

[14] Jin, Yaochu. 2011. Surrogate-assisted evolutionary computation: Recent advances
and future challenges. Swarm and Evolutionary Computation 1, 2 (2011), 61–70.

[15] Konečnỳ, Jakub and McMahan, Brendan and Ramage, Daniel. 2015. Federated
optimization: Distributed optimization beyond the datacenter. arXiv preprint
arXiv:1511.03575.

[16] Konečnỳ, Jakub and McMahan, H Brendan and Ramage, Daniel and Richtárik,
Peter. 2016. Federated optimization: Distributed machine learning for on-device
intelligence. arXiv preprint arXiv:1610.02527.

[17] Li, Liam and Talwalkar, Ameet. 2020. Random search and reproducibility for
neural architecture search. In Uncertainty in arti�cial intelligence. PMLR, Tel Aviv,
Israel, 367–377.

[18] Liu, Xin and Zhao, Jianwei and Li, Jie and Xu, Dikai and Tian, Shan and Cao,
Bin. 2022. Large-Scale Multiobjective Federated Neuroevolution for Privacy and
Security in the Internet of Things. IEEE Internet of Things Magazine 5, 2 (2022),
74–77.

[19] Lorraine, Jonathan and Vicol, Paul and Duvenaud, David. 2020. Optimizing mil-
lions of hyperparameters by implicit di�erentiation. In International Conference
on Arti�cial Intelligence and Statistics. PMLR, Palermo, Italy, 1540–1552.

[20] Lu, Zhichao and Whalen, Ian and Boddeti, Vishnu and Dhebar, Yashesh and
Deb, Kalyanmoy and Goodman, Erik and Banzhaf, Wolfgang. 2019. NSGA-Net:
neural architecture search using multi-objective genetic algorithm. In Genetic
and Evolutionary Computation Conference. ACM, New York, NY, USA, 419–427.

[21] Ma, Xiaosong and Zhang, Jie and Guo, Song and Xu, Wenchao. 2022. Layer-
wised Model Aggregation for Personalized Federated Learning. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition. IEEE, New York, NY, USA,
10082–10091.

[22] Marling, Cindy and Bunescu, Razvan. 2020. The OhioT1DM dataset for blood
glucose level prediction: Update 2020. In CEUR Workshop Proceedings, Vol. 2675.
CEUR-WS.org, Aachen, Germany, 71.

[23] McDonnell, John Robert and Waagen, D. 1994. Evolving recurrent perceptrons
for time-series modeling. IEEE Transactions on Neural Networks 5, 1 (1994), 24–38.

[24] Mora, Alessio and Tenison, Irene and Bellavista, Paolo and Rish; Irina. 2022.
Knowledge Distillation for Federated Learning: a Practical Guide. arXiv preprint
arXiv:2211.04742.

[25] Morell, José Ángel and Dahi, Zakaria Abdelmoiz and Chicano, Francisco and
Luque, Gabriel and Alba, Enrique. 2022. Optimising Communication Overhead in
Federated Learning Using NSGA-II. In International Conference on the Applications
of Evolutionary Computation (Part of EvoStar). Springer, Cham, Switzerland, 317–
333.

[26] Moriarty, David E and Miikkulainen, Risto. 1997. Forming neural networks
through e�cient and adaptive coevolution. Evolutionary Computation 5, 4 (1997),
373–399.

[27] Penzel, Thomas and Moody, George B and Mark, Roger G and Goldberger, Ary L
and Peter, J Hermann. 2000. The apnea-ECG database. In Computers in Cardiology,
Vol. 27. IEEE, New York, NY, USA, 255–258.

[28] Rahimi, Mohammad Mahdi and Bhatti, Hasnain Irshad and Park, Younghyun and
Kousar, Humaira and Kim, Do-Yeon andMoon, Jaekyun. 2023. EvoFed: Leveraging
Evolutionary Strategies for Communication-E�cient Federated Learning. In
Advances in Neural Information Processing Systems. Neural Information Processing
Systems Foundation, San Diego, CA, USA, 14 pages.

[29] Rasmussen, Carl Edward. 2003. Gaussian processes in machine learning. In
Summer school on machine learning. Springer, Berlin Heidelberg, Germany, 63–
71.

[30] Sannino, Giovanna and De Falco, Ivanoe and De Pietro, Giuseppe. 2014. Moni-
toring obstructive sleep apnea by means of a real-time mobile system based on
the automatic extraction of sets of rules through di�erential evolution. Journal
of Biomedical Informatics 49 (2014), 84–100.

[31] Shaoxiong, Ji and Yue, Tan and Teemu, Saravirta and Zhiqin, Yang and Lauri,
Vasankari and Shirui, Pan and Guodong, Long and Anwar, Walid. 2023. Emerging
Trends in Federated Learning: FromModel Fusion to Federated X Learning. arXiv
preprint arXiv:2102.12920.

[32] Stanley, Kenneth O and Clune, Je� and Lehman, Joel and Miikkulainen, Risto.
2019. Designing neural networks through neuroevolution. Nature Machine
Intelligence 1, 1 (2019), 24–35.

[33] Stanley, Kenneth O and Miikkulainen, Risto. 2002. Evolving neural networks
through augmenting topologies. Evolutionary Computation 10, 2 (2002), 99–127.

[34] Swersky, Kevin and Snoek, Jasper and Adams, Ryan Prescott. 2014. Freeze-thaw
Bayesian optimization. arXiv preprint arXiv:1406.3896.

[35] Szegedi, Gábor and Kiss, Péter and Horváth, Tomás. 2019. Evolutionary Federated
Learning on EEG-data. In Information Technologies – Applications and Theory.
CEUR-WS.org, Aachen, Germany, 71–78.

[36] Ustad, Astrid and Logacjov, Aleksej and Trollebø, Stine Øverengen and Thingstad,
Pernille and Vereijken, Beatrix and Bach, Kerstin and Maroni, Nina Skjæret. 2023.
Validation of an Activity Type Recognition Model Classifying Daily Physical
Behavior in Older Adults: The HAR70+ Model. Sensors 23, 5 (2023), 2368.

[37] Wan, Alvin and Dai, Xiaoliang and Zhang, Peizhao and He, Zijian and Tian,
Yuandong and Xie, Saining and Wu, Bichen and Yu, Matthew and Xu, Tao and
Chen, Kan and others. 2020. Fbnetv2: Di�erentiable neural architecture search
for spatial and channel dimensions. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition. IEEE, New York, NY, USA, 12965–12974.

[38] Whitley, Darrell and Dominic, Stephen and Das, Rajarshi and Anderson, Charles
W. 1993. Genetic reinforcement learning for neurocontrol problems. Machine
Learning 13 (1993), 259–284.

[39] Yang, Timothy and Andrew, Galen and Eichner, Hubert and Sun, Haicheng and
Li, Wei and Kong, Nicholas and Ramage, Daniel and Beaufays, Françoise. 2018.
Applied federated learning: Improving google keyboard query suggestions. arXiv
preprint arXiv:1812.02903.

[40] Yao, Xin. 1999. Evolving arti�cial neural networks. Proceedings of the IEEE 87, 9
(1999), 1423–1447.

[41] Zheng, Xiawu and Ji, Rongrong and Tang, Lang and Zhang, Baochang and Liu,
Jianzhuang and Tian, Qi. 2019. Multinomial distribution learning for e�ective
neural architecture search. In IEEE/CVF International Conference on Computer
Vision. IEEE, New York, NY, USA, 1304–1313.

[42] Zhong, Zhao and Yang, Zichen and Deng, Boyang and Yan, Junjie and Wu, Wei
and Shao, Jing and Liu, Cheng-Lin. 2020. Blockqnn: E�cient block-wise neural
network architecture generation. IEEE Transactions on Pattern Analysis and
Machine Intelligence 43, 7 (2020), 2314–2328.

[43] Zhu, Hangyu and Jin, Yaochu. 2019. Multi-objective evolutionary federated
learning. IEEE Transactions on Neural Networks and Learning Systems 31, 4 (2019),
1310–1322.

[44] Zhu, Hangyu and Jin, Yaochu. 2021. Real-time federated evolutionary neural
architecture search. IEEE Transactions on Evolutionary Computation 26, 2 (2021),
364–378.

[45] Zhu, Hangyu and Zhang, Haoyu and Jin, Yaochu. 2021. From federated learning
to federated neural architecture search: a survey. Complex & Intelligent Systems
7 (2021), 639–657.

[46] Zoph, Barret and Le, Quoc V. 2016. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578.

303

https://github.com/CodeReclaimers/neat-python
https://neat-python.readthedocs.io/en/latest/config_file.html
https://neat-python.readthedocs.io/en/latest/config_file.html

	Abstract
	1 Introduction
	2 Background and related work
	3 Proposed method
	4 Experimental setup
	4.1 Datasets
	4.2 Implementation and parameter setting

	5 Results
	5.1 Discussion

	6 Conclusions
	References

