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Abstract

Model Predictive Control (MPC) is the de facto standard in advanced industrial

automation systems. There are two main formulations of the MPC algorithm:

an implicit one and an explicit MPC one. The first requires an optimization

problem to be solved on-line, which is the main limitation when dealing with

hard real-time applications. As the implicit MPC algorithm cannot be guaran-

teed in terms of execution time, in many applications the explicit MPC solution

is preferable. In order to deal with systems integrating mixed logic and dynam-

ics, the class of the hybrid and piecewise affine models (PWA) were introduced

and tackled by the explicit MPC strategy. However, the resulting controller

complexity leads to a requirement on the CPU/memory combination which is as

strict as the number of states, inputs and outputs increases. To reduce drasti-

cally the complexity of the explicit controller while preserving the controller’s

performance, a strategy combining switched MPC with discontinuous simpli-

cial PWA models is introduced in this thesis. The latter is proven to be circuit

implementable, e.g., in FPGA. To ensure that closed-loop stability properties

are guaranteed, a stability analysis tool is proposed which exploits suitable and

possibly discontinuous PWA Lyapunov-like functions. The tool requires solving

offline a linear programming problem. Moreover, the tool is able to compute an

invariant set for the closed-loop system, as well as ultimate boundedness and

input-to-state stability properties.
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Chapter 1

Introduction

During the last decades Model Predictive Control (MPC) has become the most
used technology in highly automated industry [4]. Right now MPC is a stan-
dard control approach for both large and medium/small scale processes, even
if they are highly complex and multivariable. The word model in the acronym
MPC stands for model-based, while the word predictive means that there is a
so-called prediction of the future behavior of the process when selecting the
control action.
MPC exploits the knowledge of a dynamical model that describes the plant be-
havior in the time domain (usually a state-space model), and is based on an opti-
mization problem that minimizes a cost function, usually leading to a quadratic
programming problem. Due to physical reasons, the plant actuators are often
constrained to operate in a certain range and this implies the imposition of con-
straints in the optimization algorithm associated with the MPC control law. It
is clear that the constraints on the state, input and output of a dynamical system
are embedded in the MPC algorithm and are not imposed a posteriori, as occurs
in classical control theory (e.g., PID controllers).
One basic block of MPC strategy is the state-space mathematical model. The
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interactions between the state variables are described by a set of differential
or difference equations, for continuous-time and discrete-time models, respec-
tively. In general, the simpler is the model in terms of number of states, the
better it is for MPC design.
There exist two main formulations for MPC, the implicit MPC and the explicit

MPC. If the system is linear with linear constraints (or can be approximated
by such a system), one can map the implicit MPC formulation to an equivalent
explicit MPC formulation. By solving an off-line multi-parametric linear or
quadratic optimization problem (mpLP, mpQP), the implicit controller can be
mapped to a piecewise affine (PWA) explicit control law, that can be evaluated
on-line rather easily [1].
The on-line computational complexity of the explicit MPC algorithm can be es-
timated exactly. The complexity of the off-line multi-parametric optimization
problem grows very quickly with respect to the number of constraints in the
MPC problem. As a result, for a very large scale problem, the implicit MPC
strategy may be the only viable solution.
Technological innovation drives the attention to a class of models that can deal
with continuous and discrete components of systems. The dynamical model
exploited in the MPC technology can integrate logical rules, switching physical
laws and different kind of operating constraints. As a matter of fact, the hybrid

system class of dynamical models integrating logical behavior has been devel-
oped [7].
The term hybrid system was introduced to describe the combination of con-
tinuous dynamical and discrete event systems. The hybrid models can deal
with implicit and explicit MPC strategy, as the logical rules for that model can
be translated in constraints for the optimization problem, at the expense of its
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complexity. The closed-loop stability and optimality analysis are only two of
the currently open problems in the MPC research community. Many are the
milestone papers, for instance [30], in which the researchers undertake the sta-
bility and the optimality issues. Also the MPC robustness problem is addressed
in [8], in which the authors survey the possible presence of uncertainty in the dy-
namical model description together with the stability and performance issues.
The aim of this thesis is to develop low complexity solutions for the control
problem based on an MPC strategy, even if the model is hybrid, with partic-
ular attention to real-time implementation issues. This involves the stability
problem, that must be solved. The stability results will provide the theoreti-
cal background for low complexity MPC solutions in the hybrid explicit MPC
framework.

1.1 The problem

For time-critical applications the implicit MPC solution is not suitable, hence
the explicit solution is more compatible. In the explicit MPC strategy, the fea-
sible set of the multi-parametric optimization problem is bounded and the dy-
namics are continuous function in that set. The assumption of a bounded set is
not restrictive when it is coupled with real life applications issues.
If the system under control is not only described by differential or difference
equations, but integrates a switching dynamics logic, then the model can be
stated as hybrid model. A particular class of hybrid models is the PWA de-
scription, that is suitable for representing a switching system or a region-wise
linearized system. An explicit MPC of a PWA system results typically in a very
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complex multi-parametric optimization problem. The implementation of the re-
sulting explicit PWA control law, assuming one is able to determine it offline,
in the closed-loop can be very hard, due to the large number of regions (i.e. the
lookup table is hard to store and to search).
The main problem is that the explicit MPC solution is employed when the sam-
ple time must be small, but for large controller (i.e. too many regions) this leads
to an inapplicable solution. As a result of the analysis of the state of the art
in the hard real time control framework, the target of this thesis is the study
of low complexity solution for explicit MPC of PWA systems (e.g., switching
MPC), by also addressing the closed-loop stability problem for this class of
systems. Moreover, the synthesized low complexity controller can be circuit
implementable, thus leading to a complete bundle that fulfills the requirements
on sampling time, circuit architecture, controller performances and closed loop-
stability.
Right now, the literature results on explicit MPC stability are not directly appli-
cable to low complexity solutions. For instance, if the low complexity controller
is the result of a union of several PWA laws (i.e. switching MPC), right now
there are few and patchy results giving a stability region in which the controller
will be stabilizing for the closed loop, even if the switching MPC can be rep-
resented as a PWA control law (i.e. union of PWA). In this case, the stability

analysis problem is addressed in this thesis.

1.2 Contribution

First of all, in this thesis we introduce a digital architecture implementing the
explicit solution of a switched MPC problem. Given a mixed-logic dynamical
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system, we derive an explicit controller in the form of a possibly discontinuous
piecewise-affine function. This function is then approximated by resorting to
piecewise-affine simplicial functions, which can be implemented on a circuit
by extending the representation capabilities of a previously proposed architec-
ture to evaluate the control action. The architecture has been implemented on
FPGA and validated on a benchmark example related to an air conditioning sys-
tem.
Secondarily, this thesis proposes a method to analyze uniform asymptotic sta-
bility, uniform ultimate boundedness, and input-to-state stability of uncertain
piecewise affine systems whose dynamics are only defined in a bounded and
possibly non-invariant set X of states. The approach relies on introducing fake
dynamics outside X and on synthesizing a piecewise affine and possibly dis-
continuous Lyapunov function via linear programming. The existence of such a
function proves stability properties of the original system and allows the deter-
mination of a region of attraction contained in X . The procedure is particularly
useful in practical applications for analyzing the stability of piecewise affine
control systems that are only defined over a bounded subsetX of the state space,
and to determine whether for a given set of initial conditions the trajectories of
the state vector remain within the domain X .

1.3 Summary of publications

This thesis is based on the following publications.

• S. Trimboli, M. Rubagotti and A. Bemporad, Stability and invariance anal-
ysis of uncertain PWA systems based on linear programming, in 50th IEEE
CDC-ECC, Orlando, FL, USA, 2011.
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• M. Rubagotti, S. Trimboli, D. Bernardini and A. Bemporad, Stability and
invariance analysis of approximate explicit MPC based on PWA Lyapunov
functions, in 18th IFAC World Congress, Milano, Italy, 2011.

• T. Poggi, S. Trimboli, A. Bemporad and M. Storace, Explicit hybrid model
predictive control: discontinuous piecewise-affine approximation and FPGA
implementation, in 18th IFAC World Congress, Milano, Italy, 2011.

1.4 Structure of the Thesis

This thesis is organized as follows. After a first introduction of the problem
and the contribution, given in Chapter 1, some preliminary concepts are in-
troduced in Section 1.5. In Chapter 2 is given the general MPC framework
in which this thesis is contextualized, as well as the state of the art of circuit
implementation of PWA controllers and the related stability analysis problem.
In Section 3, the architecture for the electronic implementation of discontinu-
ous PWAS functions is introduced. Then the architecture is used to implement
explicit switched MPC controllers. The procedure is tested on a hybrid tem-
perature control system. Both the maximum working frequency and the power
consumption of the control FPGA implementation are estimated in the range
of tens of MHz and tens of mW, respectively. The closed-loop stability anal-
ysis problem is addressed in Chapter 4. 4.1 introduces the class of considered
uncertain PWA systems. 4.2 is devoted to the one-step reachability analysis of
the system, while the main results on the analysis of the extended system are
formulated in 4.3. The region of attraction is obtained in Section 4.4, where
the analysis of the original system is performed. The input-to-state stability of
the system is analyzed in 4.5. 4.6 shows simulation examples. Conclusions are
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gathered in Chapter 5.

1.5 Basic notations and definitions

Let R, R+, Z and Z+ denote the sets of reals, non-negative reals, integers and
non-negative integers, respectively. The floor function b·c of a ∈ R is defined
as the largest b ∈ Z such that a ≥ b. The symbol ‖ · ‖ represent any p-norm of
a vector, while ‖ · ‖∞ represents the infinity norm. With respect to the infinity
norm, we define the norm ball of radius χ > 0 as B∞χ , {a ∈ Rn : ‖a‖∞ ≤ χ}.
Given a discrete-time signal v : Z+ → Rnv , the sequence of the values of v from
the zero instant to the k-th instant is denoted by v[k]. The norm of a sequence
is defined as ‖v[k]‖ , sup{‖v(i)‖}, for i = 1, ..., k. Given a set A ⊆ Rn, its
interior is denoted by int(A), its closure by Ā, and its convex hull by conv(A).
If A is a polyhedron, the set of the vertices of Ā is denoted by vert(Ā). A
bounded polyhedron is called polytope. Given two sets A ∈ Rn and B ∈ Rn,
the Minkowski sum is A ⊕ B , {a + b : a ∈ A, b ∈ B}. A function γ :

R+ → R+ is called K-function if it is continuous, positive definite, and strictly
increasing. A function φ : R+ × Z+ → R+ is a KL-function if, for each fixed
k ≥ 0, φ(·, k) is a K function, for each fixed c ≥ 0, φ(c, ·) is decreasing, and
φ(c, k)→ 0 as t→∞.

Consider a generic discrete-time nonlinear system

x(k + 1) = f(x(k), v(k)) (1.1)

where x ∈ Rn is the state vector, the input v ∈ V ⊂ Rnv collects the model
uncertainties and external disturbances, and V is a compact set.
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Definition 1 (One-step reachable set). Given a set X ⊂ Rn and system dynam-

ics (1.1), the one step reachable set from X is

R(X ) , {y ∈ Rn : y = f(x, v), v ∈ V , x ∈ X}

�

Definition 2 (RPI set). A set F ⊂ Rn is called robustly positively invariant
(RPI) with respect to dynamics (1.1) if, for all x ∈ F and all v ∈ V , f(x, v) ∈
F . �

Definition 3 (Uniform asymptotic stability). Given a set X ⊆ Rn with 0 ∈ X ,

system (1.1) is uniformly asymptotically stable in X (UAS(X )) if there exists

a KL-function φ such that, for all the initial conditions x(0) ∈ X and for all

the sequences v[k] with v(i) ∈ V , i = 0, ..., k, ‖x(k)‖ ≤ φ(‖x(0)‖, k), for all

k ∈ Z+. �

Definition 4 (Uniform ultimate boundedness). Given a set X ⊆ Rn and an RPI

set F ⊆ X , with 0 ∈ int(F), system (1.1) is uniformly ultimately bounded from

X to F (UUB(X ,F)) if, for all a > 0 there exist T (a) > 0 such that, for every

x(0) ∈ X with ‖x(0)‖ ≤ a, x(T ) ∈ F for all the sequences v[k] with v(i) ∈ V ,

i = 0, ..., k. �

Definition 5 (Input-to-state stability). Given a set X ⊆ Rn with 0 ∈ X , system

(1.1) is input-to-state stable in X (ISS(X )) if there exist a KL-function φ and

a K-function γ such that, for all the initial conditions x(0) ∈ X and for all the

sequences v[k] with v(i) ∈ V , i = 0, ..., k, ‖x(k)‖ ≤ φ(‖x(0)‖, k)+γ(‖v[k−1]‖),

for all k ∈ Z+. �



Chapter 2

State of the Art

2.1 Framework

2.1.1 MPC algorithm

The use of a prediction model, the use of an optimization problem subject to
constraints and the receding horizon strategy are the three key principles for
stating the MPC algorithm. The control algorithm involves the evaluation of
an on-line and open-loop optimization subject to state, input and output con-
straints, in which the prediction model is incorporated. Since only the first
input of the optimal sequence is applied, the MPC methodology is also called
receding horizon.
Referring to Figure 2.1, an instant detailed description of the implicit MPC algo-
rithm is given. At each discrete-time t, the measurements yt acquired from the
sensors and the dynamical model are used in order to predict the plant behavior.
The state prediction is computed among a N -step time window (N is usually
called prediction horizon). The optimal input sequence u∗t+k is computed by
minimizing the related cost function. According to the receding horizon con-
trol paradigm, only the first element of the optimal sequence u∗ is applied as the

9
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Figure 2.1: Implicit MPC algorithm
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input ut+1 of the real plant. At the next time step t+1, a new optimization prob-
lem is solved by exploiting the new measurements, and only the first element
of the resulting optimal control sequence is applied to the plant. As a result of
the receding horizon strategy, it follows that the control action is applied in a
closed-loop fashion.
In general the dynamical model can be nonlinear, the cost function can be a 2-
norm, 1-norm or∞-norm and the constraints can be time varying. A nonlinear
dynamical system implies a more complicated optimization algorithm. For a 1-
norm or a∞-norm cost function is sufficient a linear programming algorithm,
while for a 2-norm cost function is required a quadratic programming algorithm.
Moreover, time varying constraints imply a high computational burden. In the
following, a general formulation of MPC problem is stated.

Definition 6 (Problem). Let N ≥ 1 be given, let X ⊆ Rn and U ⊆ Rm be sets

which represent the state and the input constraints, respectively, and contain

the origin in their interior. The prediction model is xk+1 = g(xk, uk), k ≥ 0,

with g : Rn × Rm → Rn a nonlinear, possibly discontinuous function with

g(0, 0) = 0. Let F : Rn → R+ with F (0) = 0 and L : Rn × Rm → R+ with

L(0, 0) = 0 be known mappings. For each discrete time instant k ≥ 0 let xk the

measured state, let x0|k , xk and minimize the cost function

J(xk,uk) , F (xN |k) +
N−1∑

i=0

L(xi|k, ui|k) (2.1)

over all input sequences uk , (u0|k, . . . , uN−1|k) subject to the constraints

xi+1|k , g(xi+1|k, ui|k) , i = 0, . . . , N − 1, (2.2)

xi+1|k ∈ X , ∀i = 1, . . . , N, (2.3)

ui|k ∈ U , ∀i = 1, . . . , N − 1 (2.4)
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In Problem 6, the function F denotes the terminal cost, while L denotes the
stage cost and N is the prediction horizon. The term xi|k denotes the predicted
state at future instant i, while k is the actual instant. The state preview xi|k is ob-
tained by applying the input sequence {ui|k}i=0,...,N−1 to the dynamical model,
with the measured state xk = x0|k as initial condition. The optimization vari-
able in the minimization of the cost function J(xk,uk) is the input sequence
{ui|k}i=0,...,N−1. Suppose that the problem of minimizing (6), subject to (2.2),
(2.3), (2.4), is feasible and let {u∗i|k}i=0,...,N−1 denote an optimal solution. Ac-
cording to the receding horizon strategy, the MPC control action uMPC(xk) is
obtained as the first element of the optimizer u∗ = {u∗i|k}i=0,...,N−1

uMPC(xk) , u∗0|k, k ≥ 0 (2.5)

2.1.2 Hybrid models

A hybrid system is a system whose behavior is characterized by several modes
of operation. For each mode there is a differential or difference equation set
describing the continuous time or discrete time dynamics. The switch between
the models occurs when a particular event happens. These events can be caused
by variables crossing specific thresholds (state event), by the elapsing of certain
time periods (time events), or by external inputs (input events) and, for exam-
ple, they can be modeled as a finite state machine. Due to switch acting in the
hybrid system, the dynamics can be discontinuous. Also, the stability analysis
is much harder than in the case of a single operating mode system.
The hybrid model class is large, but this research focus on a subset of this class,
for which there is a trade-off between the modeling power and the complexity
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of analysis. The trade-off results in a simpler model representation, but suffi-
ciently structured in order to represent a industrially relevant process. Without
loss of generality, in this paper the author considers the piecewise affine (PWA)
functions as the class of hybrid models, defined as follows

Definition 7 (PWA Function). A function z(x) : X → Rs, where X ⊆ Rn is

a polyhedral set, is PWA if it is possible to partition X into convex polyhedral

regions, CRi, and z(x) = H ix+ ki, ∀x ∈ CRi.

In particular, a PWA model is described by the following definition

Definition 8 (PWA Model). A PWA dynamical model is the set of discrete time

linear systems

x(k + 1) = Aix(k) +Biu(k) + fi

y(k) = Cix(k) +Diu(k) + gi

i : Hix(k) + Liu(k) ≤ Ki, i = 1, . . . , s (2.6)

where Ai ∈ Rn×n, Bi ∈ Rn×m, Ci ∈ Rp×n, Di ∈ Rp×m, fi ∈ Rn, gi ∈ Rp are

the state space affine models, i is the active mode at time k and Hi, Li, Ki are

matrices of appropriate dimension.

In the Definition 8, for each i, the polytopic set depends on the state x(k)

and the input u(k) of the system. All the sets are polytopic, hence bounded by
definition.

2.1.3 Explicit MPC

The implicit MPC strategy described in Section 2.1.1 requires to solve an on-
line optimization problem. The corresponding code implementation of the al-
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gorithm is time unpredictable, hence it is not suitable for hard real-time imple-
mentation, as it does not provide guarantees on the execution time. There are
a lot of processes for which implicit MPC is suitable, for instance a low fre-
quency chemical plant, for which the execution time is not really important. A
hard real-time control loop must be time predictable, certifiable (i.e. provides
guarantee) and relatively fast. However, the effort of the researchers in the field
of the optimization algorithms has produced solutions to speed-up the optimiza-
tion algorithm, for example the very fast active set strategies [21]. One of the
most important result in the hard real-time control is addressed in the explicit
solution of the implicit MPC strategy [5].
The idea behind the explicit MPC is to solve off-line several implicit MPC in-
stances for all xk within a given set X = {x ∈ Rn : Hx ≤ K} ⊂ Rn, and to
make the dependence of the input on the state explicit. The set X is assumed to
be polytopic (i.e. bounded set and described by linear inequalities). As a result,
by solving a multi-parametric program, the equivalent explicit solution of the
implicit ones is a piecewise affine function of the state

u(k) = F ix(k) +Gi

if H ix(k) ≤ K i (2.7)

where i indexes the i-th regionR in the explicit linear MPC.
Also, for a hybrid model, under the assumption of bounded state and linear cost
function, the explicit MPC solution is a PWA function of the state.
It is clear that formulation (2.6) is more suitable for real-time controllers, rather
than the solution of implicit MPC. In order to evaluate the optimal input at time
step k, one has to evaluate a finite number of sets of inequalities and has to com-
pute one matrix product and one sum. The actual microprocessor technology is
sufficiently mature to achieve that specifications. As the resulting few lines of
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code can run in high speed, the explicit MPC is suitable for time-critical appli-
cations.

2.1.4 Switched MPC

The architecture described in the previous sections can be used to implement an
explicit SwMPC controller in approximate form. In this section we summarize
the main elements of the SwMPC control strategy. A MLD system subject to
constraints can be controlled through an implicit HMPC strategy. The explicit
HMPC strategy can be applied to a MLD model, after recasting it to an equiv-
alent PWA form. A suitable strategy to control (2.6) in state feedback, subject
to state and input constraints, is the explicit HMPC [2]. This approach requires
enumerating all the feasible switch sequences between the dynamics i and solv-
ing a multi-parametric quadratic problem for each sequence. Storing all the
control gains leads to a large use of memory blocks in the FPGA implementa-
tion with respect to a simpler controller such as the SwMPC. Considering only
the sequences for which the region i is the same during the prediction steps,
since the constraints that define the PWA regions are ignored after the first pre-
diction step, the number of multi-parametric quadratic problems to be solved
is equal to the number of PWA regions, leading to a suboptimal solution to the
control problem. A formal definition of the SwMPC will be given in Sec. 3.3.

2.2 Controller circuit implementation

The real-time implementation of linear model predictive control strategies in
embedded architectures was deeply analyzed in [13,29], and an automated code
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generation strategy was developed in [36]. Starting from a model, through the
definition of a model-based control strategy suitable for the implementation in
an embedded architecture, the problem of implementing the control strategy
was also investigated for parallel architectures in [28]. Often a system that inte-
grates continuous dynamics and logical structures can be described as a mixed-
logic dynamical system (MLD). A suitable strategy to control a MLD system
subject to constraints is hybrid model predictive control (HMPC). In order to
obtain a HMPC, one has to solve on-line a mixed-integer quadratic or a mixed-
integer linear programming problem. For a high-dimensional model, solving
this kind of problems may be computationally too expensive for fast real-time
application [14].

Explicit reformulations of HMPC can be carried out by solving off-line a
sequence of multi-parametric quadratic or linear problems [14]. The result-
ing solution is a possibly discontinuous piecewise affine (PWA) function of
the state. In other words, the control modes are linear affine over polytopes
partitioning the state domain, thus making this approach more suitable for the
embedded control implementations. Storing the gains of the explicit HMPC re-
quires larger and larger memory blocks in the electronic implementation as the
number of partitions grows. Moreover, in order to evaluate the control action,
the pre-computed gains should be selected, according to the state value, from a
look-up table associated to the explicit controller. As a result, since the gains
selection from the look-up table can be made by a binary-tree search [41], or
by other more sophisticated algorithms, determining the correct mode can be a
hard problem if the number of regions is too large.

A suitable strategy, alternative to HMPC, to reduce drastically the number
of partitions is the switched MPC (SwMPC) approach, successfully applied for
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instance in [18], where a PWA system is controlled by a set of linear MPC
controllers, each one defined over a different polytope of the domain. In explicit
form, SwMPC is basically a set of patched PWA controllers. For each i-th
region Ri of the domain, a linear MPC problem is solved, whose solution is a
continuous PWA function defined over a polytopic partition of the region. Note
that a MLD model can be converted in an equivalent PWA formulation [2].

The resulting PWA control function may be discontinuous only at the bound-
aries of the regions. The overall number of polytopes obtained with the ex-
plicit SwMPC approach is typically much lower than the one obtained with the
explicit HMPC, especially when the number of optimization variables grows.
However, the SwMPC complexity reduction with respect to HMPC is not cost-
less, since optimal switching sequences are restricted to constant mode se-
quences, possibly breaking a-priori stability properties. However, a-posteriori

stability analysis of the SwMPC can be performed exploiting the results in [20]
and in [38].

2.3 Stability analysis

In the last decade the interest in studying the dynamical properties of piece-
wise affine (PWA) systems has increased considerably, due to their powerful
modeling capabilities. Discrete-time PWA models are a special class of hybrid
systems that can represent combinations of finite automata and linear dynam-
ics, are a good approximation of nonlinear systems [39], and are equivalent to
hybrid systems in mixed logical dynamical form [2, 7].

Analyzing the stability of PWA systems is fundamental to describe the prop-
erties of an autonomous hybrid system, or to check a-posteriori the stability
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of a given closed-loop system [6, 17]. In particular, stability analysis becomes
fundamental when a PWA control law is synthesized without a-priori guaran-
tees of closed-loop stability, for example when explicit model predictive control
(MPC) laws [9] are approximated in order to reduce their complexity [1].

The most widely used methods for stability analysis of discrete-time PWA
systems are based on piecewise quadratic (PWQ) Lyapunov functions [20].
Such methods rely on the solution of a semi-definite program to get a stabil-
ity certificate. As highlighted in [22], the search for a PWQ Lyapunov function
can be overly conservative, even with the use of the so-called S-procedure (see
e.g. [15]). A valid alternative are PWA Lyapunov functions, that are computed
by solving a linear program (LP) [11]. Other types of Lyapunov functions can
be used for the same purpose, such as piecewise polynomial Lyapunov func-
tions [34]. For an overview of such methods, the interested reader is referred
to [11].

Most of the existing literature on stability analysis of PWA systems assumes
that the set X of states in which the PWA dynamics are defined is invariant, as
the notion of stability has no practical relevance if the state trajectory exits the
domain of definition of the dynamics [11]. However, often the PWA system to
be analyzed is defined in a set X that may not be invariant. A possible approach
is to perform a reachability analysis to find the maximum positively invariant
set to establish, using a recursive procedure, an invariant subset of the given set
X (see [35], [12, Chap. 4-5] and the references therein). Unfortunately this
procedure often leads to very involved solutions, due to the exponential com-
plexity of reachability analysis of PWA systems, and in many cases searching
the maximum invariant set is an undecidable problem.

Most of the existing literature on stability analysis of PWA systems also deals
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with nominal stability analysis, in spite of the practical relevance in applications
of certifying stability properties in the presence of disturbances. The problem
consists of determining if the state will converge to the origin (or to a termi-
nal set) despite parametric uncertainties and/or external disturbances affecting
the process. The reason why this problem was almost ignored in the literature
is mostly due to the complexity of uncertain switching systems. Notably, in-
teresting results were introduced for the case of additive disturbances in [24],
where an optimal control strategy is synthesized to steer the state in finite time
to a terminal set, and in [35], where the authors determine how to drive the
state into the maximal robust invariant set in minimum time, using set-theoretic
techniques. Some classical results appeared for parametric uncertainties in case
of linear parameter varying systems [12, Chap. 7]. Results for linear switched
systems can be found in [45], where quadratic stabilizability is analyzed in case
of two discrete states and polytopic parametric uncertainties, and in [27], where
the synthesis of switching control laws is tackled, assuring that the state is ul-
timately bounded within a given set, in case of both parametric uncertainties
and external disturbances. To the authors’ knowledge, general results on the
analysis of uncertain PWA systems are not available in the literature.
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Chapter 3

Explicit HMPC approximation and FPGA
implementation

In this thesis we extend to discontinuous PWA functions the results of [32, 40],
related to the circuit implementation of continuous PWA functions. Recalling
Sec. 2.2, where the state of the art regarding the implementation of possibly
discontinuous PWA functions in approximate form on fast digital circuits, we
restrict our attention to PWA control functions for which each mode is defined
over a hyper-rectangular region. This limits the approach to hybrid dynamical
systems where threshold conditions only depend on single components of the
state vector.

In order to circuit implement the SwMPC solution in an approximate but
fast way, we resort to a modified version of the method proposed in [10]. Ac-
cordingly, each explicit solution (valid over the i-th hyper-rectangular region)
is first approximated by using a PWA continuous function, defined over a reg-
ular simplicial partition of the i-th region (called PWAS function). Then, the
obtained approximations can be merged into one PWAS discontinuous func-
tion, which can be directly mapped on programmable hardware such as a field

21
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programmable gate array (FPGA).

The architectures able to implement PWAS functions proposed so far in [19,
37,40] perform a linear interpolation of the values of the function at the vertices
of the simplex the input belongs to. The main limit of such an approach is that
the implementable functions are continuous. If functions with discontinuities
that are not perpendicular to an axis were to be implemented, more complex
and power-hungry architectures would be necessary [23, 31].

3.1 Circuit implementation of continuous PWAS functions

In this section, we briefly summarize the mathematical theory the proposed
architecture is based on and we introduce some basic definitions. We deal
with a continuous PWAS function fPWAS : S → R, defined over a properly
scaled n-dimensional compact domain S = {z ∈ Rn : 0 ≤ zh ≤ mh, h =

1, . . . , n, mh ∈ N}. Function fPWAS can be easily implemented by introduc-
ing a regular partition of the domain S [32]: each dimensional component zh
of the domain S is divided into mh subintervals of unitary length. As a conse-
quence, the domain S is partitioned into

∏n
h=1mh hyper-squares and contains

N =
∏n

h=1(mh + 1) vertices vk collected in a set V . Each hyper-square can be
further partitioned (simplicial partition) into n! non-overlapping regular sim-
plices. The coordinates of the corner of the hyper-square closest to the origin
that contains a given input z can be found by extracting the integer part of z.
The exact position of z within the related simplex is coded by the decimal part
of z (denoted as δz) [32]. The PWAS function fPWAS is linear over each sim-
plex of the partitioned domain S and can be expressed as a linear combination
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of N α-basis functions

fPWAS(z) =
N−1∑

k=0

ckαk(z). (3.1)

Once the scaled simplicial domain is defined, the basis functions (belonging
to the α-basis) are directly defined as well. The k-th α-function is PWAS, holds
the value 1 at the vertex corresponding to vk and the value 0 at all the other
vertices.

The shape of a given PWAS function fPWAS is coded by the N coefficients
ck in Eq. (3.1), which are the values of fPWAS at the vertices vk of its simplicial
partitions. Henceforth, we assume that the coefficients are already determined
by a function approximation procedure (see, e.g. [10]).

The coefficients ck (k = 1, . . . , N ) are stored by assigning a proper memory
address to each vertex vk of the simplicial partition. Define βp : Nn → Nb

as the binarizing operator that, given a column vector of n integer values and
a precision p, returns a np-long string of bits, concatenating the binary values
of the elements of the vector. For instance, if vk = [2, 0, 5]T and p = 3,
then βp(vk) = 010 000 101. Then, βp(vk) is an unambiguous address for the
vertex vk. The value of fPWAS(z) can be calculated as a linear interpolation
of the fPWAS values at the vertices of the simplex containing z, i.e., as a linear
interpolation of a subset of n+ 1 coefficients ck:

fPWAS(z) =
n∑

j=0

µjcΩj
(3.2)

where the µj’s are the weights that give z as a convex combination of the vertices
of the simplex that contains it (i.e., z =

∑n
j=0 µjvΩj

, with
∑n

j=0 µj = 1) and
Ωj is a function that maps the index j of the weight µj into the corresponding
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index k of one of the vertices surrounding z [32]. Ωj, as well as the interpolation
weights µj, depends on z. This dependence is omitted here for ease of notation.

As a consequence, the circuit realization of a PWAS function proposed in
[40] requires three functional elements:

1. a memory where the N ck coefficients are stored;

2. a block that finds, for any given input z, the indices Ωj and the coefficients
µj;

3. a block performing the weighted sum (3.2).

Since the {ck}’s are stored in a memory, Ωj corresponds uniquely to the address
Ωb
j of the j-th coefficient in Eq. (3.2), through the binarizing operator βp

Ωb
j = βp(bzc+ aj), j = 0, . . . , n (3.3)

where aj’s are vectors whose components are calculated from the decimal parts
of the input z [32].

3.2 Generalization to a class of discontinuous functions

The algorithm presented in Sec. 3.1 can be generalized to include a particular
class of discontinuous functions, namely the functions composed of continuous
PWAS functions separated by discontinuities that lie perpendicular to a coordi-
nate axis. In this case, we can define an index labeling the subregion a continu-
ous PWAS function is defined over and use this index to solve the point location
problem, i.e. to address correctly the memory containing the coefficients.

Let us suppose that there are Dh discontinuities orthogonal to each axis zh,
with h = 1, . . . , n. The discontinuities are hyperplanes (straight lines for n = 2)
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in the form zh = dh,t (h = 1, . . . , n; t = 1, . . . , Dh; dh,t constant) that further
partition the domain S into P =

∏n
h=1 (Dh + 1) hyper-rectangular regions Ri

(discontinuity partition, i = 1, . . . , P ). Figure 3.1 shows an example of a two-
dimensional domain of a discontinuous function with m1 = 4, m2 = 3, D1 = 2

and D2 = 1. Both the regular simplicial partition and the six regions Ri are
highlighted.

z1

z2

0
0

1

1

2

2

3

3

4

z 1
=
d
1
,1

z 1
=
d
1
,2

z2 = d2,1

4

R1

Figure 3.1: Two-dimensional domain with discontinuities.

The discontinuous function fPWAS can be defined as follows:

fPWAS(z) = fPWASi(z) =
N−1∑

k=0

cikαk(z), ∀z ∈ Ri (3.4)

where fPWASi are continuous functions that can be implemented using the tech-
nique proposed in Sec. 3.1. They are defined over the whole domain S, since
the set of α-functions is unique for both continuous and discontinuous PWAS
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functions (see Eqs. (3.1) and (3.4)). The shape of a particular function fPWASi

is coded by the coefficients related to the vertices that lie insideRi and immedi-
ately outside of the boundary ofRi. Thus, most of the coefficients cik related to
vertices that fall outsideRi can be discarded. Indeed, we need to consider only
the set Vi of the vertices that lie inside the smallest hyper-rectangle containing
Ri defined over the vertices of the simplicial partition. For instance, in Fig. 3.1
the vertices V1 that define the shape of fPWAS1 over R1 are marked by blue
dots. They are all contained inside the rectangle [1, 3]× [0, 2]. 1 Then, fPWASi

is completely characterized by the coefficients corresponding to Vi:

fPWASi(z) =
∑

k∈Ki

cikαk(z), z ∈ Ri,

where Ki = {k : vk ∈ Vi}.
An example of discontinuous PWAS function is shown in Fig. 3.2. In this

case, fPWAS is defined over a one-dimensional domain S = [1, 5], with one
discontinuity (z = d1,1 = 2.7) and

fPWAS(z) =




fPWAS0(z), z ∈ R0 = [1, 2.7)

fPWAS1(z), z ∈ R1 = [2.7, 5]

To calculate fPWAS0, it is necessary to know the value of its coefficients at the
vertices v0, v1, v2 (all ∈ R0) and v3(/∈ R0), then V0 = {v0, v1, v2, v3} and
K0 = {0, 1, 2, 3}. On the other hand, the set of vertices needed to evaluate
fPWAS1 is v3, v4, v5 (all ∈ R1) and v2(/∈ R1), then V1 = {v2, v3, v4, v5} and

1A formal definition of Vi is

Vh =

{
vk ∈ V : vi ∈ argmin

R(vk)⊇Ri

{|R(vk)|}
}

whereR(vk) is a hyper-rectangle and |R(vk)| is its volume.
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K1 = {2, 3, 4, 5}. We notice that the correspondence between vertices of the
simplicial partition and coefficients is no longer one-to-one, as both c0

2 and c1
2

are related to v2 and both c0
3 and c1

3 are related to v3.

z

fPWAS(z)

0
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Figure 3.2: One-dimensional discontinuous PWAS function

Since some coefficients cik of each function fPWASi are in a relation many-
to-one with the vertices of the simplicial partition and since they are stored in
the same memory, we need to refine the way they are addressed. For any given
z = [z1, z2, . . . , zn]

T ∈ Ri, we can define

r(z) =




∑D1

t=1 u(z1 − d1,t)∑D2

t=1 u(z2 − d2,t)
...∑D1

t=n u(zn − dn,t)




(3.5)

where u(·) denotes the unitary step function. Then each rectangle can be uniquely
identified by the binary string (with n × (p − 1) bits) βp−1(r(z)), z ∈ Ri. We
choose p as the lowest integer such that Dh ≤ 2p−1 − 1 (h = 1, . . . , n).
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Given a point z, we need to find the rectangle Ri such that z ∈ Ri and the
related set of coefficients cik. Thus, the index map Ωj is redefined so that it
corresponds uniquely (for any z) to the memory address

Ωb
j = βp+1(2r(z) + bzc+ aj), j = 0, . . . , n (3.6)

Finally, a discontinuous PWAS function can be evaluated using the method
provided in Sec. 3.1 by substituting Eq. (3.3) with Eq. (3.6). The binary vector
βp−1(r(z)) can be easily obtained by using comparators to process the input z
and find the region it belongs to.

To evaluate each function fPWASi it is possible to use the architecture A
proposed in [40], that provides a correct output every p + q + n + 5 clock
cycles, where p and q are the number of bits used to code the integer part and
the decimal part, respectively, and n is the input dimension. As stated before,
the coefficients cik defining the shape of fPWAS are stored in a memory and they
can be addressed by calculating the strings Ωb

j. Then, we need to modify the
way the address is calculated in [40], according to Eq. (3.6). Equation (3.5) is
evaluated asynchronously with respect to the system clock through comparators
and 1-bit adders when the input vector z is fed into the circuit.

The number of elementary devices (comparators, adders, multipliers, etc.)
required to evaluate a discontinuous PWAS function is reported in Tab. 3.1. The
items of the part added to evaluate discontinuous functions are kept separated
and described in italic text.

3.2.1 An example

Given the three-dimensional domain S = [0, 15]3, we want to calculate the
value of a certain function fPWAS at the point z = [2.6, 4.3, 1.4]T . fPWAS has
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Item Bits # Devices

Comparator q n

Multiplexer n n

ROM 2np × b 1
Adder/Subtractor n+ 1 n

Adder/Subtractor q n

Multiplier b× q 1

Comparator p+ q
∑n

i=1Di

Adder 1 n

Adder p+ 1 n

Shift Register p 1

Table 3.1: Number of elementary devices to evaluate a discontinuous PWAS

µj(z)

=bj(z)
MEMORY

ck

∑
µjc=jz fPWAS

COMPARATORS
BANK
≤

Figure 3.3: Architecture to implement discontinuous functions

discontinuities in d1,1 = 2.1, d1,2 = 8.5, d2,1 = 0.9 and d3,1 = 9.7. We need to
retrieve from the memory n+ 1 = 4 coefficients chΩj

by evaluating Eq. (3.6).

The integer part of z is easily obtained bzc = [2, 4, 1]T , while the vectors
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aj depend on the decimal part of z and assume the values (the reader is referred
to [32] for details):

a0 =




0

0

0


 , a1 =




1

0

0


 , a2 =




1

0

1


 , a3 =




1

1

1




By applying Eq. (3.5) we obtain

r(z) =



u(z1 − d1,1) + u(z1 − d1,2)

u(z2 − d2,1)

u(z3 − d3,1)


 =




1 + 0

1

0




Fixing p = 4, the first address is given by

Ωb
0 = βp+1(2r(z) + bzc+ a0)

= β5([2, 2, 0]T + [2, 4, 1]T + [0, 0, 0]T )

= β5([4, 6, 1]T )

= [00100 00110 00001]

and the others take the values

Ωb
1 = [00101 00110 00001],

Ωb
2 = [00101 00110 00010],

Ωb
3 = [00101 00111 00010].

3.3 Switched MPC

The architecture described in the previous sections can be used to implement an
explicit SwMPC controller in approximate form. In this section we summarize
the main elements of the SwMPC control strategy. As explained in Sec. 2.2, a
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MLD system subject to constraints can be controlled through an implicit HMPC
strategy. The explicit HMPC strategy can be applied to a MLD model, after
recasting it to an equivalent PWA form. A time-invariant PWA discrete-time
model is defined as follows

x(k + 1) = Aix(k) +Biu(k) + fi (3.7)

i : Hix(k) ≤ Ki , i ∈ I (3.8)

where x ∈ Rn×1, u ∈ Rm×1, Ai ∈ Rn×n, Bi ∈ Rn×m, fi ∈ Rn×1 characterizes
the i-th mode, Hi, Ki are matrices of suitable dimensions defining the i-th re-
gion Ri, I = {1, . . . , P} and P is the number of regions. A suitable strategy
to control (3.7), (3.8) in state feedback, subject to state and input constraints,
is the explicit HMPC [2]. This approach requires enumerating all the feasi-
ble switch sequences between the dynamics i and solving a multi-parametric
quadratic problem for each sequence. Storing all the control gains leads to a
large use of memory blocks in the FPGA implementation with respect to a sim-
pler controller such as the SwMPC. Considering only the sequences for which
the region i is the same during the prediction steps, since the constraints that
define the PWA regions are ignored after the first prediction step, the number
of multi-parametric quadratic problems to be solved is equal to the number of
PWA regions, leading to a suboptimal solution to the control problem.

In order to formulate (3.7), (3.8) as standard linear system, fixing the mode
i, we merge the affine term fi in the input matrix Bi. The resulting set of
linear systems is a suitable formulation for a set of linear MPCs. Let v(k) be
a measured input disturbance such that v(k) = 1,∀k ≥ 0, then (3.7) can be
rewritten as follows

x(k + 1) = Aix(k) +Biu(k) + fiv(k) (3.9)
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or, in a more compact way,

x(k + 1) = Aix(k) + B̄iū(k) (3.10)

where B̄i = [ Bi fi ] and ū = [ u′(k) v(k) ]′. Exploiting model (3.10), (3.8) we
define a set of linear MPCs based on the following quadratic problem:

min
U=[u0, ..., uM ]

J(x, U) =
M−1∑

k=0

x(k)′Qx(k)+

+ u′(k)Ru(k) + ρε2

s.t. xmin − ε ≤x(k) ≤ xmax + ε,

umin ≤u(k) ≤ umax,

x(k + 1) =Aix(k) + B̄iū(k) (3.11)

where M is the prediction horizon; the quantities xmin, xmax, umin, umax are
state and input bounds, respectively; ε is a slack variable, weighted by ρ; R, Q
are weight matrices of suitable dimensions; Ai, Bi are the i-th model matrices.
At time k, only the first component u0 of the optimal sequence is applied, in a
receding horizon fashion. A SwMPC is a set of linear MPCs based on (3.11)
each one defined over its corresponding region Xi. For each control step, one
has to evaluate the active mode i and compute the i-th control action.
Problem (3.11) is stated as a regulation of the states to the origin. A reference
tracking problem can be recast as partial state regulation problem by extending
the state vector and exploiting the same formulation, as follows. Let y(k) =

Cx(k) be the output of model (3.10), (3.8), where C ∈ Ro×n is the output
matrix, then consider the extended state vector xe = [ x′ r′y ], where ry ∈ R.
The reference tracking formulation is obtained by substituting in (3.11) Q =

[ C −I ]′Qy[ C −I ], where Qy is a weight matrix of suitable dimension and I is the
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identity matrix of order o. This leads to a reference tracking problem with cost
function J(x, U) =

∑M−1
k=0 (Cx(k)− ry)′Qy(Cx(k)− ry) + u′(k)Ru(k) + ρε2.

Exploiting the results in [9], each linear MPC of the SwMPC formulation
could be explicitly solved through a multi-parametric quadratic problem, lead-
ing to a set of linear explicit MPCs. Moreover, in each region the explicit con-
troller is a continuous PWA function of the state. The overall explicit SwMPC
controller is defined as follows.

u(k) = F i
jx(k) +Gi

j (3.12)

if H i
jx(k) ≤ K i

j (3.13)

where j indexes the polytopes of the i-th region Ri in the explicit linear MPC.
In the framework described in the previous sections, these polytopes reduce to
identical simplexes and the regions are hyper-rectangles.

In the next section, a benchmark for the SwMPC implemented with PWAS
in a FPGA reveals the capabilities of the proposed approach, suggesting that
the SwMPC performances can get very close to the HMPC ones, at least for
functions belonging to the class described in Sec. 3.2.

3.4 Experimental validation

In order to test the circuit implementation on FPGA, we propose a revised case
study of the hybrid temperature control problem described in the Hybrid Tool-
box [3]. The model is a MLD description of an air conditioning system and in
closed loop with a HMPC. A discontinuous PWA control of the MLD system
is found by using the SwMPC approach described in Sec. 3.3 using the same
HMPC tuning parameters for each linear MPC. Then, each PWA continuous
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function defining the controller is approximated by a PWAS function. We ob-
tain a discontinuous PWAS controller, which is implemented on a FPGA by
using the architecture introduced in Sec. 3.2.

3.4.1 Model and control description

The state vector x represents two different temperatures, while the input u is the
ambient temperature to be regulated:

x(k) ,
[
T1(k)
T2(k)

]
, u , Tamb

The auxiliary variables associated with threshold events uhot, ucold are such that

IF x1 ≤ Tc1 OR (x2 ≤ Tc2 AND x1 < Th1)

THEN uhot = Uh ,ELSE uhot = 0

IF x1 ≤ Th1 OR (x2 ≤ Th2 AND x1 < Tc1)

THEN ucold = Uc ,ELSE ucold = 0 (3.14)

where T{c1,c2,h1,h2} are constant temperatures, Uc represents the air conditioning
power flow, Uh represents the heater flow.

The hybrid model is stated as follows.

x1(k + 1) = x1(k) + Ts[− α1(x1(k)− u(k))+

+K1(uhot(k)− ucold(k))]

x2(k + 1) = x2(k) + Ts[− α2(x2(k)− u(k))+

+K2(uhot(k)− ucold(k))] (3.15)

where Ts = 0.5 s is the sampling time and α{1,2}, K{1,2} [s−1] are constant
coefficients. The output of the system is the state x.
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The state and input constraints for the hybrid model are the following.

−10 ≤u(k) ≤ 50

−10 ≤x(k) ≤ 50 (3.16)

By exploiting the results of [2], the hybrid model (3.14),(3.15) is translated
into an equivalent PWA model, which is defined over a three-dimensional do-
main (n = 3, with 2 state dimensions and 1 input dimension) partitioned into 5

polyhedral regions. As shown in Fig. 3.4, where a section of the PWA model
for Tamb = 25◦C is shown, the polyhedral partition has boundaries parallel with
respect to the state axes T1 and T2. Since the open-loop dynamics in regions 2,
3 and in 1, 4 are the same, the MPC calculated over the partition P associated
to region 2 is equivalent to the one calculated in region 3, as well as region 1

shares the same MPC with region 4, although on different sets of states.

As described in Sec. 3.3, the affine terms in the PWA formulation are con-
sidered as constant measured input disturbances in the SwMPC formulation.
The target of the controller is to track a reference ry for y = x2, while enforc-
ing the constraint x1 ≥ 25 in addition to the constraints in (3.14), (3.16). The
controllers (HMPC and SwMPC) share the same tuning parameters: M = 4,
Qy = 1, R = 0, ρ = +∞ (corresponding to hard constraints). For a constant
reference tracking ry = 30, Figure 3.5 shows that the difference ∆u between
the manipulated variables in HMPC and SwMPC is negligible in most of the
considered points. The controllers characteristics are summarized in Table 3.2.

3.4.2 FPGA implementation

The PWAS approximation of the SwMPC controller has been implemented on
a Xilinx Spartan 3 FPGA, using the VHDL language to define the circuit.
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The first step towards the FPGA implementation is the PWAS approximation
of each explicit linear MPC by applying the method proposed in [10]. The
result of the approximations are five continuous PWAS functions defined all
over the domain, partitioned into simplices using mh = 7 divisions along each
dimensional component.

The second step is to merge the five continuous PWAS functions into one
discontinuous PWAS function fPWAS. Since there are two discontinuities along
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Figure 3.4: PWA state partitions for u = 25◦C.
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Figure 3.5: Differences between manipulated variables of HMPC and SwMPC for ry = 30.
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Item HMPC SwMPC
(for each controller)

# params 3 (2 states, 1 reference) 3

# variables 36 (12 cont., 24 binary) 6

# inequalities 96 (mixed-integer) 26

# regions N/A 5

# subregions 1385a 10 (maximum),
explicit (35 total)

aPossible overlapping regions that are never optimal are not removed

Table 3.2: Controllers dimensions

the first and the second dimensions, the discontinuity partition is composed by
nine hyper-rectangular subregionsRi, i = 1, . . . , 9.

Fig. 3.6 shows the input and state signals obtained using the PWAS approx-
imated control and the HMPC approach, where a sinusoidal reference ry for x2

is imposed.

Function fPWAS is implemented by resorting to the proposed architecture.
To implement the circuit architecture on FPGA we have used a fully generic
VHDL description, so that it is possible to change any parameter before pro-
gramming the FPGA without editing the VHDL code; these parameters are the
input dimension n, the number of bits used to code the integer part (p) and dec-
imal part (q) of the input and the number of bits (b) used to code the coefficients
cik. The position of the discontinuities dh,t inside the domain and the value of
the coefficients cik is set through a Matlab routine that allows the configuration
of the whole VHDL code.

The estimated maximum working frequency is 40MHz, that corresponds to
a throughput of one sample every 550 ns, with a power consumption of 85mW .
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The approximated discontinuous PWAS control occupies 69% of the hardware
resources of the chosen FPGA.



Chapter 4

Closed-loop stability analysis

The contribution of this Chapter is the definition of a stability analysis frame-
work for discrete-time PWA systems subject to both parametric uncertainties
and additive disturbances which are unknown but bounded and defined in poly-
topic sets. The proposed method is based on the use of PWA Lyapunov func-
tions synthesized via linear programming, and permits to determine if the state
converges to the origin (or to a terminal set including the origin). The system
dynamics are defined only in a closed polytopic region X , which is not neces-
sarily required to be invariant. By artificially extending the systems dynamics
outside X , the proposed method can determine an invariant subset of X , in
which the dynamics of the original PWA system of interest are defined. The
attractiveness of the origin (or that of the terminal set) is determined with re-
spect to such a region of attraction. Finally, discontinuities on the boundaries
of the partitions are tackled for both the system dynamics and the PWA Lya-
punov function, in order to broaden the range of applicability of the proposed
approach and to reduce the conservativeness due to the imposition of continu-
ity. The presence of discontinuities, however, requires additional attention on
technical conditions [26].

41
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Preliminary results of this thesis focusing only on the asymptotic stability
analysis of systems without disturbances or with parametric disturbances are
reported in [38] and in [42], respectively.

4.1 Problem formulation

Consider the autonomous discrete-time uncertain PWA system

x(k + 1) = Ai(w(k))x(k) + ai(w(k)) + Ei(w(k))d(k) if x(k) ∈ Xi (4.1)

where x(k) ∈ Rn, w(k) ∈ W ⊂ Rq, d(k) ∈ D ⊂ Rp,

Ai(w) , Ai,0 +

q∑

r=1

Ai,rwr (4.2a)

ai(w) , ai,0 +

q∑

r=1

ai,rwr (4.2b)

Ei(w) , Ei,0 +

q∑

r=1

Ei,rwr (4.2c)

W ,
{
w ∈ Rq :

q∑

r=1

wr = 1, wr ≥ 0

}
(4.2d)

D ,
{
d ∈ Rp : H̃d ≤ h̃

}
(4.2e)

Ai,r ∈ Rn×n, ai,r ∈ Rn, Ei,r ∈ Rn×p, with r = 0, ..., q, and k ∈ Z+,
H̃ ∈ Rp×η, and h̃ ∈ Rη. Denote by d1, . . . , dη ∈ Rp the vertices of D,
D = conv(d1, . . . , dη). The sets Xi, i ∈ I , {1, ..., s}, are (possibly non-
closed) polytopes such that int(Xi) 6= ∅, Xi∩Xj = ∅, ∀i, j ∈ I with i 6= j, and
such that X , ⋃s

i=1Xi is a closed polytope. The subset of indices I0 is defined
as I0 , {i ∈ I : 0 ∈ X̄i}. The interior of each partition Xi is defined as

int(Xi) , {x : Hix < hi}, i ∈ I (4.3)
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where Hi and hi are a constant matrix and a constant vector, respectively, of
suitable dimensions, and let X̄i the closure of Xi, X̄i , {x : Hix ≤ hi}, i ∈ I.

Denote by

x(k + 1) = Ai,0x(k) + ai,0 if x(k) ∈ Xi (4.4)

the nominal model of (4.1). Note that dynamics (4.1) may not be continuous
with respect to x on the boundaries of the partitions Xi, while it is continuous
with respect to w and d.

Assumption 1. There exists an index i ∈ I such that 0 ∈ vert(X̄i), 0 ∈ int(X ).

�

Note that Assumption 1 can be always satisfied. In fact, if the origin is not
on a vertex of any polyhedron Xi, it is always possible to further partition X
to obtain a new set of partitions Xi which fulfills Assumption 1. Note also that
the state trajectories may not be persistent in time, since X is not necessarily an
RPI set, and the dynamics are not defined outside X .

This Chapter addresses the following problem: Given the uncertain PWA
system (4.1), for which X is not necessarily an RPI set, prove the properties
of stability and convergence to the origin (asymptotic stability, ultimate bound-
edness, and input-to-state stability) with respect to an RPI subset P of X . In
case of ultimate boundedness, find another RPI set F where the state is driven
in finite time.
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4.2 Reachability analysis

4.2.1 One-step reachability analysis

Since the set X is not assumed to be RPI with respect to dynamics (4.1), we
must take into account that the trajectories may possibly leave X , and be there-
fore defined only on a finite time interval [0, kmax]. Define the one-step reach-
able set from X

R(X ) , {Ai(w)x+ ai(w) + Ei(w)d : w ∈ W , d ∈ D,
x ∈ Xi, i ∈ I}

and let

R∪(X ) , R(X ) ∪ X (4.5)

The setR(X ) can be computed as the union of the one-step reachable sets from
all the Xi, defined as

R(Xi) , {Ai(w)x+ ai(w) + Ei(w)d, w ∈ W , d ∈ D, x ∈ Xi}

Note thatR(Xi) is not a convex set in general. Note that the terms in (4.2a) and
(4.2b) can be equivalently expressed as

Ai(w) =

q∑

r=1

(Ai,0 + Ai,r)wr ,
q∑

r=1

Ãi,rwr

ai(w) =

q∑

r=1

(ai,0 + ai,r)wr ,
q∑

r=1

ãi,rwr

Ei(w) =

q∑

r=1

(Ei,0 + Ei,r)wr ,
q∑

r=1

Ẽi,rwr
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By relying on the results in [12, Chap. 6], we can compute the convex hulls of
the setsR(X̄i) as

conv
(
R(X̄i)

)
=

conv
(
Ãi,rvi,h + ãi,r + Ẽi,rdi,µ, r = 1, ..., q, µ = 1, ..., η, h = 1, ...,mi

)

where vi,h represents each of the mi vertices of X̄i.
Therefore, an over-approximation ofR∪(X ) in (4.5) is

R̃∪(X ) ,
s⋃

i=1

(
conv

(
R(X̄i)

) )
∪ X ⊇ R∪(X ) (4.6)

4.2.2 Fake dynamics and extended system

As dynamics (4.1) is not defined outside X , the proposed strategy consists in
defining a “fake” dynamics on R̃∪(X ) \ X . Let XH ⊇ R̃∪(X ) be the bounding
box of R̃∪(X ), i.e., the smallest closed hyper-rectangle containing R̃∪(X ), and
consider the dynamics

x(k + 1) = ρx(k), if x(k) ∈ XE , XH \ X (4.7)

where ρ ∈ [0, 1) is an adjustable parameter of the approach proposed in this
thesis. The region XE can be divided into convex polyhedral regions as in [9,
Th. 3]. As a result, new regions Xi, i = s + 1, ..., s̃, are created. Let Ĩ ,
{1, ..., s̃}. The dynamics of the extended system on XH is

x(k+1) =

{
Ai(w(k))x(k) + ai(w(k)) + Ei(w(k))d(k) if x(k) ∈ Xi, i ∈ I
ρx(k) if x(k) ∈ XE

(4.8)

Lemma 1. The setXH is an RPI set with respect to the extended dynamics (4.8).



4.2. REACHABILITY ANALYSIS 46

Proof. If x ∈ XH , then either x ∈ X or x ∈ XE. If x ∈ X then the successor
state Ai(w)x + ai(w) + Ei(w)d ∈ R̃∪(X ) ⊆ XH by definition of XH . If
x ∈ XE, the successor state is ρx ∈ XH , because XH is a convex set including
the origin.

Defining XH as a bounding box and the dynamics in XE as in (4.7) is a
simplistic choice, yet we will prove its effectiveness. Other choices of XH and
of the dynamics (4.7) are possible, provided that Lemma 1 holds.

Let x(k) ∈ Xi and x(k + 1) ∈ Xj, (i, j) ∈ Ĩ × Ĩ. To characterize the
transitions we define the region transition map S

Si,j ,
{

1 if conv
(
R(X̄i)

)
∩ X̄j 6= ∅

0 otherwise
(4.9)

which states (in a conservative way) whether there exists a state x ∈ X̄i and two
uncertain vectors w ∈ W , d ∈ D such that Ai(w)x + ai(w) + Ei(w)d ∈ X̄j.
For any pair (i, j) ∈ Ĩ × Ĩ, we define

Xi,j ,
{
X̄i if S(i,j) = 1

∅ if S(i,j) = 0
(4.10)

that we refer to as transition set, representing an overestimate of all the states
that can possibly end up in Xj in one step under dynamics i. In some particular
cases it is possible to give less conservative estimates of such a set of states by
using controllability analysis, as described in the following section.

4.2.3 Case of additive disturbances only

When only additive disturbances affect the system, (4.1) can be written as

x(k + 1) = Ai,0x(k) + ai,0 + Ei,0d(k) (4.11)
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For system (4.11), conv
(
R(X̄i)

)
= R(X̄i) (see e.g. [12, Chap. 6]) and then

R̃∪(X ) = R∪(X̄ ). As for the definition of the transition sets, it is possible to
determine the subset Xi,j of X̄i of states that reach X̄j in one step

Xi,j ,
{
x ∈ X̄i : ∃d ∈ Di : Ai,0x+ ai,0 + Ei,0d ∈ X̄j

}
(4.12)

We exploit here controllability analysis [12, Chap. 5], and consider the distur-
bance vector d as an external input, with respect to which the controllability
analysis is carried out. In the augmented state space (x, d) let

Mi(X̄i, X̄j) =
{

(x, d) ∈ Rn+p : x ∈ X̄i, Ai,0x+ ai,0 + Ei,0d ∈ X̄j, d ∈ D
}

that is computed as

Mi(X̄i, X̄j) =




(x, d) ∈ Rn+p :




Hi 0

HjAi,0 HjEi,0

0 H̃



[
x

d

]
+




0

Hjai,0

0


 ≤



hi

hj

h̃








The intersection of X̄i with the so-called pre-image set of X̄j, representing all
the states that in one step reach X̄j under the dynamics and disturbances defined
in Xi [12], is calculated as the projection of the setMi(X̄i, X̄j) onto the state
subspace:

Xi,j =
{
x : ∃d : (x, d) ∈Mi(X̄i, X̄j)

}
(4.13)

In case of no additive disturbances we have the nominal case, i.e., we have
to prove asymptotic stability of the PWA system (4.4). For such a form it is
possible to determine exactly which is the partition of X̄i which is mapped in
X̄j in one step

Xi,j =

{
x ∈ Rn :

[
Hi

HjAi,0

]
x+

[
0

Hjai,0

]
≤
[
hi

hj

]}
(4.14)
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In both the considered subcases, the transition map (4.9) can be redefined as

Si,j ,
{

1 if Xi,j 6= ∅
0 otherwise

(4.15)

Note that a similar analysis in presence of a disturbance w would lead to a set
of bilinear equations (x and w are multiplied to each other), leading to a non-
polytopic shape for the regions Xi,j.

4.3 PWA Lyapunov analysis for the extended system

In this section we analyze the asymptotic stability and the ultimate boundedness
of the extended system (4.8).

4.3.1 Asymptotic stability

By recalling classical results of stability of nonlinear discrete-time systems (see
e.g. [26], [43] and [25, Chap.2]), assume that the origin is an equilibrium point
for (4.8). Lyapunov stability is guaranteed by the existence of a function V :

XH → R satisfying the conditions

V (x) ≥ α1‖x‖∞ (4.16a)

V (f(x,w, d))− λV (x) ≤ 0 (4.16b)

∀x ∈ Xi and ∀w ∈ W (i ∈ Ĩ), where f : Rn × Rq × Rη → Rn is the PWA
state update function defined by (4.8), α1 > 0, λ ∈ (0, 1). Note that (4.16)
imply the condition V (0) = 0. Considering (4.16b) in x = 0 and recalling
that 0 is an equilibrium point, f(0, w, d) = 0,∀w ∈ W , ∀d ∈ D, we get
V (0)− λV (0) = (1− λ)V (0) ≤ 0, which implies V (0) ≤ 0, and by (4.16a), it
follows that V (0) = 0.
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Remark 1. Condition (4.16b) could be replaced by

V (f(x,w, d))− V (x) ≤ −α3‖x‖ (4.17)

where α3 = (1 − λ)α1 > 0. In fact, by (4.16), it follows that V (f(x,w, d)) −
V (x) ≤ −(1 − λ)V (x) ≤ −(1 − λ)α1‖x‖. Also, note that the imposition of

an upperbound α2‖x‖ ≥ V (x), α2 > 0, usually found in the literature is not

necessary here, as V is defined over the bounded setXH . As a consequence, it is

always possible to find a-posteriori α2 > 0 such that V (x) ≤ α2‖x‖, ∀x ∈ XH ,

once function V has been determined. �

Note that imposing the simpler decreasing condition V (f(x,w, d))−V (x) <

0 for all x ∈ X \ 0 (instead of (4.16b) or (4.17)) does not guarantee the asymp-
totic stability of the origin, since the system dynamics are allowed to be discon-
tinuous on the boundaries of the partitions Xi. Instead, the fulfillment of (4.16a)
and (4.16b) (or (4.17)), even if the resulting Lyapunov function is discontinu-
ous, according to [26], is a sufficient condition for the asymptotic stability of
(4.8).

The goal is to synthesize a PWA Lyapunov function for system (4.8) satisfy-
ing (4.16). Consider the candidate function V : XH → R

V (x) = max
i∈N (x)

Vi(x) (4.18a)

where

N (x) , {i ∈ Ĩ : x ∈ X̄i} (4.18b)

and let Vi : X̄i → R be defined as

Vi(x) , Fix+ gi (4.18c)
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for i ∈ Ĩ, where in (4.18c) Fi ∈ R1×n and gi ∈ R are coefficients to be
determined. Note that simply V (x) = Fix + gi for x ∈ int(Xi). The rationale
for using the max in (4.18a) is that for numerical reasons we want to consider
closed sets X̄i and Vi(x), Vj(x) may not coincide on common boundaries X̄i∩X̄j
unless very conservative continuity conditions are imposed.

Since X̄i is a convex set and Vi is affine on the corresponding set X̄i, it will
be shown that it is enough to impose the Lyapunov conditions (4.16a) only at
vert(X̄i), and (4.16b) only at vert(Xi,j):

Fivi,h + gi ≥ α1‖vi,h‖ (4.19a)

for all mi vertices vi,h ∈ vert(X̄i), i ∈ Ĩ, h = 1, . . . ,mi, together with

α1 > 0 (4.19b)

and

Fj(Ãi,rvij,h + ãi,r) + Ẽi,rdµ) + gj − λ(Fivij,h + gi) ≤ 0 (4.19c)

for all vij,h ∈ vert(Xi,j), with h = 1, . . . ,mi, for all Ai,r, ai,r, Ei,r with
r = 1, ..., q, and all dµ with µ = 1, ..., η. Note that the set generated by the
convex combination of the points Ai,rvij,h + ai,r + Ei,rdµ with respect to the
vertices of X̄i coincides with conv {R (Xi,j)}. As a consequence, to impose the
decreasing condition (4.19c) one can consider only the vertices of Xi,j gener-
ating the vertices of conv {R (Xi,j)}. The resulting constraints (4.19) define a
linear feasibility problem in the unknowns Fi, gi, α1, for a fixed decay rate λ,
and a feasible solution can be determined by linear programming (LP).

Lemma 2. Let Assumption 1 hold, and let the LP (4.19) associated with the

autonomous uncertain PWA dynamics (4.8) and the candidate Lyapunov func-

tion (4.18) be feasible. Then system (4.8) is UAS(XH).
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Proof. As for the positive definiteness of the Lyapunov function, since functions
Vi are affine functions defined on convex partitionsXi, the satisfaction of (4.19a)
for all vi,h ∈ vert(X̄i), with i ∈ Ĩ, h = 1, . . . ,mi, for x ∈ X̄i leads to

α1‖x‖ = α1

∥∥∥∥∥
mi∑

h=1

βi,hvi,h

∥∥∥∥∥ ≤
mi∑

h=1

βi,hα1‖vi,h‖

≤
mi∑

h=1

βi,h(Fivi,h + gi) = Fi(

mi∑

h=1

βi,hvi,h) + gi

mi∑

h=1

βi,h = Fix+ gi (4.20)

where βi,h ≥ 0,
∑mi

h=1 βi,h = 1, are a set of coefficients defining x as a con-
vex combination of the vertices of X̄i. For this reason, for x ∈ int(Xi), since
Vi(x) = Fix + gi, (4.16a) holds. Moreover, on the boundaries of X̄i, accord-
ing to (4.18a), one has α1‖x‖ ≤ Fix + gi for all i ∈ N (x), and therefore
α1‖x‖ ≤ maxi∈N (x){Fix + gi} = V (x). This implies that (4.16a) holds for all
x ∈ XH , since XH =

⋃
i∈Ĩ X̄i.

As for the decay of the Lyapunov function, we have that

V (f(x,w, d)) = Fj

[(
q∑

r=1

Ãi,rwr

)(
mi∑

h=1

βi,hvij,h

)
+

q∑

r=1

ãi,rwr

+

(
q∑

r=1

Ẽi,rwr

)(
η∑

µ=1

cµdµ

)]
+ gj (4.21)

with cµ ≥ 0,
∑η

µ=1 cµ = 1. Recalling that (4.19c) holds for all the vertices of
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Xij, and that
∑mi

h=1 βi,h =
∑η

µ=1 ch =
∑q

r=1wr = 1, from (4.21) we get

V (f(x,w, d)) =Fj

[
mi∑

h=1

βi,h

(
q∑

r=1

Ãi,rwrvij,h

)
+

q∑

r=1

ãi,rwr

+

(
q∑

r=1

Ẽi,rwr

)(
η∑

µ=1

cµdµ

)]
+ gj

=Fj

[
mi∑

h=1

βi,h

(
q∑

r=1

Ãi,rwrvij,h

)
+

mi∑

h=1

βi,h

(
q∑

r=1

ãi,rwr

)

+

mi∑

h=1

βi,h

(
η∑

µ=1

cµ

(
q∑

r=1

Ẽi,rwrdµ

))]
+ gj

=Fj

mi∑

h=1

βi,h

[
q∑

r=1

wr

(
Ãi,rvij,h + ãi,r +

η∑

µ=1

cµẼi,rdµ

)]
+ gj

=Fj

mi∑

h=1

βi,h

[
q∑

r=1

wr

(
η∑

µ=1

cµÃi,rvij,h +

η∑

µ=1

cµãi,r +

η∑

µ=1

cµẼi,rdµ

)]
+ gj

=

mi∑

h=1

βi,h

[
q∑

r=1

wr

η∑

µ=1

cµ

(
Fj

(
Ãi,rvij,h + ãi,r + Ẽi,rdµ

))]
+ gj

≤
mi∑

h=1

βi,h

[
q∑

r=1

wr

η∑

µ=1

cµ (λ (Fivij,h + gi)− gj)
]

+ gj

=λ

mi∑

h=1

βi,h (Fivij,h + gi)−
mi∑

h=1

βi,hgj + gj

=λ

(
Fi

mi∑

h=1

βi,hvij,h +

mi∑

h=1

βi,hgi

)
= λ (Fix+ gi) = λV (x)

which proves that (4.16b) holds for all x ∈ int (Xi,j). Also, on the boundaries
of X̄i, the decreasing condition (4.16b) is imposed for all (i, j) ∈ N (x) ×
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N (f(x,w, d)), and therefore

max
j∈N (f(x,w,d))

(
Fj(f(x,w, d)) + gj

)
≤ λ max

i∈N (x)
(Fix+ gi)

Since by definition of Xi,j we have that XH =
⋃s̃
i=1

⋃s̃
j=1Xi,j, (4.16b) holds

for all x ∈ XH . As a result, (4.16) hold for all x ∈ XH , which, following in
spirit the proof of Theorem 2.2.1 in [25, Chap. 2] for deterministic systems,
guarantees that system (4.8) is UAS(XH) according to Definition 3.

Remark 2. The complexity of the LP (4.19) is the following: there are nv =

1 + s̃(n+ 1) variables; one inequality is imposed for each vertex of each region

Xi, i = 1, ..., s̃ to fulfill (4.19a); condition (4.19b) introduces one inequality

constraint; to fulfill (4.19c), for each vertex of each region one has to impose

a number of inequalities equal to the number of regions Xj such that Si,j 6= 0,

multiplied by the product q · η; the overall number of constraints is therefore

nc = 1 +
s̃∑

i=1

mi

(
1 + q · η · card

({
j ∈ Ĩ : Si,j = 1

}))

�

Note that asymptotic stability can be proved only if in the regions includ-
ing the origin in their closure (0 ∈ X̄i) the additive disturbance has no effect,
Ei(w) = 0, and the affine terms ai,r = 0, ∀r = 1, ..., q.

4.3.2 Ultimate boundedness

To check ultimate boundedness, we define the following function

V (x) ≥ α1‖x‖∞ (4.22a)

V (0) = 0 (4.22b)
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V (f(x,w, d))− λV (x) ≤ δ (4.22c)

where δ ≥ 0, while all the other terms are the same as in (4.16). To study ulti-
mate boundedness, infinity norms will be used instead of the generic p-norms.
We call a function V : Rn → R satisfying (4.22) a “Lyapunov-like” function.
Similarly to (4.19), the constraints

Fivi,h + gi ≥ α1‖vi,h‖∞ (4.23a)

are imposed for all mi vertices vi,h ∈ vert(X̄i), i ∈ Ĩ, h = 1, . . . ,mi,

Fj(Ãi,rvij,h + ãi,r + Ẽi,rdi,µ) + gj − λ(Fivij,h + gi) ≤ δ (4.23b)

for all vij,h ∈ vert(Xi,j), with h = 1, . . . ,mi, for all Ãi,r, ãi,r, Ẽi,r with r =

1, ..., q, and all dµ with µ = 1, ..., η. The further constraints

δ ≥ 0 (4.23c)

δ ≤ (1− λ)(L− ε)α1 (4.23d)

gi = 0, i ∈ I0 (4.23e)

α1 > 0 (4.23f)

are also imposed, where L is the minimum distance between the boundary of
the hyper-rectangle XH and the origin, while 0 < ε � 1. Condition (4.23d) is
imposed to ensure that the set where the state is ultimately bounded is well de-
fined, while (4.23e) ensures the fulfillment of (4.22b). The overall optimization
vector is denoted by ξ, and is composed by δ, α1, and the terms Fi and gi, with
i ∈ Ĩ.

Lemma 3. Let Assumption 1 hold, and assume that the linear-fractional pro-
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gram

minimize
δ

α1
(4.24a)

subject to (4.23) (4.24b)

associated with the autonomous uncertain PWA dynamics (4.8) and the candi-

date Lyapunov-like function (4.18) is feasible. Then system (4.8) is UUB(XH ,F),

with

F , {x ∈ XH : V (x) ≤ V +
F } (4.25)

where

V +
F = max

x∈conv{R(Q)}
V (x) (4.26)

Q =

{
x ∈ Rn : ‖x‖∞ ≤

δ

(1− λ)α1
+ ε

}
(4.27)

Proof. As for the positive definiteness of the Lyapunov-like function V , the
proof is exactly the same as in Lemma 2, in the particular case of infinity norms.
To prove (4.22c) is fulfilled for all x ∈ XH , as in Lemma 2, consider the fol-
lowing relation

V (f(x,w, d)) =

mi∑

h=1

βi,h

[
q∑

r=1

wr

η∑

µ=1

cµ

(
Fj

(
Ãi,rvij,h + ãi,r + Ẽi,rdi,µ

))]
+gj

(4.28)
By applying the decreasing condition (4.23b) at the vertices of the sets Xi,j, we
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obtain

V (f(x,w, d)) ≤
mi∑

h=1

βi,h

[
q∑

r=1

wr

η∑

µ=1

cµ (δ + λ (Fivij,h + gi)− gj)
]

+ gj

=δ + λ

mi∑

h=1

βi,h (Fivij,h + gi)−
mi∑

h=1

βi,hgj + gj

=δ + λ

(
Fi

mi∑

h=1

βi,hvij,h +

mi∑

h=1

βi,hgi

)

=δ + λ (Fix+ gi)

=δ + λV (x)

which proves that (4.22c) holds for all x ∈ int (Xi,j). Also, on the boundaries of
the sets X̄i, the decreasing condition (4.22c) is imposed for all (i, j) ∈ N (x)×
N (f(x,w, d)), and therefore

max
j∈N (f(x,w,d))

(
Fj(f(x,w, d)) + gj

)
≤ δ + λ max

i∈N (x)
(Fix+ gi)

Since by definition of the sets Xi,j we have that XH =
⋃s̃
i=1

⋃s̃
j=1Xi,j, (4.22c)

holds for all x ∈ XH , and then (4.22) holds for all x ∈ XH .
By (4.22a) and (4.22c) it follows that V (f(x,w, d)) − V (x) ≤ −(1 −

λ)V (x)+δ ≤ −(1−λ)α1‖x‖∞+δ = −α3‖x‖∞+δ, where α3 = (1−λ)α1. By
definition of Q in (4.27), for all x ∈ XH \ Q we obtain −α3‖x‖∞ + δ < −α3ε,
leading to V (f(x,w, d))−V (x) < −α3ε. Then, given λ∗ ∈ R, V (f(x,w, d))−
λ∗V (x) < (1−λ∗)V (x)−α3ε ≤ (1−λ∗)V +

H −α3ε, with V +
H = maxx∈XH

V (x).
In order to get (1 − λ∗)V +

H − α3ε ≤ 0 and λ∗ ∈ (0, 1), it is necessary to im-
pose the condition on λ∗ max{0, (V +

H − α3ε)/V
+
H } < λ∗ < 1, which is always

feasible, since (V +
H − α3ε)/V

+
H < 1. In conclusion, we get

V (f(x,w, d))− λ∗V (x) < 0, x ∈ XH \ Q (4.29)
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By definition of F , the fulfillment of the constraint (4.23d) implies Q ⊆ XH
and, by relying on the invariance of XH (Lemma 1), conv {R(Q)} ⊆ XH . This
implies the max in (4.26) exists and therefore F in (4.25) is well defined.

To prove invariance of F , we distinguish two cases:

• if x ∈ F ∩Q, then f(x,w, d) ∈ conv {R(Q)} ⊆ F ;

• if x ∈ F \ Q, then (4.29) holds, because F \ Q ⊆ XH \ Q, and therefore
V (f(x,w, d)) ≤ V +

F , meaning that f(x,w, d) ∈ F by definition of F .

Therefore, F is an RPI set for (4.8).
Let V −H , infx∈XH\Q V (x) > 0. Then,

∀ x(0) ∈ XH \ Q ∃ k̄ > 0 : V (x(k̄)) < λk̄∗V (x(0)) < V −H (4.30)

meaning that x(k̄) ∈ Q, because XH in an RPI set.
Given a ∈ R such that a > δ/α3+ε, let V +

a , maxx(0)∈XH\Q:‖x(0)‖∞≤a V (x(0)).
From (4.30), there exists k̄ such that λk̄∗V (x(0)) ≤ λk̄∗V

+
a < V −H . By letting

k̃(a) ,

⌊
lnV −H − lnV +

a

lnλ∗

⌋
(4.31)

we obtain that for all x(0) ∈ XH \ Q with ‖x(0)‖ ≤ a, one has k̄ ≤ k̃(a). As
a consequence, for any initial condition x(0) ∈ XH \ Q such that ‖x(0)‖ ≤ a,
one has x(k̄ + 1) ∈ F , with k̄ ≤ k̃(a). Being F an RPI set, x(k) ∈ F for
k ≥ k̃(a) + 1.

To finally prove that system (4.1) is UUB(XH ,F), consider a scalar a > 0,
and distinguish two cases:

• for all a such that 0 < a ≤ δ/α3 + ε, there exists T (a) = 1 such that, for
every x(0) with ‖x(0)‖∞ ≤ a (i.e. x(0) ∈ Q), x(T ) ∈ F (by definition of
F);
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• for all a > δ/α3 +ε, there exists T (a) = k̃(a)+1 such that, for every x(0)

with ‖x(0)‖∞ ≤ a, x(T ) ∈ F .

In conclusion, for all a > 0, there exists T = T (a) such that, for every
x(0) ∈ XH with ‖x(0)‖∞ ≤ a, x(T ) ∈ F for any admissible sequence of
the disturbance terms w and d. This implies that system (4.1) is UUB(XH ,F)

according to Definition 4.

As a practical procedure to calculate F , it is possible to partition Q into
a number of subsets Qi, Qi = X̄i ∩ Q with i ∈ Ĩ. Then, one can obtain
conv {R(Q)} =

⋃s̃
i=1 conv {R(Qi)}, with

conv {R(Qi)} =

conv
{
Ãi,rv

Q
i,h + ãi,r + Ẽi,rdi,µ, r = 1, ..., qi, µ = 1, ..., ηi, h = 1, ...,mQi

}

where vQi,h are the vertices of the sets Qi, and mQi is the number of vertices of
each Qi. Then, F can be easily computed as the union of the subsets of the Xi
for which V (x) ≤ V̂ , i.e.,

F =
s̃⋃

i=1

XFi , XFi , {x ∈ Xi : V (x) < V̂ } (4.32)

Remark 3. The aim of (4.24a) is to minimize the volume of the hypercubeQ for

the given choice of the partitions, in order to obtain a set F that is as small as

possible. Note that (4.24) is a quasi-convex optimization problem. Even though

quasi-convex optimization problems are solved in general by bisection (solving

a convex optimization problem at each step), linear-fractional programs like

(4.24) can be transformed into an equivalent LP using the following procedure

(see [16, Chap. 4] for a formal proof).
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Assume that δ and α1 are, respectively, the first and second components of

the optimization vector ξ in (4.24). Let Meqξ = 0 denote the whole set of

equality constraints (4.23e) and Minξ ≤ min the whole set of inequality con-

straints (4.23a)-(4.23d), where Meq, Min, and min can be easily constructed

from (4.23). Moreover, rewrite (4.23f) as e′ξ > 0, with e = [0 1 0 . . . 0]′. Prob-

lem (4.24) is therefore equivalent to the following linear-fractional program

minimize
c′ξ

e′ξ

subject to Minξ ≤ min

Meqξ = 0

e′ξ > 0 (4.33)

where c = [1 0 . . . 0]′. If the feasible set of (4.33) is not empty, an equivalent

LP of (4.33) is

minimize c′y

subject to Miny −minz ≤ 0

Meqy = 0

e′y = 1

z ≥ 0 (4.34)

where y has the same dimension as ξ and z ∈ R. The optimal vector of (4.24)
is ξ = 1

zy.

Remark 4. The number of variables and constraints in (4.34) is comparable

with that of (4.19). In particular, two more variables are added, leading to

nv = 3 + s̃(n + 1). To define Meqy = 0, one equality constraint is imposed

for each region Xi such that 0 ∈ X̄i. One inequality is imposed for each vertex
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of Xi, i = 1, ..., s̃ to fulfill (4.23a). To fulfill (4.23b), for each vertex of each

region it is necessary to impose a number of inequalities equal to the number of

regions Xj such that Si,j 6= 0, multiplied by q · η. Condition (4.23c) and (4.23d)
introduce two more inequality constraints, while two other constraints are in-

troduced in the auxiliary problem (4.34). The overall number of constraints is

overall number of scalar constraints is

nc = 4 + card(I0) +
s̃∑

i=1

mi

(
1 + q · η · card

({
j ∈ Ĩ : Si,j = 1

}))

�

4.3.3 Feasibility issues

In case (4.19) or (4.23) is infeasible, besides increasing the value of λ, a possi-
bility is to increase the number of partitions Xi of XH , therefore providing more
flexibility in synthesizing the PWA Lyapunov (or Lyapunov-like) function.

PWQ Lyapunov function synthesis approaches [20] assume that V is quadratic
on each cell Xi. On the other hand, assuming that V is affine on each Xi would
not provide enough degrees of freedom. Therefore, for each polyhedron Xi, its
Delaunay triangulation [44] {XD

i,1, . . . ,XD
i,ni
}, i ∈ s̃ is computed. The PWA Lya-

punov synthesis procedure is performed by replacing the sets Xi with the ele-
ments of the simplicial partition {XD

1,1, . . . ,XD
1,n1

,XD
2,1, . . . ,XD

2,n2
, . . . ,XD

s̃,1, . . . ,

XD
s̃,ns̃
}, and consequently by setting Ĩ = {1, . . . ,∑s̃

i=1 ni}, and I the subset of
Ĩ of indices for which Xi ⊆ X .

An alternative way, which is only applicable in the absence of multiplicative
disturbances (Section 4.2.3), is to consider the sets Xi,j as the new sets X̄i and
restart the procedure. Alternatively, in case Xi are simplices, one can split each
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of them into n+ 1 new simplices by considering the midpoint v̄ = 1
n+1

∑n
i=0 vi

as a new vertex. Note that by iterating such procedures, the complexity of the
LP (4.19) or (4.23) grows quite fast.

4.4 Invariance analysis

So far the properties of the extended system (4.8) were analyzed. As this in-
cludes the fake dynamics (4.7), we want to derive now conditions on the orig-
inal system (4.1). Consider again system (4.8) in XH , assume that a feasible
solution to (4.19) or to (4.23) exists, define

V −E , inf
x∈XE

V (x) (4.35)

and consider the subset P of X

P , {x ∈ X : V (x) < V −E } (4.36)

Note that the set P may not be convex, not even connected.
The results for the extended system (4.8) proved in Lemmas 2 and 3 and the

definition of P in (4.36) are exploited next to state the main results of the thesis.

Theorem 1. Consider system (4.1), whose dynamics are defined on X , and

assume that the extended dynamics (4.7) are defined in XE. If a Lyapunov

function for system (4.8) is found by solving the LP (4.19), P ⊆ X defined

in (4.36) is an RPI set for (4.1). Moreover, (4.1) is UAS(P). �

Proof. The proof consists in showing that the PWA Lyapunov function

VUAS(x) , V (x), ∀x ∈ P (4.37)

where V (x) is found as in Lemma 2 for the extended system (4.8) in XH , is a
Lyapunov function for (4.1) over the set P . First of all, considering that P is
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an RPI set for (4.8) in XH , one can note that the state update f(x,w, d) ∈ P
for x ∈ P is always given by (4.1). Then, P is an RPI set for (4.1), because
the dynamics (4.7) is never executed. Considering that P ⊆ XH , if (4.16) are
satisfied for all x ∈ XH (and then for all x ∈ P), we conclude that VUAS(x) is a
Lyapunov function for system (4.1) in P , and that system (4.1) is UAS(P).

Theorem 2. Consider system (4.1) on X , and assume that dynamics (4.7) are

defined in XE. If a Lyapunov-like function for system (4.8) is found by solving

the LP (4.34), and F ⊆ P (i.e. V −E ≥ V +
F ), the sets P ⊆ X and F ⊆ P are

RPI sets with respect to dynamics (4.1). Moreover, system (4.1) is UUB(P ,F).

�

Proof. The proof consists in showing that the PWA Lyapunov-like function

VUUB(x) , V (x), ∀x ∈ P (4.38)

where V (x) is found as in Lemma 3 for (4.8) in XH , is a Lyapunov-like func-
tion for (4.1) over the set P . Being P an RPI set for (4.8) in XH , the state
update f(x,w, d) ∈ P for x ∈ P is always calculated using dynamics (4.1),
and then P is an RPI set also with respect to the dynamics (4.1), because dy-
namics (4.7) is never executed. Considering that P ⊆ XH , if (4.22) hold for all
x ∈ XH (and then for all x ∈ P), the invariance of F is guaranteed by Lemma
3. Also, since we already proved that P is invariant, it follows that system (4.1)
is UUB(P ,F).

The overall procedure proposed in this thesis for uniform asymptotic stability
is summarized in Algorithm 1, while Algorithm 2 summarizes the procedure for
uniform ultimate boundedness.

As a practical procedure to represent the set P , one can define the polyhedra

X Pi , {x ∈ Xi : V (x) < V −E }, i = 1, ..., I, (4.39)
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Algorithm 1: Uniform asymptotic stability analysis
Input: PWA system (4.1)
Output: Region of attraction P and certificate of UAS(P) for system (4.1)
repeat

if a given maximum number of iterations is exceeded then
P undefined;
STOP

Obtain new regions Xi by splitting the existing regions;
Compute R̃∪(X ) in (4.6) and XH ;
Define the fake dynamics (4.7);
Find S in (4.9) or (4.15), and the Xi,j in (4.10), (4.13) or (4.14);
Solve the LP feasibility problem (4.19);

until the LP has a solution;
Find the region of attraction P ⊆ X ;
System (4.1) is UAS(P)

and define the invariant set P as

P =
I⋃

i=1

X Pi (4.40)

4.5 Input-to-State Stability

In addition to the properties analyzed in the previous sections, the ISS proper-
ties of PWA systems of the form (4.11) can be analyzed. System (4.4) can be
extended to the set XH , obtaining

x(k + 1) =

{
Ai,0x(k) + ai,0 if x(k) ∈ Xi, i ∈ I
ρx(k) if x(k) ∈ XE

(4.41)

which is a particular case of (4.8). According to [26], it is possible to deter-
mine if a system in form (4.11) is ISS relying on the asymptotic stability of the
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Algorithm 2: Uniform ultimate boundedness analysis
Input: PWA system (4.1)
Output: Region of attraction P , set F , and certificate of UUB(P ,F) for system (4.1)
repeat

if a given maximum number of iterations is exceeded then
P and F undefined;
STOP

repeat
if a given maximum number of iterations is exceeded then
P and F undefined;
STOP

Obtain new regions Xi splitting the existing regions;
Compute R̃∪(X ) in (4.6) and XH ;
Define the fake dynamics (4.7);
Find S in (4.9) or (4.15), and the Xi,j in (4.10), (4.13) or (4.14);
Solve the LP (4.34);

until the LP has a solution;
find F ;

until F ⊆ P;
System (4.1) is UUB(P ,F)
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nominal system (4.4). To this purpose, we define the set of all possible additive
disturbance realization for (4.11), as

D′ , {d′ ∈ Rn : d′ = Eid, d ∈ D, i ∈ I} (4.42)

The following result holds:

Theorem 3. Let D′ ⊆ B∞χ , for a given χ > 0. Let the set P∗ ⊆ X with

0 ∈ int(P∗) be defined such that, for system (4.11), R(P∗) ⊕ B∞χ ⊆ P∗.
Suppose that the nominal extended system (4.41) is proved to be UAS(XH)

solving the LP (4.19), and (4.4) is UAS(P∗). Then, system (4.11) is ISS(P∗).�

Proof. The result immediately follows by taking into account that the invoked
assumptions lead to the fulfillment of the assumptions of Proposition IV.2 in
[26].

The main problem to check ISS is to define the set P∗. A simple choice
consist of taking P∗ = P , with P defined in (4.36) for the nominal system
(4.4). For this simple choice, Algorithm 3 gives a procedure to check the ISS
property.

Algorithm 3: Input-to-state stability analysis
Input: PWA systems (4.11) and (4.4)
Output: Region of attraction P and certificate of ISS(P) for system (4.11)
Run Algorithm 1 with system (4.4) as input and get P;
Compute B∞χ as the smallest B∞χ such that B∞χ ⊇ D′;
ifR(P)⊕B∞χ ⊆ P for the dynamics (4.11) then

system (4.11) is ISS(P)
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4.6 Simulation examples

An interesting application of PWA stability analysis is to prove closed-loop sta-
bility properties of control systems composed by a linear (or PWA) system and
a linear (or PWA) controller. In particular, the proposed stability and invariance
analysis procedure is tested on the closed-loop system composed by a discrete-
time PWA system and a switched explicit linear MPC controller (see, e.g., [33]).

The second-order open-loop PWA system is defined by

x(k + 1) = Aj(w(k))x(k) +Bju(k) + Ejd(k) if x(k) ∈ Ωj, (4.43)

where j = 1, 2, x(k) ∈ Ωi ⊂ R2, w(k) ∈ W ⊂ R2, d(k) ∈ D ⊂ R2 with

Aj(w) , Aj,0 + Aj,1wj,1 + Aj,2wj,2

W ,
{
w ∈ R2 : w1 + w2 = 1, w1, w2 ≥ 0

}

D ,
{
d ∈ R2 : d1 + d2 = 0, ‖d‖∞ ≤ 0.1

}

More specifically, we have

A1,0 = KA ·
[

0.7 0.7

0 0.7

]
, A2,0 =

[
0.6 0.6

0 0.6

]
, KA ∈ R+

A1,1 =

[
0 0.1

0 0

]
, A2,1 =

[
0 −0.2

0 0

]

A1,2 =

[
0 0

0 −0.1

]
, A2,2 =

[
0 0

0 0.2

]

B1 =

[
1.1

0

]
, B2

[
0.9

0

]

E1 = E2 =KE ·
[

1 0

0 1

]
, KE ∈ R+
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where KA and KE are scalar parameters to be assigned.

The regions Ωi are defined by Ω1 = {x ∈ R2 : H1x ≤ h1}, Ω2 = {x ∈ R2 :

H2x ≤ h2} \ Ω1, with

H1 =




0 0.1

0 −0.1

−0.1 0

1 0



, H2 =




0 0.1

0 −0.1

−1 0

0.1 0




h1 =




1

1

1

−1



, h2 =




1

1

1

1




and the whole set where the system dynamics are defined is X = Ω1 ∪ Ω2.
The switched explicit linear MPC controller is defined by computing an explicit
MPC control law [9] uj(x) for each nominal linear system

x(k + 1) = Aj,0x(k) +Bju(k)

and by setting

u(k) = uj(k) if x(k) ∈ Ωj (4.44)

with a prediction horizon N = 5, a control horizon Nu = 2, weight matrices

Q =

[
1 0

0 10

]
, R = 0.1

on the state and the control, respectively, and terminal weight matrices Pj ∈ R2

found as the solution of the Lyapunov equation A′j,0PAj,0 − P = −Q on each
partition Ωj. The control constraints are u ∈ [−4, 4], and the state constraints
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x ∈ X , are also imposed as soft constraints in solving the multiparametric
programs to obtain the control law (4.44).1

The overall closed-loop system, which does not have any a priori stability
properties, can be written in form (4.1). In this case, the partitions Xi are those
automatically generated by the multiparametric programming solver that deter-
mines the PWA functions uj : Ωj → R, j = 1, 2. Three different stability
analysis problems are considered below.

4.6.1 Uniform asymptotic stability

Assume that the additive disturbance is not present in (4.43) (KE = 0). As-
sume also KA = 1. The set X is not invariant for the considered overall
PWA closed-loop system. For instance, starting at an initial condition x(0) =[
−10 −9.5

]′
∈ X , the explicit MPC control variable is u(0) = 4. With a dis-

turbance vector w(0) =
[
0.9 0.1

]′
, it yields x(1) =

[
−10.11 −6.56

]
/∈ X . In

this case, we can verify if the closed-loop system is UAS in a setP ⊆ X . There-
fore, we find R̃∪(X ) in (4.6) and its bounding box XH , with the extended dy-
namics (4.8) defined with ρ = 0.99. The regions obtained using the switched ex-
plicit MPC, together with the extension given by XH \X , are shown in Fig. 4.1.

According to Algorithm 1, we found the transition map S in (4.9), the tran-
sition sets Xi,j in (4.10), and solved the LP (4.19) with λ = 0.99, proving that
the closed-loop system is UAS(P). The LP is composed of 691 constraints and
76 variables, and solved using CPLEX in 7.3 ms on a 2.4 GHz processor. The

1Note that the linear MPC control laws are defined for all x ∈ R2. The multiparametric program is solved only
for x(k) ∈ X , and predictions x(k+ t), t = 1, ..., N , may exit X . In order to allow this, the constraints x ∈ X are
softened.



69 CHAPTER 4. CLOSED-LOOP STABILITY ANALYSIS

Figure 4.1: The invariant set XH for case A is constituted by the union of the regions of the
explicit MPC and the box XH \ X (the grey rectangle on the left)
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x2x1

V (x)

Wednesday, March 30, 2011

Figure 4.2: The PWA Lyapunov function for the extended system in case A
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x2

x1

Wednesday, March 30, 2011

Figure 4.3: The invariant set P obtained in case A
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corresponding Lyapunov function is shown in Figure 4.2 and the RPI set P is
shown in Figure 4.3.

4.6.2 Uniform ultimate boundedness

Assume now that both parametric and additive disturbances are present, with
KA = 1 and KE = 10−2. Even though the additive disturbance is a relatively
small one, we already know that the system is not uniformly asymptotically
stable in any subset of X . However, we can verify if the closed-loop system is
UUB from a set P ⊆ X to a set F ⊆ P . Therefore, we find R̃∪(X ) in (4.6) and
its bounding box XH , with the extended dynamics (4.8) defined with ρ = 0.99,
as in case A. According to Algorithm 2, the transition map S in (4.9) and the
transition sets Xi,j in (4.10) are found. Then, the LP (4.34) is solved with λ =

0.99, proving that the closed-loop system is UUB(P ,F). The LP is composed
of 1308 constraints and 78 variables, and solved using CPLEX in 8.6 ms on
a 2.4 GHz processor. The corresponding Lyapunov-like function is shown in
Figure 4.4, while Figure 4.5 shows the invariant set P and the terminal set F .

4.6.3 Input-to-state stability

Finally, assume that the parametric disturbance w is not present in (4.43), i.e.
Ai,j = 0, i, j = 1, 2. Moreover, KA = 0.9 and KE = 20. In this case, it is pos-
sible to check the ISS of the system with respect to the additive disturbance. The
set D′ in (4.42) is easily found as D′ ,

{
d′ ∈ R2 : d1 + d2 = 0, ‖d‖∞ ≤ 2

}
.

According to Algorithm 3, we found the transition map S in (4.15) and the
transition sets Xi,j in (4.14) for the nominal closed-loop system. The feasibility
problem (4.19) with λ = 0.99 is composed of 435 constraints and 73 variables,
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x2x1

V (x)

Tuesday, March 29, 2011

Figure 4.4: The PWA Lyapunov-like function for the extended system in case B
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x1

x2

Tuesday, March 29, 2011

Figure 4.5: The invariant set P and the terminal set F (shaded) in case B
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and solved using CPLEX in 3.0 ms on a 2.4 GHz processor. Since the prob-
lem admits a solution, the system is proved to be UAS(X ), i.e. X ≡ P is
already an RPI set. The set B∞χ is equal to B∞2 , and therefore we can compute
R(P) ⊕B∞2 . The result is shown in Fig. 4.6, where it is possible to see that
R(P)⊕B∞2 ⊂ P . We can conclude that the closed-loop system is ISS(X ).
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x2

x1

Tuesday, March 29, 2011

Figure 4.6: The sets P ≡ X andR(P)⊕B∞2 (in black) in case C
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Conclusion

For hybrid MPC controllers approximated as switched linear MPC controllers
we have proposed an architecture to evaluate discontinuous PWAS functions by
extending the architecture proposed in [40]. The implementation requires the
introduction of comparators and 1-bit adders which are very simple and fast
devices and so is remarkably efficient. This fact is a direct consequence of the
chosen class of discontinuous functions. Thus, our circuit represents a good
trade-off between model complexity and circuit performances in terms of area
occupation and power consumption. A further generalization of the proposed
architecture can be obtained by using a binary-tree search [23,31] instead of the
bank of comparators. In this case, we could implement discontinuous functions
that are continuous over non hyper-rectangular regions, at the cost of a more
complex circuit.

Also, this work has addressed the problem of determining the properties of
uniform asymptotic stability, uniform ultimate boundedness, and input-to-state
stability of (possibly discontinuous) uncertain discrete-time PWA systems, sub-
ject to both additive and parametric disturbances. Since the dynamics are de-
fined in the set X that is a-priori not invariant, a partially fictitious dynamics is

77
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exploited to define a (possibly discontinuous) PWA Lyapunov functions, lead-
ing to the formulation of an LP. As an outcome of the optimization problem, the
RPI set P ⊆ X is obtained, together with the terminal set F , in case uniform
ultimate boundedness is analyzed. The reported simulation examples, although
referring to a second-order system for the sake of simplicity, confirm the low
computational burden required to solve the LPs associated with the proposed
method, therefore making the proposed method amenable for analysis of more
complex systems arising in real-life control applications.

Open problems and suggestions

In this thesis, the stability analysis problem was formulated and solved using
PWA Lyapunov function, as well as the synthesis of PWA controllers through
FPGA. Since the flexibility of such functions, it would be subject of further in-
terest to analyze the synthesis problem. Many are the applications that would
receive benefit in terms of simplicity of controller synthesis step, after the plant
design. As an example, when dealing with vehicular systems, a large mixture
of state machines and dynamical models are involved in the controller design
steps. The design can be simplified using the hybrid MPC approach, and, where
the resulting controller is too complex, using the switched MPC approach. Also,
since the large-scale models, a large-scale stability problem arises in such cases.
It would be an important step forward to develop an algorithm able to synthe-
size a switched MPC such that the closed-loop is stable. In this way, one can
inherit the controller’s performance together with the simplicity of tuning of the
single MPC, digging and searching for the optimal tuning in a stable class of
controllers.
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