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Abstract

In this article we propose a new family of high order staggered semi-implicit discontinuous Galerkin (DG)
methods for the simulation of natural convection problems. Assuming small temperature fluctuations, the
Boussinesq approximation is valid and in this case the flow can simply be modeled by the incompressible
Navier-Stokes equations coupled with a transport equation for the temperature and a buoyancy source
term in the momentum equation. Our numerical scheme is developed starting from the work presented in
[1, 2, 3], in which the spatial domain is discretized using a face-based staggered unstructured mesh. The
pressure and temperature variables are defined on the primal simplex elements, while the velocity is assigned
to the dual grid. For the computation of the advection and diffusion terms, two different algorithms are
presented: i) a purely Eulerian upwind-type scheme and ii) an Eulerian-Lagrangian approach. The first
methodology leads to a conservative scheme whose major drawback is the time step restriction imposed
by the CFL stability condition due to the explicit discretization of the convective terms. On the contrary,
computational efficiency can be notably improved relying on an Eulerian-Lagrangian approach in which
the Lagrangian trajectories of the flow are tracked back. This method leads to an unconditionally stable
scheme if the diffusive terms are discretized implicitly. Once the advection and diffusion contributions have
been computed, the pressure Poisson equation is solved and the velocity is updated. As a second model
for the computation of buoyancy-driven flows, in this paper we also consider the full compressible Navier-
Stokes equations. The staggered semi-implicit DG method first proposed in [4] for all Mach number flows is
properly extended to account for the gravity source terms arising in the momentum and energy conservation
laws. In order to assess the validity and the robustness of our novel class of staggered semi-implicit DG
schemes, several classical benchmark problems are considered, showing in all cases a good agreement with
available numerical reference data. Furthermore, a detailed comparison between the incompressible and the
compressible solver is presented. Finally, advantages and disadvantages of the Eulerian and the Eulerian-
Lagrangian methods for the discretization of the nonlinear convective terms are carefully studied.

Keywords: high order discontinuous Galerkin schemes, semi-implicit methods, staggered unstructured
meshes, Eulerian-Lagrangian advection schemes, compressible and incompressible Navier-Stokes equations,
natural convection

1. Introduction

Natural convection problems play an important role in computational fluid dynamics. They appear
in numerous engineering applications and natural phenomena ranging from the design of cooling devices in
industrial processes, electronics, building isolation or solar energy collectors, to the simulation of atmospheric
flows. In the last decades, the scientific community has put a lot of efforts into the study of these phenomena,
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see e.g. [5, 6, 7, 8, 9, 10] for a non-exhaustive overview. Nowadays, the main challenge is to develop efficient
high order numerical methods which are able to capture even small scale structures of the flow, avoiding
the use of RANS turbulence models (see [11, 12]). In this paper, we propose a novel family of high order
accurate staggered semi-implicit discontinuous Galerkin (DG) methods, which extends the works presented
in [1, 3, 4] appropriately to deal also with gravity driven flows.

Depending on the magnitude of the temperature perturbation and on the importance of density changes,
natural convection problems are usually divided into two main groups. If the Mach number and the tem-
perature fluctuations are small, the incompressible Navier-Stokes equations under the usual Boussinesq as-
sumption can be applied. Otherwise, the full compressible Navier-Stokes equations have to be employed. In
the following, we will mainly focus on the first case. However, in this paper also the compressible model will
be considered, thus allowing for a direct comparison of the results obtained using the two different systems
of governing partial differential equations. Therefore, we will be able to further validate the applicability of
the Boussinesq approach for the flow regimes we are interested in.

In the literature there are numerous approaches that have been proposed for the solution of the Navier-
Stokes equations, such as finite difference methods [13, 14, 15, 16] or continuous finite element schemes
[17, 18, 19, 20, 21, 22, 23]. Nevertheless, the construction of high order numerical methods, and especially
of high order discontinuous Galerkin (DG) finite element schemes, is still a very active research field, which
has started with the pioneering works of Bassi and Rebay [24], and Baumann and Oden [25, 26]. Later,
several high order DG methods for the incompressible and compressible Navier-Stokes equations have been
proposed, see for example [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. We also would like to mention
recent works on semi-implicit DG schemes that can be found in [40, 41, 42, 43, 44], to which our approach
is indirectly related.

The algorithm proposed in this article makes use of the novel family of staggered semi-implicit DG
schemes that has been introduced in [1, 2, 3] for the incompressible Navier-Stokes equations in two and
three space dimensions and which was later also extended to the full compressible regime in [4], following
the work outlined in [45, 46, 47]. These arbitrary high order accurate DG schemes are constructed on
staggered unstructured meshes. The pressure, the density and the energy are defined on the triangular or
tetrahedral primal grid, whereas the velocity is computed on a face-based staggered dual mesh. While the
use of staggered grids is a very common practice in the finite difference and finite volume framework (see
e.g. [13, 14, 48]), its use is not so widespread in the context of high order DG schemes. The first staggered
DG methods, which adopted a vertex-based dual grid, have been proposed in [49, 50]. Other recent high
order staggered DG algorithms that rely on an edge-based dual grid have been advanced in [51, 52]. For high
order staggered semi-implicit discontinuous Galerkin schemes on uniform and adaptive Cartesian meshes,
see [53, 54].

Focusing on the incompressible model, we propose two different approaches for the computation of
the nonlinear convective terms. On the one hand, we consider the methodology already introduced in
[3]. There, the convective subsystem for the velocity is solved considering the Rusanov flux function for
an explicit upwind-type discretization of the nonlinear convective terms. Instead, the viscous terms are
discretized implicitly, making again use of the dual mesh in order to obtain the discrete gradients, without
needing any additional numerical flux function for the viscous terms. One of the major drawbacks of this
approach is its high computational cost coming from the small time step dictated by the CFL stability
condition due to the explicit discretization of the convective terms. Moreover, to avoid spurious oscillations,
a limiter should be used (see [4]). As an alternative option, which is at the same time able to deal with large
gradients and substantially reduces the computational cost, we propose the use of an Eulerian-Lagrangian
approach, recently forwarded in [55] also in the context of high order in space staggered DG schemes.
The trajectory of the flow particles is followed backward in time by integrating the associated trajectory
equations at the aid of a high order Taylor series expansion, where time derivatives are replaced by spatial
derivatives using the Cauchy-Kovalevskaya procedure, similar to the ADER approach of Toro and Titarev
[56, 57, 58]. The high order spatial discretization of the DG scheme is then employed to obtain a high order
time integration for each point needed to solve numerically the advection part of the governing equations.
For further information on efficient semi-Lagrangian and Eulerian-Lagrangian schemes we refer the reader
to [59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69].
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The use of the Boussinesq assumption yields the coupling of the incompressible Navier-Stokes equations
with an additional conservation equation for the temperature. The computation of the related advection
and diffusion terms is performed similarly to what is done for the velocity in the momentum equation.
Nevertheless, let us remark that the temperature is defined on the primal mesh so that interpolation from
one mesh to the other is avoided in the fully Eulerian approach. Once the new temperature is known, the
gravity source term in the momentum equation can be evaluated. Finally, the pressure Poisson equation is
solved and the velocity at the new time step is computed.

Regarding the compressible Navier-Stokes equations, we extend the numerical scheme introduced in [4]
to consider the additional gravity terms. To this end, two new terms are included in the pressure system
which has been obtained by formal substitution of the discrete momentum equation into the discrete energy
equation. The first gravity term, coming from the momentum equation, is computed jointly with the
convective and viscous terms of the momentum equation at the beginning of each time step. Meanwhile,
the gravity term embedded in the energy equation is computed at each Picard iteration using the updated
values of the linear momentum density.

The rest of the paper is organized as follows. In Section 2 we recall the incompressible and compressible
Navier-Stokes equations. For the incompressible model, the Boussinesq assumption is made to account for
fluid flow with small temperature variations under gravity effects. Concerning the compressible model, we
consider the full Navier-Stokes equations including the conservation law for the total energy density and
assuming here the equation of state for an ideal gas. Section 3 is devoted to the description of the semi-
implicit staggered DG method used to solve the incompressible model in two and three space dimensions.
We start by recalling some basic definitions about the usage of staggered meshes and the polynomial spaces
which are employed. Next, we derive the numerical method considering two different frameworks for the
discretization of convective and diffusive terms, namely an Eulerian and an Eulerian-Lagrangian approach.
The extension of the algorithm to the compressible case is described in Section 4. Several benchmarks are
presented in Section 6, aiming at assessing the validity, efficiency and the robustness of our novel numerical
schemes. The main pros and cons of the Eulerian and the Eulerian-Lagrangian approaches are analyzed as
well. Finally, we compare the results obtained with the incompressible solver against those computed with
the compressible solver in the low Mach number regime.

2. Governing equations

As already mentioned, natural convection problems may be studied using two different models: the
incompressible and the compressible Navier-Stokes equations, both including proper gravitational terms.
The choice of the model usually depends on specific features of the flow under consideration, like the
magnitude of the temperature fluctuations or the importance of capturing density variations. Here, we are
mainly interested in small temperature changes, so that we will firt focus on the incompressible case. Later,
even the full compressible model will be studied and numerical results will be compared considering both
approaches.

2.1. Incompressible Navier-Stokes equations

Let us consider the laminar flow of a single phase Newtonian fluid without neither radiation nor chemical
reactions. Let furthermore β be the thermal expansion coefficient of the fluid, θ0 the reference temperature
of the flow and θb − θ0 the maximum temperature fluctuation. Under the assumption

β(θb − θ0)� 1, (1)

the Boussinesq approximation for buoyancy-driven flows holds. Therefore, natural convection problems
with small temperature gradients may be analyzed by solving the system of incompressible Navier-Stokes
equations coupled with an energy conservation equation through an additional source term in the momentum
equation. The governing PDE system reads as follows:

∇ · v = 0, (2)
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∂v

∂t
+∇ · Fv

c +∇p = ∇ · (ν∇v) + (1− βδθ) g, (3)

∂θ

∂t
+∇ · Fθc = ∇ · (α∇θ) , (4)

where v is the velocity field; p = P/ρ indicates the normalized fluid pressure; P is the physical pressure and ρ
is the fluid density, which according to the Boussinesq approximation is assumed to be constant everywhere
apart from the gravity source term in the momentum equation; ν = µ/ρ is the kinematic viscosity coefficient;
Fv
c = v⊗v is the flux tensor of the nonlinear convective terms; δθ := θ− θ0 is the temperature difference; g

is the gravity acceleration; θ is the temperature; Fθc = vθ is the flux tensor of the nonlinear convective terms
of the energy equation; α = κ/(ρcP ) is the thermal diffusivity, which depends on the thermal conductivity
κ, the density ρ and the heat capacity cP . Let us also introduce the following notation:

Fv := Fv
c − ν∇v, Lv (v) :=

∂

∂t
v +∇ · Fv, (5)

Fθ := Fθc −∇ · α∇θ, Lθ (θ,v) :=
∂

∂t
θ +∇ · Fθ. (6)

2.2. Compressible Navier-Stokes equations

Large temperature fluctuations may produce substantial changes in the density of a fluid. As a conse-
quence, the incompressible model (2)-(4) is no longer valid for large temperature fluctuations. In this case,
one must use the full compressible Navier-Stokes equations under gravitational effects, that read

∂ρ

∂t
+∇ · (ρv) = 0, (7)

∂ρv

∂t
+∇ · Fρvc +∇P = ∇ · σ + ρg, (8)

∂ρE

∂t
+∇ · FρEc = ∇ · (σv + κ∇θ) + ρg · v, (9)

where Fρvc = ρv ⊗ v is the convective flux for the momentum equation; σ = µ(∇v +∇v>) − 2
3µ (∇ · v) I

is the viscous stress tensor; ρE = ρe + ρk is the total energy density; ρk = 1
2ρv

2 is the kinetic energy
density; e = e(P, ρ) represents the specific internal energy per unit mass and is given by the equation of
state (EOS) as a function of the pressure P and the density ρ; H = e + P

ρ denotes the specific enthalpy;

FρEc = v (ρE + P ) = ρvk+ρvH is the convective flux for the energy conservation equation; κ is the thermal
conductivity coefficient. Let us also define the following operators:

Fρv := Fρvc − σ, Lρv (ρv) :=
∂

∂t
v +∇ · Fρv. (10)

In our approach we assume that we are dealing with an ideal gas, so that the thermal and caloric equation
of state (EOS) that are needed to close the above system are given by

P = ρRθ, e = cvθ, hence P = (γ − 1)ρe, (11)

with R = cP + cv denoting the specific gas constant; cP and cv representing the heat capacities at constant
pressure and at constant volume, respectively, and γ = cP /cv being the usual ratio of specific heats.

3. Numerical method for the incompressible model

System (2)-(4) will be solved starting by the staggered semi-implicit discontinuous Galerkin scheme
detailed in [1, 2, 3]. Here, we recall the main ingredients of the algorithm, while for an exhaustive description
the reader is referred to the aforementioned references.
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3.1. Staggered unstructured mesh

The computational domain is discretized using a face-based staggered unstructured meshes, as adopted
in [1, 2, 3, 4]. In what follows, we briefly summarize the grid construction and the main notation for the
two dimensional triangular grid. After that, the primal and dual spatial elements are extended to the three
dimensional case.

The spatial computational domain Ω ⊂ R2 is covered with a set ofNe non-overlapping triangular elements
Ti with i = 1 . . . Ne. By denoting with Nd the total number of edges, the j−th edge will be called Γj . B(Ω)
refers to the set of indices j corresponding to boundary edges. The three edges of each triangle Ti constitute
the set Si defined by Si = {j ∈ [1, Nd] | Γj is an edge of Ti}. For every j ∈ [1 . . . Nd] − B(Ω) there exist
two triangles i1 and i2 that share Γj . We assign arbitrarily a left and a right triangle called `(j) and r(j),
respectively. The standard positive direction is assumed to be from left to right. Let ~nj denote the unit
normal vector defined on the edge j and oriented with respect to the positive direction. For every triangular
element i and edge j ∈ Si, the neighbor triangle of element Ti that share the edge Γj is denoted by ℘(i, j).

For every j ∈ [1, Nd] − B(Ω) the quadrilateral element associated to j is called Rj and it is defined, in
general, by the two centers of gravity of `(j) and r(j) and the two terminal nodes of Γj , see also [70, 71, 72, 52].
We denote by Ti,j = Rj ∩ Ti the intersection element for every i and j ∈ Si. Figure 1 summarizes the
notation, the primal triangular mesh and the dual quadrilateral grid. According to [2], we will call the main

i

℘(i, j1)℘(i, j2)

℘(i, j3)

Γj2

Γj3

n1

n2

n3

Ti

T℘(i,j1)

Rj1

Γj1

Ti,j3

Figure 1: Triangular mesh element with its three neighbors and the associated staggered edge-based dual control volumes,
together with the notation used throughout the paper.

grid, or primal grid, the mesh of triangular elements {Ti}i∈[1,Ne], whereas the quadrilateral grid {Rj}j∈[1,Nd]

is addressed as the dual grid.
The definitions given above are then readily extended to three space dimensions within a domain Ω ⊂ R3.

An example of the resulting main and dual grids in three space dimensions is reported in Figure 2. The main
grid consists of tetrahedral simplex elements, and the face-based dual elements contain the three vertices
of the common triangular face of two tetrahedra (a left and a right one), and the two barycenters of the
two tetrahedra that share the same face. Therefore, in three space dimensions the dual grid consists of
non-standard five-point hexahedral elements. The same face-based staggered dual mesh has also been used
in [71, 73, 74, 75].
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Ti

Γj1

Γj2

Γj3

Γj4

Rj i

Ti

℘(i, j)

`(j)

r(j)

~nj

Γj

L

Ti

Γj1

Γj2

Γj3

Γj4

Rj3 i

Ti

℘(i, j3)

`(j)

r(j)

~nj

Γj

L

Figure 2: Tetrahedral element of the primary mesh with Si = {j1, j2, j3, j4} (left) and non-standard dual face-based hexahedral
element associated to the face j3 (right).

3.2. Basis functions

The basis functions are chosen according to [1, 3], thus, in the two dimensional case we first construct
the polynomial basis up to a generic polynomial of degree p on some triangular and quadrilateral reference
elements with local coordinates ξ and η. The reference triangle is considered to be Tstd = {(ξ, η) ∈ R2 | 0 ≤
ξ ≤ 1, 0 ≤ η ≤ 1 − ξ} and the reference quadrilateral element is defined as Rstd = [0, 1]2. Then, the

standard nodal approach of conforming continuous finite elements yields Nφ = (p+1)(p+2)
2 basis functions

denoted with {φk}k∈[1,Nφ] on Tstd, and Nψ = (p + 1)2 basis functions referred to as {ψk}k∈[1,Nψ ] on Rstd.
The transformation between the reference coordinates ξ = (ξ, η) and the physical coordinates x = (x, y) is
performed by the maps Ti : Ti −→ Tstd for every i = 1 . . . Ne and Tj : Rj −→ Rstd for every j = 1 . . . Nd,
with the associated inverse relations, namely T−1

i : Ti ←− Tstd and T−1
j : Rj ←− Rstd, respectively.

For the three-dimensional tetrahedra, we use again the standard nodal basis functions of conforming finite
elements based on the reference element Tstd = {(ξ, η, ζ) ∈ R3 | 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1−ξ, 0 ≤ ζ ≤ 1−ξ−η}
and then we define a map to connect the reference space, ξ = (ξ, η, ζ), to the physical space, x = (x, y, z),
and vice-versa. Unfortunately, the non-standard five-point hexahedral elements of the dual mesh entail the
definition of a polynomial basis directly in the physical space using a simple modal basis based on rescaled
Taylor monomials, such as the ones proposed in [3]. We thus obtain Nφ = Nψ = 1

6 (p+ 1)(p+ 2)(p+ 3) basis
functions per element for both the main grid and the dual mesh.

3.3. Staggered semi-implicit DG scheme

The discrete pressure and temperature are defined on the main grid, that is pi(x, t) = ph(x, t)|Ti and
θi(x, t) = θh(x, t)|Ti , while the discrete velocity is defined on the dual grid, namely vj(x, t) = vh(x, t)|Rj

.
Therefore, the numerical solution of (2)-(4) is given within each spatial element by

pi(x, t) =

Nφ∑
l=1

φ
(i)
l (x)p̄l,i(t) =: φ(i)(x)p̄i(t), (12)

vj(x, t) =

Nψ∑
l=1

ψ
(j)
l (x)v̂l,j(t) =: ψ(j)(x)v̂j(t), (13)

θi(x, t) =

Nφ∑
l=1

φ
(i)
l (x)θ̄l,i(t) =: φ(i)(x)θ̄i(t). (14)
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In the rest of the paper, we use the convention that variables indexed by j are defined on the dual grid, while
the index i is used for the quantities which refer to the main grid. Furthermore, we will use the hat symbol
to denote degrees of freedom on the dual grid, whereas bars are used to distinguish degrees of freedom on
the primal mesh. The set of variables on the main grid will be denoted by {Qi}i∈[1,Ne], while {Qj}j∈[1,Nd]

corresponds to the unknowns defined on the dual grid. The vector of basis functions φ(i)(x) is generated via
the map T−1

i from φ(ξ) on Tstd. The vector ψ(j)(x) is generated from ψ(ξ) on Rstd through the mapping
T−1
j in the two dimensional case, and it is directly defined in the physical space for each element in the three

dimensional case, see [3].
Multiplying equations (2) and (4) by φk, equation (3) by ψκ and integrating on the related control

volumes Ti and Rj , respectively, we obtain the weak formulation of the incompressible model (2)-(4) for
every i = 1 . . . Ne, κ = 1 . . . Nφ, j = 1 . . . Nd and k = 1 . . . Nψ:

∫
Ti

φ(i)
κ ∇ · v dx = 0, (15)∫

Rj

ψ
(j)
k

(
∂v

∂t
+∇ · Fv

)
dx +

∫
Rj

ψ
(j)
k ∇p dx =

∫
Rj

ψ
(j)
k (1− βδθ) g dx, (16)∫

Ti

φ(i)
κ

∂θ

∂t
dx +

∫
Ti

φ(i)
κ ∇ · Fθ dx = 0. (17)

Integration by parts of (15) leads to

∮
∂Ti

φ(i)
κ v · ~ni dS −

∫
Ti

∇φ(i)
κ · v dx = 0, (18)

with ~ni indicating the outward pointing unit normal vector. Next, taking into account the discontinuities
of ph and θh on Γj and vh on the edges of Rj , the weak form becomes

∑
j∈Si

(∫
Γj

φ(i)
κ vj · ~nij dS −

∫
Ti,j

∇φ(i)
κ · vj dx

)
= 0, (19)

∫
Rj

ψ
(j)
k

(
∂vj
∂t

+∇ · Fv
j

)
dx +

∫
T`(j),j

ψ
(j)
k ∇p`(j) dx +

∫
Tr(j),j

ψ
(j)
k ∇pr(j) dx +

∫
Γj

φ
(j)
k

(
pr(j) − p`(j)

)
~nj dS

=

∫
Rj

ψ
(j)
k g dx−

∫
T`(j),j

ψ
(j)
k βδθ`(j) g dx−

∫
Tr(j),j

ψ
(j)
k βδθr(j) g dx, (20)∫

Ti

φ(i)
κ

∂θi
∂t

dx +

∫
Ti

φ(i)
κ ∇ · Fθi dx = 0, (21)

where ~nij = ~ni|Γj . Note that the pressure has a discontinuity along Γj inside the dual element Rj and hence
the pressure gradient in (16) needs to be interpreted in the sense of distributions, as in path-conservative
finite volume schemes [76, 77]. This leads to the jump terms present in (20), see [2]. Alternatively, the same
jump term can be produced also via forward and backward integration by parts, see e.g. the well-known
work of Bassi and Rebay [24]. Using definitions (12)-(14), we rewrite the above equations as

∑
j∈Si

(∫
Γj

φ(i)
κ φ

(j)
l ~nij dS · v̂n+1

l,j −
∫
Ti,j

∇φ(i)
κ φ

(j)
l dx · v̂n+1

l,j

)
= 0, (22)

∫
Rj

ψ
(j)
k ψ

(j)
l dx Lv

h(v̂l,j) +

∫
T`(j),j

ψ
(j)
k ∇φ

(`(j))
l dx p̄l,`(j) +

∫
Tr(j),j

ψ
(j)
k ∇φ

(r(j))
l dx p̄l,r(j) +

∫
Γj

ψ
(j)
k φ

(r(j))
l ~nj dS p̄l,r(j)
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−
∫

Γj

ψ
(j)
k φ

(`(j))
l ~nj dS p̄l,`(j) =

∫
Rj

ψ
(j)
k g dx− β

∫
Tr(j),j

ψ
(j)
k φ

(r(j))
l dx δθ̄l,r(j) g − β

∫
T`(j),j

ψ
(j)
k φ

(`(j))
l dx δθ̄l,`(j) g,

(23)∫
Ti

φ(i)
κ φ

(i)
l dx Lθh(θ̄l,i, v̄l,i) = 0, (24)

where the Einstein summation convention over repeated indexes holds. Moreover, Lv
h and Lθh represent

appropriate discretizations of the operators Lv and Lθ, which will be defined later.
For every i and j equations (22)-(24) can be written in a compact matrix form as

∑
j∈Si

Di,jv̂j = 0, (25)

M̂jL
v
h(v̂j) + Rjp̄r(j) −Ljp̄`(j) = Gj −Rθ

j δθ̄r(j) −Lθ
j δθ̄`(j), (26)

M̄i L
θ
h(θ̄i, v̄i) = 0, (27)

with the matrix definitions

Di,j =

∫
Γj

φ(i)
κ ψ

(j)
l ~nijdSdt−

∫
Tsti,j

∇φ(i)
κ ψ

(j)
l dxdt, (28)

M̂j =

∫
Rj

ψ
(j)
k ψ

(j)
l dx, (29)

Rj =

∫
Γj

ψ
(j)
k φ

(r(j))
l ~njdS +

∫
Tr(j),j

ψ
(j)
k ∇φ

(r(j))
l dx, (30)

Lj =

∫
Γj

ψ
(j)
k φ

(`(j))
l ~njdS −

∫
T`(j),j

ψ
(j)
k ∇φ

(`(j))
l dx, (31)

Gj =

∫
Rj

ψ
(j)
k g dx, (32)

Rθ
j =

∫
Tr(j),j

ψ
(j)
k φ

(r(j))
l dx, (33)

Lθ
j =

∫
T`(j),j

ψ
(j)
k φ

(`(j))
l dx, (34)

M̄i =

∫
Ti

φ(i)
κ φ

(i)
l dx. (35)

The action of the matrices Lj and Rj can be generalized by introducing the new matrix Qi,j , defined
as

Qi,j =

∫
Ti,j

ψ
(j)
k ∇φ

(i)
l dx−

∫
Γj

ψ
(j)
k φ

(i)
l σi,j~njdS, (36)

with the sign function σi,j given by

σi,j =
r(j)− 2i+ `(j)

r(j)− `(j)
. (37)

In this way, Q`(j),j = −Lj and Qr(j),j = Rj , hence the momentum equation (26) writes

M̂jL
v
h(v̂j) + Qr(j),jp̄r(j) + Q`(j),jp̄`(j) = Gj −Rθ

j δθ̄r(j) −Lθ
j δθ̄`(j). (38)

8



Time discretization using the theta (Θ) method leads to

∑
j∈Si

Di,jv̂
n+1
j = 0, (39)

1

∆t
M̂j

(
v̂n+1
j − Fv

t (vn)
)

+ Qr(j),jp̄
n+Θ
r(j) + Q`(j),jp̄

n+Θ
`(j) = Gj −Rθ

j δθ̄
n+1
r(j) −Lθ

j δθ̄
n+1
`(j) , (40)

M̄i θ̄
n+1
i − M̄i F̄

θ
t (θn,vn) = 0, (41)

where p̄n+Θ = Θp̄n+1 + (1−Θ)p̄n, with Θ an implicitness factor to be taken in the range Θ ∈
[

1
2 , 1
]
, and

Fv
t (vn) and F̄θt (θn,vn) are proper discretizations of the convective and diffusive terms of the momentum

and energy equations, respectively, which read

Fv
t (vn) = v̂nj −∆tM̂−1

j Υ̂v
j , Υ̂v

j =

∫
Rj

ψ
(j)
k ∇ · F

v dx, (42)

F̄θt (θn,vn) = θ̄ni −∆tM̄−1
i Υ

θ

i , Υ
θ

i =

∫
Ti

φ(i)
κ ∇ · Fθ dx. (43)

Two different approaches are considered in this work to obtain a numerical approximation of the operators
(42)-(43): i) a fully Eulerian discretization and ii) an Eulerian-Lagrangian method. The Eulerian scheme
provides a fully conservative formulation, contrarily to the Eulerian-Lagrangian approach [55]. However,
the latter scheme would be unconditionally stable, so that no CFL restrictions need to be considered for the
time step, thus substantially reducing the computational cost of the algorithm.

3.4. Pressure system

Formal substitution of equation (40) into (39), i.e. making use of the Schur complement, leads to a linear
system in which the pressure is the only unknown, that is a scalar quantity:

∑
j∈Si

Di,jM̂
−1
j

(
Qr(j),jp̄

n+Θ
r(j) + Q`(j),jp̄

n+Θ
`(j)

)
=
∑
j∈Si

Di,jM̂
−1
j

(
Gj −Rθ

j δθ̄
n+1
r(j) −Lθ

j δθ̄
n+1
`(j)

)
+

1

∆t

∑
j∈Si

Di,jF
v
t (vn) .

(44)

The above system is symmetric and in general positive semi-definite, see [2, 4], so that an efficient
conjugate gradient method can be applied in order to obtain the new pressure p̄n+1. The previous equation
(44) coupled with (40)-(41) constitute the system of equations to be solved.

3.5. Nonlinear advection and diffusion

In the framework of semi-implicit schemes [78, 79, 80, 81, 74, 47], the nonlinear convective terms are
typically discretized explicitly, while the pressure terms are treated implicitly. For more details on how these
numerical methods are related to flux-vector splitting schemes, see [46].

Following [3], we exploit the advantages of using staggered grids to develop a suitable discretization of
the nonlinear advection and diffusion terms. Therefore, the velocity field is first interpolated from the dual
grid to the main grid:

v̄i = M̄−1
i

∑
j∈Si

Mi,jv̂j , (45)

with

Mi,j =

∫
Ti,j

φ(i)
κ ψ

(j)
l dx, (46)
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v̂j = M̂ −1
j

(
M>

`(j),jv̄`(j) + M>
r(j),jv̄r(j)

)
. (47)

Next, the nonlinear convective terms can be easily discretized with a standard DG scheme on the main grid.
Finally, the staggered mesh is used again in order to define the gradient of the velocity on the dual elements,
which yields a very simple and sparse system for the discretization of the viscous terms. A similar procedure
is employed to discretize the convective and viscous terms of the energy equation. Let us remark that for this
particular equation, the temperature is already defined on the primal elements, thus interpolation between
the two meshes is avoided. Let us define two auxiliary variables for the diffusion terms, namely the stress
tensor σ and the heat flux q as

σ = −ν∇v, q = −α∇θ. (48)

Then, the convective and viscous subsystems of the momentum and energy equations read

∂v

∂t
+∇ · Fv

c +∇ · σ = 0, (49)

σ = −ν∇v; (50)

∂θ

∂t
+∇ · Fθc +∇ · q = 0, (51)

q = −α∇θ. (52)

Defining the temperature and the velocity on the primal elements and the auxiliary variables (48) on the
dual grid, we obtain a weak formulation for equations (49)-(50) and (51)-(52), that is∫

Ti

φ(i)
κ

∂v

∂t
dx +

∫
∂Ti

φ(i)
κ ∇ ·Gv

c

(
v̄−, v̄+

)
dS −

∫
Ti

φ(i)
κ · Fv

c (v̄i) · ~ni dS

+
∑
j∈Si

(∫
Γj

φ(i)
κ σj · ~nij dS −

∫
Ti,j

∇φ(i)
κ · σj dx

)
= 0, (53)

∫
Rj

ψ
(j)
k σjdx = −ν

(∫
T`(j),j

ψ
(j)
k ∇v̄`(j)dx +

∫
Tr(j),j

ψ
(j)
k ∇v̄r(j)dx +

∫
Γj

ψ
(j)
k

(
v̄r(j) − v̄`(j)

)
⊗ ~njdS

)
;

(54)∫
Ti

φ(i)
κ

∂θ

∂t
dx +

∫
∂Ti

φ(i)
κ ∇ ·Gθ

c

(
θ̄−, θ̄+, v̄−, v̄+

)
dS −

∫
Ti

φ(i)
κ · Fθc

(
θ̄i, v̄i

)
· ~nidS

+
∑
j∈Si

(∫
Γj

φ(i)
κ qj · ~nij dS −

∫
Ti,j

∇φ(i)
κ · qj dx

)
= 0, (55)

∫
Rj

ψ
(j)
k qjdx = −α

(∫
T`(j),j

ψ
(j)
k ∇θ̄`(j)dx +

∫
Tr(j),j

ψ
(j)
k ∇θ̄r(j)dx +

∫
Γj

ψ
(j)
k

(
θ̄r(j) − θ̄`(j)

)
~njdS

)
. (56)

Accounting for the discretization in time, the former systems are expressed in matrix notation as

1

∆t
M̄i

(
v̄n+1
i − v̄ni

)
+ Υv,c

i +
∑
j∈Si

Di,jσ
n+1
j = 0, (57)

M̂jσ
n+1
j = −ν

(
Qr(j),jv̄

n+1
r(j) + Q`(j),jv̄

n+1
`(j)

)
, (58)

1

∆t
M̄i

(
θ̄n+1
i − θ̄ni

)
+ Υθ,c

i +
∑
j∈Si

Di,jq
n+1
j = 0, (59)

M̂jq
n+1
j = −α

(
Qr(j),j θ̄

n+1
r(j) + Q`(j),j θ̄

n+1
`(j)

)
, (60)
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with

Υv,c
i =

∫
∂Ti

φ(i)
κ Gv

c

(
v̄−, v̄+

)
· ~ni dS −

∫
Ti

∇φ(i)
κ · Fv

c (v̄i) dx, (61)

Υθ,c
i =

∫
∂Ti

φ(i)
κ Gθ

c

(
θ̄−, θ̄+, v̄−, v̄+

)
· ~nidS −

∫
Ti

∇φ(i)
κ · Fθc

(
θ̄i, v̄i

)
dx. (62)

Υv,c
i and Υθ,c

i are standard DG discretizations of the nonlinear convective terms, and v−, v+, θ−, and
θ+ refer to the boundary extrapolated values from within the cell and from the neighbors, respectively.
Furthermore, we use the Rusanov flux [82] as approximate Riemann solver:

Gv
c

(
v̄−, v̄+

)
· ~ni =

1

2

(
Fv
c (v̄+) + Fv

c (v̄−)
)
· ~ni −

1

2
svmax

(
v̄+ − v̄−

)
, (63)

Gθ
c

(
θ̄−, θ̄+, v̄−, v̄+

)
· ~ni =

1

2

(
Fθc(θ̄

+, v̄+) + Fθc(θ̄
−, v̄−)

)
· ~ni −

1

2
sθmax

(
θ̄+ − θ̄−

)
, (64)

where svmax = max (2|v̄+ · ~ni|, 2|v̄− · ~ni|) and sθmax = max (|v̄+ · ~ni|, |v̄− · ~ni|) are the maximum eigenvalues
of the convective operators Fv

c and Fθc , respectively. Finally, substituting (58) into (57), and (60) into (59),
we obtain

1

∆t
M̄i

(
v̄n+1
i − v̄ni

)
+ Υv,c

i

(
v̄n+1

)
− ν

∑
j∈Si

Di,jM̂
−1
j

(
Qr(j),jv̄

n+1
r(j) + Q`(j),jv̄

n+1
`(j)

)
= 0, (65)

1

∆t
M̄i

(
θ̄n+1
i − θ̄ni

)
+ Υθ,c

i

(
θ̄n+1, v̄n+1

)
− α

∑
j∈Si

Di,jM̂
−1
j

(
Qr(j),j θ̄

n+1
r(j) + Q`(j),j θ̄

n+1
`(j)

)
= 0. (66)

In order to avoid the solution of a nonlinear system due to the presence of the nonlinear operator related to
the convective terms, a fractional step scheme combined with an outer Picard iteration is used:

1

∆t
M̄iv̄

n+1,k+ 1
2

i − ν
∑
j∈Si

Di,jM̂
−1
j

(
Qr(j),jv̄

n+1,k+ 1
2

r(j) + Q`(j),jv̄
n+1,k+ 1

2

`(j)

)
=

1

∆t
M̄iv̄

n
i

−Υv,c
i

(
v̄n+1,k

)
−
∑
j∈Si

Mi,jM̂
−1
j

(
Qr(j),jp̂

n+1,k
r(j) + Q`(j),jp̂

n+1,k
`(j)

)
, (67)

1

∆t
M̄iθ̄

n+1,k+ 1
2

i − α
∑
j∈Si

Di,jM̂
−1
j

(
Qr(j),j θ̄

n+1,k+ 1
2

r(j) + Q`(j),j θ̄
n+1,k+ 1

2

`(j)

)
=

1

∆t
M̄iθ̄

n
i −Υθ,c

i

(
θ̄n+1,k, v̄n+1,k

)
.

(68)

The previous procedure constitutes a discretization of the nonlinear convective and viscous terms on the
main grid, both for the momentum and the energy equations, where σ and q are computed on the face-based
dual mesh. To recover the contribution of the convective and viscous terms in the dual grid, as required in
(40), we perform the following projection:

Fv
t

(
vn+1,k+ 1

2

)
= M̂ −1

j

(
M>

`(j),jv̄
n+1,k+ 1

2

`(j) + M>
r(j),jv̄

n+1,k+ 1
2

r(j)

)
. (69)

3.6. Eulerian-Lagrangian approach

Instead of applying the Eulerian advection scheme illustrated in Section 3.5 for the approximation of the

convection and diffusion terms, Fv
t

(
vn+1,k+ 1

2

)
and F̄θt

(
θn+1,k+ 1

2 ,vn+1,k+ 1
2

)
, we may take into account

the Lagrangian trajectory of the flow particles and use an Eulerian-Lagrangian approach. Specifically, the
departure point x∗ of the Lagrangian trajectory has to be determined in order to compute the corresponding
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value of the transferred quantities, namely velocity v∗ and temperature θ∗. The Lagrangian trajectory is
defined by the solution x(τ) of the trajectory equation

dx

dτ
= −v(x(τ)), with x(0) = xn+1

l and τ ∈ [0,∆t], (70)

where xn+1
l is the location of a generic quadrature point from which the backtracking of the trajectory is

started. Furthermore, τ represents the rescaled time coordinate referred to the time step ∆t := tn+1 − tn,
and can be easily evaluated as τ = t − tn, while v(x(τ)) is the local fluid velocity. The foot point of the
characteristics, which is nothing but the sought departure point, is given by x∗ = x(∆t). In order to solve
the system of ordinary differential equations (ODE) (70), we rely on the approach presented in [65, 66],
hence using a high order Taylor method, which leads to the solution xr+1 at the new time τr+1:

xr+1 = xr + ∆τ
dx

dτ
+

∆τ2

2

d2x

dτ2
+

∆τ3

6

d3x

dτ3
+O(4). (71)

Expansion (71) allows the scheme to be up to third order accurate in τ . The index r represents the iteration
number if a sub-time stepping is chosen for the approximation of the time step interval [0,∆t]. High order
time derivatives are then replaced by high order spatial derivatives using repeatedly the trajectory equation
(70) via the Cauchy-Kovalevskaya procedure, which is also typical for the ADER approach of Toro and
Titarev [56, 57, 58]. Thus, assuming that v = v(x) = v(x, tn) is frozen during one time step, one obtains

dx

dτ
= −v, (72a)

d2x

dτ2
=

d

dτ

(
dx

dτ

)
= −dv

dτ
= −∂v

∂x

dx

dτ
=
∂v

∂x
v, (72b)

d3x

dτ3
=

d

dτ

(
∂v

∂x
v

)
=

d

dτ

(
∂v

∂x

)
v +

∂v

∂x

dv

dτ
=

∂

∂x

(
∂v

∂x

)
dx

dτ
v −

(
∂v

∂x

)2

v

= −
(
∂2v

∂x2

)
vv −

(
∂v

∂x

)2

v. (72c)

In this work we follow the methodology detailed in [55], in which a staggered high order DG scheme has
been used together with the Eulerian-Lagrangian technique previously illustrated. In the DG context, the
Eulerian-Lagrangian scheme is used to compute the nonlinear convective terms inside a weak formulation of
the governing PDE, therefore the starting points for the trajectory equation (70) are given by the Gaussian
quadrature points in space within each control volume Ti. In order to guarantee sufficient accuracy, we
integrate backward in time twice the minimum number of Gaussian points that ensures the formal order of
accuracy of the scheme, hence performing over-integration. According to [55], the integration of the ODE
(70) is carried out in a reference system with local coordinates (ξ, η, ζ), so that element and physical bound-
aries can be easily identified and treated. Finally, the high order spatial discretization of the DG scheme is
employed to compute the values of the velocity and the temperature at the foot point x∗ = x(∆t) of each
trajectory. Further details on the aforementioned methodology can be found in [55], whereas in [83] a study
for determining the departure points of trajectories is proposed. If stiff problems are considered, in which
the solution rapidly changes in time, a complete space-time method would be necessary to capture properly
the flow trajectory and which will be subject of future work. However, for the applications considered in
this work, that are concerned with natural convection problems, this is typically not the case, so that our
Eulerian-Lagrangian algorithm can be adopted for the discretization of the convection and diffusion terms,

Fv
t

(
vn+1,k+ 1

2

)
and F̄θt

(
θn+1,k+ 1

2 ,vn+1,k+ 1
2

)
. The semi-implicit scheme for the Navier-Stokes equations

together with the Eulerian-Lagrangian approach becomes unconditionally stable for arbitrary high order of
accuracy and thus allows large time steps. For a detailed analysis in the case of semi-implicit finite difference
schemes, see [80].
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3.7. Overall method

Given p̄ni , v̂nj and θ̄ni , the final algorithm reads as follows.

1. The temperature at the new iteration, θ̄
n+1,k+ 1

2
i , is obtained solving (68) when the fully Eulerian

method is selected. Otherwise, the Eulerian-Lagrangian approach determines the term F̄θt in equation
(41) from which the temperature is updated.

2. The nonlinear convective and viscous terms for the momentum equation, Fv
t

(
vn+1,k+ 1

2

)
, are com-

puted. Let us remark that within this term we are accounting for the contribution of the pressure at
the previous Picard iteration, see Eqn. (67).

3. The pressure, p̄n+1,k+1
i , results from solving system (44) after substitution of Fv

t

(
vn+1,k+ 1

2

)
and

θ̄
n+1,k+ 1

2
i :

Θ∆t
∑
j∈Si

Di,jM̂
−1
j

[
Qr(j),j

(
p̄n+1,k+1
r(j) − p̄n+1,k

r(j)

)
+ Q`(j),j

(
p̄n+1,k+1
`(j) − p̄n+1,k

`(j)

)]
=
∑
j∈Si

Di,jF
v
t

(
vn+1,k+ 1

2

)
+∆t

∑
j∈Si

Di,jM̂
−1
j

(
Gj −Rθ

j δθ̄
n+1,k+ 1

2

r(j) −Lθ
j δθ̄

n+1,k+ 1
2

`(j)

)
− (1−Θ) ∆t

∑
j∈Si

Di,jM̂
−1
j

[
Qr(j),jp̄

n
r(j) + Q`(j),jp̄

n
`(j)

]
.

(73)

4. The velocity, v̂n+1,k+1
j , is then updated from (40):

v̂n+1,k+1
j = Fv

t

(
vn+1,k+ 1

2

)
+ ∆tM̂−1

j

[
−Qr(j),j

(
p̄n+Θ,k+1
r(j) − p̄n+Θ,k

r(j)

)
−Q`(j),j

(
p̄n+1,k+1
`(j) − p̄n+1,k

`(j)

)
+Gj −Rθ

j δθ̄
n+1,k+ 1

2

r(j) −Lθ
j δθ̄

n+1,k+ 1
2

`(j)

]
. (74)

Remark 1. For the sake of simplicity, the former algorithm has been presented assuming the theta method
is used for time discretization. As a consequence, the accuracy of the resulting scheme is of arbitrary order
in space and only up to second order in time. Besides, the space-time extension for the Eulerian approach
has been developed following [2, 3], hence obtaining arbitrary high order semi-implicit DG schemes at the
aid of test and basis functions that depend on both space and time.

4. Numerical method for the compressible model

The staggered semi-implicit discontinuous Galerkin scheme described in the previous section for the
incompressible model has been extended in [4] to solve the compressible Navier-Stokes equations at all
Mach numbers. Concerning semi-implicit finite volume schemes for all and low Mach number flows, we refer
the reader to [84, 85, 86, 87, 88].

To simulate natural convection problems, some modifications are needed in order to incorporate the
gravitational terms. In what follows, we will provide the details associated to their inclusion. For well-
balanced schemes for the compressible Euler equations with gravity source terms, see [89, 90, 91, 9, 92].

4.1. Staggered semi-implicit DG scheme

The computational domain is discretized as already explained in Section 3.1 and the basis functions are
defined according to Section 3.2. Then, the discrete pressure ph, the fluid density ρh and the discrete total
energy density (ρE)h are computed on the main grid, while the discrete velocity vector field vh, the discrete
momentum density (ρv)h, and the discrete specific enthalpy Hh are defined on the dual grid.
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The numerical solution of (7)-(9) at a given time t is represented inside the control volumes of the primal
and the dual grids by piecewise spatial polynomials. The discrete pressure is approximated using (12), while
the total energy as well as the density on the main mesh and the momentum on the dual mesh read

ρEi(x, t) =

Nφ∑
l=1

φ
(i)
l (x)ρEl,i(t) =: φ(i)(x)ρEi(t), (75)

ρi(x, t) =

Nφ∑
l=1

φ
(i)
l (x)ρ̄l,i(t) =: φ(i)(x)ρ̄i(t), (76)

vj(x, t) =

Nψ∑
l=1

ψ
(j)
l (x)ρ̂vl,j(t) =: ψ(j)(x, t)ρ̂vj(t). (77)

Similarly to what has been done in Section 3.3 for the incompressible system, a weak formulation of (7)-
(9) is obtained by multiplication of the governing equations by appropriate test functions and integration
over the associated control volumes:∫

Ti

φ(i)
κ

∂ρi
∂t

dx = −
∑
j∈Si

(∫
Γj

φ(i)
κ (ρv)j · ~nij dS −

∫
Ti,j

∇φ(i)
κ · (ρv)j dx

)
(78)

∫
Rj

ψ
(j)
k

(
∂ (ρv)j
∂t

+∇ · Fρvj
)
dx +

∫
T`(j),j

ψ
(j)
k ∇p`(j) dx +

∫
Tr(j),j

ψ
(j)
k ∇pr(j) dx +

∫
Γj

φ
(j)
k

(
pr(j) − p`(j)

)
~nj dS =

∫
Rj

ψ
(j)
k ρjg dx,

(79)∫
Ti

φ(i)
κ

∂ (ρE)i
∂t

dx +

∫
Ti

φ(i)
κ ∇ · [ki(ρv)i] dx +

∫
Ti

φ(i)
κ ∇ · [Hi(ρv)i] dx =

∫
Ti

φ(i)
κ ∇ · [σivi + κ∇θi] dx +

∫
Ti

φ(i)
κ (ρv)i · g dx.

(80)

The above weak formulation of the governing PDE accounts for the discontinuities of pressure and momentum
along the boundaries of the primal and dual cells, respectively. Let wj := σjvj be the work of the stress
tensor in the energy equation and let qj := κ∇θj define the heat flux vector. Using the polynomial
approximations (75)-(77) in the semi-discrete system (78)-(80) leads to∫

Ti

φ(i)
κ φ

(i)
l dx

∂ρl,i
∂t

= −
∑
j∈Si

(∫
Γj

φ(i)
κ ψ

(j)
l ~nij dS · ρ̂vl,j −

∫
Ti,j

∇φ(i)
κ ψ

(j)
l dx · ρ̂vl,j

)
(81)∫

Rj

ψ
(j)
k ψ

(j)
l dx Lρvh (ρ̂vl,j) +

∫
T`(j),j

ψ
(j)
k ∇φ

(`(j))
l dx p̄l,`(j) +

∫
Tr(j),j

ψ
(j)
k ∇φ

(r(j))
l dx p̄l,r(j)

+

∫
Γj

ψ
(j)
k φ

(r(j))
l ~nj dS p̄l,r(j) −

∫
Γj

ψ
(j)
k φ

(`(j))
l ~nj dS p̄l,`(j) =

∫
Rj

ψ
(j)
k ψ

(j)
l dx ρ̂l,jg, (82)

∫
Ti

φ(i)
κ φ

(i)
l dx

∂ (ρE)l,i
∂t

+
∑
j∈Si

(∫
Γj

φ(i)
κ ψ

(j)
l ψ(j)

r ~ni,j dS ·Hl,j(ρv)r,j −
∫
Ti,j

∇φ(i)
κ ψ

(j)
l ψ(j)

r dx ·Hl,j(ρv)r,j

)

+

∫
Ti

φ(i)
κ ∇ · Fkc (k, (ρv)) dx =

∑
j∈Si

(∫
Γj

φ
(i)
k ψ

(j)
l ~ni,j dS ·wl,j −

∫
Ti,j

∇φ(i)
k ψ

(j)
l dx ·wl,j

)

+
∑
j∈Si

(∫
Γj

φ
(i)
k ψ

(j)
l ~ni,j dS · ql,j −

∫
Ti,j

∇φ(i)
k ψ

(j)
l dx · ql,j

)
+

∫
Ti

φ(i)
κ φ

(i)
l dx (ρv)l,i · g. (83)

Finally, discretization in time of the above system yields
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∫
Ti

φ(i)
κ φ

(i)
l dx ρ̄n+1

l,i =

∫
Ti

φ(i)
κ φ

(i)
l dx ρ̄nl,i −∆t

∑
j∈Si

(∫
Γj

φ(i)
κ ψ

(j)
l ~nij dS · ρ̂vnl,j −

∫
Ti,j

∇φ(i)
κ ψ

(j)
l dx · ρ̂vnl,j

)
(84)

1

∆t

∫
Rj

ψ
(j)
k ψ

(j)
l dx ρ̂v

n+1
l,j −

1

∆t

∫
Rj

ψ
(j)
k ψ

(j)
l dx F̂ρvt (ρ̂v

n
l,j) +

∫
T`(j),j

ψ
(j)
k ∇φ

(`(j))
l dx p̄n+1

l,`(j)

+

∫
Tr(j),j

ψ
(j)
k ∇φ

(r(j))
l dx p̄n+1

l,r(j) +

∫
Γj

ψ
(j)
k φ

(r(j))
l ~nj dS p̄n+1

l,r(j) −
∫

Γj

ψ
(j)
k φ

(`(j))
l ~nj dS p̄n+1

l,`(j) =

∫
Rj

ψ
(j)
k ψ

(j)
l dx ρ̂nl,jg,

(85)

1

∆t

∫
Ti

φ(i)
κ φ

(i)
l dx

(
ρE
)n+1

l,i
− 1

∆t

∫
Ti

φ(i)
κ φ

(i)
l dx

(
ρE
)n
l,i

+
∑
j∈Si

(∫
Γj

φ(i)
κ ψ

(j)
l ψ(j)

r ~ni,j dS · Ĥn+1
l,j (ρ̂v)n+1

r,j −
∫
Ti,j

∇φ(i)
κ ψ

(j)
l ψ(j)

r dx · Ĥn+1
l,j (ρ̂v)n+1

r,j

)

+

∫
Ti

φ(i)
κ ∇ · Fkc

(
kn+1, (ρv)n+1

)
dx =

∑
j∈Si

(∫
Γj

φ
(i)
k ψ

(j)
l ~ni,j dS · ŵn+1

l,j −
∫
Ti,j

∇φ(i)
k ψ

(j)
l dx · ŵn+1

l,j

)

+
∑
j∈Si

(∫
Γj

φ
(i)
k ψ

(j)
l ~ni,j dS · q̂n+1

l,j −
∫
Ti,j

∇φ(i)
k ψ

(j)
l dx · q̂n+1

l,j

)
+

∫
Ti

φ(i)
κ φ

(i)
l dx (ρv)

n+1
l,i · g, (86)

where the convective and diffusive terms

F̂ρvt (ρ̂v
n
j ) = ρ̂v

n
j −∆tM−1

j Υρv
j , Υρv

j =

∫
Rj

ψ
(i)
k ∇ · F

ρv, (87)∫
Ti

φ(i)
κ ∇ · Fkc

(
kn+1, (ρv)n+1

)
dx = Υk,c

i , (88)

are evaluated following the procedure introduced in Section 3.5. The density on the dual mesh, needed in
(85), is recovered from its value on the primal mesh as

ρ̂nj = M̂−1
j

(
M>

`(j),jρ̄
n
`(j) + M>

r(j),jρ̄
n
r(j)

)
. (89)

By introducing

Eij =

∫
Γj

φ
(i)
k ψ

(j)
l ψ(j)

r ~ni,jdS −
∫

Tij

∇φ(i)
k ψ

(j)
l ψ(j)

r dx, (90)

and using the matrix definitions (28)-(35), the above system is written more compactly as

M̄iρ̄
n+1
i = M̄iρ̄

n
i −∆t

∑
j∈Si

Di,jρ̂v
n
j , (91)

M̂j(ρ̂v)n+1
j = M̂j(ρ̂v)nj + ∆t

(
−Υ̂ρv,n

j −Qr(j),j p̂
n+1
r(j) −Q`(j),j p̂

n+1
`(j) + M̂jρ̂

n
j g
)
, (92)

M̄i(ρE)n+1
i = M̄i(ρE)ni + ∆t

−Ῡk,c,n+1
i −

∑
j∈Si

EijĤn+1
j (ρ̂v)n+1

j +
∑
j∈Si

Di,j

(
ŵn+1
j + q̂n+1

j

)
+ M̄iρvn+1

i · g

 .
(93)

4.2. Pressure system and Picard iteration

The pressure appearing in the momentum equation (92) is discretized implicitly as well as the momentum
in the energy equation. Then, a pressure equation can be derived by formal substitution of the discrete
momentum equation (92) into the discrete energy equation (93):

M̄i

[
(ρe)n+1

i + (ρk)n+1
i

]
−∆t

∑
j∈Si

EijĤn+1
j

[
M̂−1

j

(
Qr(j),j p̂

n+1
r(j) + Q`(j),j p̂

n+1
`(j)

)]
= M̄i(ρE)ni + ∆t

[
−Ῡk,c,n+1

i
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−
∑
j∈Si

EijĤn+1
j M̂−1

j

(
M̂j(ρ̂v)nj −∆t

(
Υ̂ρv,n
j + M̂jρ̂

n
j g
))

+
∑
j∈Si

Di,j

(
ŵn+1
j + q̂n+1

j

)
+ M̄iρvn+1

i · g

 .
(94)

Here, (ρe)n+1
i = ρe

(
p̄n+1
i , ρ̄n+1

i

)
is to be understood as a componentwise evaluation of the internal energy

density ρe for each component of the input vectors p̄n+1
i and ρ̄n+1

i . Due to the dependency of the enthalpy
on the pressure, and due to the presence of the kinetic energy in the total energy, system (94) is highly
nonlinear. In order to obtain a linear system for the pressure, a simple but very efficient Picard iteration
is used, as suggested in [93, 94, 95, 47, 1, 3]. Consequently, some nonlinear terms are discretized at the
previous Picard iteration, and thus become essentially explicit. Specifically, only pressure remains fully
implicit. Therefore, at each Picard iteration, m = 1, . . . , NPic, we need to solve

M̄i

[
ρe
(
p̄n+1,m+1
i , ρ̄n+1

i

)]
−∆t

∑
j∈Si

EijĤn+1,m
j

[
∆tM̂−1

j

(
Qr(j)j p̄

n+1,m+1
r(j) + Q`(j)j p̄

n+1,m+1
`(j)

)]

= M̄−
i (ρE)ni + ∆t

−M̄i(ρk)n+1,m
i −Υ

k,c,n+1,m

i +
∑
j∈Si

Di,j

(
ŵn+1,m
j + q̂n+1,m

j

)

−
∑
j∈Si

EijĤn+1,m
j

[
M̂−1

j

(
M̂−

j (ρ̂v)nj −∆t Υ̂ρv,n
j

)
+ ∆t ρ̂nj g

]
+ M̄iρvn+1,m

i · g

 , (95)

M̂j(ρ̂v)n+1,m+1
j + ∆t

(
Qr(j),j p̂

n+1,m+1
r(j) + Q`(j),j p̂

n+1,m+1
`(j)

)
= M̂j(ρ̂v)nj + ∆t

(
−Υ̂ρv,n

j + M̂jρ̂
n
j g
)
,

(96)

M̄i(ρE)n+1
i = M̄i(ρE)ni + ∆t

−Fk
n+1,m+1

i −
∑
j∈Si

EijĤn+1,m
j (ρ̂v)n+1,m+1

j +
∑
j∈Si

Di,j

(
ŵn+1,m
j + q̂n+1,m

j

)
+ M̄iρvn+1,m+1

i · g

 .
(97)

We typically use a total number of NPic = 2 iterations. The above equations introduce an implicit dis-
cretization for pressure and momentum in the momentum equation and in the energy equation, respectively.
Second order of accuracy in time can be easily achieved by taking p̄n+Θ,m+1

i and (ρ̂v)n+Θ,m+1
j in the

momentum and energy equations with Θ = 0.5, which yields a Crank-Nicolson discretization.

4.3. Overall method

Given ρ̄ni , p̄ni , ρ̂v
n
j , and ρE

n

i , the staggered semi-implicit DG algorithm for solving the compressible
Navier-Stokes equations (7)-(9) can therefore be summarized as follows.

1. The density at the new time time step, ρ̄n+1
i , is obtained using (91). This value is then projected onto

the dual mesh, ρ̂n+1
j , by means of (89).

2. System (95)-(96) is solved relying on a Picard iteration procedure in order to evaluate the pressure

and the momentum at the new time step, p̄n+1,m+1
i and ρ̂v

n+1,m+1
j , respectively.

3. The updated total energy density, ρE
n+1

i , is computed from (97) once the Picard loop has finished.

5. Time step restriction

The maximum time step is restricted by a CFL-type condition based on the local flow velocity:

∆tmax =
CFL

2p+ 1
· hmin

2 |vmax|
(98)
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with CFL < 1/d, d the space dimension, hmin the smallest insphere diameter (in 3D) or incircle radius (in
2D) and vmax is the maximum convective speed. If viscous terms are present, the eigenvalues of the viscous
operator have to be considered as well (see [33, 4]).

As commented in Section 3.6, if we employ the Eulerian-Lagrangian approach, the scheme becomes
unconditionally stable for inviscid fluids, so that the time restriction is no more determined by the above
CFL condition and CFL ≥ 1 may be chosen. However, the parallel version of the code requires a safety
factor to be specified, in order to ensure that the Lagrangian trajectories never exit the MPI neighborhood
of each region (see [55] for further details).

6. Numerical test problems

In this section, classical benchmarks for natural convection problems are used in order to verify the
validity and the efficiency of the novel algorithms presented in this work. Moreover, these tests allow us to
analyze the strengths and drawbacks of our numerical schemes.

6.1. Taylor-Green Vortex with gravity

To analyse the accuracy of the proposed schemes, we consider a modification of the Taylor-Green vortex
benchmark by including the gravity term in the momentum equation. The exact solution of this test case
reads

u(x, y, t) = sin(x) cos(y)e−2νt, (99)

v(x, y, t) = − cos(x) sin(y)e−2νt + gt, (100)

p(x, y, t) =
1

4
(cos(2x) + cos(2y)) e−4νt, (101)

with g = −9.81. In order to satisfy the governing equations (2)-(3) with the definitions (99)-(101), the
following source terms need to be added to the right hand side of the momentum equations:

su = −gt sin(x) sin(y)e−2νt, (102)

sv = gt cos(x) cos(y)e−2νt. (103)

The simulations are run on the computational domain Ω = [0, 2π]2 with periodic boundaries on a sequence
of successively refined unstructured grids. Two settings are considered with different viscosity coefficient,
namely ν = 0 and ν = 0.1. The convergence results at tend = 0.1 are shown in Table 1. We observe that
the optimal convergence rates are achieved for this non-trivial test with gravity and viscosity terms in a
transient regime. The space-time DG discretization of [2, 3] has been employed with p and pγ denoting
the polynomial degree in space and time, respectively. From the obtained results we can conclude that the
scheme converges with the expected convergence rate of at least p+ 1

2 .

6.2. Differentially heated cavity

The differentially heated cavity test (DHC) has been proposed in [96] to assess the performance of nu-
merical methods used to solve the incompressible Navier-Stokes equations with heat transport. The problem
is defined on a squared shaped domain Ω = [0, L]2 with two opposite differentially heated walls and charac-
teristic length L = 1. Due to the small temperature gap between the walls δθ the Boussinesq assumption
can be applied, which means that changes in the density can be neglected everywhere in the incompressible
Navier-Stokes equations, apart from the buoyancy forces (gravity source term) in the momentum equation.

We consider the computational domain defined in Figure 3. Five different sets of parameters have been

set according to values of the Rayleigh number Ra = βδθgL3

να between 103 and 107 with Prandtl number
Pr = 0.71 (see Table 2 for further details on the operating conditions). Initially, we assume a constant
temperature θ(x, 0) = θ0 = 0 and a fluid at rest, i.e. v(x, 0) = 0. Adiabatic boundary conditions are
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Ne

ν = 0 ν = 0.1

(p, pγ) = (1, 1) (p, pγ) = (2, 2) (p, pγ) = (1, 1) (p, pγ) = (2, 2)

ε (v) O ε (v) O ε (v) O ε (v) O

44 2.81E − 01 6.72E − 02 2.62E − 01 4.45E − 02

176 9.56E − 02 1.6 1.33E − 02 2.3 7.43E − 02 1.8 5.02E − 03 3.1

396 5.32E − 02 1.4 5.25E − 03 2.3 3.34E − 02 2.0 1.43E − 03 3.1

704 3.54E − 02 1.4 2.65E − 03 2.4 1.86E − 02 2.0 5.91E − 04 3.1

1100 2.59E − 02 1.4 1.54E − 03 2.4 1.18E − 02 2.1 2.97E − 04 3.1

1584 1.99E − 02 1.4 9.80E − 04 2.5 8.15E − 03 2.0 1.70E − 04 3.1

2156 1.59E − 02 1.5 6.66E − 04 2.5 5.96E − 03 2.0 1.06E − 04 3.0

Table 1: Taylor-Green vortex. Numerical convergence results for the velocity vector field.

prescribed at the bottom and top walls, whereas the exact temperature is imposed in the two heated walls,
which is θh = 0.5 on the left and θc = −0.5 on the right, hence δθ = θh − θc = 1.

Rayleigh g ρ0 α β ν

103

(0,−9.81)
T 1

6.836 · 10−3

3.4112 · 10−3

4.874 · 10−3

104 2.171 · 10−3 1.541 · 10−3

105 6.836 · 10−4 4.874 · 10−4

106 2.171 · 10−4 1.541 · 10−4

107 6.836 · 10−5 4.874 · 10−5

Table 2: Differentially heated cavity test. Operating conditions.

The staggered mesh employed has 5172 primal elements. The simulations were run considering the
numerical parameters p = 2, pγ = 0, i.e. we use piecewise quadratic polynomials in space and a first order
scheme in time. The steady state stopping criterion is defined as

1

∆t

∥∥vn+1 − vn
∥∥
L2(Ω)

≤ 10−4. (104)

In order to analyze and compare the numerical results with available data in the literature, let us introduce
the Nusselt number at the heated walls:

NuΓ =
1

|Γ|

∫
Γ

Nuloc dA, Nuloc =
κL

κ0 (θh − θc)
∂θ

∂~n
, (105)
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Figure 3: Differentially heated cavity test. Computational domain and boundary conditions.

where Γ refers to one of the heated walls, L denotes the characteristic length and κ is the thermal conductivity
with κ0 = κ (θ0).

The Nusselt numbers obtained at both heated walls using the fully Eulerian and the Eulerian-Lagrangian
schemes are shown in Table 3. The average values presented in [96], [97], [98], [99] and [6] have been included
for comparison purposes. To avoid overestimation of the Nusselt number by the Eulerian-Lagrangian scheme
we need to bound the time step. More precisely, the time step given by (98) is halved, thus allowing the
small structures embedded in the flow to be properly tracked.

Ra
STIN2D Eu. STIN2D EL Ref. [96] Ref. [97] Ref. [98] Ref. [99] Ref. [6]

Γh Γc Γh Γc Average Average Average Average Average

103 1.1199 1.1199 1.1212 1.1212 1.118 1.117 1.1149 1.117 1.112

104 2.2471 2.2471 2.2486 2.2486 2.243 2.243 2.2593 2.254 2.198

105 4.5283 4.5302 4.6605 4.5302 4.519 4.521 4.4832 4.598 4.465

106 8.8651 8.8655 8.8592 8.8595 8.800 8.806 8.8811 8.976 8.783

107 16.8394 16.8428 16.7684 16.7714 −− 16.40 16.3869 16.656 16.46

Table 3: Differentially heated cavity (DHC) test. Comparison of the Nusselt number obtained with the Eulerian (Eu) and
Eulerian-Lagrangian (EL) advection scheme with available reference solutions from the literature.
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Ra STIN2D Eu. STIN2D EL Ref. [96] Ref. [97] Ref. [98] Ref. [99]

103 3.7227 3.7324 3.679 3.692 3.6962 3.686

104 19.6342 19.6372 19.51 19.63 19.6177 19.79

105 68.9334 68.9526 68.22 68.85 68.6920 70.63

106 220.603 220.212 216.75 221.6 220.8331 227.11

107 701.051 700.679 −− 702.3 703.2526 714.48

Table 4: Differentially heated cavity (DHC) test. Comparison of the normalized maximum vertical velocity at y = 0.5 obtained
with the Eulerian (Eu) and Eulerian-Lagrangian (EL) advection schemes with available reference solutions from the literature.

Ra STIN2D Eu. STIN2D EL Ref. [96] Ref. [98] Ref. [99]

103 3.6736 3.6828 3.634 3.6493 3.489

104 16.1856 16.1877 16.2 16.1798 16.12

105 34.8869 34.896 34.81 34.7741 33.39

106 64.8511 64.9075 65.33 64.6912 65.40

107 148.681 149.561 −− 145.2666 143.56

Table 5: Differentially heated cavity (DHC) test. Comparison of the normalized maximum horizontal velocity at x = 0.5
obtained with the Eulerian (Eu) and Eulerian-Lagrangian (EL) advection schemes with available reference solutions from the
literature.

Figures 4-8 depict the numerical solution of temperature and velocity. Moreover, streamlines and vorticity
contours are shown in Figure 9. A good agreement is observed between the results computed with our two
different advection schemes (Eulerian upwind scheme and Eulerian-Lagrangian scheme) and with the data
reported in literature (see [100, 97, 101, 102, 98, 99, 103, 6]). Comparison with available data is also carried
out considering the vertical and horizontal velocities in the mid planes, which have been plotted in Figures
11-10. Furthermore, the normalized maximum velocities in the mid plane are reported in Tables 4-5.
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Figure 4: DHC. From left to right: temperature, horizontal and vertical velocity contours at Ra = 103. Top: Eulerian advection
scheme. Bottom: Eulerian-Lagrangian advection scheme.
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Figure 5: DHC. From left to right: temperature, horizontal and vertical velocity contours at Ra = 104. Top: Eulerian advection
scheme. Bottom: Eulerian-Lagrangian advection scheme.
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Figure 6: DHC. From left to right: temperature, horizontal and vertical velocity contours, Ra = 105. Top: Eulerian advection
scheme. Bottom: Eulerian-Lagrangian advection scheme.
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Figure 7: DHC. From left to right: temperature, horizontal and vertical velocity contours, Ra = 106. Top: Eulerian advection
scheme. Bottom: Eulerian-Lagrangian advection scheme.
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Figure 8: DHC. From left to right: temperature, horizontal and vertical velocity contours, Ra = 107. Top: Eulerian advection
scheme. Bottom: Eulerian-Lagrangian advection scheme.
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Ra = 103 Ra = 104

Ra = 105 Ra = 106 Ra = 107

Figure 9: DHC. Streamlines and vorticity contours obtained using the Eulerian-Lagrangian approach for advection.

26



y

H
o

ri
zo

n
ta

l v
el

o
ci

ty

0 0.2 0.4 0.6 0.8 1
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Ra=1e7 SL
Ra=1e7 Eu.
Ra=1e6 SL
Ra=1e6 Eu.
Ra=1e5 SL
Ra=1e5 Eu.
Ra=1e4 SL
Ra=1e4 Eu.
Ra=1e3 SL
Ra=1e3 Eu.

Figure 10: DHC. Horizontal velocity, x = 0.5.
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Figure 11: DHC. Vertical velocity, y = 0.5.

6.3. Cavity with differentially heated cylinders

We propose a modification to the previous test case on a more complex geometry where six cylinders
of radius r = 0.1 are subtracted from the square cavity, see Figure 6.3. We assume an initial fluid at

θhθc

Adiabatic walls

g0.1

1

0.25 0.5

1

0.25

0.25

0.25

Figure 12: Cavity with differentially heated cylinders. Computational domain and boundary conditions.

rest with constant temperature θ0 = 293.15K, density ρ0 = 1 and g = (0,−9.81)
T

. Dirichlet boundary
conditions are imposed on the cylinder walls, where the exact temperature is prescribed. Specifically,
the left cylinders are cooled with θc = 292.65K, whereas the right ones are heated with θh = 293.65K.
The remaining walls are assumed to be adiabatic. The computational domain is paved with a primal
mesh of 18396 elements and two different settings are considered, according to the diffusion coefficients:
(µT1 , αT1) =

(
4.874 · 10−4, 6.86 · 10−4

)
and (µT2 , αT2) =

(
4.874 · 10−6, 6.865 · 10−6

)
.
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Figure 6.3 shows the contour plots of temperature, horizontal and vertical velocity obtained for the first
setup using the fully Eulerian and the Eulerian-Lagrangian schemes with p = 2, Θ = 0.51. A good agreement
is observed between the two approaches. To illustrate the mesh convergence, the results corresponding to a
mesh refinement factor of 2 are included as well.

The reduced viscosity coefficient defined in the second setup leads to an unsteady flow field, developing
many secondary vortices and flow instabilities. The simulation was run relying on the Eulerian-Lagrangian
scheme which reduces the computational cost. Nevertheless, to capture the sub-scale structures of the flow,
we have fixed the time step to be 5/2 times greater than the one computed from (98). In Figure 6.3 we
depict the results obtained at different output times.

6.4. Warm bubble in two space dimensions

As fourth test case we propose to solve the smooth rising bubble benchmark problem introduced in [5],
which has been widely used to test numerical solvers of thermal convection problems (see [104, 105, 106, 10]).
This problem assumes an initial fluid at rest and a warm bubble embedded in it. During the simulation, the
bubble will rise and deform gradually acquiring a mushroom-type shape and later also developing secondary
Kelvin-Helmholtz-type flow instabilities. Although no exact solution is known, the analysis of the results
can be qualitatively performed taking into account the symmetry of the bubble as well as other numerical
results available in the literature.

The computational domain is a square of 1km side length. The bubble is initially placed at xb = (0.5, 0.35)
km and is assigned the following initial temperature fluctuation:

θ(x, 0)− θ0 =


0, if r > rb,

θb
2

[
1 + cos

(
πr

rb

)]
, if r ≤ rb,

(106)

with r = ‖x− xb‖ representing the distance from the center of the bubble, rb = 0.25km being its radius and
θb = 0.5K denoting the maximal initial amplitude of the perturbation. The temperature perturbation (106)
is imposed over a background temperature which is assumed to be θ0 = 303.15K.

The use of the Eulerian scheme, without any limiter, to solve Euler equations may produce high velocity
gradients in the boundary of the warm bubble. To avoid the growth of instabilities in the numerical solution,
we may add a small artificial viscosity. However, as already discussed in [104, 105, 107], this leads to a
smoothness of the boundary of the bubble, that is affected by numerical dissipation. Figure 15 shows the
results obtained at time instants t ∈ {600, 700, 800, 900}s using a constant artificial viscosity with µ = 10−6

and a very coarse primal mesh composed of only 5172 triangles. We run the test problem using piecewise
polynomials of degree p = 4 in order to represent the discrete solution. We observe that the evolution of the
main shape of the bubble agrees with the results available in literature. Moreover, for large times, long-wave
oscillations arise on top of the main structure.

An alternative strategy to get a stable solution with very little numerical dissipation is the use of a
Eulerian-Lagrangian advection scheme. In this case we do not need to add any artificial viscosity, even
for high order DG discretization. Moreover, the use of this methodology yields to a reduction on the
computational cost of the algorithm. For the test case shown in this section, the implementation based on
the Eulerian-Lagrangian advection scheme was overall 4.3 times faster than the implementation based on
the classical Eulerian advection scheme. This improvement is related to the increase of the time step size
allowed by the Eulerian-Lagrangian approach.

The results obtained using the Eulerian-Lagrangian approach for µ = 0 are depicted in Figure 16 for
the intermediate time instants t ∈ {600, 700, 800, 900}s. We observe that the solution at the beginning of
the simulation is almost symmetric, where the small discrepancies which arise are due to the unstructured
and non-symmetric mesh that is used. After 800s mushroom-shaped structures start to grow from the cap
of the main shape. Moreover, for long times small vortex structures develop on the top of the long waves
resulting in secondary Kelvin-Helmholtz instabilities. At this step the flow becomes completely turbulent
and therefore the initial symmetry is lost. The comparison against the results depicted in Figure 15, where
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Figure 13: Cavity with differentially heated cylinders. From left to right: temperature, horizontal and vertical velocity
contours for (µ, α) =

(
4.874 · 10−4, 6.86 · 10−4

)
. Top: Eulerian advection scheme. Center: Eulerian-Lagrangian advection

scheme. Bottom: Eulerian advection scheme with mesh refinement factor 2.
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Figure 14: Cavity with differentially heated cylinders. From left to right: temperature, horizontal and vertical velocity contours
for (µ, α) =

(
4.874 · 10−4, 6.86 · 10−4

)
. From top to bottom: output time 20s, 50s, 80s, 200s.
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Figure 15: Warm bubble test in 2D: temperature contours. µ = 10−6, p = 4, Θ = 0.51. Left: Eulerian advection scheme.
Right: Eulerian-Lagrangian advection scheme. From top to bottom: output time 600s, 700s, 800s, 900s.
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a non-zero artificial viscosity was employed, show that the viscosity required by the Eulerian scheme to
provide a stable solution is already too high to properly capture the small vortexes generated within the
fluid flow. Therefore, the use of a Eulerian-Lagrangian scheme with zero viscosity is a key point in order
to avoid the damping of Kelvin-Helmholtz instabilities. Furthermore, Figure 16, which shows the results
obtained considering spatial polynomial degrees 2 and 4, highlights the importance of employing a high
order scheme in order to capture the small secondary vortex structures.

6.5. Warm bubble in three space dimensions

We now extend the warm bubble test to a three-dimensional domain, following the setup described in
[107, 106]. To this end, we define the computational domain Ω = [0, 1] × [0, 1] × [0, 1.5] km. The warm
bubble is initially located at xb = (0.5, 0.5, 0.35) and the temperature is defined by (106) with r = ‖x− xb‖.
Furthermore, we consider rb = 0.25km, θ0 = 303.15K and zero viscosity, i.e. ν = 0.

The computational mesh counts a total number of 1, 331, 442 primal tetrahedral elements and we use
piecewise polynomials of degree p = 3 for the representation of the discrete solution. This amounts to a
total of 26, 628, 840 degrees of freedom for the pressure. The computer code was parallelized using the MPI
standard and the simulation was run on 960 CPU cores of the SuperMUC-NG supercomputer at the LRZ
in Garching, Germany. Figures 17-18 depict the numerical results obtained at different time instants. The
three-dimensional results mimic the behavior of the warm bubble already observed in the two-dimensional
setting. The differences in temperature induce a velocity field in the flow that will produce an upward
movement of the bubble, which yields the development of the main mushroom-shaped structure for the
temperature. However, we observe that the Kelvin-Helmholtz instabilities arising in the bi-dimensional test
case do not appear in 3D. This may be due to the coarse grid resolution used here. As already noticed in
Figure 16, an increase in the spatial order of accuracy of the scheme could improve the final results.

6.6. Comparison of incompressible and compressible flow solvers for a Gaussian bubble in 2D

In this section we compare the results obtained with both the incompressible and the compressible flow
solver by considering a rising bubble test defined in the computational domain Ω = [−0.5, 1.5]× [−0.5, 1.5]
with periodic boundary conditions on the lateral boundaries. The initial temperature profile is the one of a
Gaussian bubble and reads

θ(x, 0) =


386.48 = θ0, if r > rb,

p0

R
(

1.0− 0.1e−
r2

σ2

) , if r ≤ rb,
(107)

where r = ‖x− xb‖ is the distance from the center of the bubble xb = (0.5, 0.35); rb = 0.25 is the bubble
radius and σ = 2 is a halfwidth; p0 = 105 is the initial pressure; and R = 287 denotes the specific gas
constant. Moreover, we consider the following operating conditions:

cπ = 1004.5, γ = 1.4, µ = 1.68 · 10−5, α = 2.625 · 10−5, β = 2.587 · 10−3, g = (0,−9.81)
T
.

Consequently, the main dimensionless numbers are given by

Re = 8.049 · 102, P r = 0.71, Gr = 7.603 · 106, P e = 5.715 · 102, Ra = 5.399 · 105, β∆θ = 1.72 · 10−3, M ∼ 10−2.

The simulations were run in the Eulerian framework taking p = 3, Θ = 0.51. The primal mesh consists of
3602 control volumes. Figures 19, 20 and 21 depict the numerical results at output times t ∈ {10, 20, 30}. As
expected, we notice that the temperature and velocity contours obtained with the incompressible (INS) and
compressible (CNS) flow solver are really close to each other. This is confirmed by a more detailed analysis
of the numerical solution computed along specific cuts along the x−axis in the computational domain, as
we can observe in the plots included at the right hand side of Figures 19-21. Therefore, for a flow regime
verifying the hypothesis related to the Boussinesq approximation, we can use both sets of equations to solve
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Figure 16: Warm bubble test in 2D: temperature contours. Eulerian-Lagrangian advection scheme, µ = 0. Left: p = 2,
Θ = 0.51. Right: p = 4, Θ = 0.51. From top to bottom: output time 600s, 700s, 800s, 900s.

33



Figure 17: Warm bubble test in 3D: temperature contours in the plane x = 0.5 at times t ∈ {400, 500, 600, 700, 800, 900}s.
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Figure 18: Warm bubble test in 3D: isosurfaces of θ at times t ∈ {400, 500, 600, 700, 800, 900}s.
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natural convection problems obtaining similar results. One of the main advantages of the incompressible
model is the lower computational cost compared to the compressible one, that is approximately seven times
slower. Moreover, the algorithm for the incompressible model is much simpler, since we can neglect density
variations, hence avoiding the non-linearity of the system presented for the compressible case (see Section
4.2). On the other hand, the compressible model is more general. Since the algorithm has been developed
to perform well at all Mach numbers, see [4], we are able to simulate a broader variety of problems including
both small and large temperature fluctuations.

As second part of this test case, we compare the results obtained considering two different time dis-
cretizations. Figure 6.6 reports the numerical solution computed with the incompressible model, when using
two sets of space-time basis functions, namely (p, pγ) = (3, 1) and (p, pγ) = (3, 2). We can observe that the
theta method produces the same results of the second and third order accurate space-time DG schemes.

6.7. Locally heated cavity

As last test case, we introduce a locally heated cavity test which looks similar to the classical one
reported in Section 6.2. Positive and negative heat sources on the bottom and upper wall, respectively, are
imposed as boundary conditions. Due to the physical instability of the chosen boundary conditions, we drive
the generation of the rising/falling structures by setting sinusoidal functions. The computational domain
Ω = [−0.8, 0.8] × [−0.45, 0.45], is initially discretized using 5172 triangular elements. Then, we perform
some refinements in order to show mesh convergence. We use adiabatic no-slip walls for the left and right
boundaries and we prescribe

v = 0, θ(x, y, t) =

 0.1− 0.1| cos(16x)|, if y = −0.45,

−0.1 + 0.1| sin(16x)|, if y = −0.45,

(108)

on the top and bottom boundaries. Finally, we set g = (0,−9.81)
T

, µ = 10−4, α = 10−3, and p = 3. The
resulting time evolution of the temperature for mesh refinements by a factor of 2, 3, 4 and 5 in each space
dimension is reported in Figures 23-24. We can observe the generation of some mushroom-shape structures
that arise from the flow that is only driven by the temperature boundary conditions. Later in time, they
start to mix and to form complex substructures. Let us remark that, for refinement levels 2 and 3, we
obtain essentially the same results up to t = 12s. However, at t = 14s we encounter some small differences
that become evident at the final time, see Figure 23. However, a good agreement is observed for long time
solutions when increasing the mesh resolution, see Figure 24.

7. Conclusions

In this work, we have presented a new high order accurate staggered semi-implicit discontinuous Galerkin
finite element scheme for the solution of natural convection problems. The algorithm is based on the work
proposed in [1, 3, 4]. A unified framework for the discretization of incompressible and compressible Navier-
Stokes equations with gravity terms has been introduced. The computational cost of the global algorithm
has been reduced thanks to the development of a novel Eulerian-Lagrangian approach for the treatment
of the nonlinear convective terms, which leads to an unconditionally stable scheme for the incompressible
Navier-Stokes system. Furthermore, the new methodology is able to handle flows with large temperature
and velocity gradients. The final algorithms developed within this work have been assessed using several
classical benchmarks, showing good agreement with the reference data. A detailed comparison between the
fully Eulerian and the Eulerian-Lagrangian approaches for advection has been performed, highlighting the
main advantages and drawbacks of both methodologies. Moreover, the numerical results obtained with the
incompressible Navier-Stokes equations in combination with the Boussinesq approximation have also been
validated against a numerical solution of the full compressible Navier-Stokes equations. We have shown
computational results for a rising bubble in three space dimensions using more than 26 million spatial
degrees of freedom, which clearly shows that the proposed computational approach can also be used on
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Figure 19: Gaussian bubble test. From top to bottom: temperature, horizontal and vertical velocity, t = 10s. Left: incom-
pressible flow solver. Center: compressible flow solver. Right: profile obtained over a specific line.
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Figure 20: Gaussian bubble test. From top to bottom: temperature, horizontal and vertical velocity, t = 15s. Left: incom-
pressible flow solver. Center: compressible flow solver. Right: profile obtained over a specific line.
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Figure 21: Gaussian bubble test. From top to bottom: temperature, horizontal and vertical velocity, t = 20s. Left: incom-
pressible flow solver. Center: compressible flow solver. Right: profile obtained over a specific line.

39



Figure 22: Gaussian bubble test. From top to bottom: temperature, horizontal and vertical velocity, t = 20s. Left: p = 3,
Θ = 0.51. Center: (p, pγ) = (3, 1). Right: (p, pγ) = (3, 2).
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Figure 23: Locally heated cavity. From top to bottom: temperature profile at times t ∈ {5, 10, 12, 14, 17}. Left: mesh refinement
factor 2. Right: mesh refinement factor 3.
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Figure 24: Locally heated cavity. From top to bottom: temperature profile at times t ∈ {5, 10, 12, 14, 17}. Left: mesh refinement
factor 4. Right: mesh refinement factor 5.
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modern massively parallel distributed memory supercomputers. This test case has been set to demonstrate
the potential capability of the proposed high order staggered semi-implicit DG algorithm for direct numerical
simulations (DNS) on unstructured grids at moderate Reynolds numbers, i.e. the full resolution of all small
scale structures present in the flow without the use of any turbulence models.

Future research will involve the development of a conservative Eulerian-Lagrangian approach for the
treatment of convective and viscous terms as well as its extension to the compressible regime. Another
research direction will be the use of subgrid scale turbulence models for large eddy simulations (LES) of
gravity-driven flows at high Reynolds numbers.
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