
University of Trento, Italy
Department of

Information Engineering and Computer Science

Doctoral Thesis

Automatic Design Space Exploration of
Fault-tolerant Embedded Systems Architectures

Author: Antonio Tierno

Supervisors: Roberto Passerone, Alessandro Cimatti

January, 2023

https://www.unitn.it/
https://www.disi.unitn.it/it
https://www.disi.unitn.it/it
https://www.disi.unitn.it/it

To my family

Acknowledgements

First and foremost I am extremely grateful to my supervisors Roberto Passerone
and Alessandro Cimatti for all their help, invaluable advice, patience, and sup-
port during my PhD study. Their immense knowledge and plentiful experience
have encouraged me in all the time of my academic research and daily life.
Furthermore, I would also like to thank Giuliano Turri for his help to make
significant progress in the thesis work and for technical support. In addition,
I would like to thank all the members in the Department of Information Engi-
neering and Computer Science of the ICT International Doctoral School of the
University of Trento for their kind help and constant support. Finally, I would
like to express my gratitude to my parents, my wife, and my son. Without
their patience, understanding, and encouragement, it would be impossible for
me to complete my study.

Abstract

Embedded Systems may have competing design objectives, such as to maximize
the reliability, increase the functional safety, minimize the product cost, and
minimize the energy consumption. The architectures must be therefore config-
ured to meet varied requirements and multiple design objectives. In particular,
reliability and safety are receiving increasing attention. Consequently, the con-
figuration of fault-tolerant mechanisms is a critical design decision. This work
proposes a method for automatic selection of appropriate fault-tolerant design
patterns, optimizing simultaneously multiple objective functions. Firstly, we
present an exact method that leverages the power of Satisfiability Modulo The-
ory to encode the problem with a symbolic technique. It is based on a novel
assessment of reliability which is part of the evaluation of alternative designs.
Afterwards, we empirically evaluate the performance of a near-optimal approx-
imation variation that allows us to solve the problem even when the instance
size makes it intractable in terms of computing resources. The efficiency and
scalability of this method is validated with a series of experiments of different
sizes and characteristics, and by comparing it with existing methods on a test
problem that is widely used in the reliability optimization literature.

Keywords: Embedded systems, fault-tolerance, reliability analysis, redun-
dancy allocation, design space exploration, automatic synthesis, satisfiability
theory, multiple-objective optimization.

i

Contents

List of Figures xi

List of Tables xix

Listings xxi

List of Acronyms xxiii

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement and Motivation 2
1.3 Research Questions and Contribution 2
1.4 Outline . 3

2 Background Notions 5
2.1 Reliability Assurance of Complex Systems 5

2.1.1 Basic Definitions . 6
2.1.2 Basic Concepts . 6
2.1.3 RAMS Standards . 8
2.1.4 Common Functions for Modeling Reliability 9

Probability Distributions 10
2.1.5 Failure Classification . 12
2.1.6 Failure Modes Analysis 14
2.1.7 Concept of Redundancy 19
2.1.8 Design Patterns for Reliability 20

Hardware Patterns . 20
Software Patterns . 20
Hardware and Software Patterns 21

2.1.9 Dealing with System Faults 21
2.1.10 Dealing with Non-Functional Requirements 22

2.2 Architecture-based reliability evaluation 22

iii

2.2.1 Combinatorial Models 23
Reliability Block Diagrams 23
Fault Tree Analysis . 25
Binary Decision Diagram 26

2.2.2 State-based Models . 31
Markov Models . 32
Petri Net Models . 33

2.2.3 Simulation-based Approaches 35
2.3 Formal Methods, Techniques, and Tools 35

2.3.1 Computational Models 36
Methods . 36
Modeling Languages . 38
Architectural Modeling 38

2.3.2 Formal Methods for Specification 41
2.3.3 Formal Methods for Verification 41

Hints of Boolean Algebra 42
Logic in a Nutshell . 43
Proof Tools . 47
Model Checking . 48

2.3.4 Formal Methods for Implementation 49
2.3.5 How to Choose a Formal Method 49

System classification . 50
System properties . 51
Summary . 51

2.4 System Optimization . 52
2.4.1 Single-objective Optimization 52

Branch and Bound . 52
Mathematical Programming 53
Local Search . 54

2.4.2 Multi-objective Optimization 56
Linear Programming . 57
Meta-heuristic Search Algorithms 58
Answer Set Programming 59
Satisfiability . 59
Satisfiability Modulo Theories 59
Optimization Modulo Theories 60

2.4.3 Approaches to Design Space Exploration 60

iv

3 Related Work 63
3.1 Approaches to the Design and Analysis of Fault-Tolerant Systems 63

3.1.1 Design for Graceful Degradation 64
3.1.2 Design for Robustness 68
3.1.3 Design for Mixed Criticality 69
3.1.4 Design for Reconfiguration 71
3.1.5 Design for Self-x . 72

3.2 Formal Reliability Analysis of Redundant Architectures 73
3.3 High Level Synthesis Optimization 75

3.3.1 Configuration or System Assembly Problems 76
3.3.2 Redundancy Allocation Problems 79
3.3.3 Selection Problems . 81
3.3.4 Placement Problems . 83
3.3.5 Routing Problems . 84
3.3.6 Deployment Optimization Problems 86
3.3.7 Resource allocation Problems 87
3.3.8 Scheduling and Sequencing Problems 90
3.3.9 Workflow Satisfiability Problems 92

3.4 Approaches to Automatic Verification 93
3.4.1 Automated Theorem Proving 94
3.4.2 Symbolic Model Checking 94
3.4.3 Bounded Model Checking 96
3.4.4 SMT Model Checking 97
3.4.5 OMT Model Checking 98
3.4.6 Equivalence Checking . 98
3.4.7 Static Analysis . 99
3.4.8 Semiformal Verification 100
3.4.9 Conclusion . 100

4 Proposed Method 103
4.1 Research Methodology . 103
4.2 Research Problem . 104

4.2.1 Existing Limitations . 104
4.2.2 Problem Formulation . 105

4.3 Overview of the Approach . 106
4.4 Input and Output . 107

4.4.1 System Model . 108

v

4.4.2 Fault Model . 108
4.4.3 Objectives . 109
4.4.4 Redundant Patterns . 111
4.4.5 Design Constraints . 111

4.5 Contributions . 111
4.6 Challenges . 113

5 Reliability Assessment of Redundant Architectures 117
5.1 Assumptions . 117
5.2 Modeling the System Architecture 118
5.3 Modeling the Miter . 124
5.4 Minimal Cut-sets Computation 126
5.5 Reliability Assessment . 128
5.6 Improvements and Refinements 129

5.6.1 Minimal Cut Sets Computation via Predicate Abstraction129
5.6.2 Reducing the Number of Decision Variables 132
5.6.3 Management of Uncertain Cases 132
5.6.4 Caching Mechanism . 134

5.7 Work Extensions . 134

6 Design Space Exploration of Redundant Architectures 137
6.1 DSE Features . 137

6.1.1 Design Space Representation 138
6.1.2 Design Space Generation 138
6.1.3 Exploration Method . 138
6.1.4 Evaluation . 139
6.1.5 Selection . 139
6.1.6 Refinement . 139

6.2 Constraint Solving Approach . 140
6.2.1 Formalization of Constraints 140

6.3 Problem Encoding . 142
6.3.1 Modeling the System Architecture 144
6.3.2 Construction of a Library of Redundant Patterns 145
6.3.3 Fault Model . 150
6.3.4 Modeling the Redundant Architecture 151
6.3.5 Generation of All Redundant Configurations. 152
6.3.6 Modeling the Miter . 158

vi

6.3.7 Reliability assessment 160
Explicit Representation 161
Symbolic Representation 162
Semi-symbolic Representation 169

6.3.8 Assessment of Other Non-functional Parameters 169
6.3.9 Optimization . 170
6.3.10 Improvements and Refinements 170

Minimal Cut-Sets Computation of Symbolic representa-
tions . 170

Choosing Optimal Variable ordering 174
Using Binary Encoding to Encode Configuration Variables182

7 Experimental Evaluation of Exact Method 187
7.1 Implementation Framework . 187
7.2 Implementation Details . 188
7.3 Running Example . 191

Explicit Method . 192
Symbolic Method . 192
Semi-symbolic Method 193

7.3.1 Varying the Number of Objective Functions 194
7.3.2 Varying the Number of Redundant Patterns 202
7.3.3 Varying the Number of System Components 202
7.3.4 Varying the BDD Ordering Strategy 202

7.4 Benchmarks . 203
7.4.1 Experimental Setup . 204
7.4.2 Evaluation Criteria . 205
7.4.3 Experiments on Linear Architectures 205
7.4.4 Experiments on Rectangular Architectures 206
7.4.5 Experiments on Complex Architectures 207

7.5 Results . 208
7.5.1 Assessment Performance 209

Task 1: Abstraction . 209
Task 2: BDD-based Quantifier Elimination 211
Task 3: BDD Traversing 213

7.5.2 Optimization Performance 215
7.6 Test problem . 218
7.7 Applicability and Limitations 219

vii

8 Near-Optimal Approximations 221
8.1 Simplifying the Exact Method 221
8.2 Graph Partitioning . 222

8.2.1 Kernighan–Lin Algorithm 222
8.2.2 Multi-level Partitioning 223

8.3 Partitioning the System Architecture 225
8.4 Combining Solutions from Sub-architectures 225
8.5 Pruning and Ranking for Large Problems 225
8.6 Running Example . 229

9 Experimental Evaluation of Approximate Method 235
9.1 Implementation details . 235
9.2 Benchmarks . 236

9.2.1 Experimental setup . 236
9.2.2 Evaluation criteria . 236
9.2.3 Experiments on complex architectures 238

Example system with 8 components 238
Example system with 10 components 239
Example system with 14 components 242
Example system with 24 components 243
Example system with 69 components 246
Strategy to determine the pruning threshold 247

9.3 Results . 248
9.4 Test problem . 249
9.5 Applicability and Limitations 259

10 Conclusions and Future Work 261
10.1 Summary . 261
10.2 Models Assumptions, Limitations, and Applicability 262
10.3 Exact or Approximate Method? 263
10.4 Application to real systems . 264
10.5 Remarks . 266
10.6 Future work . 267

References 268

Appendix A Software Dependency Graph 305
A.1 Software structure . 305

viii

Appendix B Installation of Required Tools 309
B.1 Software needed . 309
B.2 Installation Procedure . 310

B.2.1 Installing Python . 310
B.2.2 Installing Python IDE [OPT] 311
B.2.3 Installing pySMT . 311
B.2.4 Installing Solvers . 311
B.2.5 Installing other useful packages 314

ix

List of Figures

1.1 Redundant system-level synthesis flow 3

2.1 Safety engineering lifecycle from Trapp et Al. [6]. 8
2.2 Safety regulations, norms, and standards. 9
2.3 FTA symbols . 15
2.4 Example of fault tree diagram 16
2.5 Examples of conversion from FTD to RBD 17
2.6 RBD equivalent to fault tree of Figure 2.4 18
2.7 Reliability block diagrams for series (a), parallel (b), and k-out-

of-n (c) systems. 24
2.8 Complex system composed by seven components 25
2.9 Reliability block diagram for system in Figure 2.8 25
2.10 Fault trees for series (a), parallel (b), and k-out-of-n (c) systems. 26
2.11 Fault tree for system in Figure 2.8 27
2.12 Binary tree of the example formula F = a ∧ b + ¬a ∧ c 28
2.13 Binary tree reduction rules: (a) Elimination, (b) Isomorphism. . 28
2.14 BDD of the example formula F = a ∧ b + ¬a ∧ c 29
2.15 Example of a series system in the form of a Binary Decision

Diagram (BDD) . 30
2.16 Example of a parallel system in the form of a BDD 30
2.17 Example of a k-o-o-n system in the form of a BDD, with k=3

and n=5. 31
2.18 General Markov model of a TMR system 33
2.19 Petri Net model of a TMR system 34
2.20 Resolution methods of Multi-Objective Optimization Problem

(MOOP)s . 57

3.1 System assembly problem as part of the system development
life cycle . 77

xi

3.2 Redundancy allocation problem as part of the system develop-
ment lifecycle . 79

3.3 Selection problem as part of the system development lifecycle . . 82
3.4 Placing and routing problems as part of the system development

lifecycle . 85
3.5 Mapping and scheduling problem 88
3.6 Workflow Satisfiability problem 92
3.7 Steps performed by NuSMV2 [270]. 95

4.1 Redundant system-level synthesis flow 107
4.2 Inputs and outputs of Design Space Exploration (DSE) approach

proposed . 108

5.1 Example of series (a), parallel (b), and complex (c) system ar-
chitectures. 119

5.2 Example module with nominal and faulty behavior 120
5.3 Example of redundant pattern modeled with nominal and faulty

behavior . 121
5.4 Output of the test example for TMR 123
5.5 Linking constraints determine the connections between two com-

ponents . 124
5.6 Miter composition . 125
5.7 A stage aggregates nominal and faulty behaviors 126
5.8 Stage-based Miter composition 127
5.9 OBDD of the formula . 129
5.10 Abstract stage (aka CSA) . 130
5.11 Abstract miter . 131
5.12 Abstract miter is composed by abstract stages 131
5.13 Reduced CSA for a TMR example pattern 132
5.14 Caching improves the performance by storing patterns behavior

formulae and accessing them on later requests. 135

6.1 The proposed method consists of three main phases: modeling
of redundant system, assessment of non-functional parameters,
and optimization. 143

6.2 Multi-objective DSE flow . 145
6.3 Comparator design pattern . 146
6.4 Duplex design pattern . 147

xii

6.5 TMR design pattern (TMR_V111) 147
6.6 Different Triple Modular Redundancy (TMR) configurations . . 148
6.7 M-o-o-N design pattern . 149
6.8 Sparing design pattern . 149
6.9 An example of extended component 150
6.10 An example of extended component 151
6.11 Extended TMR . 151
6.12 Example of basic (non-redundant) architecture composed of three

components connected in series and a library of seven redundant
design patterns. 154

6.13 Fault atoms for patterns P1 (a), P2 (b), and P3 (c). 155
6.14 Configuration and fault variables 155
6.15 Set of redundant architectures for example system 157
6.16 Redundant alternatives for system in Figure 6.12 157
6.17 Miter composition for architecture of Figure 6.16a 158
6.18 Stage-based Miter for architecture of Figure 6.16a 158
6.19 Abstract Miter composition for architecture of Figure 6.16a . . . 159
6.20 Redundant architecture alternative 1 of running example 162
6.21 Fault variables for redundant architecture alternative 1 165
6.22 Excerpt of an OBDD encoding the Cut-Set (CS)s of the running

example . 166
6.23 Examples of BDD traversing: cfg1 = ⊤ and cfg2 = ⊤ (a),

cfg1 = ⊤ and cfg2 = ⊥ (b), cfg1 = ⊥ and cfg2 = ⊥ (c). 168
6.24 Example of basic (non-redundant) system and a library includ-

ing instances of the same pattern type. 171
6.25 Combinatorial abstract Miter composition for architecture of

Figure 6.24 . 173
6.26 Example system of two components, each with one two redun-

dant pattern. 175
6.27 Partial BDD for example in Figure 6.26, using ordering with all

configuration variables on top. 176
6.28 BDD for example in Figure 6.26, using arbitrary ordering of

variables. 177
6.29 BDD for example in Figure 6.26, using an alternative arbitrary

ordering of variables. 178
6.30 BDD for example in Figure 6.26, using an ordering that follows

architecture’s topology. 179

xiii

6.31 Variable orderings used for the BDD construction of example in
Figure 6.26 . 180

6.32 BDD of example in Figure 6.26 resulting from different order-
ings: all variables on top (a), arbitrary assignment (b), alterna-
tive arbitrary assignment(c), driven by architecture’s topology
(d). 185

6.33 BDD of example in Figure 6.26 using binary encoding of configu-
ration variables and different orderings: all variables on top (a),
arbitrary assignment (b), alternative arbitrary assignment(c),
driven by architecture’s topology (d). 186

7.1 Conversion from PySMT formula to Canonical Complementary
Edge (CCE)-BDD repersentation using CUDD. 190

7.2 Basic system of first example. 192
7.3 Pareto solutions for the example system in Figure 7.2 194
7.4 Alternative solutions for example system in Figure 7.2: (a) solu-

tion n.6, (b) redundant architecture scheme with minimum cost,
and (c) redundant architecture scheme with maximum reliability.199

7.5 Pareto surface for example system in Figure 7.2 with three ob-
jective functions. 200

7.6 Time performance for optimization when varying the number of
objectives for example system in Figure 7.2 200

7.7 Memory usage for optimization when varying the number of
objectives for example system in Figure 7.2 200

7.8 Parallel coordinate plot for the running example with six objec-
tive functions . 201

7.9 System architectures used fer experimental evaluation: (a) se-
ries (aka linear) (b) repeating pairs of parallel components (aka
rectangular), (c) complex random architectures. 204

7.10 Time performance for linear architectures, varying the size of
the system and library of patterns. 206

7.11 Time performance for rectangular architectures, varying the size
of the system and library of patterns. 206

7.12 Pareto solutions for a basic system composed of 8 components
and 10 edges. 207

7.13 Pareto solutions for a basic system composed of 10 components
and 10 edges. 207

xiv

7.14 Pareto solutions for a basic system composed of 12 components
and 16 edges. 208

7.15 Pareto solutions for a basic system composed of 14 components
and 20 edges. 208

7.16 Time and memory performance of exact method varying the
number of basic components. 209

7.17 Time performance for extraction of non-functional parameters
using a library of different redundant patterns for serial archi-
tecture of 100 components. 211

7.18 Time performance for extraction of non-functional parameters
using a library of different redundant patterns for rectangular
architecture of 100 components, organized in 50 levels. 212

7.19 Time performance of BDD-based quantifier elimination using
different redundant patterns, for linear and rectangular archi-
tectures. 213

7.20 Time performance of BDD-based quantifier elimination using
different instances of the same redundant patterns, for linear
and rectangular architectures. 213

7.21 Time performance of different types of dynamic reordering strate-
gies for linear and rectangular architectures. 214

7.22 Time performance of reliability function extraction for linear
and rectangular architectures, using different types of patterns. . 214

7.23 Time performance for BDD-based quantifier elimination and re-
liability function extraction for complex architectures. 215

7.24 Time performance for reliability function extraction of complex
architectures (d is the maximum incoming degree of the com-
ponents, i.e., the maximum number of incoming connections). . 216

7.25 Number of BDD nodes, time performance of BDD-based quan-
tifier elimination, and reliability function extraction for complex
architectures varying the number of components. 217

7.26 Performance of optimization when varying the number of objec-
tives (system of 6 components with 3 patterns each). 217

7.27 Topology used in the Test Problem, with 223 nodes and 252 edges.218

8.1 (a) A toy example with 6 vertices and seven edges, (b) cyclic
2-way partitioning (c) acyclic partitioning of the same directed
graph. 224

xv

8.2 Approximate method for DSE of redundant architectures, over-
all process flow. 226

8.3 The pruning strategy allows us to adapt the search area by
varying a threshold for solution acceptance: all the solutions
above the threshold are discarded. This is a flexible solution
that can be tuned on the basis of problem instance size and
resources available. 227

8.4 Three different partitions for the running example, using KL
algorithm. 229

8.5 Applying the pruning strategy to the two partitions of our run-
ning example lead to the selection of four solutions for the first
partition and one solution for the second one. 231

8.6 Comparison of approximate solutions for the three partitionings
in Figure 8.4 without pruning. 233

8.7 Comparison of approximate solutions for the three partitionings
in Figure 8.4 with pruning. 233

9.1 The Kernighan–Lin (KL) algorithm included in the NetworkX
package. 236

9.2 Source code for the KL algorithm employed. 237
9.3 (a) Basic system composed of 8 components and 10 edges, (b)

Pareto solutions of exact and approximate methods. 238
9.4 Comparison of performance of exact and approximate methods

for a complex system of eight components. 239
9.5 (a) Partitioning of a basic system composed of 10 components

and 13 edges, (b) Pareto solutions of exact and approximate
methods. 241

9.6 Comparison of performance of exact and approximate methods
for a complex system of ten components. 241

9.7 (a) Partitioning of a basic system composed of 14 components
and 20 edges, (b) Pareto solutions of exact and approximate
methods. 242

9.8 (a) Comparison of performance of exact and approximate meth-
ods for a complex system of fourteen components, (b) Approx-
imate solutions move away from exact solutions as the pruning
threshold is tighten up (th1 < th2 < th3). 243

xvi

9.9 Partitioning of a system composed of 24 components and 33
edges using KL. 244

9.10 Partitioning of a system composed of 24 components and 33
edges using Metis. 244

9.11 Comparison of KL (2 parts) and Metis (3 parts) algorithms for
partitioning the example system of 24 components: the two
algorithms led to the very same solutions. 245

9.12 For large systems, partitioning in more sub-architectures im-
proves time performance. 245

9.13 Partitioning of a system composed of 69 components and 120
edges using Metis (Number of parts = 3, Edge-cut = 17). 246

9.14 Partitioning of a system composed of 69 components and 120
edges using Metis (Number of parts = 5, Edge-cut = 41). 246

9.15 Pruning of sub-solutions of Part 1 (a) and Part 2 (b) for two
different thresholds. 247

9.16 Comparison of time performance of solution methods by varying
the number of nodes (a) and the number of edges (b). Note:
there is a bump in the curve of approximate solutions because
for systems composed by 14 components onwards we employed
graph partitioning. 249

9.17 Structure of the Series-Parallel (S-P) system of the test problem 251
9.18 Each stage of the redundant architecture is composed by one to

four identical modules in parallel 252
9.19 With our formalism, we used CMP, TMR, and M-Out-Of-N

(M-oo-N) patterns to face the test problem. 252
9.20 Component mixing is not allowed in the test problem, i.e., we

have to use identical modules for each stage of the architecture. 252
9.21 Partitioning for the test problem system 252
9.22 Solutions for the test problem system. In red, the one with

highest reliability. 253
9.23 Comparison of solutions with related works 254
9.24 Solutions for the test problem system. In red, the solution with

highest reliability allowing component mixing, in orange the so-
lution obtained without component mixing, illustrated in Fig-
ure 9.22. 255

xvii

9.25 Comparison of solutions with related works. In red, the solu-
tion found by our method with component mixing and applying
partitioning with a balanced pruning strategy. 255

9.26 Solutions with higher reliability found by our method. 256
9.27 Comparison of solutions with related works. In purple, the best

solution found by our method, by applying partitioning with
a pruning strategy designed to favor sub-solutions with higher
reliability and lower cost, specific for each sub-architecture. . . . 257

9.28 Comparison of our solution with related works: (a) without
component mixing, (b) with component mixing 258

9.29 Example of two architectures producing the same partitionings,
without (a) and with (b) cyclic inter-dependencies among com-
ponents, resulting in good (c) and bad (d) approximate solutions.259

9.30 The sub-architecture in red includes components not connected
in the original architecture. 260

10.1 Power distribution network of an aircraft. 265

A.1 Dependency graph of the software tool implementing the pro-
posed method . 307

B.1 Installing Python . 310
B.2 Installing Pycharm . 311
B.3 Installing PySMT . 312
B.4 Adding PySMT to Path . 312
B.5 Installing a virtual environment via PyCharm IDE. 313
B.6 Installed solver for pySMT . 314
B.7 Installation of CMake . 315

xviii

List of Tables

2.1 Examples of design methods . 37
2.2 Common types of formal models, usually referred to as model

of computations. 39
2.3 Examples of architectural languages 40
2.4 Truth table . 42

3.1 Configuration (or system assembly) problems 78
3.2 Redundancy allocation problems 81
3.3 Selection problems . 83
3.4 Placement and routing problems 86
3.5 Resource allocation problems 90
3.6 Scheduling and Sequencing problems 91
3.7 Workflow satisfiability problems 93

5.1 Time and memory performance for the complex system of the
running example illustrated in Figure 7.2 136

6.1 Relations . 140
6.2 Library of patterns for example system in Figure 6.12 155
6.3 Binary encoding of (Ci, Pj) allocations 156
6.4 Library of patterns for example system in Figure 6.12 171

7.1 Library of patterns for example system in Figure 7.2, 2 objective
functions. 193

7.2 Exact solutions for example system in Figure 7.2, 2 objective
functions. 193

7.3 Library of patterns for example system in Figure 7.2, consider-
ing 3 objective functions. 195

7.4 Solutions for example system in Figure 7.2, considering 3 objec-
tive functions. 195

xix

7.5 Library of patterns for example system in Figure 7.2, consider-
ing 4 objective functions. 196

7.6 Solutions for example system in Figure 7.2, considering 4 objec-
tive functions. 196

7.7 Library of patterns for example system in Figure 7.2, consider-
ing 5 objective functions. 197

7.8 Solutions for example system in Figure 7.2, considering 5 objec-
tive functions. 197

7.9 Library of patterns for example system in Figure 7.2, consider-
ing 6 objective functions. 198

7.10 Solutions for example system in Figure 7.2, considering 6 objec-
tive functions. 198

7.11 Time and memory performance for the complex system of six
basic components illustrated in Figure 7.2 202

7.12 Performance for the complex system examples presented above. 208
7.13 Performance of quantifier elimination of the Concretizer-Stage-

Abstractor (CSA) of some redundant patterns. 210
7.14 Number of nodes of the Ordered Binary Decision Diagram (OBDD)

by varying the ordering strategy. Ordering 1: all configuration
variables on top of the OBDD, Ordering 3: driven by architec-
ture. 212

7.15 Optimization: symbolic vs hybrid approach. 216
7.16 Results of the method proposed by Beccuti et al. [308] 218

8.1 Approximate solutions for system in Figure 8.4a (considering
two objective functions). 230

8.2 Solutions of the two partitions of system in Figure 8.4a 230
8.3 Solutions of the two partitions of system in Figure 8.4a after

pruning . 231
8.4 Approximate solutions for example system in Figure 8.4a 231
8.5 Comparison of solutions for system in Figure 8.4a (considering

two objective functions) . 232

9.1 Comparison of solutions for system in Figure 8.4a (considering
two objective functions). 240

9.2 Input data for the test problem 250
9.3 Sub-solutions for the test problem. 253

xx

Listings

5.1 TMR pattern definition . 122
5.2 Voter used in the extended TMR 123
5.3 Test example for TMR . 123
6.1 AllSMT computation . 164
6.2 Extraction of reliability formula (excerpt) 167

xxi

List of Acronyms

N LRA Non-Linear Arithmetic over the reals

3-LSM 3-Level Safety Monitoring

AADL Architecture Analysis and Design Language

ACO Ant Colony Optimization

ADL Architecture Description Language

AHGA Adaptive Hybrid Genetic Algorithm

API Application Programming Interface

ASP Answer set programming

AST Abstract Syntax Tree

AUTOSAR AUTomotive Open System ARchitecture

AV Acceptance Voting

BDD Binary Decision Diagram

BDT Binary Decision Tree

BFS Breadth First Search

BMC Bounded Model Checking

BMS Building Management Systems

CBS Constant Bandwidth Server

CCE Canonical Complementary Edge

CDF Cumulative Distribution Function

CNF Conjunctive Normal Form

xxiii

COP Constraint Optimization Problem

COTS Commercial Off-The-Shelf

CP Constraint Programming

CPS Cyber-Physical Systems

CS Cut-Set

CSA Concretizer-Stage-Abstractor

CSP Communicating Sequential Processes

CSP Constraint Satisfaction Problem

CSR Communicating Shared Resources

CTL Computation tree logic

CTMC Continuous Time Markov Chains

DAG Directed Acyclic Graph

DARTS Design Approach for Real Time Systems

DFG Data Flow Graph

DFS Depth-First Search

DM Decision Maker

DMR Deadline missed ratio

DNF Disjunctive Normal Form

DOP Delta-Oriented Programming

DSE Design Space Exploration

DSL Domain Specific Language

DTMC Discrete Time Markov Chains

EA Evolutionary Algorithms

EDF Earliest Deadline First

xxiv

EFSM Extended Finite State Machine

EM Extended Module

ES Embedded Systems

EUF Equality and uninterpreted functions

FA Finite Automata

FM Formal Methods

FMEA Failure Mode and Effects Analysis

FMECA Failure Modes, Effects, and Criticality Analysis

FOGD Fail-Operational Graceful Degradation

FOL First-order predicate logic

FR Functional Requirements

FSM Finite State Machines

FT Fault-Tolerant

FTA Fault Tree Analysis

FTD Fault Tree Diagram

FV Formal Verification

GA Genetic Algorithms

GP Genetic Programming

GPP Graph Partitioning Problem

gppp Grammar Guided GP

GRASP Greedy Randomized Adaptive Search Procedure

HmD Homogeneous Duplex Pattern

HOOD Hierarchical Object Oriented Design

HtD Heterogeneous Duplex Pattern

xxv

ILP Integer Linear Programming

ILS Iterated Local Search

IMA Integrated Modular Avionics

KL Kernighan–Lin

KPN Kahn Process network

LP Linear Programming

LS Local Search

LTL Linear Temporal Logic

LTS Labeled Transition System

M-oo-N M-Out-Of-N

MA Memetic Algorithm

MA Monitor-Actuator

MASCOT Modular Approach to Software Construction, Operation and Test

MBSA Model-Based Safety Analysis

MC Markov Chains

MCDM Multiple Criteria Decision Making

MCS Minimal Cut-Sets

MGP Multi-level Graph Partitioning

MILP Mixed Integer Linear Programming

ML Machine Learning

MO PB-ILP Multi-Objective Pseudo-Boolean ILP

MoC Model of Computation

MOEA Multi-Objective Evolutionary Algorithms

MOOP Multi-Objective Optimization Problem

xxvi

MPSoC Multi-Processor Systems on a Chip

MTBF Mean Time Between Failures

MTTF Mean Time To Failure

MTTR Mean Time To Repair

NFR Non-Functional Requirements

NN Neural Network

NSCP N-Self Checking Programming

NVP N-Version Programming

OBDD Ordered Binary Decision Diagram

OMT Optimization Modulo Theories

OOP Object-Oriented Programming

ORM Object-Role Modeling

OVM Orthogonal Variability Models

PB-SAT Pseudo-Boolean Satisfiability

pdf Probability Density Function

PI Prime Implicants

PLA Product-Line Architectures

PLP Placement Problem

PN Petri Nets

POS Product of Sums

PSC Protected Single Channel

PSO Particle Swarm Optimization

PTA Probabilistic Timed Automata

RAMS Reliability, Availability, Maintainability, and Safety

xxvii

RAP Redundancy Allocation Problem

RB Recovery Block

RBBV Recovery Block with Backup Voting

RBD Reliability Block Diagram

RL Reinforcement Learning

ROBDD Reduced Ordered Binary Decision Diagram

ROOM Real Time Object Oriented Modelling

RUP Rational Unified Process

S-P Series-Parallel

S2ML System Structure Modeling Language

SA Simulated Annealing

SAP System Assembly Problem

SASDM Structured Analysis and Structured Design method

SAT SATisfiability

SC Sanity Check

SDF Synchronous dataflow

SE Safety Executive

SGTS Stochastic Guarded Transition Systems

SLP SeLection Problem

SMC Symbolic Model Checking

SMT Satisfiability Modulo Theories

SONET Synchronous Optical NETwork

SOP Sum of Products

SPL Software Product Line

xxviii

SPN Stochastic Petri Nets

STAMP System-Theoretic Accident Model and Process

STPA System-Theoretic Process Analysis

TLE Top Level Event

TMR Triple Modular Redundancy

TS Tabu Search

USDP Unified Software Development Process

VLSI Very Large Scale Integration

VML Variability Modeling Language

WCET Worst-Case Execution Time

WD Watchdog

WSP Workflow Satisfiability Problem

ZBDD Zero-suppressed Binary Decision Diagram

xxix

Chapter 1

Introduction

1.1 Context

Complex systems, like automobiles, airplanes or industrial automation sys-
tems, are software-intensive Embedded Systems (ES) in which software based
sub-systems interact with the physical world using sensors and actuators to ful-
fill their intended service. Such systems that integrate computation units and
physical processes are also called Cyber-Physical Systems (CPS) [1]. Day by
day, the amount of software in such systems is growing and increasingly inter-
connected, leading to increasing complexity. Many ES operate in safety-critical
environments, like in the automotive domain, avionics domain, or industrial
automation domain. Those systems have critical properties in a sense that
unhandled malfunctions of system parts may lead to increasing cost or cause
damages and unacceptable harms to the system itself, to the physical system
environment, and even to the safety of human beings. It is very important
therefore that those malfunctions are detected and handled in a safe manner
to prevent loss of operation and avoid any form of harm.

1

2 Chapter 1. Introduction

1.2 Problem Statement and Motivation

For the above reasons, in today’s ES design, reliability and safety are becoming
the most important concerns. As a consequence, the configuration of Fault-
Tolerant (FT) mechanisms is a critical design decision. Indeed, safety critical
systems need to contain mechanisms to detect malfunctions of system parts
and to react on these malfunctions properly such that no harm can occur with
impact to material or life.

In addition, ES may have competing design objectives. Architectures of
ES must therefore be configured to meet varied requirements and, in general,
multiple design objectives.

Furthermore, a trend is towards mixed-criticality systems [2], meaning that
components with different levels of criticality are executed by the same hard-
ware device. It has to be guaranteed that errors of low critical components can
never have negative impact on highly critical components. An approach that
is usually applied consists in integrating the system with additional redundant
components that take over in case of failure of the primary ones. Starting from
a system with a specific functionality, its extension with redundant techniques
requires several additional functionalities such as detecting internal malfunc-
tioning (Fault Detection), identify its cause (Fault Identification), and apply
a reconfiguration of the system to solve the problem (Recovery).

The motivation of this work is to provide a fully automated approach to
the reliability assessment of complex redundant system architectures and to
formally support the automatic Design Space Exploration (DSE) wrt. multiple
(conflicting) design objectives, with respect to the given specifications, while
ensuring the fulfillment of fail-operational requirements. With a model-driven
approach [3], complexities of ES are managed at the highest level of abstraction
(system level) by using models as key artefacts throughout the development
process. We reason at logical level, applying the proposed method before the
implementation phase and deployment phase, thus independently from the
specific target platform, to be as more general as possible.

1.3 Research Questions and Contribution

In this work, we tackle the following research questions and present contribu-
tions to address them.

1.4. Outline 3

Dataflow model
(NOT redundant)

Reliability
introduction

Redundant
Dataflow model Cost

"Optimum"
scheme

Reliability oriented
techniques

Figure 1.1: Redundant system-level synthesis flow

• RQ1: How to perform the DSE to find an “optimum” redundant schema?

• RQ2: How to formally analyze the ability to keep functional features
available in scenarios of failing system elements?

• RQ3: How to introduce redundancy, where needed, at lesser cost? And,
more in general, how to perform the assessment of non-functional features
at early stages of design?

• RQ4: How to set up a fully automated process?

• RQ5: How to guarantee that the logic system and the physical system
are consistent?

Our aim is to propose a methodology for mapping a data-flow based be-
havioral model onto a target platform whose architecture is formally captured
in a high level model, with the goal of optimizing a few system performance
criteria. The above contribution can be split in two parts. The first part is
the following: given a generic high-level system model, find the best FT re-
source allocation scheme. Next step is to map the redundant scheme come out
from the DSE onto a physical architecture, i.e., a platform dependent system,
ensuring consistency between the high-level system model and the actual im-
plementation on the target platform. In this work, we present our contribution
to provide a solution to the first part (see Figure 1.1).

1.4 Outline

The residual part of this work is structured as follows. Chapter 2 gives an
overview of background notions building the fundamentals of this work. Chap-
ter 3 proposes a critical overview of the related works. The proposed methodol-
ogy is presented in Chapter 4, Chapter 5, Chapter 6, and Chapter 8. Chapter

4 Chapter 1. Introduction

7 and Chapter 9 contain experimental evaluation. Chapter 10 summarises
conclusions, and suggests future work. Additional material is contained in
appendix chapters.

Chapter 2

Background Notions

In this section we present background notions building the fundamentals of
this work. The research problem addressed in this thesis crosses several areas
where each contains a large body of research. The chapter is organized into
distinct sections that provide a brief introduction and an overview of each one
of them.

2.1 Reliability Assurance of Complex Systems

The growing complexity of ES, as well as the increasing cost incurred by loss of
operation or even worst the damages as a consequence of failures, have brought
the aspects of Reliability, Availability, Maintainability, and Safety (RAMS) to
the forefront. The term reliability appears often for reliability, availability,
maintainability, and safety. The expectation is that complex systems are not
only free from failures when starting operation, but also perform the required
function without failures for a stated time interval, and possibly have a fail-
safe behavior, i.e., preserve safety, in case of critical failures. RAMS, and
more in general all performance parameters have to be built in during design
and development phases, and retained during production and operation of the
system.

5

6 Chapter 2. Background Notions

2.1.1 Basic Definitions

A system is an entity that interacts with other entities, i.e., other systems,
including hardware, software, humans, and the physical world with its natural
phenomena [4]. These other systems constitute the environment. The system
boundary is the frontier between the system and its environment. A system
function is what the system is intended for. It is described by the specification
in terms of functionality and performance. The behavior of a system is what
the system does to implement its function and can described by a sequence of
states. The service delivered by a system is its behavior as it is perceived by its
users that receive service. A system failure occurs when the delivered service
deviates from fulfilling the system’s function. An error is a system state that
leads to failure: an error affecting the service is an indication that a failure has
occurred. A fault is the cause of the error. Faults can be introduced in every
phase of the project and they are propagated between phases.

2.1.2 Basic Concepts

This section introduces important concepts used in RAMS engineering and
shows their relationships.

• Reliability: Experience shows that only a probability of whether a given
system will operate without failures during a stated period can be given.
This probability is a measure of the system’s reliability [5]. Reliability is
a characteristic of the system, expressed by the probability that it will
perform the required function for a stated time interval. Quantitatively,
it specifies the probability that no interruption of the service will occur
during that time interval. This does not mean that redundant parts
may not fail, as such parts can fail and be repaired on-line (i.e., with-
out operational interruption at system level). The concept of reliability
thus applies to both non-repairable and repairable items. An item is a
functional unit of arbitrary complexity (e.g., component, equipment, sub-
system, system) that can be considered as an entity for investigations. It
may consist of hardware, software, or both. The required function speci-
fies item’s task and it is the starting point for any reliability analysis, as
it defines failures. The failure rate plays an important role in reliability
analysis. When a time basis is determined, failures can be expressed in

2.1. Reliability Assurance of Complex Systems 7

several ways. The cumulative failure function (aka the mean value func-
tion) denotes the average cumulative failures associated with each point
of time. The failure intensity function represents the rate of change of
cumulative failure function. The failure rate function (aka the rate of
occurrences of failures) is defined as the probability that a failure per
unit time occurs in the interval [t, t+∆t], given that a failure has not oc-
curred before t. The Mean Time To Failure (MTTF) function represents
the expected time that the next failure will be observed. It is also known
as Mean Time Between Failures (MTBF). Another quantity related to
time is Mean Time To Repair (MTTR), which represents the expected
time until a system will be repaired after a failure is observed.

• Availability: Availability is a broad term, expressing the ratio of deliv-
ered to expected service. It is the probability that a system is available.
When the MTTF and MTTR for a system are measured, its availability
can be obtained as: Availability = MTTF / (MTTF + MTTR)

• Maintainability: Maintenance defines the set of actions performed on
the item to retain it in or to restore it to a specified state. Maintenance
deals thus with preventive maintenance, carried out at predetermined
intervals e.g., to reduce wear-out failures, and corrective maintenance,
carried out at failure and intended to bring the item to a state in which
it can perform the required function. Due to the increasing maintenance
cost, maintainability aspects have grown in importance.

• Safety: Safety is the ability of the item to cause neither injury to per-
sons, nor unacceptable consequences to material or environment during
its use. While reliability assurance aims to minimize the number of fail-
ures, safety assurance examines measures that can bring the item in a
safe state at failure (fail-safe procedure). Moreover, for technical safety,
effects of external events (human errors, natural catastrophes, attacks,
etc.) are important and must be considered carefully. Closely related
to the concept of safety are those of risk, risk management, and risk
acceptance. Experience shows that risk problems are generally interdis-
ciplinary. The basic steps in proving the safety of a system are shown in
Figure 2.1 [6]. The most relevant approaches are presented in the next
paragraph.

8 Chapter 2. Background Notions

Figure 2.1: Safety engineering lifecycle from Trapp et Al. [6].

2.1.3 RAMS Standards

Customer requirements for reliability can be quantitative or qualitative. Be-
sides quantitative requirements (e.g., MTBF, MTTR, Availability), customers
require a quality management system and often also the realization of an as-
surance program. Quantitative requirements are given in system specifications
and contracts. They set targets for reliability, maintainability, availability, and
safety, as necessary, along with associated specifications for required function
and operating conditions. Qualitative requirements are covered by national and
international standards, and generally deal with quality assurance and man-
agement systems. Depending upon the application field (aerospace, nuclear,
defense, industrial, automotive), these requirements can be more or less strin-
gent (see Figure 2.2). As stated by Birolini [7], objectives of such standards
are, in particular:

• Harmonization of quality assurance and management systems, as well as
of terms and definitions.

• Enhancement of customer satisfaction.

• Standardization of configuration, environmental and operating condi-
tions, logistic support, and test procedures, as well as of selection and
qualification criteria for components, materials, and production pro-
cesses.

2.1. Reliability Assurance of Complex Systems 9

Generic

IEC 61508

MIL STD 882D

Military

Def Stan 00-56

CENELEC EN
50126

Railway

CENELEC EN
50128CENELEC EN

50129CENELEC EN
50159

IEC 61800

Electric-drive

EN/IEC 62061

Safety of machines

ISO 26262

Automotive

IEC 60601

Medicine

IEC 80001

IEC 61513

Nuclear power

IEC 61511

Process-industry

CAP 670

Aviation

EATMP

ESARRs

RTCA DO-178B
EUROCAE ED-12B

(Software)

RTCA DO-254
(Hardware)

Figure 2.2: Safety regulations, norms, and standards.

2.1.4 Common Functions for Modeling Reliability

The most frequently used function in reliability engineering is the reliability
function or probability of success, denoted by R(t). It represents the probability
that a brand new component will survive longer than a specified time. This
function gives the probability of an item operating for a certain amount of
time without failure. This means that reliability is a function of time. In other
words, one must specify a time value with the reliability value. For example, a
reliability of 97,5% at 50 hours means that if 1000 new components are put into
the field, then 975 of those components are expected to last at least 50 hours
of operation. This degree of flexibility makes the reliability function a better
reliability specification than the MTTF mentioned above. The Probability
Density Function (pdf), denoted by f(t) is a continuous representation of a
histogram that shows how the number of component failures are distributed in
time. The Cumulative Distribution Function (CDF) or unreliability function
or probability of failure, denoted by Q(t), represents the probability that a
brand new component will fail at or before a specified time. For example, an
unreliability of 2,5% at 50 hours means that if 1000 new components are put
into the field, then 25 of those components are expected to fail by 50 hours
of operation. The failure rate function or instantaneous failure rate or hazard
rate, denoted by λ(t), represents the probability of failure per unit time t,
given that the component has already survived to time t. If any one of the
four functions presented above is known, the remaining three can be obtained.
Reliability and unreliability functions yield probabilities at a given time from
which reliability metrics can be calculated. Plotting the failure rate versus
time is an important tool to figure out how a product fails. If the failure rate
decreases with time, then the product exhibits infant mortality or early life

10 Chapter 2. Background Notions

failures, typically caused by design errors, poor quality control, or material
defects. If the failure rate is constant with time, then the product exhibits a
random failure rate behavior. Some possible causes of such failures are higher
than anticipated stress, misapplication, or operator error. If the failure rate is
increasing with time, then the product wears out. These failures are caused
by mechanisms that degrade the strength of the component over time such as
mechanical wear or fatigue.

Probability Distributions

To express reliability and model the possible failures quantitatively, proba-
bility distributions are needed. One of the most common is the exponential
distribution. It has only one parameter λ, representing the failure rate of the
component or system. Its probability density function is the following:

f(t) = λe−λt

This leads to the following reliability function:

R(t) = e−λt

or, dually, to the following unreliability function:

U(t) = 1 − e−λt

It can be used for the time in which the failure rate is constant. If the failure
rate is constant, it means that it is independent of the component’s or system’s
age, i.e., the reliability R(t) represents the probability that the component will
not fail within the time interval (0, t). This can be a reasonable assumption
for many components that have almost no wear off. This means that for
their lifetime in the system, the components have a constant failure rate. One
of the main advantages of the exponential distribution is that it simplifies
the calculation processes. When the ageing effects have to be included in
the model, we can use the Weibull distribution. The most general expression
of its probability density function is the following three-parameter Weibull
distribution expression:

f(t) = β(t−γ)β−1

ηβ e−((t−γ)/η)β

2.1. Reliability Assurance of Complex Systems 11

where β > 0 is the shape parameter (aka Weibull slope), η > 0 is the scale
parameter, and γ is the location parameter. Frequently, the location parameter
is not used, and the value for this parameter can be set to zero. When this
is the case, the pdf equation reduces to that of the so called two-parameter
Weibull distribution.

f(t) = βtβ−1

ηβ e−(t/η)β

A value of β < 1 indicates that the failure rate decreases over time. This
happens if there are defective components failing early. A value of β = 1
indicates that the failure rate is constant over time. A value of β > 1 indicates
that the failure rate increases over time. A change in the scale parameter η has
the effect of a change of the abscissa scale on the distribution, i.e., increasing
the value of η while holding β constant has the effect of stretching out the pdf.

This leads to the following reliability function:

R(t) = e(−t/η)β

or, dually, to the following unreliability function:

U(t) = 1 − e(−t/η)β

In the fields of dependable computing and safety analysis, one can find fault
taxonomies, methods for identifying system faults, methods to analyze their
potential impacts, and techniques to remove them. Techniques for dealing
with system faults have been proposed, and current state of the art in the field
identifies four different ways to increase a system’s reliability [8]:

• Fault avoidance/prevention: how to avoid/prevent by construction fault
occurrence or introduction.

• Fault detection/removal: how to detect by verification and validation the
presence (number, seriousness) of faults and eliminate them.

• Fault tolerance: how to ensure by redundancy a service capable of ful-
filling the system’s function in the presence of faults.

• Fault forecasting: how to estimate by evaluation the presence of faults
and the occurrence and consequences of failures.

12 Chapter 2. Background Notions

2.1.5 Failure Classification

The growing complexity of ES, together with the pressure to reduce system
development time (aka “time-to-market”), makes the delivery of low-defect
systems a challenging and complex activity. Even if the specification are cor-
rectly given and the system successfully verified, there are some problems that
can nevertheless lead to a malfunctioning system. For example, it may be the
case that the physical components that execute the computations are damaged.

We can organize failure modes in ES into the following main groups [9]:

• Hardware failures modes

– Mechanical

∗ Poor quality control during manufacture
∗ Deterioration
∗ Shock
∗ Corrosion
∗ Deformation of components because of temperature

– Electronic

∗ Manufacturing defects
∗ Lack of physical/electrical separation during installation
∗ Interference between subsystems
∗ Issues in the communication between subsystems
∗ Wrong input value from sensors with respect to expected ones
∗ Heat, humidity
∗ Design defects

• Software failures modes

– Specification or design defects

∗ Failure to recognize within the specification the full range of
circumstances in which the plant must operate

∗ Wrong/inadequate standards used
∗ Inadequate Management of Change (control of plant modifica-

tions)
∗ Common ageing processes on redundant channels

2.1. Reliability Assurance of Complex Systems 13

– Code rot: accumulated run-time faults.

– Buffer overflow: the computer memory is smaller than the program-
mer expected, so during operation of the embedded system, one of
the programs in the system is accessing wrong parts of the com-
puter’s memory.

– Dangling pointers: this error is common in non-safe programming
languages in which the human programmer is responsible for making
sure that every pointer points to the right memory location at all
times.

– Resource leaks in which programming errors lead to the loss of com-
puter control over some of the hardware resources; memory leaks
are the simplest form of resource leak.

– Race conditions in which specific relative timing events of different
components of the system leads to unexpected behavior. Such race
conditions are often hard to detect by testing only.

– Semantic design, for example: the meaning of an arrow between two
subsystems in a visual software environment should be the same as
the interpretation of it by the hardware.

• System failures modes

– Commissioning testing: failure to test adequately all credible cir-
cumstances.

– Improper installation

– Maintenance or operations failure

∗ Failure to repair defective equipment in a timely manner.
∗ Maladjustment of set-points, limit switches, etc.
∗ Improper or inadequate maintenance or test procedures.
∗ Failure to follow maintenance procedures.
∗ Poor control of over-rides or interlock defeats.
∗ Poor housekeeping.
∗ Poor quality spare components.

– Environmental aspects

14 Chapter 2. Background Notions

∗ Temperature, humidity, vibration, stress, corrosion, contamina-
tion (abrasive material, chemical agent, etc.), radio frequency
interference, radiation, static charge, extreme weather (rain,
snow, hail, ice, wind) seismic event, tsunami.

– Human operators errors

– Intruders: malicious entities (humans and other systems) that at-
tempt to exceed any authority they might have and alter service or
halt it.

2.1.6 Failure Modes Analysis

The safety analysis approaches aim to analyze the possible effects of faults in
a system. Failure rate analyses presented above basically do not account for
the effect (consequence) of a failure. The most relevant approaches to do that
are:

• Fault Tree Analysis (FTA): FTA provides a logical method for graph-
ically presenting the chain of events leading to a system failure, deter-
mining system safety and reliability from the event probabilities [10]. It
was originally developed in 1961 at Bell Laboratories under an U.S. Air
Force Ballistics Systems Division to study the Minuteman Launch Con-
trol System [11]. FTA uses Boolean logic to combine a series of events
to analyze their effects on a system and understand how a system can
fail. It is a deductive top-down method [12] to identify the component
level failures (aka basic events) that cause the system level failure (aka
Top Level Event (TLE)) to occur. The failure events are organised into
a Fault Tree Diagram (FTD). There are numerous FTA symbols, but
these are broadly divided in two categories: “events” and “logic gates”
that connect the events to identify the cause of the top undesired event
(see Figure 2.3).

The set of all fault configurations is also referred to as Cut-set (CS). A
CS of a fault tree is a combination of basic event occurrences such that
the top event occurs. Much of the FTA analysis effort is put on finding
all Minimal Cut-Sets (MCS). A MCS is a set of basic event occurrences
so that the top event occurs, with each of the basic events necessary for
that occurrence. For example, the MCS of example FTA in Figure 2.4
is the following:

2.1. Reliability Assurance of Complex Systems 15

Undesirable top event

Link contributors (OR, AND gates)

First level contributors

Basic event

Second level contributors

Figure 2.3: FTA symbols

– MCS1 = AC = P (A) ∗ P (C)

– MCS1 = AD = P (A) ∗ P (D)

– MCS1 = BC = P (B) ∗ P (C)

– MCS1 = BD = P (B) ∗ P (D)

TLE occurs if one or more of the minimal cut set occurs:

P (TLE) = P (E1) ∩ P (E2) = P (E1) ∗ P (E2)

Where:

P (E1) = P (A) ∪ P (B) = P (A) + P (B) − P (A) ∗ P (B),

P (E2) = P (C) ∪ P (D) = P (C) + P (D) − P (C) ∗ P (D)

To get the MCS of complex and large fault trees, specific tools imple-
menting algorithms for extraction are needed.

• Reliability Block Diagram (RBD): A RBD is a graph in which sys-
tem components are connected according to their logical relation of reli-
ability. Each component is represented by a box (aka reliability block)
that is assumed to be in operating or failed states. If it is possible to

16 Chapter 2. Background Notions

TLE

E1 E2

C DA B

Figure 2.4: Example of fault tree diagram

trace at least one path from the start of the RBD to a specific component
through operational components, the specific component is considered
operational. It is easy to comprehend because it is simple and has vi-
sual impact. It should be noted that a system might require more than
one RBD to describe it. As an RBD is a graphical representation of a
Boolean expression, and a Boolean expression may take different forms,
so similarly there is not a unique RBD for a system. This is particularly
true for those systems capable of performing several functions, or experi-
ence several different operating states. An RBD may be required for each
particular condition. A fault tree may be converted into a RBD and vice
versa, as illustrated in Figure 2.5. As for fault trees, traditional solution
of RBD involves the determination of the MCS. Figure 2.6 illustrates the
RBD equivalent to fault tree of Figure 2.4. The system will fail in the
following cases: {A, B, C, D fail}, or {A, B, C fail}, or {A, B, D fail},
or {A, C, D fail}, or {B, C, D fail}, or {A, C fail}, or {A, D fail}, or {B,
C fail}, or {B, D fail}. All of these are CSs. However, not all are MCS.
For example, the case {A, B, C fail} is not a minimal CS because, if B is
removed, the remaining events are also a CS. This may be more evident
by examining the RBD in Figure 2.6.

2.1. Reliability Assurance of Complex Systems 17

A B C

A B C

A B C

A

B

C

B C

A

B

C

A

Figure 2.5: Examples of conversion from FTD to RBD

• Failure Mode and Effects Analysis (FMEA): FMEA is a system-
atic way of identifying failure modes of a system, and evaluating the
effects of the failure modes and criticality on the higher level. It was first
developed by the U.S. military in the 1940s, and is now widely used in in-
dustries, including aerospace and electronics. A teamwork with designer
and reliability engineers performs a bottom-up (inductive) procedure,
which is established in international standards [13], [14]. The general
benefits of FMEA include prevention planning, cost reductions, ability
to identify change requirements, increased throughput, and decreased
waste. There are also a few difficulties that need to be taken into con-
sideration. First of all, FMEA only provides assessments, it does not
eliminate the problems that it uncovers. In addition, it relies on team

18 Chapter 2. Background Notions

A B

C D

Figure 2.6: RBD equivalent to fault tree of Figure 2.4

experience: the more experienced the team, the better the FMEA will
be. Moreover, effective FMEA requires each step of a process to be
examined.

• Failure Modes, Effects, and Criticality Analysis (FMECA):
FMECA builds upon the FMEA process, and not only it identifies po-
tential failure modes, but also investigates and isolates any potential
failure through a series of actions. FMECA has the advantage of being
more comprehensive than FMEA by establishing relationships between
failure causes and effects, and the criticality of corrective actions. As with
FMEA, FMECA comes with its own difficulties that need to be taken
into account. These include the amount of labour required, and the dif-
ficulty in assessing multiple-failure or cross-system effects. FMECA also
does not typically consider software or human interaction implications.
Both FMEA and FMECA can be used to help fulfil quality and safety
requirements.

• System-Theoretic Process Analysis (STPA): STPA is a modern
hazard and safety analysis technique, based on the accident causation
model (System-Theoretic Accident Model and Process (STAMP), [15]),
applicable early in the design process of a system to achieve an accept-
able risk level [16]. Since accidents are more than a chain of events, but
they rather involve complex dynamic processes, STAMP treats accidents
as a control problem (not a failure problem) and tries to prevent acci-
dents by enforcing constraints on component behavior and interactions.
It captures more causes of accidents, such as component failure accidents,
unsafe interactions among components, human behavior, software behav-
ior, design errors, and flawed requirements. The aim is to identify the
potential hazardous causes in complex safety-critical systems at different
architecture abstraction levels [17]. To this aim, i.e., to find inadequate

2.1. Reliability Assurance of Complex Systems 19

control in a design, the STPA approach combines safety analysis and
software test case generation.

2.1.7 Concept of Redundancy

High reliability at system level can often only be reached with the help of
redundancy. Redundancy is the basic idea of FT, which is intended to preserve
the delivery of correct service in the presence of active faults [4]. Redundancy
is the existence of more than one means for performing the required function.
If a part of the system can suffer a fault, there should be a redundant part of
it that can cover for the fault and thus avoid a failure. The components of the
ES can be placed in either active or standby mode.

In the active configuration, all of the redundant components operate simul-
taneously as soon as the system’s mission starts.

Standby configuration can be considered in three variants: cold, warm, and
hot standby. In the cold standby configuration, if the primary component is op-
erational and not experiencing any issues, the redundant ones are not powered
and not operating. In case of a failure in the primary component, the redun-
dant ones begin the starting procedure, and when it terminates the components
are exchanged. In the warm standby configuration, the redundant components
are powered, but not operating. The primary and redundant components are
synchronized when a failure occurs in the main one. When this operation
terminates they are switched. A warm standby approach guarantees higher
availability than a cold standby because the starting procedure has already
been performed. In the hot standby configuration, the redundant components
are powered and ready to be switched seamless into service upon detection of a
failure in primary component. The switching mechanism from main to redun-
dant components is much faster than both cold and warm standby approaches,
but redundant components can fail autonomously and with the same failure
of primary ones. As a result, in the cold standby configuration the system
remains reliable while in standby because the redundant components do not
fail before they are put into operation. In warm and hot configuration, the
system can fail also from its standby state.

20 Chapter 2. Background Notions

2.1.8 Design Patterns for Reliability

The concept of design patterns is a universal approach to describe common
solutions to widely recurring design problems. A design pattern is an abstract
representation for how to solve a general design problem that occurs over and
over in many applications. We can organize most common design patterns as
follows, with respective examples. For further information see also the works
of de Matos et al. [18], and Armoush [19].

Hardware Patterns

• Homogeneous Duplex Pattern (HmD): Protection against random
faults (aka Homogeneous Redundancy, Standby-Spare Pattern, Dynamic
Redundancy, Two-Channel Redundancy).

• Heterogeneous Duplex Pattern (HtD): Protection against random
and systematic faults without a fail-safe state (aka Heterogeneous Re-
dundancy Pattern, Diverse Redundancy Pattern).

• TMR: Protection against random fault with continuation of functional-
ity (aka 2-oo-3 Redundancy Pattern, Homogeneous Triplex Pattern).

• M-oo-N: Protection against random fault with continuation of function-
ality.

• Monitor-Actuator (MA): Protection against random and systematic
faults with a fail-safe state.

• Sanity Check (SC): Lightweight protection against random and sys-
tematic faults with a fail-safe state.

• Watchdog (WD): Very lightweight protections and timebase fault and
detection of deadlock with a fail-safe state.

• Safety Executive (SE): Safety for complex systems with complex
mechanisms to achieve failsafe states.

Software Patterns

• Voting Techniques (Majority Voting, Plurality Voting, Consensus Vot-
ing, Maximum Likelihood Voting, Adaptive Voting).

2.1. Reliability Assurance of Complex Systems 21

• N-Version Programming (NVP): software diversity.

• Recovery Block (RB): fault detection with acceptance tests and back-
ward error recovery.

• Acceptance Voting (AV): NVP + acceptance test used by the RB.

• N-Self Checking Programming (NSCP): NVP + self-checking.

• Recovery Block with Backup Voting (RBBV): RB + NVP.

Hardware and Software Patterns

• Protected Single Channel (PSC): Safety without heavyweight re-
dundancy, protection against transient faults through checks and moni-
toring at different points.

• 3-Level Safety Monitoring (3-LSM): MA + WD. Actuation, mon-
itoring and control element.

2.1.9 Dealing with System Faults

In the fields of dependable computing and safety analysis, one can find fault
taxonomies, methods for identifying system faults, methods to analyze their
potential impacts, and techniques to remove them. Techniques for dealing
with system faults have been proposed, and current state of the art in the field
identifies four different ways to increase a system’s reliability [8]:

• Fault avoidance/prevention: how to avoid/prevent by construction fault
occurrence or introduction.

• Fault detection/removal: how to detect by verification and validation the
presence (number, seriousness) of faults and eliminate them.

• Fault tolerance: how to ensure by redundancy a service capable of ful-
filling the system’s function in the presence of faults.

• Fault forecasting: how to estimate by evaluation the presence of faults
and the occurrence and consequences of failures.

22 Chapter 2. Background Notions

2.1.10 Dealing with Non-Functional Requirements

The system development process begins with the definition of the high-level
system goals based on stakeholder inputs. These high-level goals lead the de-
velopment team to base a system on a certain architecture style. The specifica-
tion should be carefully written so that it reflects the customer requirements,
and understandable enough so that someone can verify that it meets system
requirements. The specification says what things the system does, but it does
not say how. Describing how the system implements those functions is the pur-
pose of the architecture. The above concepts only make sense with respect to
a given set of requirements. A key point is the separation of requirements into
functional and non-functional, where the former describe what a system does
(in terms of the relation between inputs and outputs), while the latter consists
of properties related to how a system operates, including efficiency, quality of
service, and maintenance issues. One specific class of increasingly important
functional requirements concerns the security of systems. As stated by some
authors [20], we must remark that security requirements have contributed to
boosting the importance of formal methods (see Section 2.3). A second specific
class of requirements concerns safety issues. Functional Requirements (FR) are
those services that the system is expected to provide to actors in its environ-
ment. Non-Functional Requirements (NFR) are those indices that evaluate
the quality of the design in terms of reliability, safety, cost, speed, size, etc.
FR are usually being taken under consideration at the early stage of process
development (architectural level), while NFR are being focused at the end of
the project, which does not fulfill the desired qualities [21]. Early design de-
cision is very important to achieve a strong connection between design and
requirements, quality of a system, and a consistent product. Hence, FR and
NFR should be treated together, at early stages of design.

2.2 Architecture-based reliability evaluation

Since early design decision is very important to achieve quality of a system,
the architecture leverages a crucial role. Reliability is one of the essential qual-
ity requirements of software systems, especially for life critical ones. A failure
to identify certain concerns such as reliability earlier in the development pro-
cess can result in complete failure of the project. Testing activity is often
postponed until too late in the development process, especially on projects

2.2. Architecture-based reliability evaluation 23

using traditional development life cycles. This translates into increasing cost
incurred by loss of operation or even worse damages as a consequence of fail-
ures. For this reason, numerous techniques have been developed to evaluate
the reliability of a component-based system from the architecture, before the
actual system is built. Both qualitative and quantitative methods have been
developed to evaluate the quality of a system from its architecture. Qualitative
methods include non-numerical approaches such as peer reviews, and practices
that usually rely on domain experts and on a substantial amount of manual
activity. Quantitative methods include simulations, mathematical evaluations,
and formal analysis techniques that aim to get metrics on the quality of the
architecture.

2.2.1 Combinatorial Models

Using a combinatorial approach to model reliability translates in decomposing
a complex system into functional subsystems, in order to understand how the
relationships among them affect system operation. These formalisms create a
model equivalent to a Boolean expression.

Reliability Block Diagrams

This method can be used in both design and operational phase to identify
poor reliability and provide targeted improvements. It enables the analysis of
the effect of component failures on various system configurations, as shown in
Figure 2.7. The simplest form of a system for reliability analysis is one where
the elements are connected in series. In this case the reliability of the system
is the probability that all components succeed.

RS = ∏N
i=1 Ri

In parallel configuration, at least one component must succeed in order the
system succeeds. The probability of failure of a system with parallel compo-
nents is given by the probability that all components will be simultaneously
in the failure state.

RS = 1 −∏N
i=1(1 − Ri)

The probability of failure of a system with a k-out-of-n parallel configura-
tion is the following:

24 Chapter 2. Background Notions

Component 1 Component 2 ... Component N

(a)

...

Component N

Component 1

Component 2

(b)

Component 1

Component 2

Component N

k/n

...

(c)

Figure 2.7: Reliability block diagrams for series (a), parallel
(b), and k-out-of-n (c) systems.

Rs = ∑n
i=k

(
n
i

)
Ri(1 − R)n−i

In many cases, it is not easy to recognize which components are in series
and which are in parallel. This is what we call a complex system, i.e., a system
that cannot be broken down to groups of series and parallel components. This
complicates the problem of determining the system’s reliability. Every path
from a starting point to an ending point should be considered. As long as
at least one path from the beginning to the end of the path is available, the
system has not failed. Hence, the reliability of the system is the probability of
the union of these paths.

For example, an inspection of the reliability-wise configuration of system
in Figure 2.8 reveals that any of the following failures will cause the system to
fail:

• Failure of components A and B

• Failure of components C, D, and E

• Failure of components F and G

2.2. Architecture-based reliability evaluation 25

A

C

GB

D

E

F

Figure 2.8: Complex system composed by seven components

• Failure of components A, C, and F

• Failure of components A, D, and F

• Failure of components A, D, and G

• Failure of components B, D, and F

• Failure of components B, D, and G

• Failure of components B, E, and G

Leading to the configuration in Figure 2.9.

A

B

C

D

E

1A

C

F

1A

D

F

1A

D

G

1B

D

F

1B

D

G

1B

E

G

F

G

Figure 2.9: Reliability block diagram for system in Figure 2.8

Fault Tree Analysis

As stated above, FTA provides an alternative methodology to RBD for relia-
bility and safety analysis. Failure events are organised into a tree structure.
Figure 2.10 illustrates the fault trees equivalent to the RBDs in Figure 2.7.
Figure 2.11 illustrates the fault tree for system in Figure 2.8. The main differ-
ence between RBD and FTD is that the RBD looks at success combinations
whereas the FTD looks at failure combinations. In addition, fault trees have

26 Chapter 2. Background Notions

traditionally been used to analyze events that have a fixed probability of occur-
ring, while RBDs may include time-varying distributions for success or failure
of a block. However, a fault tree can be easily converted to an RBD, while it
is generally more difficult to convert an RBD into a fault tree, especially in
case of very complex configurations.

TOP

...C1 CNC2

...C1 CNC2

TOP

TOP

...C1 CNC2

k/n

Figure 2.10: Fault trees for series (a), parallel (b), and k-out-
of-n (c) systems.

Binary Decision Diagram

A BDD is a data structure for representing Boolean functions. A Boolean
function can be represented as a rooted, directed, cyclic graph, which consists

2.2. Architecture-based reliability evaluation 27

A B EDC FCA FDA GDA FDB GDB GEB F G

Figure 2.11: Fault tree for system in Figure 2.8

of several decision nodes and terminal nodes. There are two types of terminal
nodes called 0-terminal and 1-terminal. Each decision node N is labelled by
boolean variable VN and has two child nodes called low child and high child.
The edge from node VN to a low or high child represents an assignment of VN

to 0 or 1. If the order of the variables we test is fixed, we refer to BDD as
ordered. In addition, it is reduced if the following two propreties hold:

• Irredundancy: the low and high successors of every node are distinct.

• Uniqueness: there are no two distinct nodes testing the same variable
with the same successors.

A BDD ordered is referred to as OBDD. A BDD ordered and reduced is re-
ferred to as Reduced Ordered Binary Decision Diagram (ROBDD). Often BDD
representations are exponentially more concise than Boolean formulae in Con-
junctive Normal Form (CNF), where CNF is a conjunction of one or more
clauses, and a clause is a disjunction of literals. This enhances the effectiveness
of memorization techniques. In general, the chosen variable ordering makes a
significant difference to the size of the ROBDD representing a given function.
Bryant [22] observed that ROBDDs are a canonical representation of boolean
functions. This means that for a fixed variable ordering, each boolean function
has a canonical (i.e., unique) representation as an ROBDD. We could there-
fore test the equivalence of two boolean functions by comparing their ROBDDs
and checking if they are equal. For example, let F be a boolean formula that
depends on the variable x. According to the Shannon decomposition, there
exists two formulae, F0 and F1, that do not depend x such that:

F = v ∧ F0 + ¬v ∧ F1

By choosing a total order over the variables, and applying recursively the
Shannon decomposition, the truth table of the formula can be graphically
represented as a binary tree. The Shannon tree for the formula F = a∧b+¬a∧c

28 Chapter 2. Background Notions

and the lexicographic order is illustrated in Figure 2.12. The Binary Decision
Tree (BDT) can be transformed into a BDD by reducing it according to the
two following reduction rules (see Figure 2.13):

• Elimination: a node with two equal successors is useless and can be
eliminated, it is equivalent to its unique successor: v ∧ F + ¬v ∧ F = F .

• Isomorphism: since two isomorphic subtrees encode the same formula,
one is useless, hence, we can merge isomorphic subtrees.

a

b

1

b

c c c c

1 0 0 1 0 1 0

Figure 2.12: Binary tree of the example formula F = a ∧ b +
¬a ∧ c

(a)

(b)

Figure 2.13: Binary tree reduction rules: (a) Elimination, (b)
Isomorphism.

The resulting BDD is illustrated in Figure 2.14.

2.2. Architecture-based reliability evaluation 29

Figures 2.15, 2.16, and 2.17 illustrate the BDDs equivalent to the RBDs
in Figure 2.7. The series system works iff all system components are working
and, therefore, only one path in the BDD representing this structure function
has to end in the 1-labeled sink node, and this path has to contain all n state
variables and leaves each of them via 1-labeled edge. A parallel system is
functioning iff at least one of the system components is working. It has to
contain therefore only one path that ends in the 0-labeled sink node, and this
path has to go through all n state variables and leaves each of them via 0-
labeled edge. To model the BDD for a binary k-out-of-n, we have to remind
that it is functioning if at least k components are working. This implies that,
for a given state, at least k components have to be checked if we want to decide
whether the system is working or not. This means that every path ending in
the sink node 1 has to contain at least k non-sink nodes from which exactly k
nodes have to be left via 1-labeled edges. If one or more checked components
are in state 0, then we have to investigate other components. Obviously, if we
check n-k+1 components, and all of them are in state 0, then the system has
to be in state 0; in other words, every path containing n-k+1 0-labeled edges
has to be terminated by 0-labeled sink node. Figure 2.17 depicts a k-o-o-n
system, for k = 3 and n = 5.

Figure 2.14: BDD of the example formula F = a ∧ b + ¬a ∧ c

30 Chapter 2. Background Notions

c1

c2

0

1 0

c3

1 0

 1 0

...

cN

1

 1 0

 1 0

Figure 2.15: Example of a series system in the form of a BDD

0

1 0

1 0

 1 0

1

 1 0

c1

c2

c3

...

cN

1 0

Figure 2.16: Example of a parallel system in the form of a BDD

2.2. Architecture-based reliability evaluation 31

c1

c2 c2

1 0

1 0

c3 c3 c3

c4 c4

c5

1 0 1 0

 1 0 1 0 1 0

1 0 1 0

n-k
+1 k

Figure 2.17: Example of a k-o-o-n system in the form of a BDD,
with k=3 and n=5.

FTA is usually performed in two steps: firstly, the MCS of the model are
determined by some top-down or bottom-up algorithm, then, some probabilis-
tic quantities of interest are assessed from MCS. With BDD, the methodology
is different: firstly, the BDD of the model is constructed. Then, another BDD,
often a Zero-suppressed Binary Decision Diagram (ZBDD) [23], is built from
the first one to encode MCS. This approach has a drawback: the construc-
tion of the BDD must be feasible and, as many Boolean problems, it is of
exponential worst case complexity. Indeed, the size of the data structure may
vary between a linear to an exponential range depending on the variable or-
dering [22]. Top event probabilities can be assessed either from BDD or from
ZBDD. Since these data structures are based on different decomposition prin-
ciples, algorithms used in each case are different. Exact computations are
usually performed with BDD.

2.2.2 State-based Models

An alternative to combinatorial formalisms are state-based formalisms. They
can model different states for components and the global system. They can
also include effects like failure propagation by adding fitting transitions in

32 Chapter 2. Background Notions

the chain. Effects like delayed repair or different standby strategies can be
considered as well.

Markov Models

A common approach to reliability analysis of complex systems uses the Markov
Chains (MC) model. This analysis is suitable for those systems whose compo-
nents can be in two states, failed or not failed, and transitions from one state
to another can happen from time to time. The analysis can be applied in cases
where the change of state at a certain instant does not depend on previous
events (i.e., for memory-less system) and the probabilities are known for the
transition from operable state to failed state and vice versa. A Markov model
is uniquely determined by a set of equations that describes the probabilistic
transitions among the states and initialisation probability distributions of the
starting states. We have to define each possible state that the system can be
in at any given time, and also the transition probabilities per step that link
the states together. Mathematically, we can represent the initial state proba-
bilities as a vector ⃗x(0) such that xi represents the initial probability of being
in state i:

⃗x(0) = (x1x2...xi).

The transitions between the states can be represented by a transition ma-
trix:

T⃗ =

P11 P12 ... P1i

P21 P22 ... P2i

...

Pi1 Pi2 ... Pii

where, for example, the term P12 is the transition probability from state 1

to state 2. If we want to know the probability of being in a particular state
after n steps, we can use the Chapman-Kolmogorov equation to arrive at the
following equation:

⃗x(n) = ⃗x(0)T⃗ n.

The structural representation of a MC is a directed graph (while the combi-
natorial models presented in Section 2.2.1 are based on tree structures). When
using probabilities and steps the MC is referred to as Discrete Time Markov
Chains (DTMC), while a MC that uses rate and the time domain is referred

2.2. Architecture-based reliability evaluation 33

to as a Continuous Time Markov Chains (CTMC). Both variants of Markov
models that are used in architecture-based quantitative evaluation of relia-
bility. As a simple example, consider a static TMR system without repair.
Assuming the ideal voter, and the same failure rate λ for its components, its
reliability Markov model is depicted in Figure 2.18. State “3” represents the
initial condition of three working components. State “2” indicates the condi-
tion of one failed component. State “F” represents the failure state because a
majority of the modules in the system have failed.

23 Fail

3 2

1-3 1-2 1

Figure 2.18: General Markov model of a TMR system

MC is much more powerful than RBD and FTA, but it has also its disad-
vantages: MC cannot be created hierarchically. With FTA or RBD, the model
of the TMR system is easly modifiable, for instance it is easy work to replace
a component by a more complex system or to add another component. MC
cannot be changed that easy as the state space is altered dramatically by such
a step. In addition, the size of the MC grows exponential with the number of
components in the basic system. Furthermore, MC also lacks intuitivity: it is
almost impossible to recognize the basic system architecture of a system by
looking at the model.

Petri Net Models

RBD and FTA are both static tools, they cannot capture the state-dependent
behavior of system failure mechanisms. Although MC can cope with state-
dependent behaviors, it has to face with the state space explosion problem
when the system is large and complex. Furthermore, the solution of the dif-
ferential equations for the MC is a cumbersome work. An alternative tool
that has been widely applied in the last decades for discrete event system
simulation is Petri Nets (PN). The PN is a mathematical model of a parallel
system, in the same way that the finite automaton is a mathematical model
of a sequential system. A PN is a directed bipartite graph that has two types

34 Chapter 2. Background Notions

of elements, places and transitions, depicted as white circles and rectangles,
respectively. A place can contain any number of tokens, depicted as black dots.
A transition is enabled (i.e., can be fired) if all places connected to it as in-
puts contain at least one token. This modeling language can be used to model
dynamic systems, and permits the reliability analysis of complex systems. In
particular, it permits modeling a system when one or more of the elements
are in a degraded state or under repair, as it is possible to include elements of
the system that are neither function or failed. Petri net modeling is therefore
useful when the repair times are long compared to operating times, as RBDs
and FTA assume short or negligible repair times, in most cases. Specifically,
widely-used state based formalism are Stochastic Petri Nets (SPN), which are
a form of PN where the transitions fire after a probabilistic delay determined
by a random variable. Figure 2.19 shows a SPN modeling the TMR-system
(with repair). PN are easier to handle than MC, as they support modularized
modeling to a certain degree. Anyway they have some limits: new components
without dependencies can be added easily, while adding dependencies into an
existing model can lead to a total different structure of the PN.

Module
Failed

Module
Working

Voter
Failed

Voter
Working

Figure 2.19: Petri Net model of a TMR system

To sum up, state-based formalisms allow us to model effects like failure
propagation, standby strategies, and repair. However, they lack the imme-
diacy of combinatorial approaches. While being more powerful, MC and PN
cannot compete with the high level approaches of combinatorial approaches
regarding the intuitiveness and understandability. Creating, understanding,
and mastering models based on state-based methods is more difficult than us-
ing combinatorial formalisms, and especially for large models this can be a

2.3. Formal Methods, Techniques, and Tools 35

problem. Furthermore, efficient algorithms exist for evaluating combinatorial
formalisms. The main reason for this is that these formalisms can be trans-
lated into BDDs, which are very efficient and exponentially more concise than
Boolean formulae. BDDs allow us to perform a qualitative and quantitative
analysis in order to determine which component failures will lead to a system
failure by analyzing the MCS.

2.2.3 Simulation-based Approaches

For a considerable number of parameters, the platform dependent system eval-
uations are based on estimations that use field data retrieved during opera-
tional usage, historical data from similar systems, or reasonable guesses done
by experts. In practice, parameters are hard to estimate accurately. Analytical
methods often assume the parameter distributions are normal, and variations
can be characterised by the mean and variance alone. More in general, the
actual distributions are hard to determine. Hence, a further approach for
architecture-based reliability evaluation uses simulation techniques, which in-
vestigate the impact of specific components on system reliability and provide
system-specific performance and attributes.

2.3 Formal Methods, Techniques, and Tools

Formal Methods (FM) are mathematical techniques, often supported by tools,
for developing software and hardware systems. Mathematical rigor enables
users to analyze and verify these models at any part of the program life-cycle:
requirements engineering, specification, architecture, design, implementation,
testing, maintenance, and evolution. FM are used in specifying software: de-
veloping a precise statement of what the software is to do, while avoiding
constraints on how it is to be achieved [24]. Complex software systems re-
quire careful organization of the architectural structure of their components:
a model of the system that suppresses implementation detail, allowing the ar-
chitect to concentrate on the analyses and decisions that are most crucial to
structuring the system to satisfy its requirements [25], [26]. FM are also used
in software design. For example, see the early paper by Hoare [27], methods
like VDM [28], and in program refinement calculi [29], [30], [31], [32]. At the
implementation level, FM are used for code verification. The inductive asser-
tion method of program verification was invented by Floyd and Hoare [33], [34],

36 Chapter 2. Background Notions

and involves annotating the program with mathematical assertions, which are
relations that hold between the program variables and the initial input values,
each time control reaches a particular point in the program. Code can also
be generated automatically from FM. FM are also used in software mainte-
nance [35] and evolution [36].

2.3.1 Computational Models

With the development process, a key point is the choice of a specific method
and an appropriate language to represent system under study along all its life
cycle. Different methods and languages have been developed for the analysis
and design of ES, each with a particular focus on some aspects of the sys-
tem. Each designer will therefore have to choose the method or language to
use depending on the specificities of the application domain, and the level of
detail he deems important for his model. In order to manage the complex-
ity and heterogeneity of modern ES, the design approach should be based on
the use of one or more FM to describe the behavior of the system at a high
level of abstraction, before a decision on its decomposition into hardware and
software is taken. The mapping and implementation of the specification must
be more automatic, faster, and less error-prone as possible. Abstraction is a
key attribute of modeling: by removing unnecessary and unwanted details, the
complexity of the modeled object is reduced, allowing to effectively engineer
systems by successively building more detailed models of the system under
development. First of all, in the following the difference between methods and
languages is reported.

Methods

A method is a process whose objective is to allow to formalize the stages of
development of a system, to make this development more faithful to the needs
of the client. A language offers a notation, but do not have a process. In a
method, one uses one or more modeling languages for symbolic or schematic
representation of the various models produced to drive the development and
tools that support it. In Table 2.1, we have listed design methods for real-time
ES [37], [38], [39], [40], [41]. There is no single method that is overall the
best method. Although a large number of successful frameworks have been
developed during the last several years, designing a high-quality framework is
still a difficult and complex task.

2.3. Formal Methods, Techniques, and Tools 37

Ta
bl

e
2.

1:
Ex

am
pl

es
of

de
sig

n
m

et
ho

ds

M
et

h
o

d
D

es
cr

ip
ti

o
n

E
as

y
o

f
u

se
N

o
ta

ti
o

n
C

o
d

e
g

en
er

at
io

n
F

re
e

to
o

ls
S

y
st

em
d

es
ig

n
C

o
m

p
o

n
en

t
m

o
d

el
H

ie
ra

rc
h

ie
s

P
R

O
C

O
N

L
as

t
k

n
ow

n
ac

ti
v

it
y

D
es

ig
n

A
pp

ro
ac

h
fo

r
R

ea
l

T
im

e
Sy

st
em

s
(D

A
R

T
S

)

H
ig

hl
y

st
ru

ct
ur

ed
m

od
ul

ar
sy

st
em

w
it

h
w

el
l-

de
fi

ne
d

in
te

rf
ac

es
an

d
re

du
ce

d
co

up
li

ng
b

et
w

ee
n

ta
sk

s

N
O

gr
ap

hi
c

te
xt

ua
l

N
O

N
O

N
O

Y
E

S
Y

E
S

St
ru

ct
ur

ed
an

al
ys

is
of

da
ta

D
iffi

cu
lt

to
co

nt
ro

l
th

e
ti

m
e

20
07

H
ie

ra
rc

hi
ca

l
O

bj
ec

t
O

ri
en

te
d

D
es

ig
n

(H
O

O
D

)

It
in

cl
ud

es
ob

je
ct

ty
p

es
w

hi
ch

en
ab

le
co

m
m

on
ha

rd
re

al
-t

im
e

ab
st

ra
ct

io
ns

to
b

e
re

pr
es

en
te

d

Y
E

S
gr

ap
hi

c
te

xt
ua

l
Y

E
S

N
O

N
O

Y
E

S
Y

E
S

R
eu

sa
bi

li
ty

C
om

pl
ex

to
us

e
20

16

M
od

ul
ar

A
pp

ro
ac

h
to

So
ft

w
ar

e
C

on
st

ru
ct

io
n,

O
pe

ra
ti

on
an

d
T

es
t

(M
A

S
C

O
T

)

D
ev

el
op

ed
un

de
r

th
e

au
sp

ic
es

of
th

e
U

ni
te

d
K

in
gd

om
M

in
is

tr
y

of
D

ef
en

ce
,

it
em

ph
as

is
es

th
e

ar
ch

it
ec

tu
ra

l
as

p
ec

ts
of

a
pr

oj
ec

t
ra

th
er

th
an

fu
nc

ti
on

al
it

ie
s

N
O

gr
ap

hi
c

te
xt

ua
l

Y
E

S
N

O
N

O
N

O
Y

E
S

H
ig

h
le

ve
l

of
ab

st
ra

ct
io

n

R
eq

ui
re

m
en

ts
an

al
ys

is
no

t
di

re
ct

ly
su

pp
or

te
d

20
16

O
bj

ec
t-

R
ol

e
M

od
el

in
g

(O
R

M
)

ak
a

N
IA

M

U
se

d
pr

in
ci

pa
ll

y
fo

r
da

ta
m

od
el

in
g

N
O

gr
ap

hi
c

N
O

Y
E

S
N

O
Y

E
S

Y
E

S

It
fa

ci
li

ta
te

s
im

pl
em

en
ti

ng
th

e
D

om
ai

n
M

od
el

pa
tt

er
n

It
is

of
te

n
di

ffi
cu

lt
to

gr
as

p
th

e
sh

ap
e

or
pu

rp
os

e
of

a
pa

rt
ic

ul
ar

dr
aw

in
g

20
16

R
ea

l
T

im
e

O
bj

ec
t

O
ri

en
te

d
M

od
el

lin
g

(R
O

O
M

)

T
he

in
it

ia
l

fo
cu

s
w

as
on

te
le

co
m

m
un

ic
at

io
ns

,
ev

en
th

ou
gh

R
O

O
M

ca
n

b
e

ap
pl

ie
d

to
an

y
ev

en
t-

dr
iv

en
re

al
-t

im
e

sy
st

em

N
O

gr
ap

hi
c

te
xt

ua
l

Y
E

S
Y

E
S

N
O

N
O

Y
E

S
B

eh
av

io
ur

sp
ec

ifi
ca

ti
on

R
eq

ui
re

m
en

ts
ph

as
e

20
16

St
ru

ct
ur

ed
A

na
ly

si
s

an
d

St
ru

ct
ur

ed
D

es
ig

n
m

et
ho

d
(S

A
S

D
M

)

It
is

a
w

at
er

fa
ll

m
et

ho
d

fo
r

th
e

an
al

ys
is

an
d

de
si

gn
of

in
fo

rm
at

io
n

sy
st

em
s

an
d

co
nt

ra
st

s
w

it
h

m
or

e
co

nt
em

p
or

ar
y

ag
il

e
m

et
ho

ds
su

ch
as

D
SD

M
or

Sc
ru

m

Y
E

S
te

xt
ua

l
N

O
N

.A
.

Y
E

S
N

O
N

O
It

do
es

no
t

re
ly

on
a

si
ng

le
te

ch
ni

qu
e

It
do

es
no

t
co

ve
r

de
pl

oy
m

en
t,

im
pl

em
en

ta
ti

on
an

d
te

st
in

g

20
16

U
ni

fie
d

So
ft

w
ar

e
D

ev
el

op
m

en
t

P
ro

ce
ss

(U
S

D
P

)

It
is

a
p

op
ul

ar
it

er
at

iv
e

an
d

in
cr

em
en

ta
l

so
ft

w
ar

e
de

ve
lo

pm
en

t
pr

oc
es

s
fr

am
ew

or
k.

T
he

b
es

t-
kn

ow
n

an
d

ex
te

ns
iv

el
y

do
cu

m
en

te
d

re
fi

ne
m

en
t

of
th

e
U

ni
fi

ed
P

ro
ce

ss
is

th
e

R
at

io
na

l
U

ni
fie

d
P

ro
ce

ss
(R

U
P

)

Y
E

S
gr

ap
hi

c
te

xt
ua

l
N

O
Y

E
S

Y
E

S
N

O
Y

E
S

C
he

ck
p

oi
nt

s
to

ch
ec

k
th

e
qu

al
it

y
of

ar
ti

fa
ct

s
to

b
e

de
li

ve
re

d
in

ea
ch

ph
as

e

C
on

si
st

en
cy

pr
ob

le
m

s
(s

em
an

ti
c

m
ul

ti
pl

e
in

te
rp

re
ta

ti
on

s)

20
19

38 Chapter 2. Background Notions

Modeling Languages

A language is a set of symbols, rules for combining them (its syntax), and
rules for interpreting combinations of symbols (its semantics). A design (at
all levels of the abstraction hierarchy from functional specification to final
implementation) is generally represented as a set of components, which can
be considered as individual blocks, interacting with each other and with an
environment that is not part of the design. The Model of Computation (MoC)
defines the behavior and interaction of these blocks. Thus, a MoC governs the
interaction of components in a design. In Table 2.2, we classify and analyze
several models of computation that have been used to describe ES with precise
mathematical meaning, so that both the validation and the mapping from the
initial description to the various intermediate steps can be carried out with
tools of guaranteed performance.

Architectural Modeling

According to the ISO/IEC/IEEE 42010:2011 Systems and software engineer-
ing - Architecture description standard [42] [42], an Architecture Description
Language (ADL) is any form of expression for use in architecture descriptions.
Thus, we can define ADLs as computer languages describing the software and
hardware architecture of a system. Compared to modeling languages that are
more concerned with the behaviors of the whole rather than of the parts, ADLs
concentrate more on representation of components. An ADL can be narrowly
focused, defining a single model kind to frame some concerns, or widely focused
to provide several model kinds, optionally organized into viewpoints. One ad-
vantage of ADLs is that they represent architectures in a formal way. In addi-
tion, they are supported by automated tools for the management of the models.
Furthermore, they are designed to be readable to both humans and machines.
A disadvantage is that there is not an agreement of what the ADLs shall repre-
sent, especially when it comes to the behavior of the system. A set of common
ADLs is reported and analyzed in Table 2.3 [43], [44], [45], [46], [47], [48].

2.3. Formal Methods, Techniques, and Tools 39

Ta
bl

e
2.

2:
C

om
m

on
ty

pe
s

of
fo

rm
al

m
od

el
s,

us
ua

lly
re

fe
rr

ed
to

as
m

od
el

of
co

m
pu

ta
tio

ns
.

M
o

d
el

E
x

am
p

le
s

P
R

O
s

C
O

N
s

S
ta

te
-B

as
ed

-
F

in
it

e
St

at
e

M
ac

hi
ne

s
(F

SM
)

-
F

in
it

e
A

ut
om

at
a

(F
A

)
-

E
xt

en
de

d
F

in
it

e
St

at
e

M
ac

hi
ne

(E
F

SM
)

-
H

ie
ra

rc
hy

al
lo

w
s

ne
st

in
g

of
A

N
D

-,
O

R
-s

up
er

st
at

es
-

L
ar

ge
nu

m
b

er
of

co
m

m
er

ci
al

to
ol

s
av

ai
la

bl
e

-
A

va
il

ab
le

ba
ck

-e
nd

s
tr

an
sl

at
e

m
od

el
in

to
co

de

-
G

en
er

at
ed

pr
og

ra
m

s
in

effi
ci

en
t

or
di

ffi
cu

lt
to

re
ad

-
N

ot
us

ef
ul

fo
r

di
st

ri
bu

te
d

ap
pl

ic
at

io
ns

-
N

o
pr

og
ra

m
co

ns
tr

uc
ts

,
no

ob
je

ct
-o

ri
en

ta
ti

on
-

N
o

de
sc

ri
pt

io
n

of
no

n-
fu

nc
ti

on
al

b
eh

av
io

r

D
at

aF
lo

w
-

K
ah

n
P

ro
ce

ss
ne

tw
or

k
(K

P
N

)
-

T
as

k
gr

ap
hs

-
Sy

nc
hr

on
ou

s
da

ta
fl

ow
(S

D
F

)

-
V

er
y

na
tu

ra
l

w
ay

of
de

sc
ri

bi
ng

re
al

li
fe

ap
pl

ic
at

io
ns

-
M

or
e

effi
ci

en
t

us
e

of
co

nc
ur

re
nt

re
so

ur
ce

s
b

ec
au

se
b

ec
om

es
ea

sy
to

pa
ra

ll
el

iz
e

-
T

he
sc

he
du

li
ng

al
go

ri
th

m
do

es
no

t
aff

ec
t

th
e

fu
nc

ti
on

al
b

eh
av

io
r

-
D

iffi
cu

lt
to

sc
he

du
le

b
ec

au
se

of
ne

ed
to

ba
la

nc
e

re
la

ti
ve

pr
oc

es
s

ra
te

s
-

Sy
st

em
in

he
re

nt
ly

gi
ve

s
th

e
sc

he
du

le
r

fe
w

hi
nt

s
ab

ou
t

ap
pr

op
ri

at
e

ra
te

s
-

E
xp

en
si

ve
an

d
fu

ss
y

to
im

pl
em

en
t

P
ro

ce
ss

A
lg

eb
ra

-
C

om
m

un
ic

at
in

g
Se

qu
en

ti
al

P
ro

ce
ss

es
(C

SP
)

-
C

om
m

un
ic

at
in

g
Sh

ar
ed

R
es

ou
rc

es
(C

SR
)

-
C

on
cu

rr
en

cy
-

Se
cu

ri
ty

-
C

om
m

un
ic

at
io

n:
la

te
nc

y
(n

et
w

or
k

di
st

an
ce

,
m

es
sa

ge
si

ze
),

co
nt

en
ti

on
(n

et
w

or
k

ba
nd

w
id

th
),

ov
er

he
ad

(i
nt

er
fa

ce
s

an
d

pr
ot

oc
ol

s
us

ed
)

-
Sy

nc
hr

on
iz

at
io

n
is

an
ot

he
r

so
ur

ce
of

ov
er

he
ad

-
L

oa
d

ba
la

nc
in

g
(n

on
-u

ni
fo

rm
ta

sk
s,

st
ar

va
ti

on
)

L
o

g
ic

-B
as

ed
-

T
em

p
or

al
lo

gi
c

-
C

SR
-

It
in

vo
lv

es
lo

gi
ca

l
pr

op
os

it
io

ns
w

ho
se

tr
ut

h
va

lu
es

de
p

en
d

on
ti

m
e

-

P
et

ri
-N

et
s

-
St

at
e

m
ac

hi
ne

s
-

M
ar

ke
d

gr
ap

hs
-

T
im

ed
P

et
ri

N
et

s
-

A
pp

ro
pr

ia
te

fo
r

di
st

ri
bu

te
d

ap
pl

ic
at

io
ns

-
W

el
l-

kn
ow

n
th

eo
ry

fo
r

fo
rm

al
ly

pr
ov

in
g

pr
op

er
ti

es
-

N
o

pr
og

ra
m

m
in

g
el

em
en

ts
-

N
o

hi
er

ar
ch

y
-

P
ro

bl
em

s
w

it
h

m
od

el
in

g
ti

m
in

g

D
is

cr
et

e
ev

en
t

b
as

ed

-
V

H
D

L
-

Sy
st

em
C

-
V

er
il

og
-

Sp
ec

C

-
T

im
e

is
an

in
te

gr
al

pa
rt

of
a

di
sc

re
te

-e
ve

nt
m

od
el

-
It

ca
n

b
e

ex
p

en
si

ve
:

so
rt

in
g

ti
m

e
st

am
ps

ca
n

b
e

ti
m

e
co

ns
um

in
g

-
L

es
s

effi
ci

en
t

w
he

n
th

e
ac

ti
vi

ty
of

a
sy

st
em

in
cr

ea
se

s,
b

ec
au

se
of

th
e

ov
er

he
ad

of
si

m
ul

ta
ne

ou
s

ev
en

ts

V
o

n
-N

eu
m

an
n

-
A

D
A

-
C

-
Fo

rt
ra

n
Ja

va

-
F

le
xi

bi
li

ty
-

E
na

bl
e

ec
on

om
ic

al
us

e
of

fa
st

m
em

or
y

-
O

p
er

at
io

n
de

st
ro

y
in

fo
rm

at
io

n
an

d
th

is
co

ul
d

b
e

da
ng

er
ou

s
(d

at
a

an
d

in
st

ru
ct

io
n

sh
ar

e
th

e
sa

m
e

m
em

or
y)

-
E

xe
cu

ti
on

pr
oc

es
s

is
sl

ow
er

S
y

n
ch

ro
n

o
u

s
re

ac
ti

v
e

-
E

st
er

el
-

L
us

tr
e

-
L

ab
V

IE
W

-
It

in
vo

lv
es

sy
nc

hr
on

y
-

G
oo

d
at

m
an

ag
in

g
sp

or
ad

ic
da

ta
(w

he
re

th
e

ab
se

nc
e

of
ev

en
ts

ha
s

m
ea

ni
ng

)

-
H

ig
h

co
st

(i
n

ar
ea

an
d

p
ow

er
co

ns
um

pt
io

n)
of

pr
ec

is
e

cl
oc

k
di

st
ri

bu
ti

on
-

Sy
nc

hr
on

y
un

fe
as

ib
le

w
he

n
th

e
cl

oc
k

sp
ee

d
an

d
ci

rc
ui

t
si

ze
b

ec
om

e
la

rg
e

40 Chapter 2. Background Notions

Ta
bl

e
2.

3:
Ex

am
pl

es
of

ar
ch

ite
ct

ur
al

la
ng

ua
ge

s

L
an

gu
ag

e
D

es
cr

ip
ti

on
O

ri
gi

n
N

ot
at

io
n

C
od

e
ge

ne
ra

ti
on

F
re

e
to

ol
s

H
ie

ra
rc

hi
es

P
R

O
s

C
O

N
s

L
as

t
kn

ow
n

ac
ti

vi
ty

A
A

D
L

D
ev

el
op

ed
by

SA
E

an
d

de
ri

ve
d

fr
om

M
et

aH
.

In
du

st
ry

A
ca

de
m

y

gr
ap

hi
c

te
xt

ua
l

xm
l

Y
E

S
Y

E
S

Y
E

S
-

It
co

ve
rs

di
ff

er
en

t
la

ye
rs

of
th

e
sy

st
em

(h
w

,
m

id
dl

ew
ar

e,
..

.)
-

Fo
rm

al
ve

ri
fi

ca
ti

on
-

It
ca

n
m

od
el

th
e

ta
rg

et

It
do

es
no

t
m

od
el

cl
oc

ks
20

21

A
B

A
C

U
S

D
ev

el
op

ed
by

th
e

U
ni

ve
rs

it
y

of
T

ec
hn

ol
og

y
of

Sy
dn

ey
.

A
ca

de
m

y
gr

ap
hi

c
te

xt
ua

l
xm

l
Y

E
S

N
O

Y
E

S
It

su
pp

or
ts

al
l

of
th

e
m

aj
or

so
lu

ti
on

s
(U

M
L

,
Sy

sM
L

,.
..

)
N

ot
su

ffi
ci

en
t

fo
r

th
e

co
m

pl
et

e
de

ve
lo

pm
en

t
of

a
sy

st
em

.
20

21

A
C

M
E

D
es

ig
ne

d
at

C
ar

ne
gi

e
M

el
lo

n
U

iv
er

si
ty

it
is

a
ge

ne
ri

c
A

D
L

.
A

ca
de

m
y

gr
ap

hi
c

te
xt

ua
l

N
O

Y
E

S
Y

E
S

It
pr

ov
id

es
a

co
m

m
on

in
te

rm
ed

ia
te

re
pr

es
en

ta
ti

on
fo

r
va

ri
ou

s
to

ol
s

D
yn

am
ic

as
p

ec
ts

of
ar

ch
it

ec
tu

ra
l

ev
ol

ut
io

n.
20

18

A
U

T
O

SA
R

W
or

ld
w

id
e

pa
rt

ne
rs

hi
p

of
ve

hi
cl

e
m

an
uf

ac
tu

re
rs

fo
r

a
st

an
da

rd
iz

ed
sw

ar
ch

it
ec

tu
re

.

In
du

st
ry

gr
ap

hi
c

te
xt

ua
l

Y
E

S
Y

E
S

Y
E

S
Sc

al
ab

il
it

y
to

di
ff

er
en

t
ve

hi
cl

es
an

d
va

ri
an

ts
Sp

ec
ifi

c
fo

r
au

to
m

ot
iv

e
sy

st
em

s
20

21

B
yA

D
L

D
es

ig
ne

d
at

U
ni

ve
rs

it
y

of
L

’A
qu

il
a,

on
to

p
of

D
U

A
L

L
y.

A
ca

de
m

y
gr

ap
hi

c
te

xt
ua

l
Y

E
S

N
O

Y
E

S
-

-
20

12

D
ar

w
in

D
es

ig
ne

d
at

Im
p

er
ia

l
C

ol
le

ge
of

L
on

do
n,

it
al

lo
es

a
co

m
p

on
en

t-
or

ob
je

ct
-b

as
ed

ap
pr

oa
ch

.

A
ca

de
m

y
gr

ap
hi

c
te

xt
ua

l
N

O
Y

E
S

Y
E

S
It

su
pp

or
ts

th
e

st
ru

ct
ur

e
of

pa
ra

ll
el

pr
og

ra
m

s
an

d
m

od
el

in
g

of
ne

tw
or

k
to

p
ol

og
ie

s

L
ac

k
of

m
an

ag
em

en
t

of
F

T
as

p
ec

ts
.

20
13

E
A

ST
-A

D
L

A
D

L
fo

r
A

ut
om

ot
iv

e
E

Ss
,

it
co

m
pl

em
en

ts
A

U
T

O
SA

R
.

In
du

st
ry

gr
ap

hi
c

te
xt

ua
l

Y
E

S
Y

E
S

Y
E

S
H

ig
h

ab
st

ra
ct

io
n

la
ye

r
Sp

ec
ifi

c
fo

r
au

to
m

ot
iv

e
sy

st
em

s
20

21

M
et

aH
D

ev
el

op
ed

by
H

on
ey

w
el

l,
ba

si
s

fo
r

A
A

D
L

.
In

du
st

ry
gr

ap
hi

c
te

xt
ua

l
Y

E
S

Y
E

S
Y

E
S

-
St

ro
ng

co
m

p
on

en
t

se
m

an
ti

cs
-

N
on

-f
un

ct
io

na
l

sp
ec

ifi
ca

ti
p

on
N

ot
la

rg
el

y
de

pl
oy

ed
20

05

R
ap

id
e

D
es

ig
ne

d
at

St
an

fo
rd

It
ad

op
ts

a
ne

w
ev

en
t-

ba
se

d
ex

ec
ut

io
n

m
od

el
.

A
ca

de
m

y
gr

ap
hi

c
te

xt
ua

l
Y

E
S

Y
E

S
Y

E
S

M
od

el
in

g
of

co
m

p
on

en
t

in
te

rf
ac

es
an

d
ex

te
rn

al
ly

vi
si

bl
e

b
eh

av
io

r
N

ot
su

ffi
ci

en
t

fo
r

th
e

co
m

pl
et

e
de

ve
lo

pm
en

t
of

a
sy

st
em

.
20

05

SA
D

L
D

ev
el

op
ed

at
th

e
N

at
io

na
l

A
er

on
au

ti
cs

an
d

Sp
ac

e
A

dm
in

is
tr

at
io

n’
s

M
ar

sh
al

l
Sp

ac
e

F
li

gh
t

C
en

te
r

In
du

st
ry

gr
ap

hi
c

te
xt

ua
l

N
O

Y
E

S
Y

E
S

It
su

pp
or

ts
th

e
sp

ec
ifi

ca
ti

on
of

no
n-

fu
nc

ti
on

al
pr

op
er

ti
es

N
o

pr
ec

is
e

re
la

ti
on

sh
ip

b
et

w
ee

n
a

gr
ap

hi
ca

l
de

sc
ri

pt
io

n
an

d
th

e
un

de
rl

yi
ng

se
m

an
ti

c
m

od
el

N
.A

.

St
ra

tu
sM

L
D

ev
el

op
ed

at
th

e
U

ni
ve

rs
it

y
of

W
at

er
lo

o
(C

an
ad

a)
fo

r
m

od
ee

li
ng

cl
ou

d
ap

pl
ic

at
io

ns
.

A
ca

de
m

y
gr

ap
hi

c
te

xt
ua

l
Y

E
S

Y
E

S
N

O
-

F
le

xi
bi

li
ty

,
re

-u
sa

bi
li

ty
-

It
m

ai
nt

ai
ns

co
ns

is
te

nc
y

b
et

w
ee

n
th

e
ar

ti
fa

ct
s

of
cl

ou
d

ap
pl

ic
at

io
ns

N
on

-f
un

ct
io

na
l

sp
ec

ifi
ca

ti
on

s
20

18

Sy
sM

L
D

ev
el

op
ed

as
ex

te
ns

io
n

of
U

M
L

by
IN

C
O

SE
an

d
O

M
G

In
du

st
ry

gr
ap

hi
c

te
xt

ua
l

xm
l

Y
E

S
Y

E
S

Y
E

S
-

It
ca

n
pr

od
uc

e
sp

ec
ifi

ca
ti

on
s

fo
r

he
te

ro
ge

ne
ou

s
te

am
s.

-
It

re
gr

ou
ps

st
ru

ct
ur

al
,

fu
nc

ti
on

al
an

d
b

eh
av

io
ur

al
vi

ew
s

of
a

sy
st

em

N
ot

su
ffi

ci
en

t
fo

r
th

e
co

m
pl

et
e

de
ve

lo
pm

en
t

of
a

sy
st

em
20

21

U
M

L
/M

ar
te

It
ex

te
nd

s
U

M
L

fo
r

m
od

el
in

g
re

al
-t

im
e

sy
st

em
s

In
du

st
ry

gr
ap

hi
c

te
xt

ua
l

Y
E

S
Y

E
S

Y
E

S
-

C
om

m
on

w
ay

to
m

od
el

hw
/s

w
-

In
te

ro
p

er
ab

il
it

y
b

et
w

ee
n

to
ol

s
C

on
ce

pt
of

ti
m

e
is

am
bi

gu
ou

s
20

21

U
M

L
-R

T
E

xt
en

si
on

of
U

M
L

to
de

al
w

it
h

ti
m

in
g

pr
op

er
ti

es
In

du
st

ry
gr

ap
hi

c
N

O
N

O
Y

E
S

-
W

id
e

ra
ng

e
of

di
ag

ra
m

s
-

L
ar

ge
nu

m
b

er
of

fr
ee

to
ol

s
-

R
ea

l
ti

m
e

as
p

ec
ts

L
ow

de
gr

ee
of

fo
rm

al
ve

ri
fi

ca
ti

on
20

21

U
ni

co
n

G
en

er
al

pu
rp

os
e

A
D

L
of

C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
it

y.
A

ca
de

m
y

gr
ap

hi
c

te
xt

ua
l

Y
E

S
Y

E
S

Y
E

S
E

m
ph

as
is

on
ge

ne
ra

ti
on

of
co

nn
ec

to
rs

N
o

ev
ol

ut
io

n
su

pp
or

t
19

99

xA
D

L
D

ev
el

op
ed

by
th

e
U

ni
ve

rs
it

y
of

C
al

if
or

ni
a,

it
is

de
fi

ne
d

as
a

se
t

of
X

M
L

sc
he

m
as

.

A
ca

de
m

y
xm

l
Y

E
S

Y
E

S
Y

E
S

E
xt

en
si

bi
li

ty
an

d
fl

ex
ib

il
it

y
X

M
L

sc
he

m
as

do
no

t
pr

ov
id

e
fa

ci
li

ti
es

to
de

fi
ne

th
e

se
m

an
ti

cs
of

in
di

vi
du

al
el

em
en

ts
.

20
21

2.3. Formal Methods, Techniques, and Tools 41

2.3.2 Formal Methods for Specification

At the heart of FM one finds the notion of specification. A specification is a
model of a system that contains a description of its desired behavior: what is to
be implemented (by opposition to how). The definition of a specification and
the analysis of its behavior may be carried out formally. A specification essen-
tially describes the manipulated data and how they evolve, i.e., the operations
that transform them. Sommerville [49] divided specification styles for complex
systems in model-based and algebraic approaches. The two main approaches
to formal specification differ on the focus given to these two aspects:

• The behavior of the modelled system can be expressed by focusing on
its operations, available mechanisms (services), or actions that can be
performed. In this view the key element is a clear definition of the
modifications or changes performed by each operation on the internal
state of the modelled system. Such specification languages are referred
to as state-based or model-based specification languages.

• On the other hand, the behavior of the target system can be expressed
by focusing on the manipulated data, how they evolve, or the way in
which they are related. This class of specifications includes algebraic
specifications, sometimes also known as axiomatic specifications.

For a model-based specification, a system is defined in terms of mathematical
entities (e.g., sets, relations, sequences), giving the explicit specification of
abstract machines. Operations are defined in terms of abstract states and how
they affect those entities. The algebraic style specifies abstract data types
in terms of axioms defining relationships between its operations (this style is
sometimes also denoted as property-oriented specification).

2.3.3 Formal Methods for Verification

Rather than simply constructing specifications and models, one is interested
in proving properties about them. We are in the realm of formal verification.
Proving properties about specifications presupposes the use of some logical
system.

42 Chapter 2. Background Notions

Table 2.4: Truth table

INPUT OUTPUT
x y NOT (¬x) OR (x ∨ y) AND (x ∧ y)
0 0 1 0 0
0 1 1 0
1 0 0 1 0
1 1 1 1

Hints of Boolean Algebra

Boolean algebra was introduced in 1938 by Shannon to deal with problems
that had arisen in the design of relay switching circuits. It allows the concise
description and manipulation of binary variables. Variables in Boolean algebra
may assume only one of two possible values. Boolean algebra operates with
three functional operators (aka logical connectives): "NOT", "OR", and "AND".
These building blocks are comparable to taking the negative, adding, and
multiplying in ordinary algebra. The possible input and output combinations
can be arranged in tabular form, called a Truth Table (see Table 2.4). Boolean
formulae are built over:

• the two constants 0 (false) and 1 (true)

• a denumerable set of variables

• the logical connectives NOT, OR, and AND

A literal is either a boolean variable v or its negation ¬v. If v is a positive
literal, ¬v is a negative literal; they are opposite. The opposite of a literal v is
¬v, and ¬(¬v) = v. A product is a set of literals that does not contain both
a literal and its opposite. A product is assimilated with the conjunction of its
elements. The order of a product π is the number of its literals and is denoted
by |π. An assignment over υ is any mapping from υ to {0,1}. Let F and G

be two formulas. If any assignment satisfying F satisfies G as well, then F

implies G , which is denoted by |=.

Canonical form Let be V a finite set of variables. A product that contains
a literal built over each variable of V is a minterm of V , i.e., it is a product
(AND) of the n variables in which each variable is complemented if the value
assigned to it is 0, and uncomplemented if it is 1. Any boolean function can be
expressed as a sum (OR) of its 1-minterms. Dually, a maxterm is a sum (OR)

2.3. Formal Methods, Techniques, and Tools 43

of the n variables (literals) in which each variable is complemented if the value
assigned to it is 1, and uncomplemented if it is 0. Any boolean function that
is expressed as a product of maxterms, aka CNF, or as a sum of minterms, aka
Disjunctive Normal Form (DNF), is said to be in its canonical form. It is often
convenient to consider boolean formulas as sets of minterms and therefore to
consider logical operations as set operations. The formula ¬F corresponds to
the complement of the set of minterms that corresponds to F . The formulas
F ∧ G and F ∨ G correspond to the intersection and the union, respectively, of
the sets of minterms that correspond to F and G. A formula F is monotone if
for any minterm ¬v ∧ π that satisfies F , the minterm v ∧ π satisfies F as well.

Standard form Canonical form means that each term of boolean functions
contains all input variables either in true form or complemented form. But
each term may have any number of variables. A boolean function is in its
standard form if there exists at least one term that does not contain all vari-
ables. Standard forms require fewer operators than canonical forms. The
standard expressions are in either:

• Sum of Products (SOP) form: expressions that contain AND terms,
called product terms or implicants. E.g., F = xy + ¬xyz + x¬y.

• Product of Sums (POS): expressions that contain OR terms, called sum
terms or implicates. E.g., F = (¬x + ¬xy)(x + ¬y + ¬z)(¬x + y + ¬z).

There can be several different sums of products and products of sums for a
given function, i.e., they are not unique. When each product term in a sum
of products form cannot be reduced any further, it is called Prime Implicant.
Dually, when each sum term in a product of sums form cannot be reduced any
further, it is called Prime implicates.

Logic in a Nutshell

Whichever method is used, proving properties about specifications presupposes
the use of some logical system. Logic can be described as the study of the
principles of reasoning. We are interested in doing this formally, so that the
arguments are valid and can be defended rigorously. Symbolic logic is the
branch of mathematics devoted to formal logic, i.e., to the study of logical
languages, their semantics, their proof theory, and the way in which these are
related. A logic consists of:

44 Chapter 2. Background Notions

• A logical language in which sentences are expressed. A logical language
is a formal language having a precise, syntactic characterization of well-
formed sentences. A logical language consists of logical symbols, char-
acterized by having a fixed interpretation, and non-logical ones, whose
interpretations are not fixed. These symbols are combined together to
compose well-formed formulae.

• A semantics that differentiates valid sentences from refutable ones. The
semantics is defined in terms of the truth values of sentences. This
is done using an interpretation function that assigns meaning to the
basic components, given some domain of objects that our reasoning is
concerned with.

• An inference system (or proof system) that supports the formalization
of arguments justifying the validity of sentences. The inference system is
composed of a set of axioms (sentences of the logic that are accepted as
true) and inference rules (that give ways of deriving the right conclusions
from a given set of premises).

Three well-known logics are the following:

• Propositional logic (also known as the propositional calculus) is the
simplest logic available. The formulae of propositional logic are built
from atomic propositions, which are sentences with no internal structure
and which one can classify as being "true" or "false". Propositions are
declarative sentences such as "Antonio is the father of Romuald" or "3
< 5". Propositions are combined using Boolean operators that capture
notions like "not", "and", "or", "implies", etc. Propositional logic is the
study of the way in which the truth of one statement affects that of an-
other. However, the expressiveness of propositional logic is very limited.
For instance, let us try to describe the logical content of the following
sentence:

For all numbers x and y, if x is greater equal zero and y is greater equal
zero, then x times y is zero or not less than x.

In propositional logic, we can write the following formula:

a ∧ b =⇒ c ∨ ¬d

2.3. Formal Methods, Techniques, and Tools 45

where we use the propositional variables a, b, c, and d as abstractions
of the sentences “x is greater equal zero”, “y is greater equal zero”, “x
times y is zero”, and “x times y is less than x”, respectively. But we
completely ignore the sentence “for all numbers x and y”. While the
original sentence is true for arbitrary numbers x and y, the formula can
be true or false, depending on the truth values of the propositional vari-
ables. This is because the formula does not describe the content of the
sentence. More in general, we cannot use propositional logic to reason
about propositions that obey laws (such as arithmetic laws) that go be-
yond the logical inference system. Propositional logic is not expressive
enough to talk about concrete objects like numbers, their relationships,
and the fact whether a sentence is true for all or just for just some objects
of a domain.

• First-order predicate logic, also called First-order predicate logic (FOL)
or predicate logic, is a richer logic than propositional logic. In addition
to the symbols of propositional logic, it contains elements that allow us
to reason about individuals of a given domain of discourse. These include
functions, predicates, and quantification over individuals, dealing with
the notions of "there exists" and "for all". There are two sorts of things
involved in a FOL formula: terms, which denote objects; and formulae,
which are interpreted as truth values. FOL is also known as the predicate
calculus in the sense that it is a calculus for reasoning about predicates
such as "x is the father of y" or "x < x + 1". While propositions are
either true or false, predicates evaluate to true or false depending on
the values given to their parameters (x and y in the previous examples).
Quantification over individuals makes possible to express concepts such
as "every person has a father". A term can be one of the following:

– A variable v: to a variable we may assign varying objects.

– A constant c: to a constant we assign a fixed object.

– A function application f : the application of a function symbol f
with arity n ≥ 1 to a sequence of n terms t1; . . . ; tn. Such a function
symbol denotes an n-ary function that, when applied to n objects,
returns another such object.

Apart from the constructions already present in propositional logic, a
formula can be one of the following entities:

46 Chapter 2. Background Notions

– An atomic predicate p: the application of a predicate symbol p with
arity n ≥ 1 to a sequence of n terms t1; . . . ; tn. Such a predicate
symbol denotes an n-ary predicate that, when applied to n objects,
returns "true" or "false".

– A universally quantified formula (∀v : F): you read "for all (possible
objects assigned to) v, F is true", with the universal quantifier "for
all" (∀) applied to a variable v and a formula F.

– A existentially quantified formula (∃v : F): you read "there exists
some (possible objects assigned to) v, for which F is true", with
the existential quantifier "exists" (∃) applied to a variable v and a
formula F.

Please note that the difference between a function and a predicate is that
the application of a function returns an object, while the application of
a predicate returns a truth value. Now we are able to write the sentence
introduced in the previous paragraph:

For all numbers x and y, if x is greater equal zero and y is greater equal
zero, then x times y is zero or not less than x.

In FOL, we can write the formula as follows:

∀x : ∀y : greaterEqual(x, zero) ∧ greaterEqual(y, zero) =⇒
equal(times(x, y), zero) ∨ ¬lessThan(times(x, y), x)

where x and y are variables, zero is a constant, times is a binary function,
and greaterEqual, equal, and lessThan are binary predicates.

• High-order logic is distinguished from FOL in several ways. It has
both individual and relational variables, and both types of variables can
be quantified, so quantifiers may apply to variables standing for pred-
icates. Predicates can take as arguments both individual symbols and
predicate symbols (these are higher-order predicates). Concepts such as
"every property that holds for x also holds for y" can be naturally ex-
pressed in higher-order logic. First-order logic is more expressive than
propositional logic: it has more rules, that allow one to construct more
complex formulae. In turn, higher-order logic is more expressive than
FOL.

2.3. Formal Methods, Techniques, and Tools 47

• Temporal Logic In the examples we gave, the truth value of the state-
ments are static and cannot vary over time, i.e., they are always true
or always false. Consider the statement: "It is raining". Although the
meaning of this statement is stable over time, its truth value can vary,
sometimes it is true and sometimes it is false. Time can be considered as
an object of discourse, making statements depend on a time variable, but
the result is very clumsy. "Temporal logics" is used to refer to logics that
implicitly include a notion of time, providing a way to represent temporal
information in the logical framework. In temporal logics the truth of a
formula is not fixed in the semantics but depends on the point in time in
which it is considered. Temporal logics have two kinds of operators: the
usual logical connectives (such as "not", "and" or "implies") and temporal
connectives (such as "eventually", "always" or "until"), allowing one to
express statements like "It will eventually rain". There exist many differ-
ent sorts of temporal logics. Concerning the way time is viewed, they are
classified as linear-time when time is represented by a sequence of time
instants, referred to as Linear Temporal Logic (LTL), or branching-time,
when time is viewed as a tree of time instants, having the present in-
stant as root, and with each branch corresponding to one possible future
evolution, referred to as Computation tree logic (CTL). Temporal logics
have found important applications in FM and in modeling behavioral
aspects.

Proof Tools

We can arrange proof tools in two families, presented below, which reflect the
trade-off between expressiveness and automation.

• Automated Theorem Provers Theorem proving uses mathematical
logic to formulate a theorem about the correctness of a design using first-
order logic, then a general purpose theorem-prover is used to construct
the proof. This step is automatic, once the proof engine has been ade-
quately parameterized. Unlike model checkers (covered below), theorem
provers may be able to employ techniques that allow for reasoning. Sec-
ond and higher-order logics are more expressive, and thus can be used
to model more complex systems. However, user interaction is required
to guide the proof tools. Hence, the disadvantage of theorem proving is
that it cannot be fully automated.

48 Chapter 2. Background Notions

• Proof Assistants employ highly expressive (and thus undecidable) un-
derlying logics, such as higher-order logic, as many properties need its
power and elegance to be adequately expressed and proved. Proof assis-
tants typically combine the following two modules:

– a proof-checker, responsible for verifying the well-formedness of the
theories defined in the modeling process, and for checking the cor-
rectness of proofs;

– an interactive proof development system, to help users developing
proofs. When the construction of a proof is finished, a proof script
can be stored, describing that construction.

In most proof assistants, proofs are interactively constructed by applying
high-level proof-manipulation functions, usually known as tactics. Each
tactic encodes a proof step. A proof of a property ϕ is established by
applying (in an appropriate order and with the right parameters) a set
of tactics, in order to construct a proof tree linking axioms and theorems
to the conclusion ϕ.

Model Checking

Model checking is a technique for the verification of finite-state (concurrent)
systems (typically modelled by automata). It is one of the most widely used
families of FM tools. The idea of model checking is that the expected proper-
ties of the model are expressed by formulae of a temporal logic, and efficient
symbolic algorithms are used to traverse the model in its entirety, so as to
verify if all possible configurations validate those properties. The set of all
states is called state space of the model. When a system possesses a finite
state space, model-checking algorithms may in theory be used to realize the
automatic demonstration of properties. If a property is not valid, a coun-
terexample is exhibited. A serious drawback of this approach is state space
explosion: the transition graph typically grows exponentially on the size of
the system, with the immediate consequence that no matter how efficient the
checking algorithms are, the exploration of the state space eventually becomes
impracticable. Different techniques have been proposed that try to solve this
problem. Abstraction is one such technique: a simplified version of the model is
proposed, called an abstract model, whose state space may be explored within
reasonable time. A major breakthrough was enabled by the introduction of

2.3. Formal Methods, Techniques, and Tools 49

symbolic model checking [50]: the basic idea is to manipulate sets of states and
transitions, using a logical formalism to represent the characteristic functions
of such sets. Since a small logical formula may admit a large number of mod-
els, this results in many practical cases in a very compact representation which
can be effectively manipulated.

2.3.4 Formal Methods for Implementation

FM can be also employed to guarantee that an implementation has the same
behavior as the specification. The problem we want to address is the follow-
ing: given a specification that enjoys the desired properties, how to obtain an
implementation whose behavior matches the specification? The solutions fit
in two categories:

• either the specification is itself a program that can be directly executed,
or

• an implementation is produced from the specification, in which case the
problem of the correctness of derivations must be dealt with.

One approach for dealing with this problem focuses on the derivation mecha-
nisms, which can be restricted in appropriate ways, to ensure that the derived
code satisfies the properties of the original specification. The second approach
is to make the (not necessarily correct) derivation process generate a set of
proof obligations such that, if all these obligations can be proved, this guar-
antees the correctness of the implementation with respect to the specification.
Both these approaches are sometimes referred to as correct-by-construction
software development.

2.3.5 How to Choose a Formal Method

Due to recent trends, there is a huge number of FM, languages, and available
tools, each developed for a particular domain and purpose. Currently, there are
more than 100 different FM listed on the de-facto FM repository at the World
Wide Web Virtual Library on FM [51]. This is a de-facto database of anything
relating to FM, with entries mostly from the USA and Europe. FM are in
different stages of development, in a wide spectrum from formal languages with
no tool support, to internationally standardized languages with tool support
and industrial users. The field of FM is evolving rapidly, making inroads

50 Chapter 2. Background Notions

into industrial practice. Companies that have safety, security, compliance to
(often international) standards, certification, or product quality in mind are
interested in FM. Which formal method is most suitable for a specific project
is dependent on the kind of system and the kind of properties to be proved.

System classification

According to Schneider [8], systems can be classified as follows, based on their
architecture:

• Asynchronous or synchronous hardware

• Analogue or digital hardware

• Mono- or multi-processor systems

• Imperative/functional/logic-based/object-oriented software

• Multi-threaded or sequential software

• Conventional or real-time operating systems

• ES or local systems or distributed systems

As specific architectures such as the ones given above are dedicated to specific
tasks, it is clear that one formal method will be more or less suited than the
other. The author discusses some of the distinguishing characteristics of these
systems and what FM are most appropriate for them. For example, multi-
threaded software might require the implementation of complex control tasks
and therefore requires a high-level description language. In sequential systems
one could use logic-based languages and functional languages. Furthermore,
also based on Schneider work [8], systems can be classified based on the type
of interaction:

• Transformational systems. Systems that read some input data and pro-
duce output. As the output is produced at termination, these systems
should always terminate. A compiler is an example of such a system.

• Interactive systems. Systems that continuously run and interact with the
environment. When the environment gives an action, the system replies
with a reaction. The environment has to wait until the system is ready
for new actions.

2.3. Formal Methods, Techniques, and Tools 51

• Reactive systems. Similar to interactive systems, only that the environ-
ment can freely decide when to start new actions. Therefore the system
has to react to a given action before the next action comes. This kind of
system falls under the real-time systems category.

Considering this last classification, it is reactive systems that are the most
challenging to implement.

System properties

Many formalisms can be classified by which system properties they can express.
A taxonomy of properties is given next, based on Schneider work [8], without
taking a specific formalism into account.

• Safety properties state that for all computations of the system, and for
all instances of time, some property will invariantly hold, i.e: "something
bad will never happen".

• Liveness properties state that some desired state of the system can even-
tually be reached, i.e: "something good will eventually happen".

• Fairness properties state that some property will infinitely often hold,
i.e: "some property will infinitely often hold".

• Persistence properties are related to the stabilization of certain proper-
ties, i.e: "stabilization of certain properties". In general, a persistence
property describes that for all possible computations, there is a point of
time when a certain property will always hold.

Summary

As can be seen, a plethora of formalisms has been proposed. They have both
advantages and disadvantages. Hence, the complexity of the decision proce-
dures should be taken with care as an argument for or against a formalism.
Anyway, it is important to have different ways to specify a particular property
because one can be more suited than the other, and you can emply whichever
one best suits the problem.

52 Chapter 2. Background Notions

2.4 System Optimization

Many combinatorial satisfiability and optimization problems can be formulated
as a Constraint Satisfaction Problem (CSP) [52]: the problem is to find a vari-
able assignment to all variables that satisfies all hard constraints and at the
same time optimizes a global cost function for the soft constraints. Such an op-
timization problem is sometimes also called Constraint Optimization Problem
(COP) [53]. Optimization problems can be classified based on:

• The type of constraints: unconstrained or constrained.

• Nature of the equations involved: linear or non-linear.

• Admissible value of the decision variables: discrete or continuous.

• Deterministic nature of the variables: deterministic or stochastic.

• Number of objective functions: single-objective or multi-objectives.

Below we give a brief overview over different technologies in problem opti-
mization, discriminating against the number of objective functions.

2.4.1 Single-objective Optimization

A COP is essentially an optimization problem that consists of discrete deci-
sion variables and finite domain search [54]. In the following we focus on the
techniques used for solving single-objective COPs.

Branch and Bound

Branch and bound [55] is an exact algorithm that is used to solve optimization
problems to retrieve globally optimum solution. The design space is explored
by building a tree, where the root of the tree represents the problem and the leaf
nodes represent solutions to the problem. Internal nodes of the tree represent
sub-problems, such that the size of the sub-problem reduces as we move from
the root to the leaf. The tree is dynamically construct by iteratively branching
and pruning. The branching strategy divides the problem into two mutually
exclusive sub-problems that can in turn be divided into smaller sub-problems.
Many branching strategies can be applied such as breadth-first, depth-first and
best-first. The pruning strategy is used to prune out sub-problems that will
not lead to optimal solutions. This is done by computing a lower bound of the

2.4. System Optimization 53

sub-problems. If the lower bound is greater than the best solution so far then
the sub-problem can be pruned out. This method has been used to solve – for
instance - scheduling problems [56]. Branch and bound algorithms have been
used to solve single-objective optimization problems formulated as a CSP or a
linear program.

Mathematical Programming

Mathematical Programming [57] facilitates the modeling and solution of a
broad class of COPs. A commonly used model in mathematical programming
is the Linear Programming (LP). A linear program is an optimization problem
that seeks to minimize a cost function subject to a set of linear constraints. A
linear program in its standard form can be formulated as:

Minimize: cT x

Subject to: Ax ≤ b

x ≥ 0

(2.1)

where A is a matrix, and c, b are vectors of known coefficients. A, c and b are
given and x represents a vector of decision variable whose value is to be deter-
mined. The objective function that combines the different variables to express
a goal has to be maximized or minimized. LP has proved efficient in solving
a variety of exploration problems like scheduling [58] and hardware-software
co-design [59]. An Integer Linear Programming (ILP) extends the concepts of
linear programming by adding integrality constraints to the linear programs.
A Mixed Integer Linear Programming (MILP) relaxes the integrality constraint
of ILP and can have variables that have one or more variables which take real
values. For instance, MILP has been used for modeling hardware/software
partitioning [59], network design [60], real-time scheduling [61], electric power
systems [62], and wireless networks [63]. The following search methods have
been used for solving LP models:

• Simplex Method [64] is the most popular solution technique for solving
linear programs developed in 1947. However, Simplex method has an
exponential time complexity. Karmakar’s projective scaling method [65]
is a polynomial time algorithm for solving linear programs.

54 Chapter 2. Background Notions

• Branch and bound [55] is used in combination with linear relaxations to
solve ILP’s. Using branch and bound an ILP solver decomposes the prob-
lem into smaller sub-problems recursively. The integrality constraints are
replaced with lower and upper bounds on the variables, thus transfor-
mation it into an LP problem. The bound obtained by LP relaxation
is used to discard sub-problems that have a bound than the best known
solution.

• Metaheuristics: Local Search (LS) algorithms have been used to solve
large instances of ILP problems [66].

Local Search

LS algorithms are one of the most widely and successfully applied approximate
algorithms. A LS algorithm starts with a given solution of the problem and
iteratively tries to find a better solution in the neighborhood of the current
solution. In case a better solution is found it replaces the current solution.
This step is iteratively performed until no better solution can be found in
the neighborhood. The disadvantage of using the LS algorithm is that it
can get stuck at a local minima. In order to overcome this drawback several
improvements have been proposed. One approach is to restart LS from a new,
randomly selected solution. This approach is applied in Iterated Local Search
(ILS) [67] and Greedy Randomized Adaptive Search Procedure (GRASP) [68].
Another possible approach is to accept worse solutions, thus escaping the local
optima. This approach is applied in Simulated Annealing (SA) [69] and Tabu
Search (TS) [70]. Kirkpatrick [71] applied the annealing concept from physics
to solving COPs. Annealing is based on the principle of mechanics whereby a
substance is heated and then slowly cooled to get a strong crystalline structure.
If the substance is not heated to the right temperature or the cooling is too
quick then the process, then the resulting solid is weak and brittle. Thus, it is
imperative that the cooling is done at the right rate.

• SA algorithm simulates the energy changes in the system till it converges
to an equilibrium state. The optimization problem is analogous to the
system, where the system state represents a solution and the energy of
the system represents the objective function. Starting from an initial
solution, SA incorporates significant randomization while traversing the

2.4. System Optimization 55

state space. In each iteration a random neighbor is selected. If the ob-
jective value of the neighbor is better the move is always accepted. If
not, then the move is accepted with a probability that is a function of
the current temperature (a control parameter) and the difference in the
objective value. Initially the temperature is high and the probability of
accepting non improving solutions is also high, but as the simulated tem-
perature decreases according to the cooling schedule, fewer such moves
are accepted. The search stops after stopping condition is met, typically
when the probability becomes negligible or the temperature reaches a
certain threshold. Different versions of SA have been used for design
space exploration, for example Gupta and Bic used a parallelized SA
algorithm [72], where a number of instances of the algorithm are run in
parallel.

• TS algorithm [70], like SA, also accepts non-improving solutions to es-
cape from the local optima. In contrast to random moves used in SA,
the neighborhood is explored in a deterministic manner in TS. Like the
basic LS algorithm, a better neighbor replaces the current solution, but
the search continues even after reaching the local optima by accepting
non-improving solutions. This can lead to cycles if the solution accepted
has been previously traversed. TS avoids cycles by maintaining a list of
recently visited solutions/moves (tabu list) and discards all those neigh-
bors present in the list. TS also uses certain conditions, called aspiration
criteria to accept tabu moves if it generates a better solution among the
set of solutions possessing a given attribute. Advanced techniques like
medium-term memory and long-term memories are commonly used to
handle intensification and diversification of the search. TS has also been
used for DSE of ES [73].

Compared to multi-objective optimization, single-objective optimization
problems are easier to solve because of the total ordering of the solutions in the
search space. In general exact techniques perform better for tightly constrained
problems, while approximate algorithms perform better for unconstrained op-
timization problems. However, approximate techniques are mostly used when
exact techniques are unable to provide solution in acceptable amount of time.
This is true for large instances of COPs. The approximate algorithms are gen-
erally used where reasonably good solutions obtained in polynomial time are
preferred over globally optimum solutions.

56 Chapter 2. Background Notions

2.4.2 Multi-objective Optimization

Problems involving multiple conflicting objectives that have to be consid-
ered simultaneously are generally known as Multiple Criteria Decision Mak-
ing (MCDM) problems. The design of those systems is challenging because
engineers have to deal with a large number of non-functional or quality re-
quirements such as safety, availability, reliability, maintainability and tempo-
ral correctness requirements. One major difficulty is that these non-functional
requirements conflict with one another. To construct a system that fulfils all
its quality requirements is often not possible. As a consequence, system engi-
neers have to consider several design alternatives and identify a solution that
fulfills most quality objectives. This process is called trade-off analysis. It
is a cost and skill intensive task whose intention is to find a set of architec-
ture specifications that solve a MOOP, where the objectives represent different
quality attributes. The method involved in the decision process could be (see
Figure 2.20):

• Exact: essentially combine the multiple objectives into one single objec-
tive. Well known exact methods are weighted sum scalarization, com-
promise solution, goal programming, branch and bound.

• Approximation: heuristics that seek near-optimal solutions at a rea-
sonable cost and meta-heuristics that guide and modify the operation of
subordinate heuristics by combining intelligently different concepts for
exploring and exploiting the search space. Approximation methods in-
clude, but are not limited to, Constraint LP, Genetic Algorithms (GA),
Evolutionary Algorithms (EA), Neural Network (NN), SA, TS, GRASP,
LS.

In the context of MOOPs, it is usual to distinguish the methods following
the role of the Decision Maker (DM) in the resolution process. The DM is a
person who is assumed to know the problem considered and be able to provide
preference information related to the objectives and/or different solutions in
some form. Information provided by the decision maker often concerns his
preferences. Miettinen [74] groups methods in non-interactive and interactive
classes. Non-interactive methods are those where either no DM takes part in
the solution process or (s)he expresses preference relations before or after the
process. In a priori mode DM first articulates preference information and aspi-
rations and then the solution process tries to find an optimal solution satisfying

2.4. System Optimization 57

Figure 2.20: Resolution methods of MOOPs

them as well as possible. This is a straightforward approach but the difficulty is
that the DM does not necessarily know the possibilities and limitations of the
problem beforehand and may have too optimistic or pessimistic expectations.
In a posteriori methods, a representation of the set of optimal solutions is first
generated and then the DM is supposed to select the most preferred one among
them. This approach gives the DM an overview of different solutions available
but if there are more than two objectives in the problem, it may be difficult
for the DM to analyze the large amount of information. Sometimes, there is
no DM and in those cases we must use so-called no-preference methods. In
interactive approaches, an iterative solution algorithm (which can be called a
solution pattern) is formed and repeated (typically several times). After each
iteration, some information is given to the DM and (s)he is asked to specify
preference information (in the form that the method in question can utilize).

Linear Programming

Coming from classical Operations Research domain, LP creates quantitative
models to support decisions for advanced optimization problems. Many prac-
tical problems can be expressed as LP problems. Although the number of
possible decisions is vast, the theory behind LP drastically reduces the num-
ber of possible solutions that must be checked. More in details, LP problems

58 Chapter 2. Background Notions

can be classified as follows:

• LP: it is a technique for the optimization of a linear objective function,
subject to linear equality and linear inequality constraints (e.g., solved by
Simplex [75]). Special cases exist, like stochastic linear programming [76].

• ILP (integer LP): the objective function and the constraints are linear
(e.g., Branch and Bound [77]).

• MILP (mixed ILP): some decision variables are not discrete [78]

• Multi-Objective Pseudo-Boolean ILP (MO PB-ILP): the ILP problem
has binary variables and multiple conflicting objectives [79]

Meta-heuristic Search Algorithms

A meta-heuristic is to automatically determine an appropriate heuristic to
find a non-optimal, but sufficiently good solution for a given search problem,
also usable to heuristically solve an optimization problem. References on the
theory and applications of meta-heuristics can be found in literature [80], [81].
The benefit prior to an exact optimal algorithm is that the computational
complexity is reduced, such the search can be performed more efficient in less
time. This is especially relevant for NP-hard problems. Examples are:

• SA [71] is a probabilistic technique to approximate a global optimum in
large search spaces. Inspired by the technique of annealing in metallurgy
(applying slow cooling), SA algorithms slowly decrease the probability
of accepting worse solutions, while exploring the solution space. Local
optima can be forsaken in order to find other better optima.

• TS [82], [83] guides a local heuristic neighborhood search procedure to
explore solutions beyond a local optimum, by using a so called tabu list.
Hence, TS is able to cross boundaries of feasibility or local optimality.

• EA, [84], also used for multi-objective optimization [85], for instance
implemented in the Multi-Objective Evolutionary Algorithms (MOEA)
Framework. GA [86] belongs to the larger class EA.

• Swarm intelligence approaches, like:

2.4. System Optimization 59

Particle Swarm Optimization (PSO) [87]: a concept for the opti-
mization of continuous non-linear functions, having ties to both GA and
EA.

Ant Colony Optimization (ACO) [88]: a probabilistic technique, in-
spired by the behavior of real ants, which can be reduced to finding good
paths through graphs.

Metaheuristics can be further distinguished into algorithms applying:

• Local (neighborhood) search strategies (e.g., TS and

• Global search strategies (e.g., GA and PSO.

• Combination of both: the SA approach mediates between local and
global search.

Answer Set Programming

Answer set programming (ASP) describes a problem as a logic program, a set of
axioms, and a goal statement, under the answer set (stable model) semantics of
logic programming [89] in such a way that the models of the program (answer
sets) correspond to the solutions of the problem [90].

Satisfiability

SATisfiability (SAT) [91] is the problem of determining if a formula expressing
a constraint has a model (i.e. a solution). Given a propositional formula on
a set of Boolean variables, a SATisfiability (SAT) solver determines if there
exists an assignment of the variables such that the formula evaluates to "true"
or proves that no such assignment exists. A large number of problems can
be described in terms of satisfiability, including planning, scheduling, software
and hardware verification, and optimization. Many of these problems can be
encoded by boolean formulas and solved using Boolean SAT solvers.

Satisfiability Modulo Theories

Other problems require the added expressiveness of equality, uninterpreted
function symbols, arithmetic, arrays, datatype operations, and quantifiers.
Such problems can be handled by solvers for theory satisfiability or Satisfi-
ability Modulo Theories (SMT) [92]. SMT is the problem of deciding the satis-
fiability of Boolean combinations of propositional atoms and theory atoms [93].

60 Chapter 2. Background Notions

SMT can be seen therefore as an extension of SAT in which the input formula
is expressed in (a subset of) FOL (typically without quantifiers) with respect
to a background theory. Examples of useful theories are Equality and unin-
terpreted functions (EUF), difference logic and linear arithmetic (either over
the reals or the integers), the theory of arrays, and bit vectors, as well as
combinations of those theories. Implementations are, for instance, MathSAT,
Yices, Z3 and CVC4. The dominating approach for SMT, which underlies
most state-of-the-art tools, is based on the integration of a SAT solver and
one or more domain-specific solvers for the background theories. The SAT
solver enumerates truth assignments that satisfy the Boolean abstraction of
the input formula, where distinct theory-specific subformulas are represent-
ed/abstracted by distinct Boolean atoms, whilst the domain-specific solvers
check the consistency in the respective background theory of the set of literals
corresponding to the assignments enumerated. This approach is called lazy, in
contraposition to the eager approach, consisting in encoding an SMT formula
into an equivalently satisfiable boolean formula, and on solving the result with
a SAT solver.

Optimization Modulo Theories

Optimization Modulo Theories (OMT) is an extension of SMT useful if we
are interested in finding not just an arbitrary satisfying assignment, but one
that optimizes (minimizes/maximizes) certain criteria, i.e. that is optimal wrt.
some objective functions. They allows for finding models that make a given
objective optimum through a combination of SMT and optimization proce-
dures [94], [95], [96], [97], [98]. Multiple objectives can be handled as indepen-
dent box objectives or through their linear, min-max/max-min, lexicographic
or Pareto fronts combination [97], [98].

2.4.3 Approaches to Design Space Exploration

Embedded systems my have competing design objectives. Therefore the ar-
chitectures must be configured to meet varied requirements and, in general,
multiple design objectives. In MOOPs, it is characteristic that no unique solu-
tion exists but a well-chosen set of mathematically equally good solutions can
be identified. These solutions that best explores the trade-offs are known as
non-dominated or Pareto optimal solutions. The methods and tools applied to

2.4. System Optimization 61

the estimation of non-functional properties very much depend on the partic-
ular abstraction layer and the design objectives. At system level, estimation
is particularly difficult, the sub-components to be used are not designed yet
and the individual tasks of the application may not be fully specified. If only
a single objective needs to be taken into account in optimization, the design
points are totally ordered by their objective value. Therefore, there is a sin-
gle optimal design. If multiple objectives are involved, design points are only
partially ordered, i.e. there is a set of incomparable, optimal solutions. They
reflect the trade-offs in the design. Optimality in this case is usually defined
using the concept of Pareto-dominance: a design point dominates another one
if it is equal or better in all criteria and strictly better in at least one. In a set
of design points, those are called Pareto-optimal which are not dominated by
any other. Using this notion, available approaches to the exploration of design
spaces can be characterized as follows:

• Exploration by hand: the selection of design points is done by the de-
signer himself.

• Exact search: it is an exhaustive search, i.e., all design points in a spec-
ified region of the design parameters are evaluated. Well known exact
methods are the Simplex method [64], weighted sum scalarization [99],
branch and bound [55], and goal programming [100].

• Approximation: heuristics which seek near-optimal solutions at a rea-
sonable cost. New design points are typically generated based on the in-
formation gathered so far and by defining an appropriate neighborhood
function (variation operator). Approximation methods include, but are
not limited to, GA [86], EA [84], NN [101], and LS [66].

• Problem-dependent approaches: several possibilities have been investi-
gated so far, such as using parameter independence in order to prune the
design space [102], restricting the search to promising regions [103], and
composition of sub-component exploration [104].

Many of COPs, including those which we study, are NP-hard. Further-
more, adding more objectives makes the resolution even more difficult because
the number of Pareto solutions may grow exponentially. Hence, exact meth-
ods do not scale for these problems. Indeed, the focus is more on designing
algorithms that are able to find an approximation of the Pareto front, i.e. a

62 Chapter 2. Background Notions

reasonably small set of good representative solutions. Approximate methods
have been developed extensively since their inception in the early 1980s and
they have widespread success in attacking a variety of difficult COPs where
classical optimization methods have failed to be effective and efficient. As it
is not straightforward to measure the quality of a given technique in gener-
ating good approximations of the Pareto front, appropriate quality indicators
are needed. A quality indicator is a function that associates a quantitative
measure of goodness to each approximating set. Commonly used indicators
are the Epsilon Approximation and the Hypervolume. For non-deterministic
algorithms (i.e., they may return different outputs on different runs, thus it is
more relevant to compare the average performance), the Attainment function
method allows to compare the performance of two algorithms graphically. In
particular, MOEA have been successful in the DSE domain, but suffer from
similar problems as many others stochastic optimization strategies: in the pres-
ence of design spaces only containing few feasible solutions, they spend most of
their computing time in finding feasible solutions instead of optimizing feasi-
ble ones [105]. Techniques based on SAT solvers are a more recent alternative
approach to solve the problem of approximating the Pareto front, by telling
us whether there is an assignment of values to the decision variables thst sat-
isfies a set of constraints. The rise in efficiency of SMT solvers has produced
numerous uses for them in many areas of Computer Science and Engineering.
SMT solvers allow us to encode the problem as CSP. Specifically, since we
are interested in finding an optimal satisfying assignment, our problem can be
encoded as a COP.

Chapter 3

Related Work

In this chapter, we discuss existing related work. On the one hand, we focus
on related design and analysis approaches for FT systems. On the other hand,
we discuss synthesis approaches for optimized system design decisions, and
their verification. There is a considerable amount of research available in the
literature. In the following we discuss the most influential existing related
work.

3.1 Approaches to the Design and Analysis of
Fault-Tolerant Systems

A lot of research has been performed in the area of designing safety critical sys-
tems in a FT manner, for different domains, which encompass a large number
of systems, from medical systems, automobiles, airport management systems,
to Building Management Systems (BMS). Particularly, huge effort has been
spent in the avionics domain, for instance, to design dependable Fly-by-Wire
aircraft [106], or to design partitioning mechanisms to ensure fault containment
and avoid fault propagation between functions that share resources in the scope
of Integrated Modular Avionics (IMA) [107]. Also in the automotive domain,
system reliability is becoming increasingly important [108], especially in the

63

64 Chapter 3. Related Work

context of automated and autonomous driving [109], [110]. We can find case
studies also in the railway domain [111]. Thanks to large-scale connectivity, a
variety of functionalities are now feasible in CPS. Connectivity, however, also
means that CPS function in unreliable open environments, and consequently
resiliency to faults (reliability), malfunctions (safety), and attacks (security)
become imperative [112].

3.1.1 Design for Graceful Degradation

Embedded applications such as transportation systems, power distribution,
and telecommunication are moving toward highly distributed implementations.
As a result, traditional centralized approaches are being replaced by systems in
which many processors collaborate to provide system functionality, spreading
it across many nodes. While it may be that redundancy is the only way to
satisfy stringent reliability requirements for critical functions, not every func-
tion is critical. For example, losing some fuel economy is probably preferable
to a complete vehicle failure. Thus, there is room in many ES to implement
graceful degradation of functionality as a way to improve dependability for
non-critical functions. A gracefully degrading system is one in which faults are
masked and only manifest themselves in a reduced level of system functionality.
Design of gracefully degrading systems has traditionally been a very difficult
and error-prone task. General approaches to graceful degradation are typically
limited to re-implementation of the system for a number of pre-designated fall-
back configurations. Nace and Koopman [113], [114] presented an approach to
design gracefully degrading distributed ES separated into three steps. First,
they modeled a feature model containing the super-set of all features offered by
a product family. When designing a product out of the product family, those
features are selected that provide the desired functionality of the product.
A feature selection algorithm optimizes which features get picked to provide
which functionality. In the second step, software components were selected
that fulfilled the requirements of the features that were selected in the first
step. The selection was done out of a library of components. In the third step,
they calculated a feasible allocation (alias deployment) of the selected software
components to the micro-controllers of the system. This deployment was cal-
culated by using a bin-packing algorithm (many other algorithms could have
been chosen as well). They applied functional redundancy as FT technique.
Beside the calculation of deployments with redundancy in step three, the most

3.1. Approaches to the Design and Analysis of Fault-Tolerant Systems 65

related part to our work is a model about sequences of hardware failures. They
modeled hardware failure sequences as a lattice. Each vertex of the lattice rep-
resented a set of intact available hardware components (micro-controllers). It
is a lattice as multiple top level vertices exist, each representing a different
product of the product family. The more to the bottom of the lattice a vertex
is placed, the less hardware components were intact, and quite probably the
higher was the level of degradation of the system. The level of degradation
was quantified by a so called utility value. The utility is a numeric value that
represents the desirability of particular features. In order to minimize the level
of degradation, the design objective was to maximize the utility of the system
in the failure sequences, represented by the lattice vertices.

Shelton et al. [115], [116], [117] introduced an approach to analyze the
graceful degradation of component based systems. The intention was to build
implicit graceful degradation into systems, without specifying failure scenar-
ios a priori. They distinguished two criticality levels of components (critical
and non-critical), two states of components (working and failed), and two sig-
nificances of functional features (primary and auxiliary). They provided a
quantitative metric of the system’s ability to gracefully degrade, based on the
notion of utility of system elements. The utility of the whole system and its
sub-systems was calculated as non-linear utility function based on a Boolean
utility of atomic components. If an atomic component had a failure, its utility
was 0, else its utility was 1. The utility of the composed system elements
was calculated based on the utility of the composition sub-elements, according
to the utility function. During the analysis, they used a discrete event sim-
ulator to inject faults to evaluate the reaction of the system to these faults
and how the system gracefully degraded. They considered a fixed hardware
configuration and do not considered fault detection mechanisms.

Emberson and Bate [118], [119] introduced an approach for task allocation
supporting graceful degradation in distributed embedded real-time systems.
The authors reused the utility function of Shelton [117] improving and integrate
it into an optimization search function based on heuristic SA approach. The
aim was to analyze how many hot replicas were required to ensure a certain
utility function value in a fault scenario. In contrast to them, in our work we
assume a fixed amount of desired redundant instances, contained in a library
of FT patterns.

Trapp et al. [120] presented a framework for FT in safety critical automo-
tive systems, applying dynamic adaption as error handling technique. They

66 Chapter 3. Related Work

made use of already present implicit redundancy in vehicle designs. They men-
tioned that for instance in typical vehicle designs, the yaw rate of a vehicle
can be calculated in ten different ways without requiring any additional sen-
sor. However, the differently calculated yaw rates may have different qualities.
This means, if one sensor fails that delivers the yaw rate currently used by a
specific function, another source of yaw rate can be used, but the function that
uses the yaw rate then receives a less qualitative input value. To handle this,
the authors modeled functions with different degradation levels. As functions
contain software components, also the components have different degradation
levels (also called different configurations). Compared to their contribution,
in our work we introduce a more detailed formal model. In addition, we focus
on explicit redundancy.

Glaß et al. [121] tackled the design of gracefully degrading mixed critical
systems by focussing on a degradation-aware reliability analysis, also consider-
ing redundant deployments. The objective was to maximize the systems relia-
bility in different degradation modes, in which different levels of functionality
were provided based on the residual sets of intact resources. Instead of opti-
mizing the reliability in the degradation modes separately in a multi-objective
manner, they offered a single objective approach in which the designer could
assign weights to the different degradation modes to control how much the
modes influenced the objective. During design time, the degradation modes
were predefined and stored into BDDs. Critical tasks could be deployed to mul-
tiple execution units. In the model, for each degradation mode they marked
which resources were defect in the mode. During run-time, a dedicated reli-
able observer component was able to detect failures and uses the BDD data
to decide which task instances had to be activated or deactivated in which
execution unit in case of a resource failure. The idea behind this work was to
deactivate low critical tasks to provide opportunities to keep alive high critical
fail-operational tasks. They did not focus on how to detect failures, as it was
not explained how the observer component did this.

Penha et al. [122] introduced a meta-modeling approach to describe archi-
tectural patterns for fail-operational, gracefully degrading systems (as part of
the SafeAdapt Project). Different redundancy patterns and graceful degrada-
tion patterns were listed from literature. A so called Fail-Operational Graceful
Degradation (FOGD) pattern was introduced and incorporated into the pat-
tern meta-model library. However, they did not apply a metric to measure

3.1. Approaches to the Design and Analysis of Fault-Tolerant Systems 67

the degree of degradation that the systems experienced in different failure sce-
narios. Deployment (allocation) of software to hardware was mentioned as
possible future extension.

Kim et al. [123], [124] introduced a system architecture for dependable
autonomous vehicles, also supporting graceful degradation in failure scenarios,
by using redundancy mechanisms based on cold standby slaves, hot standby
slaves, and task re-executions. They considered that the graceful degradation
of vehicles should have been appropriately adjusted depending on different
situations. For instance, if a vision algorithm for pedestrian detection fails due
to a failure of a micro-controller, the reaction should be different when driving
on a highway, compared with driving in an urban area, as pedestrian are more
likely to be present in the latter case. To sum up, as type of degradation
they considered the reduction of the utilization, i.e., the ratio of Worst-Case
Execution Time (WCET) and period, of tasks on a processor by prolonging
the execution period of tasks. By this, tasks were executed less often, resulting
in a degradation of the quality of service. They called this adaptive resource
management.

Bozzano et al. [125] used Architecture Analysis and Design Language (AADL)
to model nominal and faulty behaviors of a system. AADL supports to model
different operating modes for model entities (like devices), as well as related
mode transitions. They used AADL to model degraded modes of operations
and specify mode transitions by mode transition guards and mode transition
effects. One focus of their work lied on a detailed specification of the opera-
tional behavior of components, particularly covering hybrid systems with con-
tinuous and discrete values. The authors introduced a dependability analysis
approach for AADL models comprising degraded modes. They also analyzed
the modeled system wrt. performance requirements by applying probabilistic
model checking techniques. In our work we focus more on synthesizing optimal
redundant architectures for different scenarios that may appear during system
run-time.

Becker [126] tackled the problem of automatic deployments of mixed crit-
ical software components. He synthesized valid redundant deployments by
setting up a formal system model with formal deployment constraints, ex-
pressed with linear arithmetic and logical formulas, enabling an automated
calculation of valid deployments that fulfill the constraints. He also calculated
communication channels between the software components, based on compo-
nent port specifications. He introduced kind of systems with mixed critical

68 Chapter 3. Related Work

and mixed reliable functional features, having different required levels of fail-
operationality, allowing to efficiently apply different levels of redundancy of
software components, considering constraints for valid types of redundancy.
In addition, he considered the graceful degradation of the system, failures of
hardware execution units, and failures of software components. To be able
to analyze the effect of failing hardware or software to the set of available
functional features, he formally described the relationship between functional
features and the software components, which realized these features. To decide
about explicit deactivations, he established a quantitative metric to estimate
the intrinsic value of software components in order to decide about the se-
quence in which components (and thereby features) should have been disabled
when the system was not able to provide the full set of functional features
anymore. He focused on an analysis on structural architecture level, without
doing a behavior analysis.

3.1.2 Design for Robustness

Hamann [127] introduced an iterative DSE approach with focus on system
robustness and performance. The author focused on the optimization of the
robustness of ES with respect to variations of system properties. To tackle
the computationally expensive analysis for inter-dependencies, he introduced
a scalable stochastic method, approximating system robustness in a multi-
criterion optimization problem. Redundancy or replication mechanisms are
not taken into account.

Grunske [128] tackled architecture trade-off analysis for conflicting qual-
ity requirements by using an EA and multi-objective optimization strategies,
based on architecture re-factorings. The approach aimed to reduce develop-
ment cost and improve the quality of the system design. As case study he
used a satellite system with robustness requirements and with redundancy
and fault detection mechanisms, but analyzed only a simplified architecture
without any redundancy. The benefit of using an EA was the scalability to be
able to handle large scale problems.

Mikic-Rakic et al. [129] presented an environment for a flexible and tai-
lorable specification, manipulation, visualization, and estimation of deploy-
ment architectures for large-scale distributed systems. They tackled the prob-
lem of deploying interacting software components to hosts. The objective

3.1. Approaches to the Design and Analysis of Fault-Tolerant Systems 69

was to find a deployment that maximizes the system’s availability. They de-
fined availability as the ratio of the number of successfully completed inter-
component interactions to the total number of attempted interactions over a
period of time. They investigated six algorithms tor increase availability by
calculating new deployments, named 1) exact, 2) unbiased stochastic, 3) biased
stochastic, 4) greedy, 5) clustering, 6) decentralized algorithm. Redundancy
or replication was not considered by their approach.

Junker [130] introduced an artifact model to express availability require-
ments. The behavior of the system was modeled based on the FOCUS the-
ory [131], enriched with availability metrics. Also a modeling guideline was
introduced about how to create the availability specific model artifacts. The
analysis was based on using the probabilistic model checker PRISM. Common
FT techniques for reliability and robustness was the efficient use of redundancy.
Various strategies and combinations of redundancy have been proposed. We
are going to analyze in detail those related works in the following (see Sec-
tion 3.3.2).

3.1.3 Design for Mixed Criticality

Saraswat et al. [132] enabled FT for mixed criticality multiprocessor systems
by employing dynamic task migrations between processors in case of perma-
nent processor faults. Mixed safety criticality was considered by distinguishing
tasks with requirements to survive transient processor faults, permanent pro-
cessor faults, or tasks with FT requirements. Also mixed time criticality was
considered, distinguishing soft and hard real-time deadlines and by using Ear-
liest Deadline First (EDF) scheduling for hard realtime tasks, and Constant
Bandwidth Server (CBS) scheduling for soft real-time tasks. The migration
decision was done dynamically at runtime in case of a detected permanent
processor fault, using a greedy-based online heuristic. In case of decreasing
resources due to permanent processor faults, performance degradation of soft
real-time tasks may appear. The objective was to maximize the performance
of soft real-time tasks by maximizing the probability that soft deadlines are
met. Transient processor faults were handled using checkpointing and rollback
recovery.

Baruah et al. [133] proposed a FM for representing mixed-criticality work-
loads in scheduling problems. In fact, many safety-critical ES are subject
to certification problems: some systems may be required to meet multiple

70 Chapter 3. Related Work

sets of certification requirements, from different certification authorities. The
authors argued that certification requirements in such systems give rise to
new resource allocation and scheduling problems, that cannot be satisfactorily
addressed using techniques from conventional scheduling theory. For this rea-
son, they presented new techniques (reservation-based scheduling and priority-
based scheduling) that can help with those problems.

Voss and Schätz [134] focused on a joint generation of schedules and deploy-
ment for mixed-criticality multicore architectures using shared memory. Their
approach computes task and message schedules that are optimized with respect
to a global discrete time base. As part of the solution, the approach generates
an optimized assignment of tasks to computation resources (cores) concerning
local memory constraints of cores and criticality constraints of tasks. The ap-
proach relies on a symbolic encoding scheme, based on a system model that
is derived from the system architecture. The scheduling problem is described
as a satisfiability problem using Boolean formulas and linear arithmetic con-
straints. A state-of-the-art SMT solver is used to compute the joint schedule
and deployment for such architectures. Thekkilakattil et al. [135] ensured FT
fixed priority scheduling of mixed criticality task-sets, having hard and soft
deadlines, by re-executions of faulty critical tasks by replicated alternate tasks
on different processing nodes, within the deadline of the original faulty task.
They provided hard real-time FT guarantees for critical tasks offline (at design
time), and ensure flexibility for non-critical tasks online (at runtime) by maxi-
mizing the resource utilization for non-critical tasks. They calculated the allo-
cation (alias deployment) of tasks to processing nodes (alias execution units),
and derived so called feasibility windows as well as scheduling attributes, like
priorities of tasks. They applied ILP to derive the scheduling attributes.

Tamas-Selicean [136] developed methods and tools for distributed mixed-
criticality real-time systems. He considered that the platform enforces separa-
tion by implementing partitioning mechanisms similar to IMA. He treated sep-
arately the optimizations at processor-level and at the communication network-
level. At the processor level, he was interested to determine the schedule ta-
bles and the decomposition of tasks into redundant lower criticality tasks, such
that all the applications were schedulable and the development and certifica-
tion costs were minimized. He proposed SA and TS meta-heuristics to solve
these optimization problems. At the communication network level, he was
interested in the design optimization of TTEthernet networks used to trans-
mit mixed-criticality messages. He proposed a TS-based metaheuristic for this

3.1. Approaches to the Design and Analysis of Fault-Tolerant Systems 71

optimization problem.
Xie et al. [137] developed a functional level scheduling algorithm called

D_MHEFT with a deadline-span-driven policy to achieve satisfactory system
performance and low Deadline missed ratio (DMR) of multiple distributed
mixed-criticality functions in heterogeneous distributed ES. The algorithm was
implemented by changing up or down the system’s criticality to achieve fair
scheduling of functions whose criticality levels were larger than or equal to
the system’s criticality. Moreover, it could provide certain design guidelines to
deadline certification in actual system design.

3.1.4 Design for Reconfiguration

Cansado et al. [138] introduced a formal design approach supporting structural
reconfiguration and behavioral adaptation in FT systems. They presented a
formal model of system configuration and reconfiguration contracts, based on
a Labeled Transition System (LTS). For instance, this allows at predefined
states to reconfigure a component by another one that implements a different
behavioral interface. However, they do not consider mixed-criticality systems
and do not tackle the deployment problem, and also redundancy or replication
mechanisms to ensure fail-operational architectures are not in their scope.

Becker et al. [139] proposed an approach for architectural online recon-
figuration in AUTomotive Open System ARchitecture (AUTOSAR) based au-
tomotive systems, to tackle robustness and flexibility in case of failures of
system elements (like sensors). Reconfiguration models are added to typically
fixed AUTOSAR models, to describe for instance alternatives for connectors
between software components. To manage the connector reconfigurations at
runtime in a fixed AUTOSAR architecture, a software component named "Re-
configuration" is added to the architecture and the modeled alternatives are
transformed back into a merged architecture. The Reconfiguration component
has all alternative connectors as input and internally routes the signals appro-
priately to the outputs. However, addition or removal of software components
is not possible. Furthermore, they did not tackle mixed-criticality systems,
redundant deployments of components, and did not apply an automatic syn-
thesis.

There had been a lot of research about dynamic software architectures:
the idea is to describe possible architectural evolution in the design phase, like
addition or removal of components, ports or communication channels, that

72 Chapter 3. Related Work

are allowed to appear during runtime. As a consequence, there had been a
corresponding growth of dynamic ADLs. Surveys and classifications over the
different approaches are available [140], [141], [142], [143].

Another approach to describe architectural runtime reconfigurations are
dynamic Software Product Line (SPL) [144]. SPLs describe a set of product
variants that can be created from a common product line, based on reuse of
components and specifying which components differ between product variants
instantiated from a product line. The functional features of a product line,
as well as the possible reconfigurations of the feature set when switching be-
tween product variants, can be designed for instance in a dynamic feature
model [145]. Orthogonal Variability Models (OVM) [146]) and the Variability
Modeling Language (VML) [147]) are other notations to model product line
variability. In classical static SPLs, the variant decision is done at design time
and the corresponding software architecture is fixed and does not change at
runtime. In dynamic SPLs, switches between product variants are possible
at runtime, performed by reconfigurations of the software architecture, like
replacements, additions or removals of software components and connectors.
Architectural adaptation mechanisms for dynamic SPLs are discussed in the
work of Cetina er al. [148]. However, as the same for dynamic ADLs, there
is no built-in focus on ensuring FT and fail-operational requirements by using
appropriate redundancy.

3.1.5 Design for Self-x

After the investigation of dynamic ADLs in the late 1990s and early 2000s,
a new research field opened towards dynamic systems with self-x (alias self-
*) properties. A lot of approaches exist to apply self-x techniques to cre-
ate dependable ES, and a lot of self-x properties have been defined: self-
configuration, self-adaptation, self-organization, self-repairing, self-managing,
self-optimizing, etc. The works of Salehie and Tahvildar [149], Rodosek et
al. [150], Kephart and Chess [151], and Mühl et al. [152] provided good start-
ing points to get an overview over all the mentioned self-x properties and their
relationships, which we do not completely list here. We briefly overview the
self-configuration property. Self-Configuration establishes an automated con-
figuration of components and systems following high level policies. The rest
of the system adjusts automatically and seamlessly [151]. One approach to
enable self-configuration was for instance presented by Stein et al. [153]. The

3.2. Formal Reliability Analysis of Redundant Architectures 73

synthesis that we introduce in this work is also a kind of automated config-
uration. However, the major use case that we consider is the application at
design time. The analysis results can be stored and used to construct pre-
configured dynamism, or to analyze the decision space of decision mechanisms
implemented in the system. We do not focus on self-configuration at runtime
by the system itself, but when using a more efficient heuristic calculation of
solutions, our analysis could also be performed at runtime, contributing to
establish self-configuration.

3.2 Formal Reliability Analysis of Redundant
Architectures

This paper is based on the work proposed by Bozzano et al. [154] in which reli-
ability analysis was completely automated, employing the language SMV [155]
and its associated tool XSAP [156].

Other techniques that have also been quite successful for reliability anal-
ysis are based on Monte Carlo simulations [157], although simulation-based
approaches do not provide exhaustive evaluation of the system. Indeed, this
approach implies the analysis of a large number of samples, but can never
be termed as 100% accurate. Furthermore, simulation requires an enormous
amount of CPU usage.

Conversely, FM are capable of conducting precise system analysis and over-
come the limitation of simulation-based methods. The idea behind formal
analysis of a system is to build a mathematical model of the given system and
formally verify that it meets the specifications of intended behavior. Some
techniques widely used in industry to analyze redundant architectures are
based on MCs [158], and PNs [159], [160] but they do not provide a com-
pletely automated process. Two of the most commonly used formal verification
methods are theorem proving and model checking that we have introduced in
Sub-section 2.3.3. Both have been successfully used for the verification of cor-
rectness of a broad range of hardware systems. Model-checking tools such as
PRISM [161] or UPPAAL-SMC [162] that support formalisms like CTMC or
Probabilistic Timed Automata (PTA) have been used with success for reliability
analysis. Lanfang et al. [163] proposed an approach for the formal verification
of TMR FT systems using CSP. By specifying the property of a faultless mod-
ule using a CSP process, they proved that TMR could still satisfy the property

74 Chapter 3. Related Work

in spite of hardware errors. The verification process was automated employ-
ing the model checking tool FDR2. Hartmanns [164] proposed MODEST, a
language based on MCs and PTA that allowed a single model to be analyzed
with a range of existing back-end tools like Monte-Carlo simulation or PRISM.
With the above formalisms, design space formalization is not possible as they
lack generic modeling features and cannot express parametrized systems.

The Model-Based Safety Analysis (MBSA) approach of Lisagor et al. [165]
addressed these issues by adopting hierarchical modeling, failure modes, and
failure propagation as key concepts. Delange and Feiler [166] proposed a safety
extension for AADL adding failure mode propagation rules to the design.
To model failure mode propagation conditions, Kabiret al. [167] extended a
Simulink model with Boolean formulas. In the above mentioned tool xSAP,
Bittneret al. [156] annotated a reference functional model with timed failure
propagation information.

Since non-functional factors also need to be modeled in order to conduct
safety assessment, instead of extending a functional model with safety informa-
tion, another MBSA group of works proposed dedicated languages for safety
modeling. Altarica formalism [168] proposed a hierarchical modeling approach
based on components and data-flow, with a semantics based on Stochastic
Guarded Transition Systems (SGTS). The System Structure Modeling Lan-
guage (S2ML) framework [169] is a prototype-oriented system architecture
language that borrowed concepts from Object-Oriented Programming (OOP)
in order to model the structure of systems.

Nuzzo et al. [170] proposed a formalism based on the failure probabilities
of the components, which contribute to the system failure probability based
on their degree of redundancy. They implemented the proposed method in
the ArchEx framework, based on a high-level pattern-based specification lan-
guage and MILP-based architecture selection algorithms. They also proposed
some optimization schemes to decrease the problem complexity, however they
observed that MILP solvers could incur large run-times.

Buyse et al. [171] presented Alpacas, a language for architecture modeling
and analysis using SGTS as underlying formalism. It extends the state of the
art in model-based safety assessment by offering generic programming features
such as encapsulation, generic parameters, and polymorphism, which can allow
for supporting design space exploration. Alpacas is domain-specific, anyway
similar concepts apply in other domains too.

Mathematical modeling makes FM an accurate and rigorous analysis method

3.3. High Level Synthesis Optimization 75

compared to the traditional analytical and simulation-based analysis. How-
ever, these benefits are achieved at the cost of heavy computational require-
ments.

3.3 High Level Synthesis Optimization

In this work, we address the problem of finding an optimized FT configuration
of a given system wrt. multiple design objectives. As in most pratical cases,
the problem under study has a finite number of alternative solutions: thus, it
can be formulated as COP. COPs are concerned with the efficient allocation
of limited resources to meet desired objectives. They are discrete problems
with a set of discrete resources to allocate, and a discrete set of solutions.
Constraints on the resources reduce the total set of possible solutions, however,
for most problems there is still a great number of feasible solutions. COP are
generally extremely challenging computationally. Typically they are NP-hard,
and thus cannot be solved exactly in polynomial time (unless P = NP). From
a theoretical perspective it is difficult to get much traction on these problems.
These problems are however a reality and are in fact ubiquitous in our society.
Many approaches have been developed to tackle these kinds of problems, and
many tools have been designed to aid in the process. However, it is often
difficult to predict what will and what will not work. It is unlikely that a
single approach will be effective on all problems, or even on all instances of
a single problem. In recent years there has been a trend toward automating
synthesis at higher and higher levels of the design hierarchy. There are a
number of reasons for this:

• Shorter design cycle. If more of the design process is automated, a com-
pany can get a design out the door faster, and thus have a better chance
of hitting the market window for that design. Furthermore, since much
of the cost of ES is in design development, automating mom of that
process can lower the cost significantly.

• Fewer Errors. If synthesis process can be verified to be correct there is
a greater assurance that the final design will correspond to the initial
specification. This will mean fewer errors and less debugging time.

• The ability to search the design space. A good synthesis system can
produce several designs for the same specification in a reasonable amount

76 Chapter 3. Related Work

of time. This allows the developer to explore different trade-offs between
cost, speed, power and so on, or to take an existing design and produce
a functionally equivalent one that is faster or less expensive.

• The design process is self-documenting. An automated system can keep
track of what design decisions were made and why, and what the effect
of those decisions was.

• Availability of technology to more people. As more design expertise is
moved into the synthesis system, it becomes easier for a non-expert to
produce a system that meets a given set of specifications.

A review of the literature revealed that problems similar to the one consid-
ered, basically a constraint-based synthesis, can exist in different application
areas. Therefore, we attempt to categorize the commonly found DSE problems
based on structure and intent of exploration rather than the application area.
Existing DSE case studies found in literature are variants of these classes, or
a combination of them.

3.3.1 Configuration or System Assembly Problems

The configuration or System Assembly Problem (SAP) consists in selecting and
assembling the available components such that all of the system and compo-
nent requirements are satisfied. Many component-based [172] and platform-
based [173] approaches targeting ES have been developed both in academia
and in industry. Their life cycle is organized in several phases. Availability of
existing components should be considered in requirements specification. Dur-
ing the design phase a component selection strategy has to be defined as this
decision plays a crucial role in the architecture design and the resulting quality
of the system. Much less time is spent in development, while testing occurs
throughout the process to know the effectiveness of the assembled components
and check the proper integration of component into the system. Maintenance
usually only involves replacement of obsolete component with the new compo-
nent. For instance, large industrial systems can be assembled by integrating
Commercial Off-The-Shelf (COTS) components, bringing higher reliability,
lower development costs, and shorter development cycles. In general, SAPs
require more time during analysis and design phases (see Figure 3.1). Ascia
et al. [174] proposed a methodology based on evolutionary techniques for ex-
ploration of the range of possible configurations of a parameterized system.

3.3. High Level Synthesis Optimization 77

Analysis and
Specification

Architectural design

Library of
Components

Implementation and
Integration

Deployment

Testimg and
manteinance

SAP

Figure 3.1: System assembly problem as part of the system
development life cycle

Initially a population of random configurations is generated. Each configu-
ration is mapped onto the platform and the specific application is executed.
The information collected is then used to estimate the variables to be opti-
mized and a fitness function is evaluated. Neema et al. [175] proposed a tool
suite for component-based model synthesis named DESERT. It can be inter-
faced to existing modeling and analysis environments and can be inserted in
various, domain specific design flows. The modeling component of DESERT
supports the modeling of design spaces and the automated search for designs
that meet structural requirements: given a set of models for subcomponents,
DESERT composes a system model automatically such that a set of design
constraints are satisfied. DESERT is the key tool for DSE included in the
toolchain named OpenMETA [176], specifically developed to facilitate the de-
sign process for CPSs. Grunske [128] proposed to use evolutionary algorithms
and multi-objective optimization strategies to automate the identification of
design alternatives that keep cost as low as possible, improve reliability and
reduce the weight of the system (this limits the number of redundant compo-
nents). Manolios [177] presented a fully automated framework named CoBaSA
to solve SAP using verification technology that takes advantage of Boolean
satisfiability methods. The framework allows the designer to express archi-
tectural constraints between components and automatically synthesize archi-
tectural models that satisfy these constraints. The way the framework works

78 Chapter 3. Related Work

Table 3.1: Configuration (or system assembly) problems

Architecture model Optimization goal(s) Approach Tool Year Paper

Mathematical Reliability Dynamic programming Not Specified 1968 [178]
Mathematical Reliability Dynamic programming Not Specified 1981 [179]
Application-Specific Area, Power, Performance EA Galib 2002 [174]
UML Cost OBDD DESERT 2003 [175]
Application-Specific Cost, Reliability, Wheight EA Not Specified 2006 [128]
Application-Specific Processor Load. SAT, PBSAT, ILP CoBaSA 2010 [177]
Application-Specific Execution time, Power Meta-heuristics C++ language 2011 [180]
Custom Performance, Power, Cost, Size GA SysML 2012 [181]
Application-Specific Performance, Dimensions, Wheight, Cost OBDD OpenMETA 2014 [176]
Application-Specific Circuit parameters RL AutoCkt 2020 [182]
Application-Specific Bandwidth, Noise, Power GA + NN + MILP DISPATCH 2020 [183]

is by translating the constraints to a SAT, Pseudo-Boolean Satisfiability (PB-
SAT), or ILP problem, which can be handled by any of the existing SAT or
ILP solvers. The framework can also be used in optimization mode, looking
for a solution that is optimal with regards to an objective function. Soto et
al. [180], studying the impact on execution time and on power consumption
of dynamic memory allocation in embedded processors, proposed two iterative
meta-heuristics aiming at determining which data structure should be stored
in cache memory at each time interval in order to minimize reallocation and
conflict costs. Van Huong et al. [181] presented a new approach to design and
optimize ES in the design phase based on Pareto multi-objective optimization.
They defined a Domain Specific Language (DSL) and developed a framework
which is used to design the architecture model of ES. And integrated the code
generation technology called Text Template Transformation Toolkit to this
framework to automatically generate parameters from architectural model.
Then, used multi-objective optimization to select the best trade-off configura-
tion of the architecture based on Pareto principle and GA. Settaluri et al. [182]
proposed a Machine Learning (ML) optimization framework trained using deep
Reinforcement Learning (RL) combined with transfer learning over a sparse
design space to synthesize analog circuits. RL is a branch of ML in which a
model (aka policy) learns to take actions in an environment to maximize a
given reward function. Terway et al. [183] addressed the design of CPSs as
a two-step multi-objective optimization problem: first, they applied a genetic
algorithm to search over a discrete set of choices for component selection, thus
yielding a coarse design. In the second step, they used an inverse design to
search over a continuous space to fine-tune the component values and met the
diverse set of system requirements. They used a NN as a surrogate function for
the inverse design of the system. The NN, converted into a MILP, is used for
active learning to sample component values efficiently in a continuous search
space.

https://github.com/pemryan/GAlib
https://www.isis.vanderbilt.edu/research/MIC
https://www.ccs.neu.edu/home/pete/cobasa.html

3.3. High Level Synthesis Optimization 79

Analysis and
Specification

Architectural design

Library of
redundant

components

Implementation and
Integration

Deployment

Testimg and
manteinance

RAP

Redundant
architecture

Non-redundant
architecture

Figure 3.2: Redundancy allocation problem as part of the sys-
tem development lifecycle

3.3.2 Redundancy Allocation Problems

The goal of Redundancy Allocation Problem (RAP) consists in finding an op-
timized FT configuration of a given system wrt. one or multiple design ob-
jectives. Although non-functional requirements like performance or reliability
are highly dependant on the implementation and deployment phases, discov-
ering and evaluating redundant design alternatives can be captured at design
phase. The introduction of this abstract information at the early stage of de-
velopment (see Figure 3.2) is useful for discarding unsuitable design points and
thus reducing the design space of feasable candidates.

Fyffe et al. [178] used a dynamic programming approach to solve a RAP
for a system with fourteen subsystems and constraints on cost and weight. For
each subsystem, there were three or four component choices, each with different
values of reliability, cost, and weight. To accommodate multiple constraints,
they used a Lagrangian multiplier within the objective function. Instead of
Lagrangian multiplier,

Nakagawa and Miyazaki [179] used a surrogate constraints approach that
should delimit the general shape of the solution more quickly. They demon-
strated their algorithm by solving thirty-three variations of the Fyffe problem.
These formulations provided a selection of components, but the search space

80 Chapter 3. Related Work

was restricted to consider only solutions consisting of the same component
type used in parallel. These formulations provided a selection of components,
but the search space was restricted to consider only solutions consisting of the
same component type used in parallel.

One of the first use of a meta-heuristic for reliability optimization was pro-
posed by Coit et al. [184]. In order to identify the choice of components and
design configuration in a S-P system, they addressed the RAP using a com-
bined NN and GA approach. The GA searches for the minimum cost solution
by selecting the appropriate components, given a minimum system reliability
constraint. A NN estimates the system reliability value during search. Com-
ponents could be mixed flexibly within subsystems: this feature enabled the
GA to find solutions with higher reliability than the exact method above: this
feature enabled the GA to find solutions with higher reliability in twenty-seven
out of thirty-three problems than the exact methods above.

In order to identify the choice of components and design configuration in
a S-P system, Coit et al. [184] Kulturel-Konak et al. [185] proposed TS as
the DSE strategy to address the same problem. Liang et al. [186] used an
ACO metaheuristic method. Jhumka et al. [187] introduced a GA to solve the
MOOP taking into account reliability together with performance and costs.
The system hardening was performed as a second step after the synthesis of
the nominal system; in particular, replica tasks were scheduled in the free
time slots of the processing units to avoid performance degradations. Some
authors [188, 189, 190] adopted a probabilistic fault model in which, starting
from a behavioral description in form of a Data Flow Graph (DFG) and a
resource graph for modeling all architectural alternatives, each processing unit
was characterized in terms of failure probability; then, task replication and
binding to processing units was performed within a multi-objective DSE to
concurrently optimize reliability, area, and performance. Izosimov et al. [191]
proposed a DSE approach combining different techniques (task replication,
transparent re-execution, and optionally checkpointing) to optimize system
performance. They used a Directed Acyclic Graph (DAG) to model an ap-
plication running on a set of computation nodes connected via a bus. The
author adopted a complete FT requirement to deal with a specified number
of transient faults and adopted a target architecture consisting of units with
fault detection mechanisms. In their framework named ArcheOpterix, the
authors [192] considered reliability, cost, and response time as optimization
criteria and employed a multi-objective ACO algorithm. Sheikhalishahi et

3.3. High Level Synthesis Optimization 81

Table 3.2: Redundancy allocation problems

Architecture model Optimization goal(s) Approach Tool Year Paper

S-P of k-o-o-n Reliability NN + GA Not specified 1996 [184]
S-P of k-o-o-n Reliability, Cost, Wheight TS Not specified 2003 [185]
S-P of k-o-o-n Reliability, Cost, Wheight ACO C++ 2004 [186]
Task Graph Reliability, Performance, Cost GA N.A. 2005 [187]

DFG Reliability, Area, Performance EA PISA, LpSolv,
Forte’s Cynthesizer 2007/8 [188], [189], [190]

DAG Cost Task replica N.A. 2009 [191]
DTMC Reliability, Cost, Time ACO ArcheOpterix 2009 [192]
Graph-based Reliability, Exec.time, Energy Scenario-based SAFE 2012 [200]
S-P of k-o-o-n Reliability, Cost, Volume, Wheight PSO Matlab 2013 [193]
Application-Specific Reliability SMT KCR (Z3-based) 2014/17 [194], [195]
S-P of k-o-o-n Reliability EA + MC Matlab 2018 [196]
Logical formulae Safety, Energy, Cost, etc. SMT N.A. 2018 [197], [198]
Multiple S-P Reliability MA N.A. 2020 [199]

al. [193] applied a hybrid between a GA and PSO to a MOOP minimizing
cost, system volume, and weight, while maximizing system reliability. Delmas
et al. [194, 195] proposed an automatic SMT-based DSE method to harden an
initial architecture for a given safety objective. Given the nominal functional
architecture, constraint solving was used to select automatically a subset of sys-
tem components to update and appropriate safety patterns to apply to meet
safety requirements. Ardakan and RezvanIn [196] addressed the RAP by using
a multi-objective EA algorithm (NSGA-II) combined with a Markov-based ap-
proach. Results demonstrated that their algorithm leads to high reliability, but
a standby strategy is developed for the problem. Terzimehic et al. [197], [198]
presented a method of SMT-based automated deployment of industrial au-
tomation systems. In the context of the control applications, they encoded
the problem into an SMT form and validated it, although with their approach
they encountered scalability issues. Zaretalab et al. [199] proposed a mathe-
matical model for optimizing multiple redundancy-reliability systems known
as mega-systems. They used a parameter-tuned Memetic Algorithm (MA) to
solve the problem. According to their results, the computational time of MA
was higher than commonly used GA, but performance in terms of the quality
of the obtained solutions was better.

3.3.3 Selection Problems

Given a set of objects, the goal of a SeLection Problem (SLP) is to a find a
subset of it, such that a set of constraints are satisfied and a cost function (for
example cost, memory consumption etc.) is optimized. Selection problems
have been commonly found in SPL engineering where the set of features are
organized in a tree-like structure called the Feature Model [201]. The solution
of a feature SLP is a subset of the features (configuration) that satisfy all the

https://users.monash.edu.au/~aldeidaa/ArcheOpterix.html
http://sesamesim.sourceforge.net/
https://www.onera.fr/en/staff/kevin-delmas?page=1

82 Chapter 3. Related Work

Analysis and Specification

Variant selection

Deployment

Testimg and
manteinance

Design

SLP

Features

Configuration

Figure 3.3: Selection problem as part of the system develop-
ment lifecycle

constraints and optimize the total resources required by the product. Decid-
ing which features should be supported by the product line is performed at
requirement-level. The semantics of features can be captured by a structural
or behavioral model. This idea leads to the concept of feature-based model
templates [202]. A selection is usually performed over a given configuration
and it is the set of products of the SPL that are valid for the given configuration
(see Figure 3.3). For instance, White et al. [203] presented a tool called Scat-
ter whose input is (1) the requirements of Product-Line Architectures (PLA)
construction and (2) the resources available on a discovered mobile device and
whose output is the optimal variant that can be deployed to the device. Seidl
et al. [204] levereged Delta-Oriented Programming (DOP) - a programming
language approach particularly designed for implementing SPLs by defining a
core module and delta modules. [205] - and proposed DeltaEcore, a framework
to automatically derive delta languages to express the delta operations to the
common core of the product line. Then, products were configured based on a
hyper feature model, which provided the option to specify revisions of individ-
ual features. Pietsch et al. [206] presented a novel approach to delta modeling,
an implementation technology able to generate models as instances of an SPL,
and a supporting tool suite. They refined the abstract notion of a delta to
be a consistency-preserving edit script generated by comparing two models,

3.3. High Level Synthesis Optimization 83

Table 3.3: Selection problems

Architecture model Optimization goal(s) Approach Tool Year Paper

Feature Models Availability, Reliability, Cost, etc. Commercial CSP solver OPL 2005 [201]
PLA Cost CSP + branch and bound Choco Solver 2007 [203]
Feature Models Performance Delta modeling DeltaEcore 2014 [204]
Feature Models Performance Delta modeling SiPL 2015 [206]
Feature Models Performance Test-based FLAME 2017 [207]
Feature Models Performance SAT FeatureIDE 2017 [208]
Feature Models Cost, LOC, N.of faults, N.of installations GP Prototype tool based on NSGAII 2017 [209]
Feature Models Modifications availability Model-driven SuperMod 2017 [210]

allowing them to detect conflicts and further relations between deltas. Duran
et al. [207] presented a proposal to model and reason on SPL using Constraint
Programming (CP), taking into account functional and extra–functional fea-
tures: the FLAME framework. It can be used to formally specify not only
feature models, but other VMLs as well. Schroter [208] proposed the concept
of a feaure model interface that only consists of a subset of features and hides
all other features and dependencies. Based on a formalization of interfaces, he
proved compositionality properties: the key towards better scalability. Kite-
few [209] proposed a novel encoding of candidate solutions, based on grammar
representation of feature models, which ensured that relations imposed in the
feature model were respected by the candidate solutions. Specifically, their ap-
proach exploited the potential of Genetic Programming (GP) to evolve struc-
turally valid individuals derived from a grammar, hence they first transformed
the feature model to an equivalent grammar, then they applied Grammar
Guided GP (gppp) to evolve candidate solutions towards ultimately finding
the optimal set of product configurations. Each candidate solution (product
configuration) is derived from the grammar, and hence by definition respects
the constraints imposed by the feature model. Schwagerl et al. [210] proposed
a framework for managing evolving model-driven SPL for the domain of soft-
ware configuration management. It provided higher-level abstractions in the
form of models, which automatized great part of version management. Their
tool utilized feature models in order to define logical variants and constraints.
The objective was to make the performed modifications available for a larger
set of related variants.

3.3.4 Placement Problems

Given a set of two-dimensional objects and a plane, the Placement Problem
(PLP) is to assign a position to each object, such that all objects lie within the
given boundary of the plane and the objects do not overlap. In a variant of the
problem, the plane is not given and the objective is to minimize the area of the

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://choco-solver.org/
http://deltaecore.org/
http://pi.informatik.uni-siegen.de/projects/sipl/
https://www.isa.us.es/fama/?FLAME_framework
https://github.com/FeatureIDE/FeatureIDE
http://www.ai1.uni-bayreuth.de/en/projects/SuperMod/index.html

84 Chapter 3. Related Work

enclosing box containing all objects. PLPs have been found most often in Very
Large Scale Integration (VLSI) design. Although there are many variations in
PLP formulations for different design styles and with different objectives, the
underlying issues are the same: find the exact location of the cells to minimize
area and wire length. After the design has been successfully synthesized into
a gate-level netlist, and a floorplan with pre-placed blocks has been designed,
we can move into detailed placement of the standard cells of physical design
implementation. Jiang et al. [211] presented example analytical techniques em-
ployed in the leading academic placer, NTUplace3, to face the VLSI placement
problem where the designer has to handle large-scale designs with millions of
objects, heterogeneous objects with very different sizes, and various complex
placement constraints such as preplaced blocks and chip density. Saraswat et
al. [212] proposed a finite domain constraint-based placement tool that makes
placement decisions cognizant of communication delays. They exploited the
deterministic properties of the communication network and formulate them
as finite domain constraints to translate the placement problem into a CSP,
which can be solved using a constraint solver. Chen et al. [213] presented an
Adaptive Hybrid Genetic Algorithm (AHGA) for VLSI standard cell placement
problem, which used some adaptive strategies to reduce the runtime on the
premise of obtaining the same high-quality placement results of analytical al-
gorithms. More recently, Goldie and Mirhoseini [214] proposed RL with policy
gradient optimization as a solution to the placement problem.

3.3.5 Routing Problems

Given a graph G = (V ; E), where V is a set of nodes, E is a set of non-negative
edges, and a set of terminals T ⊆ V , the routing problem is to find the a tree
connecting the nodes in T, such that the tree is optimal with respect to an
objective. These problems are commonly found in wire routing in VLSI [215]
or network design [216]. Routing problems are often found in VLSI design in
combination with placement problems (see Figure 3.4): given a placed netlist,
a signal routing solution determines the necessary wiring to connect cells while
meeting design rule constraints and routing resource capacities. As a conse-
quence, the non-functional properties (e.g. latency, energy consumption, area
requirements) of the resulting system implementation may vary considerably
depending on high-level decisions that have been made. Hence, a DSE is

3.3. High Level Synthesis Optimization 85

imperative to find optimal solutions. In the literature both exact and approx-
imation have been propsed. Chang et al. [217] used dynamic programming
to find optimal paths that satisfy the minimum area rules and an end-of-line
spacing constraint. Kahng et al. [218] solved the resulting istance of the de-
tailed routing problem using an ILP-solver. A different approach was used by
Zhang and Chu [219] that proposed a heuristic to solve a given routing prob-
lem. Liu et al. [220] employed a discrete PSO algorithm. In general, exact
methods are often replaced in favor of heuristic approaches as the complexity
of systems increases. On the other hand, approximation methods usually cre-
ate the initial population with a randomized process, and execute the search on
the basis of previously found solutions, not systematically. This could lead to
run into saturation. For this reason Neubauer et al. [221] proposed to encode
the problem symbolically, leveraging advances of constraint solving technolo-
gies, specifially ASP. According to the authors, using ASP, rather than other
symbolic techniques like SAT, fastened the communication synthesis because
reachability was expressed naturally.

Analysis and
Specification

Implementation and Integration

Library of Parts

Deployment

Testimg and
manteinance

PLP

RTP

Design

Figure 3.4: Placing and routing problems as part of the system
development lifecycle

86 Chapter 3. Related Work

Table 3.4: Placement and routing problems

Architecture model Optimization goal(s) Approach Tool Year Paper

Hypergraph Preplaced blocks, Chip density,
Routability timing, Power.

Gradient method
with dynamic step-size NTUplace3 2007 [211]

Operation Dependence Graph (ODG) None Finite domain CSP solving Mozart/Oz 2008 [212]
Graph-based Power consumption MILP GAMS 2008 [216]

Data Flow Graph (DFG) Area, Communication delay,
Schedule length, Routing resources Finite domain CSP solving Mozart/Oz 2010 [215]

Hypergraph Routability, wirelength Hierarchy grouping and clustering NTUplace4h 2014 [222]
Hypergraph - Finite domain CSP solving ePlace 2014 [223]
Graph based runtime AHGA C language 2016 [213]

Hypergraph Routability, wirelength, timing, power Constraint-oriented local smoothing
and dynamic step size adaptation RePlAce 2016 [224]

Hypergraph - Deep learning Dreamplace 2020 [225]

3.3.6 Deployment Optimization Problems

In general, a deployment refers to the assignment of hardware resources, e.g.
CPU time, memory or I/O, to software components. This is a hardware to
software deployment, which faces the problem of which software component
to deploy on which execution unit. There is also the case of hardware to
hardware deployment, e.g. which sensor or actuator shall be connected to
which device. The deployment optimization problem is about how to config-
ure and deploy applications correctly while at the same time optimizing a few
criteria. Kruchten [226] pioneered the correspondences between architecture
views early in 1995. Clements et al. [227] modernized Kruchten’s approach
to define deployment viewtypes in order to allocate software modules into
runtime. Kramer et Magee [228] motivated automatic deployment for auto-
nomic systems while [229] focused on dynamic re-conguration using AI plan-
ning. Carlson et al. [230] presented an approach to combine model-driven and
component-based software engineering to perform incremental deployment of
model-concepts to runnable entities. Other authors focused on the impact of
quality factors for deployment, such as Bushehrian [231] and White [232] that
used performance to compute the nearest optimal deployment using simulation
and EA respectively. Petricic et al. [233] studied deployment mechanisms in a
context of runtime reconfiguration. In such a context a distinction is usually
made between functional and structural changes. Functional changes include
the addition of new/improved code to a running system in order to modify/up-
grade its functionality, whereas structural changes refer to re-configurations
that change the relationship between different components of the system, or
replicate portions of the application for execution on a different machine. The
focus of their research is on functional changes. Their main objective was to de-
velop a dynamic deployment mechanism for ES that is resource efficient and en-
sures predictability of system behavior by introducing performance attributes

http://mozart2.org/
https://www.gams.com/
http://mozart2.org/
https://github.com/pulakk/NTUPlace4h_Implementation
https://github.com/The-OpenROAD-Project/RePlAce

3.3. High Level Synthesis Optimization 87

verification of deployed components. They performed component verification
during deployment to be able to predict system’s behavior after reconfigura-
tion. The authors were particularly interested in verification of non-functional
properties like CPU share, memory, energy, bus bandwidth, which are critical
for ES. Recent approaches showed examples of automatic deployment using
SAT solvers to optimize the best deployment configuration. Kugele et al. [234]
presented and compared three different approaches: a MOEA, a SMT-based,
and an ILP-based approaches, to tackle the deployment problem. They also
used a combination of the first two. They concluded that deciding which
approach is best suited depends on the size of the model, constraints, and
objectives. Zverlov [235] presenteded an approach to find an optimized plat-
form, deployment, and schedule wrt. to safety, cost, performance, and resource
consumption, using a meta-search on top of a SMT solver, which manipulates
constraints. Abraham et al.[236] presented an automatic configuration genera-
tor tool named Zephyrus2 that the designer can use to specify requirements in
the form of constraints and optimal system configurations and deployment at
minimal cost. The tool solves the resulting MOOPs by optimizing the first ob-
jective function value and then optimizing the other objective function values
sequentially following their order after substituting the previously determined
optimal values. According to the authors, minimizing the first objective (e.g.,
the cost) has a significant impact on the performance when reducing the sec-
ond objective (e.g., the number of components). However, this solution has
the drawback that the designer needs to restart the solver. Terzimehic [198]
and Gruner [197] presented a method of SMT-based automated deployment of
industrial automation systems. In the context of the control applications, and
more specifically with reference to IEC61499-based systems, they encoded the
deployment problem into an SMT form and validate it, although with their
approach they encountered scalability issues.

3.3.7 Resource allocation Problems

Given a set of objects and a set of resources, the goal of a resource allocation
problem is to allocate resources to the objects, such that all constraints are
satisfied. After a system has been implemented, i.e. the software components
have been generated, part of the deployment activity deals with mapping the
software components onto hardware nodes (see Figure 3.5). This is one of the
crucial aspects that influence reliability of ES. If the hardware architecture is

88 Chapter 3. Related Work

Deployment

Testimg and
manteinance

Design

RSP

Analysis and
Specification

Implementation and
Integration

Hw resources Sw
components

SSPMetrics

DOP

Figure 3.5: Mapping and scheduling problem

designed prior to the customized software architecture, which is often the case
in product-line manufacturing (e.g. in the automotive domain), the system
architect needs to resolve a nontrivial task of finding a (near-)optimal de-
ployment balancing the reliabilities of individual services implemented on the
software level. In many domains of ES, task allocation is typically addressed
as a sub-problem of scheduling activity. In any case, determining feasible
allocation schemes requires knowledge of both functional and non-functional
properties of the system. And the candidate architectures must be synthesized,
before analyzing their performcances for trade-offs. A recent trend is that of
dynamic allocation of resources. The evolution of submicron technology has
dramatically increased IC density, enabling the development of Multi-Processor
Systems on a Chip (MPSoC)s that support a variety of multimedia and net-
working applications that present a dynamic task workload. This implies a
varying number of tasks running at any given moment, possibly exceeding
the available hardware resources. Hence, it is necessary to control system re-
source use, including dynamic management of task-loading actions, which can
drastically influence system performance. If we use the moment at which a
task is defined as a classification criterion, task-mapping approaches can be ei-
ther static or dynamic. Static mapping defines task placement at design time;
dynamic mapping defines task placement at runtime. The topic of run-time

3.3. High Level Synthesis Optimization 89

(or on-the-fly) mapping has received substantial research attention in recent
years [237, 238]. In these methods, the assignment of newly arriving tasks to
the system resources is done by means of heuristics. Traditional design-time
mapping solutions usually produce higher quality mappings as they allow for
exploring a larger design space for the underlying architecture. But as these
algorithms typically involve slow computational methods [239] such as ILP,
they cannot be used during run time. Other research directions have been
investigated that propose a mixed design-time and run-time approach that
reuses the analysis results obtained at design time to accelerate and improve
run-time mapping [240, 241, 242]. More in general, different resource alloca-
tion problems found in the literature can be classified into two subcategories
based on the allocation relation:

• A Relational Allocation Problem has a many-to-many relation between
components and resources, such that a resource can be allocated to many
components and a component requires more than one resource. Frisch
et al. [243] proposed the Synchronous Optical NETwork (SONET) de-
sign: an example of a relational resource allocation problem. The goal
of the SONET problem is to allocate a set of nodes to one or more
optical network rings. Weichslgartner et al. [244] proposed a hybrid
approach that considers constrained shared communication and compu-
tation resources. It uses a backtrack algorithm and targets specific goals
by minimizing the communication distance in the mappings. Kirov et
al. [62] introduced ArchEx 2.0, an optimization-based framework for ar-
chitecture exploration where these architectures are composed of com-
ponents that use flow-based communication. The task is to find the
correct number of components, select an implementation for each com-
ponent from a library, and connect them together in order to minimize
an objective function while guaranteeing that system requirements are
satisfied. Goens et al. [245] proposed TETRiS for static mappings for het-
erogeneous system-on-chip architectures, which allowed them to achieve
energy efficiency by focusing on remapping and migration of task in dy-
namic multi-application scenarios.

• A Functional Allocation Problem is an allocation problem where every
component requires exactly one resource. Each component can require
only one resource, but more nodes can require the same resource. The

90 Chapter 3. Related Work

Table 3.5: Resource allocation problems

Architecture model Optimization goal(s) Approach Tool Year Paper

Sets and functions, matrix-based None CSP solving CGrass 2002 [243]
Kahn Process Network (KPN) Processing time, Power Consumption, Cost EA PISA 2006 [246]
Graph based None Ad hoc algorithm Edipe 2008 [247]
Directed graph Energy consumption Meta-heuristic (Opt4J-based) DAARM 2014 [244]
Directed graph Cost MILP Archex 2017 [62]
Graph based Resource usage, CPU time, Execution time Heuristics TETRiS 2017 [245]
Analytical Data rate MINLP + pre-emptive cut generation N.A. 2017 [248]

mapping problem faced by Erbas et al. [246] is a case of functional re-
source allocation problem. Another example is CPRTA [247] (for "Con-
straint Programming for solving Real-Time Allocation”): an original ap-
proach based on constraint programming to solve a static allocation prob-
lem of hard real-time tasks. This problem consists in assigning periodic
tasks to distributed processors in the context of fixed priority preemp-
tive scheduling. CPRTA is built on dynamic constraint programming
together with a learning method to find a feasible processor allocation
under constraints. CPRTA exhibits very interesting properties. It is
complete (if a problem has no solution, the algorithm is able to prove
it); it is non-parametric (it does not require specific tuning), thus al-
lowing a large diversity of models to be easily considered. In addition,
thanks to its capacity to explain failures, it offers perspectives for guid-
ing the architectural design process. Letchford et al. [248] considered a
resource allocation problem arising in mobile wireless communications.
The goal is to allocate the available channels and power in a so-called
OFDMA (orthogonal Frequency-Division Multiple Access) system, in or-
der to maximize the transmission rate, subject to quality of service con-
straints. A novel ingredient of their algorithm, which turned out to be
crucial, is what they call pre-emptive cut generation: the generation of
cutting planes that are not violated in the current iteration, but are likely
to be violated in subsequent iterations.

3.3.8 Scheduling and Sequencing Problems

Scheduling and sequencing problems are a common category of DSE problems
often found in ES [249, 250]. Scheduling deals with defining which activities
are to be performed at a particular time. Sequencing concerns the ordering in
which the activities have to be performed. In general, these problems are char-
acterized by assigning start times to a series of tasks that have to be performed

https://www.cs.york.ac.uk/aig/biblio/index.html
https://sop.tik.ee.ethz.ch/pisa/
https://bitbucket.org/regkirov/archex/src/master/
https://cfaed.tu-dresden.de/publications?pubId=1451

3.3. High Level Synthesis Optimization 91

Table 3.6: Scheduling and Sequencing problems

Architecture model Optimization goal(s) Approach Tool Year Paper

Hypergraph Memory usage Genetic algorithm Lycos 1999 [249]
Task graph Cost Heuristic CHIP 1999 [250]
Data Flow Graph (DFG) Time Satisfiability JaCoP 2003 [252]
ESMoL None Constraint logic programming ESched 2009 [253]

by some deadline with the possibility of precedence constraints between them.
The system architecture can be validated (through simulation or verification)
to evaluate different scheduling approaches (e.g. in terms of timing) as part of
system design space exploration. However, several variants exist, depending
on the constraints imposed due to the properties of the tasks and resources.
Broadly, there are two kinds of resource and tasks [251]:

• A disjunctive resource can execute at most one task at each point in
time. The tasks which require this resource can execute only when no
other task is executing on the resource.

• A cumulative resource can execute several activities in parallel, provided
the resource requirement of the executing tasks does not exceed the re-
source capacity at any point of time.

• A non-preemptive task must execute without interruption from start to
end.

• A preemptive task can be interrupted by other task depending on some
priority.

Most real problems consist of a combination of cumulative and disjunctive
resources as well as both interruptible and non-interruptible activities. For
example, Kuchcinski et al. [252] presented a constraint solver engine named
JaCoP (Java Constraint Programming) and a related framework that make
it possible to model different resource assignment and scheduling problems,
and handle them uniformly. They describe a new method that addresses as-
signment of resources for operations and tasks as well as their static, off-line
scheduling. Different heterogeneous constraints are considered. These con-
straints can be grouped into two classes: problem-specific constraints and
design-oriented constraints. They are uniformly modeled by finite domain
(FD) constraints and solved using related CP techniques. Porter et al. [253]
presented a prototype scheduling tool (ESched) which calculates cyclic sched-
ules for time-triggered networks. ESched supports the model-based workflow

92 Chapter 3. Related Work

Deployment

Testimg and
manteinance

Design

WSP

Analysis and
Specification

Implementation and
Integration

Users

Task list

Figure 3.6: Workflow Satisfiability problem

of the ESMoL modeling language and tool suite. Using ESMoL, designers can
rapidly iterate through simulating a control design, capturing platform effects
in models, generating a schedule (if feasible), and re-simulating the control
design subject to the platform model and the computed schedule.

3.3.9 Workflow Satisfiability Problems

A workflow is a collection of steps that must be executed in some specific
order to achieve an objective. The execution of each step in a workflow in-
stance can be triggered by a human user, or a software agent acting under
the control of a human user (see Figure 3.6). Workflows equipped with an
authorization policy and constraints may be called “security-sensitive” [254].
Authorization policies and constraints are fundamental for security, but could
lead to situations where a workflow instance cannot be completed because no
task can be executed without violating either the authorization policy or the
constraints. The Workflow Satisfiability Problem (WSP) consists of checking
if there exists an assignment of users to tasks such that a security-sensitive
workflow successfully terminates while satisfying all authorization constraints.
The WSP has many variants and different possible solutions depending on
how security-sensitive workflows are specified and on the relationship between
workflow model and authorization [255]. Firstly, a workflow specification can

3.4. Approaches to Automatic Verification 93

Table 3.7: Workflow satisfiability problems

Architecture model Optimization goal(s) Approach Tool Year Paper

Role-and-relation-based access control model (R2BAC) None SAT 2010 [259]
Markov Decision Process (MDP) Users SAT 2014 [260]
Directed acyclic graph (DAG) Users SAT 2015 [261]
Directed acyclic graph (DAG) None Fixed-parameter algorithm 2017 [263]
Petri net Costs BMC, OMT 2018 [262]

have different perspectives [256]. The control-flow perspective describes the ex-
ecution order of the tasks (e.g., sequential, parallel, or alternative execution).
The data-flow perspective specifies the data objects used by the tasks. The
resource (or authorization) perspective specifies the policies for the task exe-
cution. Furthermore, these three dimensions are interconnected, as each one
of them influences the others. In addition, different WSP can be formulated
by considering order or unordered tasks [257], and by checking the satisfia-
bility at design- or run-time [258]. Wang et al. [259] demonstrated that the
WSP is NP-complete even with simple constraints and reduced the problem
to SAT. Mace et al. [260] provided quantitative measures indicating a degree
of satisfaction and/or resiliency for a given workflow, instead of simply return-
ing an assignment if one exists. This can be helpful with real-life problems
where the ideal case is not always reachable. Crampton et al. [261] defined
the valued workflow satisfiability problem (valued WSP), whose solution is an
assignment of steps to users of minimum cost. Bertolissi et al. [262] solved the
Multi-Objective Workflow Satisfiability Problem (MO-WSP) using Bounded
Model Checking (BMC) and OMT solving.

3.4 Approaches to Automatic Verification

The goal of verification activities is complete coverage and standards confor-
mity, but it is not an easy task. Formal Verification (FV) provides methods
and techniques to prove mathematically the correctness of a system. Teams
use several techniques to assure that no errors exist when the product is de-
livered. In particular, for critical systems further measures must be taken into
account, as these systems deal with human lives. In the following, we provide a
review of the most widely used formal verification techniques in the literature.

94 Chapter 3. Related Work

3.4.1 Automated Theorem Proving

Theorem Proving relies heavily on high order logic and uses mathematical
structures to build formulas that correspond to the behavior of the system [264].
The verification process is the evaluation of these formulas. There are different
formal logics to describe the theorems. The most common ones are: proposi-
tional logic, temporal logic, first-order logic, high-order logic.
The first widely distributed, high-performance theorem prover for first-order
logic was Otter (acronym for Organized Techniques for Theorem-proving and
Effective Research) [265], developed by William McCune at Argonne National
Laboratory in Illinois. In their work [266], Owre et al. present PVS, a proto-
type system for writing specifications and constructing proofs. PVS combines
high-order logic with a highly interactive proof checker that supports top-
down proof exploration and construction. Mentré et al. [267] combine the B
Method [268], a formal approach to develop safety critical ES by refinement
techniques, with SMT solvers that automate the proving process. In the work
of Wiedijk [269], other examples of Automated Theorem Proving tools can be
found.

3.4.2 Symbolic Model Checking

Model checking verifies properties against a model to prove that the design
conforms to the specifications. It is very powerful, although its method of
explicit state enumeration is highly resource consuming. For large systems
with thousands of states, the number of possible states that the model checker
can work on is therefore limited. Instead of explicitly enumerating all states,
Symbolic Model Checking (SMC) works with sets of symbols. It uses BDDs
to represent sets of states and to work with them in bulk operations. This
way, it is possible to verify systems that are more complex. BDD srepresent
Boolean functions in a canonical form, where a path can be traced from the
root node to any of the leaf nodes so that it can easily determine if a path
satisfies the Boolean function or not. However, BDDs are highly dependent
on the variable ordering, which directly affects their size. Therefore, it is
necessary to apply good strategies and heuristics to optimize them correctly.
The result of a symbolic model checker when it fails to verify the input is a
counterexample, which traces a path from the initial state to the offender state,
or the state that caused the proposition to fail. With this trace, a developer
can recreate the failure and find out what caused it. SMC uses temporal

3.4. Approaches to Automatic Verification 95

logic to describe the propositions to verify the system’s behavior, together
with the model that describes the system itself. Once the formulas are built,
the generated BDDs are traversed to reach one of the two possible leaf nodes:
“true”, meaning that the property holds, or “false”, meaning that the property
does not hold. When a property is false, a counterexample is generated, and
the designer can either fix the system architecture or refine the propositions,
in the case of a false positive result. The propositions are fed into the tool,
which means that the process is automated. An example of tool based on SMC
is NuSMV2. It was designed to be very robust, easy to modify, and close to
the standards required by industry [270]. The input descriptions are done in
SMV language, the tool that preceded and served as the base for NuSMV2.
It is possible to use modules and processes to describe finite state machines
while incorporating requirements in LTL and LTL. NuSMV2’s flow has several
steps for transformations and optimizations. Steps performed by NuSMV2
are shown in Figure 3.7. The first three steps, flattening, Boolean encoding,
and cone of influence, refine the model M and the properties P1, ..., Pn into
modules and processes. The result is a synchronous flat model where only
the areas inside the cone of influence for each property is considered. This
helps to reduce the system complexity and manage the state space size. The
resulting model is applied either to BDD- or to SAT-based model checking. For
BDD-based verification, the tool builds a BDD representation of the system
(step BDD-based Model Construction) and then verifies it (step BDD-based
verification). For SAT-based verification, NuSMV2 builds a representation of
the model to apply it to the model checker (step BMC). If a counterexample
is found, NuSMV2 transforms it to CNF and feeds it to a SAT solver.

Figure 3.7: Steps performed by NuSMV2 [270].

96 Chapter 3. Related Work

nuXmv is an evolution of NuSMV. According to [271] capable of dealing
with finite- and infinite-state systems. It has been used as the back-end ap-
plication for many different tools, both academic and industrial. Another tool
based on SMC is Uppaal. It deals with real-time systems, which can be ex-
pressed using the theory of timed automata. Like NuSMV2, Uppaal has its
own specification language. However, it uses a modeling language for the spec-
ification of the models and a query language for the properties. The modeling
language was designed to facilitate the description of finite state machines,
where states, clocks and the interactions between them can be expressed. The
query language uses a subset of CTL for the state and the path formulas,
where the state formulas are properties for individual states and path formu-
las are properties for traces of the model. As stated by Behrmann et al. [272],
Uppaal consists of three parts: the editor, the simulator, and the verifier. In
the editor, the user describes the model for the network of timed automata
that characterizes the system with its relations of synchronization and update
between the states. The simulator can be used to run the system manually
and choose the path to follow, or to let the system run at random, or to use a
saved trace to check the reachability of a given state. The verifier lets the user
add and edit the properties, or “queries” in Uppaal’s interface, for verification
and check them.

3.4.3 Bounded Model Checking

BMC is a technique that tries to overcome the problem caused by the state
space explosion of SMC [273]. BMC tries to find counterexamples within a
bounded length k, which, in turn, generates minimal counterexamples. This
way, when verifying a system, paths are walked through up to a length k
in order to check its correctness, instead of traversing all states up to the
same point. This prevents the state space explosion up to length k. On the
other hand, as BMC searches the states up to a given bound, bugs in deeper
states tend to remain hidden. For this reason, a proof using BMC can be
incomplete. BMC uses propositional decision procedures (SAT) to model the
system, which, as BDDs, are also based on Boolean expressions, but do not
try to build a canonical data structure. Because of this, SAT can handle
propositional satisfiability procedures with thousands of variables. In BMC,
SAT and temporal properties are used to verify the correctness of the model. In
this way, propositional formulas are generated if and only if a counterexample

3.4. Approaches to Automatic Verification 97

exists. That is, if all the to-be-verified properties hold, then a counterexample
does not exist.
CBMC is an example of tool based on BMC. As specified by Clarke et al. [274],
It aims at model checking of ANSI-C programs. One of this tool’s focus is the
verification of functional software prototypes of hardware architecture written
in ANSI-C. It also provides a graphical interface. In the latest versions, CBMC
provides support for external SMT solvers.
Another example of BMC-based tool is EBMC, which aims at the verification
of hardware designs written in Verilog. It translates the Verilog code to ANSI-
C. At this stage, an intermediate representation is generated and it is possible
to apply different tools to perform the verification process, either SAT or SMT
solvers. This intermediate representation also makes this flow compatible with
established industrial tools. See [275] for more details.

3.4.4 SMT Model Checking

Theorem Proving and Model Checking are very powerful techniques. How-
ever, due to several drawbacks such as high degree of knowledge of the system,
high specialization in higher order logic, and low degree of automation due
to complicated formulas, new approaches were proposed. One technique that
has been rapidly evolving in the last years is SMT, which is the problem of
deciding the satisfiability of a first-order formula with respect to some decid-
able first-order theory [276]. First-order formulas are SAT procedures and
deal very well with the satisfiability part. First order theories, on the other
hand, work with predicates and help to create decidable logic that is more ex-
pressive. Some examples of theories are Linear Arithmetic, Difference Logic,
Unit-Two-Variable-Per-Inequality, Bit-Vectors, and Arrays. One important
contribution to this technique is the creation of a library to standardize SMT
tools, which help to spread it among different areas and apply the tools for
different purposes. SMT-based tools use an SAT solver and one or more theory
solvers, depending on which theories are considered. The input to the tool is
a theory-formula, which generates a Boolean abstraction. This Boolean ab-
straction feeds the SAT solver, which enumerates clauses in a collection. Each
clause is fed to the theory solver. If a clause is theory-satisfiable, the solver re-
turns a positive response; otherwise, it updates the Boolean abstraction. This
process is repeated until a complete theory-satisfiable Boolean abstraction is
found, meaning it is satisfiable (“SAT”), or if no more updates can be made,

98 Chapter 3. Related Work

meaning it is not satisfiable (“UNSAT”). Examples of SMT-Based Tools are:
MathSAT5, nuXmv, ESW-CBMC.

3.4.5 OMT Model Checking

The rise in efficiency SMT solvers has produced numerous uses for them in
many areas of Computer Science and Engineering. SMT solvers allow us to
encode the problem as CSP. However, often we are interested in finding not
just an arbitrary satisfying assignment, but one that optimizes (minimizes/-
maximizes) certain criteria, i.e. that is optimal wrt. some objective functions.
SMT problems of this kind are referred to OMT. Thus, our problem can be
encoded as COP. OMT is an extension of SMT wthat allows for finding mod-
els that make a given objective optimum through a combination of SMT and
optimization procedures [277], [278], [279], [280], [98].

3.4.6 Equivalence Checking

Equivalence checking is widely used in the industry. It aims to prove if two im-
plementations on different abstraction levels are functionally equivalent [281].
Nowadays, implementation of prototypes on higher levels of abstraction is
very common as a starting point to begin the development and analysis of
new architectures, as they are easier to build and debug. Furthermore, as the
refinement of these prototypes gets closer to the lower levels they become an
important reference model to the implementation. Equivalence checking tools
can be implemented using one or a combination of several techniques; the
most prominent are BDD-, SAT-, structural- and signature-based. In BDD-
based tools, each implementation generates a BDD and are then compared to
each other For SAT-based tools, the propositional procedures are generated for
each implementation and are XORed in order to verify their satisfiability. If
this clause is satisfiable, then the implementations are not the same. In other
words, the only way to output the value true in an XOR gate is when both
inputs are not equal and, thus, not equivalent; otherwise, when both inputs
are either true or false, the output is false. With structural-based techniques,
different implementations are analyzed in order to identify structures that are
similar between them, so that complex Boolean data structures or Boolean
equations can be avoided [282]. Finally, signature-based techniques take into
account logic simulation, so that the output generated at each node is the

3.4. Approaches to Automatic Verification 99

signature of that node, and similarities between implementations are used to
testify their equivalence.
Two examples of Equivalence Checking tools for hardware verification are
EQUIPE and the tool from [283].

3.4.7 Static Analysis

Static Analysis was pioneered by Cousot [284] for abstract interpretation of
software structures. From that work, numerous tools emerged, the first of all
being Lint for static analysis of C programs. After the popularity of this tool,
the term “linting” was coined. However, today this type of analysis does not
apply only to software, but to HDL as well. Static analysis techniques range
from the most mundane (statistics on the density of comments, for instance) to
the more complex, semantics-based analysis techniques. Some tools provided
by industry vendors are Klee, Microsoft SAGE, and CompCert. Klee is a static
analyzer for C programs based on symbolic execution. According to [285], a
C program is modeled as a binary tree for the analysis and Klee traverses the
tree from root to leaves, generating sets of constraints at each decision state
(e.g. conditionals and loops) until it finds an error or an exit state. When
either is detected, Klee solves the generated constraint to create a test case
that will be applied to the unmodified program. Also SAGE uses symbolic ex-
ecution. It generates tests for software programs by choosing good candidates
for the inputs of a program to optimize the constraints generated during the
analysis phases [286]. Differently than Klee, SAGE is a machine-code based
approach. This allows the tool to generate tests for programs regardless of
their source language. It takes into consideration only the underlying system
architecture. CompCert is a formally verified compiler for C programs, with
special attention to safety-critical systems. CompCert’s goal is to generate op-
timized executable files that are free of miscompilation errors while observing
the semantic preservation [264]. According to [287], the flow of CompCert is
composed of twenty passes that cover the transformation from C source code
to object code. These twenty passes are grouped in four phases. First, Parsing
preprocesses the source files to generate an Abstract Syntax Tree (AST). The
parser is automatically generated along with a proof of its correctness. Second,
C front-end compiler checks the types inferred for the expressions and deter-
mines the order of execution. Third, Back-end compiler refines and optimizes
the front-end’s output on the target architecture. Fourth, Assembling takes

100 Chapter 3. Related Work

the AST produced by the third phase and produces the final object and exe-
cutable files using debugging information from the parser. The internal tool
Valex helps to increase the confidence on the result by checking the generated
executable files.

3.4.8 Semiformal Verification

Another methodology that is also widely employed by the industry is the com-
bination of FM with simulation approaches. Simulation gives a good glimpse
of the system functionality, as it needs inputs to exercise the architecture and
produce outputs that can be verified against a golden model, to testify their
functional correctness. However, the bigger the system, e.g., many input and
output pins, many IP blocks, long chains, the longer it takes to evaluate the
system’s correctness. In addition, depending on the system size, checking
all the possible input combinations and all the possible internal values using
simulation is practically impossible, so the coverage is not complete. Tools
that employ hybrid approaches between simulation and formal verification can
mix them in various forms. An example is (Deep) Dynamic Formal Verifi-
cation [288], where simulation is used to direct the architecture to a specific
state, and from there, formal tools try to completely verify a subset of the
state space.

3.4.9 Conclusion

Woodcock et al. [289] showed in a survey of industrial use of formal methods
in 62 projects that the largest single application domain was transport (16%),
followed by the financial sector (12%). The formal methods work helped to
make the informal requirement specifications more precise. In addition, many
errors were found during the proof activities. As a result, very few bugs were
found during the testing of the systems. A remark was that using formal
methods made the resulting software more correct, and that the costs tended to
be increased early in the development life cycle, but reduced later. In general,
the effect on development time, cost, and quality of the resulting product was
generally positive. Several standards for the industrial development of safety-
critical software even require the use of formal methods for the highest software
safety integrity levels. We can conclude that there is no a single verification
technique to completely verify an architecture. Since theorem proving does

3.4. Approaches to Automatic Verification 101

not deal with states, but with formulas, it can be used with projects of any
complexity. However, it demands a high degree of knowledge of the design
under verification and of logic complex formulas, and it is difficult to automate.
The main advantage of Model Checking is that it reports illegal paths (known
as counterexamples), which supports the correction of bugs. However, since
the number of states used to model the system grows exponentially with the
number of variables, a common problem is state space explosion. SMC, BMC,
and SMT are therefore good options only for the verification of parts of an
architecture, and not for the whole. Equivalence Checking compares different
levels of the same implementation to guarantee that they are functionally the
same. This technique also checks the consistency of an optimization after its
implementation or between different abstraction levels. Anyway, some caution
is necessary in this case, as the correlation between these implementations is
not direct. One of the main reasons for the scarce adoption of formal methods
is the lack of the necessary mathematical background, as well as the lack of
robust and user-friendly tool support. In Industry, simulation is still the most
widely used method for verification and validation because it is easy to use and
gives a very good idea of the system’s behavior. However, when the number
of input signals increases (as in large systems), it cannot cover exhaustively
the state space. Often, a good solution is adopting hybrid approaches, which
combine the superior coverage of formal verification, and the scalability of
simulation. In conclusion, with carefully chosen FMs that meet requirements
of application domains, and that are adapted accordingly, automated FMs are
powerful enough to help to the development of high-quality ES.

Chapter 4

Proposed Method

In this chapter, we present the various steps that are adopted in studying our
research problem.

4.1 Research Methodology

Methods for obtaining answers to professional questions range from the fairly
informal, to the strictly scientific. Research is a key source of providing guide-
lines. When you undertake a research study to find out answers to a question,
you are implying that the process being applied uses methods that have been
deeply tested for their validity. The logical scheme that is used to obtain an-
swers to scientific questions is called scientific method [290]. At this point, it
seems appropriate to explain the difference between research methods and re-
search methodology. Research methods are all the techniques that are used for
conduction of research. Thus, they refer to the techniques the researchers use
in performing research operations. Research methodology is a way to system-
atically solve the research problem. Thus, it may be understood as a science of
studying how research is done scientifically [291]. The researcher needs to know
not only the research methods/techniques, but also the methodology. In order
to answer questions, we have to collect, analyze, and interpreting information,

103

104 Chapter 4. Proposed Method

but to qualify as research, the process must have certain characteristics: be
controlled, rigorous, systematic, valid and verifiable, empirical and critical.
Our research process starts with defining a research goal. As the aim of our
research is to provide tools and methods that are relevant for the industrial
practitioners, the above research goal is defined considering the state of the
practice and the state-of-the-art literature, and based on industrial challenges
that needs to be addressed. The initial point for defining our research goal is
the engineering challenges that come from engineering process currently being
used in real-world development of ES. In order to formulate a research goal,
we perform a critical analysis of the relevant literature and practice. We make
sure that the defined research goal has not been previously addressed in the
existing body of knowledge. Later in the process, the literature review serves
to consolidate our knowledge base and helps us to integrate our findings with
the existing body of knowledge [292]. The formulation of a research problem
is fundamental. A research problem may take a number of forms, from the
very simple to the very complex. The way you formulate a problem determines
the steps that follow in the research journey. In the next step, we propose a
solution that addresses the identified research goal. During the last step of the
research process, we perform validation of our research results. After the vali-
dation phase is concluded, the research results are summarized into a research
manuscript.

4.2 Research Problem

This work aims to provide an approach to support the design and automatic
verification of redundant system architectures with respect to the given specifi-
cations, while ensuring the fulfillment of fail-operational requirements. In this
work, we tackle the following research question and present contributions to
address it.

Given a high-level system model, how to perform the DSE to find
an “optimum” redundant schema?

4.2.1 Existing Limitations

In most of the works we have founded in the literature, only a portion of the
problem was actually explored, either by:

4.2. Research Problem 105

• addressing single-objective DSE problems

• applying simple and unrealistic constraints and objectives

• taking into account a fixed number of FT techniques

• referring to a homogeneous or custom architecture

• using a static scheduling algorithm for exploration

• assuming observable errors

• not considering mixed-critical fault management.

Furthermore, the typical crucial activities that the designer has to face,
such as:

• extraction of models for the analysis of alternatives

• fast evaluation of properties (e.g., timing, power consumption, etc.)

• selection and comparison among alternatives

are not yet totally automated or currently supported by tool suites. To make
things worse, there is no a single verification technique to completely verify an
architecture, and there is scarce adoption of FM in industry.

4.2.2 Problem Formulation

The RAP we are facing is illustrated in Figure 4.1. Consider a non-redundant
system A = {C1, C2, . . . , Cn} consisting of n components, and suppose that
for each component Ci a library of applicable redundant design patterns libi =
{P 1

i , P 2
i , . . . , P mi

i } is available. Given a function that maps each component Ci

to a redundant pattern P j
i such that P j

i ∈ libi, defining a redundant extension
of the system AR = {P j1

1 , P j2
2 , . . . , P jn

n }, our aim is to find the function R that
evaluates the reliability of each possible extension AR of the architecture A,
and compute the appropriate allocation of redundant design patterns to ba-
sic (non-redundant) system components that maximizes the system reliability
and optimize some other non-functional parameters, given various system-level
constraints.

The problem can be formulated as follows:

106 Chapter 4. Proposed Method

• given a (non-redundant) system A = {C1, C2, ..., Cn} defining the ar-
chitecture and the behavior of a component based system, made of n

components such that

• each component Ci has a (finite) library of applicable redundant patterns
libi = {P 1

i , P 2
i , ..., P mi

i }, and

• given a function that maps each component Ci to a redundant pattern
P j

i such that P j
i ∈ libi, defining a redundant extension of the system

AR = {P j1
1 , P j2

2 , ..., P jn
n },

• our aim is to find a function R that evaluates the reliability of each
possible extension AR of the architecture A.

4.3 Overview of the Approach

In the following, we discuss the problem from an optimization perspective
where system synthesis can be considered a constrained COP. We propose a
multi-objectives DSE process that automatically selects the appropriate tech-
nique or set of FT techniques (at logical level) to be applied to the original
non-redundant system to obtain a redundant one, optimizing simultaneously a
collection of objective functions. With a Model-driven approach, complexities
of ES are managed at the highest level of abstraction (i.e., system level) by
using models as key artefacts throughout the development process. If these
models are formally defined, the process can be automated. If the trans-
formations from a model to another are formally defined, they preserve the
equivalence (automatic verification). This task will be applied before the im-
plementation phase and independently from the specific target platform, to be
as more general as possible.

This methodology allows the designer to apply to a given heterogeneous
system architecture various FT techniques (theoretically all existent ones), an-
alyzing, evaluating and comparing the resulting redundant schemes in front of
multiple optimization objectives, before mapping the system under study onto
a physical architecture. Although non-functional requirements (like reliability
or performance) are highly dependent on the implementation, the introduc-
tion of this abstract information at the early stages of a design can be of great
benefit to the design process. First of all it gives an indication about the
possible impacts of a considered redundant scheme. In addition, it is useful

4.4. Input and Output 107

Dataflow model
(NOT redundant)

Reliability
introduction

Redundant
Dataflow model Cost

"Optimum"
scheme Mapping Scheduling Hardened

system model

Architecture
model

Reliability oriented
techniques Metrics

DSE

Figure 4.1: Redundant system-level synthesis flow

for discarding unsuitable design points and for reducing the design space of
feasible candidates; especially in view of the following mapping activity which
is compute intensive (see Figure 4.1). This helps reduce errors, lowering cost,
shortening the design cycle, and automate the design process.

4.4 Input and Output

We consider as input of the process the following items.

• I1: System model: the data-flow model of the basic (non-redundant)
system. It is represented by a directed graph where nodes represent the
components of the architecture and edges describe how components are
connected.

• I2: Fault model: specification of the failures to be handled. Compo-
nents are equipped with sets of Boolean fault variables, which determine
the behavior when one or more faults occur.

• I3: Objectives: maximizing or minimizing different kind of criteria.

• I4: FT patterns: library of redundant design patterns (Duplex, TMR,
etc.).

• I5: Design constraints: the above model must allow the designer to
specify constraints that the candidate scheme has to satisfy, like conform
to size limits, budget power consumption, satisfy reliability requirements,
and meet cost targets.

And as output the best redundant architecture that fulfills functional and
fault management requirements on the basis of cost/performance data. See
Figure 4.2.

108 Chapter 4. Proposed Method

Basic system model

Fault model

Objectives

Constraints

FT patterns

DSE "Optimum"
Redundant Architecture

Figure 4.2: Inputs and outputs of DSE approach proposed

4.4.1 System Model

Usually, the system development process begins with the definition of the high-
level system goals based on stakeholder inputs. From the analysis of those
requirements, the specification will be defined. The specification says what
things the system does, but it does not say how. Describing how the system
implements those functions is the purpose of the architecture. The high level
goals lead the development team to define a certain architecture style. This
architecture drives a high-level model (I1). We consider this model as our
starting point. It is a data-flow model. Data-flow modeling examines how
data moves around the system, focusing on how things connect. Since the
choice of representation affects both the storage and computational time to
perform look-ups and algorithms, we represent the basic system as intercon-
nected components, specifying for each node a list of neighbors, defining its
logic through SMT variables and constraints. The main purpose of describing
processes formally is that this allows us to subject the processes to formal
analysis, i.e. it allows us to talk about their properties in a precise way. The
building blocks of the system under analysis are represented in the theory of
EUF. Namely, an uninterpreted function is used to represent the behavior of
a component as a generic function over the reals.

4.4.2 Fault Model

We can then augment the original architecture model with fault information to
characterize anomalous conditions, producing the architecture fault model (I2).
A system failure occurs when the delivered service deviates from fulfilling the
system’s function. The occurrence of faults is modeled with the introduction
of Boolean fault variables. Then, we build a model of the deviation (aka TLE)
of the system under analysis from its nominal behavior. The model of the

4.4. Input and Output 109

deviation is an SMT formula with respect to the theory of EUF, written as an
SMT(EUF) formula.

4.4.3 Objectives

The goal of ES design is, certainly, a system that will optimize various metrics
of design. The objectives (I3) listed below are typically used as optimization
goal of the overall system, can universally be applied to DSE and are not
domain-specific.

• Reliability: to assess the reliability of the redundant architectures stored
in the library, we express it relative to their composing elements. For
example, the probability of failure of a TMR can be computed as follows.

Pfailure = pv + (1 − pv)(3p2
m − 2p3

m)

where pv and pm are the failure probability of the voter and the failure
of probability of a module respectively. Once the failure probability is
found, reliability is trivially obtained by complementing it. If the three
modules are different, or more in general, their failure probabilities are
different, the formula is more complex and can be obtained by directly
reasoning on the MCS, which in the case of a TMR are the following.

MCS = {{m1, m2}, {m1, m3}, {m2, m3}, {v}} (4.1)

where m1, m2, and m3 are the three modules and v is the voter. The re-
sulting formula is the sum of the products of the probabilities associated
to each CS.

Pfailure = pm1pm2(1 − pm3)(1 − pv)+
pm1(1 − pm2)pm3(1 − pv)+
(1 − pm1)pm2pm3(1 − pv)+

(1 − pm1) ∗ (1 − pm2) ∗ (1 − pm3) ∗ pv

Employing those redundant patterns, we can compute the reliability of
the entire system as illustrated in the next sections, and thereafter eval-
uate the reliability improvement for the redundant architectures as the
improvement in system reliability compared to the basic (not redundant)
system.

110 Chapter 4. Proposed Method

• Cost: the cost of a design could be measured as the sum of all compo-
nents. At the level of abstraction we are reasoning, we have no informa-
tion about the specific component that will be implemented, so we cannot
base on the wholesale prices from different component manufacturers. So
far, for each redundant pattern applied, the cost can be expressed as a
percentage increase with reference to the basic component. For instance,
the cost of a TMR pattern has a recurring cost of 300% comparing to
the basic system, due to the using of three parallel modules. We can
ignore the cost of voter which is normally a simple hardware circuit that
depends on the type of the output control signal. And there are no ad-
ditional development costs because the three modules are identical and
they use the same software.

• Power dissipation: as for cost, power dissipation of a redundant pat-
tern can be expressed as a percentage increase compared to the basic
(not redundant) component. For instance, the power dissipation of a
TMR is 300% the power dissipation of the basic component (ignoring
the dissipation of the voter).

• Size: introducing redundant modules means also increasing the area oc-
cupied by the system. For instance, a TMR occupies three times the
area of the basic module (increase of 300%).

• Weight: as for size, weight of a redundant pattern can be expressed as
a percentage increase compared to the basic (not redundant) compo-
nent. For instance, the weight of a TMR is 300% the weight of the basic
component (ignoring the weight of the voter).

• Execution time: in general, the speed of a design can be expressed by dif-
ferent metrics (such as throughput, amount of data processed, response
time for certain events, etc.). Also in this case, we express it by compar-
ing the redundant scheme and the basic module. For instance, the TMR
pattern has a little influence on the execution time comparing to the
basic system, since the three modules are running separately in parallel
and we can ignore the small delay introduced by the voter. More in gen-
eral, the execution time depends on the configuration of the subsequent
components (series/parallel) and it is influenced by the slowest one.

4.5. Contributions 111

4.4.4 Redundant Patterns

To construct the library of FT design patterns (I4), widely used and proven
solutions in the field of ES have to be collected from literature. These solutions
should be generalized establishing a high-level and abstract representation that
can be used to evaluate the impact of the collected solutions when applied to
the basic system architecture, independently from a specific application or a
specific implementation.

4.4.5 Design Constraints

As additional input to the proposed framework, we consider design constraints
(I5) - specified by the designers - that the generated architectures have to
satisfy. The design constraints can have a local or global scope, concerning
either individual components or the entire system.

The redundancy allocation system can be formally defined by a 4-tuple:

S =< R, C, P, A >

where:

• R is the set of available redundant patterns;

• C is the capacity function, characterizing the number of available iden-
tical units from each pattern type;

• P denotes the set of the system components;

• A is the redundancy allocation function associating every component
with the redundant pattern required for objectives optimization.

At the end, we will obtain a set of possible solutions. Obviously, the de-
signer is might interested in one single solution to deploy. To this end, the
designer can choose just a single point among the set, for example on the basis
of the priority assigned to the objectives.

4.5 Contributions

We propose a DSE framework that supports the activity of discovering and
evaluating design alternatives, captured by design specifications, during sys-
tem development. We extend the work proposed by Bozzano et al. [154] along

112 Chapter 4. Proposed Method

several directions, in order to propose a fully automated approach to the re-
liability assessment of complex redundant architectures. First of all, Bozzano
et al. study the reliability of a given redundant architecture. Instead, we
deal with a DSE process in which design alternatives are evaluated to opti-
mize the architecture. Our method includes the reliability assessment as part
of the evaluation of alternative designs. Moreover, we introduce a novel as-
sessment of reliability based on configuration and fault variables, presented
below, that affects the structure of the BDD, pushing it to work in a kind of
deductive manner. Furthermore, Bozzano et al. adopted TMR as redundancy
architecture, while we build a library of redundancy architectures applicable
to the basic components, dealing with the complexities related to their selec-
tion and connections. They implemented the approach by leveraging several
existing tools: they used the OCRA language [293] to specify the architecture
under analysis, and employed the language SMV [155] and its associated tool
XSAP [156] for the symbolic representation of the system. In our case, archi-
tecture modeling is performed completely using SMT. We leverage the power
of SMT techniques to automate the reasoning part, by representing the archi-
tecture as uninterpreted functions, and extracting all the deviation conditions
resolving an AllSMT problem.

The key point of our work is the symbolic encoding of the reliability search
problem. Given an abstract description of the architecture, the approach au-
tomatically extracts a symbolic reliability function mapping the probability of
fault of the basic components to the probability that the overall architecture
deviates from the expected behavior. We encode the problem with a symbolic
technique that allows us to compare different redundant architectural config-
urations independently of the specific values of failure probability, as well as
evaluate different components that implement the same architecture.

Furthermore, together with reliability, we also consider other non-functional
requirements such as cost, power dissipation, size area, and execution time, to
find the assignments of redundant design patterns to basic components that
optimize (minimize/maximize) some objective functions, addressing therefore
a MOOP. At system level, estimation of non-functional properties is particu-
larly difficult as the sub-components are not designed yet, and the individual
tasks of the application may not be fully specified.

Lastly, we also integrate the exact SMT-based method with a heuristic
that can help solve the optimization problem when the sheer size of the design
space makes enumerating every design point prohibitive.

4.6. Challenges 113

Besides, we introduce some refinements and smart solutions in every step
of our method, in order to further improve the performance.

Our contribution is the following:

• Providing a high-level description of system architecture in terms of con-
nections between individual components.

• Formalizing the constraints that the generated architectures have to sat-
isfy, and not domain-specific objectives that can universally be applied
to DSE.

• Building a library of redundant design patterns.

• Defining a novel symbolic encoding of reliability function, by encoding
the derived optimization problem into a SMT form, and generating a
formula that represents all valid redundant architectures for the given
system, employing the patterns contained in the library.

• Evaluating additional non-functional requirements, supporting the DSE
wrt. multiple objectives.

• Defining an approach to support the design of redundant system archi-
tectures, providing an exact and an approximate methods.

• Implementing the proposed method with PySMT [294], an open-source
python library that provides a solver-agnostic interface.

With a Model-driven approach, complexities of ES are managed at the highest
level of abstraction (system level) by using models as key artefacts throughout
the development process. We reason at logical level, applying the proposed
method before the implementation phase and deployment phase, thus inde-
pendently from the specific target platform, to be as more general as possible.
Our underlying aim is to provide results that show that an application of the
proposed SMT-based method to solve DSE is promising and valuable against
well-known evolutionary-based approaches.

4.6 Challenges

While existing model-driven frameworks are able to explore the design space
of smaller problems by exhaustively traversing reachable states and checking

114 Chapter 4. Proposed Method

global constraints and goals in each state, our approach also wants to define
rules for guidance that help the exploration and addresses the following chal-
lenges:

• Extensibility: we want to define a framework as much general as possi-
ble and easy to use that can be applicable on different design problems;
the set of criteria should be extensible for adapting the approach to var-
ious domains.

• Decisions identification: during exploration, the framework should
distinguish the guidance from the exploration strategy to easily allow
the modification of both parts. We can combine the advantages of high
level rules that guide the search, using consolidated techniques, with
those of the solver, i.e., only obtaining feasible implementations.

• Traversed design space reduction: the guidance should reduce the
number of traversed states before finding solutions and ensure that no
valid solutions are removed by the cut-off criteria.

• Provide optimal solutions: the guided framework should find the
solutions that are (near-)optimal with respect to a user-defined metric.
Moreover, it should be able to find other (less optimal) solutions if nec-
essary.

• Cover dynamic aspects: usually, existing methods target static as-
pects that only cover scenarios which consider only one system state at a
time. We want the proposed method to allows for an analysis of dynamic
aspects of models, i.e. the evolution of system states. This means that
faults are associated with dynamics. Please note that this aspect is not
covered in this work. We reserve it for future work.

The framework automatically selects the appropriate technique or set of
fault-tolerant techniques (at logic level) to be applied to the original system
to obtain a redundant one, optimizing simultaneously a collection of objective
functions. It will explore and analyze several functionally equivalent alterna-
tive designs. It is based on a hybrid optimization approach that combines
exact techniques with a heuristic algorithm. Specifically, a SMT solver deter-
mines feasible solutions of relaxed problems, and those solution are used as a
starting point for a metaheuristic search. The key feature of this approach is

4.6. Challenges 115

that it combines the advantages of the metaheuristic, i.e., being able to con-
sider multiple and non-linear design objectives, with those of the solver, i.e.,
only obtaining feasible implementations. We will not create a new technique,
but rather create high level rules that guide the search, using consolidated
techniques

Chapter 5

Reliability Assessment of
Redundant Architectures

In the following we lay out the theoretical foundations of the encoding prob-
lem. We recall the method presented by Bozzano et al. [154], adding some
improvements, and presenting main extensions.

5.1 Assumptions

Most hardware faults are random and result from physical defects, either sus-
tained during manufacturing or developed over time as components wear out
or suffer shocks from the surrounding physical world. Software faults, on the
other hand, are not physical; software does not wear out. Software faults re-
sult from the invocation of software paths that contain defects in the software
design or implementation. The following assumptions are made.

• We consider our software as black boxes (higher level of abstraction) and
we assume that there are no design errors.

• We assume that FT patterns are not limited, i.e., we can use more pat-
terns of the same kind, if not specified from a design constraint.

117

118 Chapter 5. Reliability Assessment of Redundant Architectures

• We do not consider component mixing, i.e. a mix of components within
a subsystem is not allowed, in other words, for each component a single
pattern is allocable for redundancy.

• Basic events are independent, and each component is critical, i.e., its
failure triggers the TLE.

• The single failure probabilities of the modules composing the compo-
nents are given and expressed relative to a certain time interval. We also
assume that such failure rate is constant in the life-cycle of each compo-
nent. This is a fair assumption, as usually reliability standards report
this information in terms of MTTF or MTBF.

• A failure leads a component to behave incorrectly and produce an arbi-
trary output.

• We refer to a coherent (or monotone) model, i.e., for each scenario where
the system fails, adding more failure events maintains the failure condi-
tion.

• For simplicity, we assume that all redundancy is active. In this case, re-
dundant components automatically pick up load on failure. They do not
have to detect component failure and do not have to switch to redundant
resource. Furthermore, a failed component cannot return to a working
state (it is not repairable).

• To leverage analytical methods, we also assume that the redundant com-
ponents preserve the original component’s interface. Moreover, we do
not consider hierarchical models, but only flat models.

5.2 Modeling the System Architecture

Consider a high-level system architecture represented by a DAG, in which
nodes represent the components of the architecture (denoted by Ci) and edges
describe how components are connected. Figure 5.1 shows three different archi-
tecture graphs for system composed of six components, respectively connected
in series, parallel, and complex configurations. A DAG is formed by vertices
and by edges going from one node to another. These edges are directed, which
means that they have an orientation. It is also acyclic, which means that there

5.2. Modeling the System Architecture 119

C1 C2 C3 C4 C5 C6

(a)

C1

C2

C3

C4

C5

C6

(b)

C1

C2

C3

C4

C5

C6

(c)

Figure 5.1: Example of series (a), parallel (b), and complex (c)
system architectures.

are no feedback loops, i.e., a variable cannot be its own descendant. A topo-
logical ordering of a DAG is an ordering of its vertices into a sequence, such
that for every edge the start vertex of the edge occurs earlier in the sequence
than the ending vertex of the edge. A DAG is a suitable representation of a
component-based system, since data enters a processing element through its
incoming edges and leaves the element through its outgoing edges. Data-flow
programming languages describe systems of operations on data streams, and
the connections between the outputs of some operations and the inputs of
others.

Each component is equipped with a Boolean fault variable that determines
the behavior of the component when one or more faults occur.

Definition 1 (Fault variable). A fault variable Fi is a Boolean variable that
determines the behavior of a component when a fault occurs.

Each computing module within the component has two separate behaviors:
nominal (MN) and faulty (MF), both represented as a generic function over
the reals, using uninterpreted functions. With the theory of EUF, function
symbols have no specific property, except for the fact that they are functions.
Since the functions are uninterpreted, they allow us to express the functional

120 Chapter 5. Reliability Assessment of Redundant Architectures

Extended Module

Nominal

Faulty

M
U

X

nominal_behavior

can_fail

input output

Figure 5.2: Example module with nominal and faulty behavior

properties of the behavior of components abstracting from the specific im-
plementations. The outputs of each pair of nominal and faulty modules are
provided to a multiplexer, which selects the proper signal according to the
fault event. Denoting by FM the probability of fault of a given module, the
formal model that describes the setting shown in Figure 5.2 is defined using
the following SMT formula.

¬FC =⇒ output = nominal_behavior(input). (5.1)

Others elements such as Voters, Comparators, and Fault-detectors have well
defined implementations, and they do not need therefore to be modeled with
an uninterpreted function. Each module receives as parameters: the input
representing the input values of the computation (of type real), a Boolean pa-
rameter can_fail that enables the component to have internal failures, and
the nominal behaviour of the computation, which is a function modeling the
computation in the nominal case. In addition, it has a local variable is_faulty

that keeps track of the current behavior (nominal or faulty). Voters, Compara-
tors, and Fault detectors receives as parameters: the input values (of type real),
the Boolean parameter can_fail, which enables the component to have inter-
nal failures, and the local variable is_faulty that keeps track of the current
behavior. In short, we extend each module with a fault model, getting an Ex-
tended Module (EM). For example, Figure 5.3 shows the modeling technique
described above applied to a TMR. For each sub-component, a multiplexer
chooses nominal or faulty output depending on the can_fail parameter.

Given an input i and naming imi and omi respectively the input and output
of the module mi, and modeling the nominal behavior of the module mi with
the uninterpreted function behmiN(i), and its faulty behavior with the unin-
terpreted function behmiF (i), the outputs of the module mi depend on both

5.2. Modeling the System Architecture 121

Extended Voter

Extended Module 1

Nominal

Faulty

M
U

X

nominal_behavior

can_fail

input outputVN

Extended Module 2

Nominal

Faulty

M
U

X

Extended Module 3

Nominal

Faulty

M
U

X

M
U

X

VF

Figure 5.3: Example of redundant pattern modeled with nom-
inal and faulty behavior

its inputs and its internal behavior. Thus, it can be modeled using a SMT
formula as follows:

Formula_M := ITE

can_fail,

ITE(FM1, oM1 = behM1F (i1), oM1 = behM1N(iM1)∧
ITE(FM2, oM2 = behM2F (i2), oM2 = behM2N(iM2)∧
ITE(FM3, oM3 = behM3F (i3), oM3 = behM3N(iM3)

 ,

oM1 = behM1N(iM1)∧
oM2 = behM2N(iM2)∧
oM3 = behM3N(iM3)

 (5.2)

We rely on real data types in order to describe infinite domain values,
and the uninterpreted functions we refer to have therefore both real domain
and co-domain. The real output omi is constrained only if it cannot fail (i.e.
can_fail is False or the fault variable of the module is False), otherwise the
output takes an arbitrary value. Please note that, since the faulty behaviour
of a module consists in generating a random real value, the arbitrary output
could also assume the nominal value.
While the internal behavior of a computing module is abstracted by using
uninterpreted functions, the voter has a well defined nominal implementation,
as stated above, and it can be modeled by the following SMT expression:

Formula_v :=
(¬can_fail ∨ (can_fail ∧ ¬Fv)) →

oM1 = oM2 ∨ oM1 = oM3 → oV = oM1∧

oM2 = oM3 → oV = oM2∧
oM1 ̸= oM2 ∧ oM1 ̸= oM3 → (oV = oM1 ∨ oV = oM2 ∨ oV = oM3)

∧

(can_fail ∧ Fv) → bheV F (oM1, oM2, oM3)

(5.3)

122 Chapter 5. Reliability Assessment of Redundant Architectures

Formula 5.3 states that if the pattern cannot fail or it can fail and the
voter is not faulty then the voter behaves correctly, and the output value ov

corresponds to the majority value of its inputs (which is the output of the
three modules). If all the three inputs are different, then the voter chooses a
random input value and outputs it. If the voter is faulty instead its behavior
is unpredictable, and it is modeled by the 3-ary unconstrained uninterpreted
function behvF (i0, i1, i2) that produces an arbitrary real value (this is managed
by the tool, which we use as black box). The formula that models the entire
TMR can be expressed by combining equations 5.2 and 5.3.

Formula_TMR := Formula_v ∧ Formula_m (5.4)

1 class TmrV111 (Pattern):
2
3 n_f_atoms = 4
4
5 def __init__ (self , comp_name : str , comp_n_inputs : int , modules_fault_atoms : list ,

voter_fault_atom : Symbol , nominal_mod_beh : Symbol):
6
7 """
8 : param comp_name : name of basic component
9 : param comp_n_inputs : number of inputs of the basic component

10 : param modules_fault_atoms : fault atoms for the 3 modules
11 : param voter_fault_atom : fault atom for the voter
12 : param nominal_mod_beh : nominal behaviour
13 """
14
15 pattern_name = comp_name + "." + PatternType . TMR_V111 .name
16 modules = [FaultyModule (pattern_name + ".M" + str(idx), comp_n_inputs ,

modules_fault_atoms [idx], nominal_mod_beh) for idx in range (3)]
17 modules_out_ports = []
18
19 # The output of the modules are the inputs of the voter
20 for module in modules :
21 modules_out_ports . extend (module . output_ports)
22 assert len(modules_out_ports) == 3, "[" + pattern_name + "] The voter must have 3

inputs "
23 self. _voter = Voter (pattern_name + ".V", voter_fault_atom , input_ports =

modules_out_ports)
24
25 # Output port of the pattern corresponds to the output port of the voter
26 output_ports = self. _voter . output_ports
27 super (TmrV111 , self). __init__ (pattern_name , PatternType .TMR_V111 , modules_fault_atoms

+ [voter_fault_atom], modules , output_ports)
28
29 # Define behaviour formula : And of subcomponents behaviours
30 # Modules
31 subcomp_beh_formula = [module . behaviour_formula for module in modules]
32 # Voter
33 subcomp_beh_formula . append (self. _voter . behaviour_formula)
34 self. _behaviour_formula = And(subcomp_beh_formula)

Listing 5.1: TMR pattern definition

Listing 5.1 shows the Python code implementing it. Listing 5.2 presents
the definition of the voter with three inputs.

5.2. Modeling the System Architecture 123

1 class Voter (Component):
2
3 def __init__ (self , name: str , fault_atom : Symbol , input_ports : list = None ,

output_port : Symbol = None):
4 """
5 : param name: name of voter
6 : param faulty_atom : symbol used to indicate whether the voter is faulty
7 : param input_ports : list of symbols corresponding to the voter ’s input ports
8 : param outpu_ports : lsit of symbols corresponding to the voter ’s output ports
9 """

10
11 self. _fault_atom = fault_atom
12
13 # Define input and output ports
14 if input_ports is None:
15 input_ports = [Symbol (name + ".i" + str(idx), REAL) for idx in range (3)]
16 else :
17 assert len(input_ports) == 3, " Voter can only accept 3 input ports "
18 if output_port is None:
19 output_port = [Symbol (name + ".o0", REAL)]
20
21 super (Voter , self). __init__ (name , ComponentType .VOTER , input_ports , output_port ,

fault_atoms =[fault_atom])
22
23 # Define nominal behaviour
24 nom_behaviour = And(
25 Ite(
26 Or(
27 Equals (self. _input_ports [0] , self. _input_ports [1]) ,
28 Equals (self. _input_ports [0] , self. _input_ports [2])
29),
30 Equals (
31 self. _output_ports [0] , self. _input_ports [0]
32),
33 Equals (
34 self. _output_ports [0] , self. _input_ports [1]
35)
36)
37)
38
39 # if faulty atom is false , then the behaviour is nominal
40 self. _behaviour_formula = Implies (Not(self. _fault_atom), nom_behaviour)

Listing 5.2: Voter used in the extended TMR

In order to help figure out this abstract representation, Listing 5.3 reports
a simple test program for the TMR, and Figure 5.4 illustrates the output.

1 # Test - Example
2 if __name__ == " __main__ ":
3
4 nominal_beh = Symbol ("nom -beh", FunctionType (REAL , [REAL]))
5 tmr = TmrV111 (" TMR_V111_A ", 1, [Symbol ("F0"), Symbol ("F1"), Symbol ("F2")], Symbol ("F3"

), nominal_beh)
6 print (tmr. behaviour_formula . serialize ())

Listing 5.3: Test example for TMR

Figure 5.4: Output of the test example for TMR

124 Chapter 5. Reliability Assessment of Redundant Architectures

Module 1

Module 2

Module 3

Voter

TMR1

Module 1

Module 2

Module 3

Voter

TMR2

out

in1

in2

in3

Figure 5.5: Linking constraints determine the connections be-
tween two components

This representation can be extended to any redundant patterns. Leveraging
this method, the redundant architecture can be expressed through an SMT
formula where the edges between two components (i.e., connections between
two redundant patterns) can be expressed by equaling the output of the first
component to the input of the subsequent one.

Definition 2 (Linking constraint). A linking constraint Lnkij is an SMT for-
mula that determines the connections between a redundant pattern pi and the
descendant redundant pattern pj, by specifying the equalities among the outputs
of the former and the inputs of the latter.

For example, if we have two TMRs connected in series as in Figure 5.5,
namely TMR1 and TMR2, we can specify how they are connected imposing
the following constraints:

(TMR1 .out = TMR2 .in1) ∧ (TMR1 .out = TMR2 .in2) ∧ (TMR1 .out =
TMR2 .in3)

5.3 Modeling the Miter

Modeling the modules with nominal and faulty behaviours gives us the possibil-
ity to describe both reference and faulty systems. The reference architecture
is instantiated by providing False as can_fail parameter to all components,
while the faulty description is obtained by setting it to True. This system
composition is a selective switch (aka Miter [295]). By providing the same
inputs to two architectures, we can compare them by evaluating the difference
in the outputs. A deviation of the system under analysis from its nominal
behavior is a TLE. The miter composition for an architecture composed of six

5.3. Modeling the Miter 125

M1

M2

M3

M4

M5

M6

False

False

False

False

False

False
NB2

NB6
NB5

NB4

M1

M2

M3

M4

M5

M6
True

True

True

True

True

True

= TLE

Faults

Inputs Outputs

NBi = nominal behavior of module i

NB1

NB3

Figure 5.6: Miter composition

components like the one in Figure 5.1c is illustrated in Figure 5.6. If the model
has a single output, then the TLE is the deviation between the two copies, if
there are multiple outputs, then the TLE is the disjunction of all the output
deviations:

TLE
def=
∨

o∈O⃗

(o ̸= o′). (5.5)

The miter allows us to enable or disable the possibility to have faulty
behaviors on the entire architecture. The miter composition can be generalized
using the following formula:

patterns_behavior ∧ linking_constraints ∧ TLE (5.6)

where patterns-behavior is the conjunction of the behaviour’s formulas of
both nominal patterns and faulty patterns, linking-constraints are the equali-
ties that indicate how patterns are connected and TLE is the formula defined
in 5.6. Since every (fallible) component has a corresponding (infallible) com-
ponent in the reference architecture, we can compose a miter in which the

126 Chapter 5. Reliability Assessment of Redundant Architectures

MN

MF

True

FalseNB

Fault

Figure 5.7: A stage aggregates nominal and faulty behaviors

corresponding components (faulty and reference) are tightly aggregated. This
aggregation is called a stage (see Figure 5.7), and the resulting stage-based
miter is illustrated in Figure 5.8. Although the two miters are logically equiv-
alent, the latter combines reference and faulty components in the same block,
allowing to emphasize the localization of the deviation of a component from its
nominal behavior. Instead of quantifying out non-Boolean variables through a
global AllSMT, modules are abstracted and quantifier elimination is performed
individually on them. The outcomes of this procedure are then quantified and
combined together by means of an efficient BDD-based procedure.

Every assignment that evaluates the formula 5.6 to True corresponds to a
condition that may cause the two systems to provide different outputs.

5.4 Minimal Cut-sets Computation

In particular, we are interested in finding only the set of assignments to the
fault variables Fi that are sufficient to trigger the TLE. Since the number of
(Boolean) fault variables is finite, and their domain is finite and discrete, the
number of such assignments is finite. In other words, we want to find a Boolean
formula that consists only of fault variables and whose models correspond to
the CSs of the architecture under analysis. Every CS can be represented, via
a propositional formula, as a conjunction of component faults, and the set
of configurations as a disjunction of CSs. If we represent the Miter as an
SMT formula over input ports I⃗, output ports O⃗, fault variables F⃗ , and TLE,
the formula describing the CSs can be obtained via quantifier elimination as
follows [154]:

∃I⃗ .O⃗.
(
π(I⃗ , O⃗, F⃗) ∧ TLE(O⃗)

)
. (5.7)

5.4. Minimal Cut-sets Computation 127

M1

M1

True

FalseNB

M2

M2

True

FalseNB

M3

M3

True

FalseNB

M4

M4

True

FalseNB

M5

M5

True

FalseNB

M6

M6

True

FalseNB

= TLE

Figure 5.8: Stage-based Miter composition

Quantifier elimination consists in transforming a quantified formula into an
equivalent quantifier-free formula. For example, in case of a TMR, on the
basis of the equation 4.1, the set of CSs can be modeled with the following
DNF formula:

Fv ∨ (Fm0 ∧ Fm1) ∨ (Fm0 ∧ Fm2) ∨ (Fm1 ∧ Fm2) (5.8)

Please note that this formula implies all the other failure conditions, i.e., a
solution of the MCS formula is also a solution of the formula representing other
CSs. Formula 5.6 consists of Boolean variables, uninterpreted functions, and
Real variables. It represents the set of assignments to the fault variables such
that there exists an assignment to the inputs that allows the two architectures
to provide different output values. Since the miter formula consists of input
variables, output variables, and fault variables, quantifying out the inputs and
outputs of each sub-component, we obtain a Boolean formula with only fault
variables. An equisatisfiable formula consisting only of Boolean variables can
be obtained through AllSMT, specifying that all theory variables have to be
eliminated and only Boolean variables have to remain in the formula. The
problem of extracting the CSs can be therefore encoded as an AllSMT for the

128 Chapter 5. Reliability Assessment of Redundant Architectures

theory of EUF, i.e., computing all minimal solutions with respect to the set of
decision variables.

5.5 Reliability Assessment

The formula representing the CSs can be converted into a BDD-based rep-
resentation. Every assignment of Boolean variables determines a path from
the root to a leaf. A path from the root to a True-leaf leads to TLE. A path
from the root to a False-leaf, instead, represents an assignment that does not
satisfy the configuration constraints or does not cause the TLE. Under the
assumption that the events encoded by each fault variable are independent,
the reliability function can be extracted by associating to each fault-variable
a probability value, and computing the likelihood of the overall truth of the
formula represented by the OBDD. From the OBDD we can calculate the fault
probability of the entire system by recursively applying the following formula
to each node n of the BDD:

1 if n = ⊤
0 if n = ⊥

Fi · BddProb(n⊤) +
(1 − Fi) · BddProb(n⊥) if n = ITE(Fi, n⊤, n⊥)

(5.9)

where BddProb(n) is the probability of failure considering the sub-tree of
the OBDD rooted in node n, fi is the failure probability of the component i
associated to the node n, and n⊤ and n⊥ denote the high node and the low
node with respect to n. Basically, equation 5.9 means traversing the OBDD
using a Depth-First Search (DFS) considering all paths that lead to True-
leaves (a False-leaf corresponds to a probability of 0). For example, the BDD
equivalent to the equation 5.8, representing the CSs of a TMR, is illustrated
in Figure 5.9. Employing the recursive algorithm defined in equation 5.9, we
obtain the following failure probability function:

fT MR = fv + (1 − fv)(fm0(fm1 + (1 − fm1)fm2)(1 − fm0)(fm1fm2)) (5.10)

Once the failure probability fARCH of a given system has been extracted,
the reliability function can be trivially obtained by complementing it:

Rarc = 1 − fARCH (5.11)

5.6. Improvements and Refinements 129

FV

Fm0

Fm1

Fm2

Fm1

TF

Figure 5.9: OBDD of the formula

5.6 Improvements and Refinements

Since the number of satisfiable assignments of the input formula grows with
the number of variables, quantifier elimination can be slow. Worst-case com-
plexities for useful theories tend to be towers of exponentials. This phase is
therefore the main computational bottleneck of the method. In the following
we propose a couple of solutions in order to overcome this issue and improve
the performance of the algorithm.

5.6.1 Minimal Cut Sets Computation via Predicate Ab-
straction

First of all, we use the method introduced by Bozzano et al. [154] to abstract
the behavior of redundant pattern via predicate abstraction in order to obtain
a pure Boolean formula for modeling each possible deviation from its reference
behavior. Since performance of AllSMT problems are related to the number of
CSs, and this enumeration can be highly expensive, we rely on a suitable pred-
icate abstraction, so that a unique, SMT-based quantifier elimination can be
transformed into a BDD-based quantification on a boolean formula. The op-
timized method for CS construction leverages the correspondence in the miter
between nominal and faulty modules. By applying a predicate abstraction
on input and output ports of each stage, we characterize the ways in which
the outputs of the component can deviate from the nominal case, given the
internal faults and the deviations in the inputs deriving from upstream faults.
The abstraction is explicitly represented by means of additional components

130 Chapter 5. Reliability Assessment of Redundant Architectures

MN

MF

True

FalseNB

Fault

Ci Ai
Boolean Boolean

Figure 5.10: Abstract stage (aka CSA)

(named concretizers and abstactors) connected to the input and output ports
of each stage of the architecture that allow us to abstract their behavior with
a Boolean formula. The so called abstract stage is therefore the sequential
composition of a concretizer, a stage, and an abstractor, linked by means of
linker constraints. We call it CSA and it is illustrated in Figure 5.10.

The concretizers Ci receive as input an assignment to the predicates, and
provide as output an instance of concrete signals satisfying them. Analo-
gously, the abstractors Ai give as output the assignment to the predicates
corresponding to the concrete data in input. More formally, an abstractor is a
component with nominal and faulty Real inputs I⃗ ∪ I⃗ ′, in which every faulty
input in′

i ∈ I⃗ ′ has a corresponding reference input ini ∈ I⃗, Boolean outputs
O⃗ = {out0, out1, ..., outn}, and an internal behavior πA that can be modeled
with the SMT formula in equation 5.12.

πA =
len(I⃗)∧
i=0

outi ↔ (ini = in′
i) (5.12)

In like manner, a concretizer has Boolean inputs I⃗ = {in0, in1, ..., inn},
nominal and faulty Real outputs O⃗∪O⃗′, in which every faulty output out′

i ∈ O⃗′

has a corresponding reference output outi ∈ O⃗, and a behavior πC that can be
modeled with the SMT formula in equation 5.13.

πC =
len(O⃗)∧

i=0
ini ↔ (outi = out′

i) (5.13)

The resulting architecture, depicted in Figure 5.11, has the same interface
as the concrete one by adding an abstractor that preprocesses the inputs. It
is called abstract miter [154]. It is logically equivalent to the one presented in
Section 5.3, hereinafter referred to as concrete miter. The fundamental prop-
erty of the abstract miter is that, under some preconditions, it has the very
same CSs as the concrete one [154]. From the SMT formula of the abstract

5.6. Improvements and Refinements 131

miter, we obtain a pure Boolean model by replacing each abstract stage, i.e.,
each CSA, with a boolean component over the input and output predicate
variables, computed by means of a local AllSMT(EUF) call. Please note that
this abstraction is legitimate for our task, since we are not interested in the
data exchanged between modules, but just on the conditions that lead to a
faulty behavior. The resulting formula is a Boolean formula consisting of fault
variables, Boolean input ports of the concretizers, and the Boolean output
port of the abstractors. Since we want the resulting formula that models the
CSs of the architecture to contain only fault variables, we have to perform an
additional processing on the entire formula in order to quantify out Boolean
inputs and outputs. This step however can be efficiently performed by us-
ing BDD-based projection techniques. The use of predicate abstraction, as
presented above, highly improves the performance of our task [154].

M1

M1

True

FalseNB

M2

M2

True

FalseNB

M3

M3

True

FalseNB

M4

M4

True

FalseNB

M5

M5

True

FalseNB

M6

M6

True

FalseNB

C1

C2

A0

A0

A1

A2

C3

C4

C5

A3

A4

A5

C6 A6

Figure 5.11: Abstract miter

CSA1

CSA2

A0

A0

CSA3

CSA4

CSA5

CSA6

Figure 5.12: Abstract miter is composed by abstract stages

132 Chapter 5. Reliability Assessment of Redundant Architectures

 MF
M1

M2

M3

V

Ci Ai

 CN

 MF
M1

M2

M3

V

 MN
M1

M2

M3

V

Ci Ai

Figure 5.13: Reduced CSA for a TMR example pattern

5.6.2 Reducing the Number of Decision Variables

The performance of the algorithm and the size of the symbolic probability
function depend on the size of the OBDD. In order to lower the time needed to
perform AllSMT calls on the CSAs and the subsequent quantifier elimination
of Boolean input and output ports on the global formula, we can reduce the
number of variables by observing that each abstract stage consists of two copies
of the same pattern: one for the nominal behavior and another for the faulty
behavior. Since in the nominal pattern the fault variables are constrained to
be False, i.e., the nominal pattern is ideal, we can substitute it with a nominal
component, as illustrated in Figure 5.13 for a TMR. This allows us to halve
the number of variables, with a consequent reduction of the computing time.

In addition, the number of variables in the Miter composition can be re-
duced further by maximizing the sharing of fault variables among patterns
allocable to the same basic component that produce different configurations.

Furthermore, one more method to reduce the number of variables is to
limit as possible the number of linking constrains. For instance, if the output
port out1 of a component C1 is connected to the input port in2 of another
component C2, rather than of encoding this information by means of the linking
constraint out1 = in2, using two variables, we can share a single port p, which
is the output for the first component and at same time the input for the second
one, using only one variable.

5.6.3 Management of Uncertain Cases

As stated above, in case of failure, a module produces an arbitrary real value.
In a case of bad luck, wrong behavior could produce the right result, i.e., a
faulty redundant pattern could provide a correct outcome. This means that

5.6. Improvements and Refinements 133

some configurations of fault events at times trigger a TLE, at others do not.
To take into account this eventuality, the Boolean formula of a CSA should
encode both cases, causing a combinatorial growth in size of the abstracted
Boolean formula of each CSA. Let us take a practical example with the TMR.
Let assume that modules M1 and M2 are faulty (while M3 and the voter V have
nominal behavior), and the CSA receives correct values (i.e., Ci = True). If we
implement that described above, after executing an AllSMT call on the CSA,
the resulting Boolean formula will encode the fact that when two modules of
a TMR are faulty, assuming that the voter behaves correctly, the output of
the pattern could either be nominal or faulty (i.e., Ai = True), having the
following form:

... ∨ Ci ∧ FM1 ∧ FM2 ∧ ¬FM3 ∧ ¬FV ∧ ¬Ai¬Ai¬Ai∨
Ci ∧ FM1 ∧ FM2¬ ∧ FM3¬ ∧ ¬FV ∧ AiAiAi ∨ ...

Moreover, another particular case leading to the same phenomenon is pos-
sible. According to equation 5.3, if the (non-faulty) voter receives three dif-
ferent inputs, one of these is randomly chosen and provided as output. As in
the previous case, the output of the voter can be right (because coming from a
non-faulty module) or wrong (because coming from a faulty module). We are
interested in finding all the combinations of fault events that lead to a failure
of the entire system. For this reason, we should include those cases in the CS
computation, even if they could lead to a correct behavior (not triggering the
TLE). However, to avoid unwanted behaviors, and at same time reduce the
Boolean formula retrieved by ALLSMT calls, we can force the faulty behavior
of each sub-component to provide an arbitrary value as long as it is differ-
ent from the nominal value. Formally speaking, in order to prevent the first
uncertain scenario, we have to add to equation 5.8 the following inequality
constraint for each module i:

behMiF ̸= behMiN (5.14)

And in order to prevent the second uncertain scenario, we have to add the
following constraint:

oM0 ̸= oM1 ∧ oM1 ̸= oM2 → ¬(oV = oM0 ∨ oV = oM1 ∨ oV = oM2) (5.15)

134 Chapter 5. Reliability Assessment of Redundant Architectures

5.6.4 Caching Mechanism

A redundant pattern is composed by multiple sub-components. For instance,
the pattern TMR_V111 (i.e., a TMR with one voter) has four sub-components:
three computing modules and one voter. Instead, the pattern TMR_V123
(i.e., a TMR with three voters) has six sub-components: three computing
modules and three voters. The more complex a pattern is, the higher is the
number of possible behaviours described by its CSA formula, and therefore the
higher is the number of its models. Furthermore, also the arity of the basic
components to which patterns are applied influences the number of variables
used to model the connected concretizer. This because each input port of ev-
ery module of a pattern is modeled by Real SMT variables and the number of
inputs of the pattern determines how many variables are needed to model the
connected concretizer. For the above reasons, the abstraction (i.e., AllSMT
computation) of the behaviour of each pattern is by its nature computation-
ally expensive. It could require a very long time depending on the number
of system components, their connections, and their arity. We can save com-
puting time observing that the same type of pattern has a unique behaviour,
regardless the basic component it is applied to. A caching mechanism can
be therefore implemented to drastically reduce the time for the creation of the
Boolean formula modeling the combinatorial abstract miter. Once the formula
without quantifiers has been computed for a pattern, it is stored and imported
every time such pattern is contained in the library of a component (see Fig-
ure 5.14). The import from the cache is in general very efficient and it takes
less than one second even with the most complex redundant patterns.

Table 5.1 illustrates the comparison of performance when computing the
formulae for the first time and when computing the same formulae using the
caching mechanism. The system under test is the running example presented
in Section 7.

5.7 Work Extensions

We extend the work mentioned above along several directions. First of all,
Bozzano et al. [154] study the reliability of a given redundant architecture.
Instead, we deal with a DSE process in which design alternatives are evaluated
to optimize the architecture. Our method includes the reliability assessment
as part of the evaluation of alternative designs.

5.7. Work Extensions 135

M1

M2

CMP

M1

M2

M3

V

M1

M2

M3

V

caching

1st request

formula

1st request

formula
AllSMT

computation

caching

1st request

formula

1st request

formula
AllSMT

computation

caching

request

formula

Figure 5.14: Caching improves the performance by storing pat-
terns behavior formulae and accessing them on later requests.

Moreover, we introduce a novel assessment of reliability based on configu-
ration and fault variables, presented in next chapter, that affects the structure
of the BDD representing the formula of the deviations from nominal behavior
of all valid redundant configurations, pushing the BDD to work in a kind of
deductive manner.

In addition, we also consider other non-functional parameters, to find
the assignments of redundant design patterns to basic components that op-
timize (minimize and/or maximize) some objective functions, facing therefore
a MOOP.

Furthermore, Bozzano et al. [154] adopted TMR as redundancy architec-
ture, while we build a library of redundancy architectures applicable to the
basic components, dealing with the complexities related to their selection and
connections.

They implemented the approach by leveraging several existing tools: they
used the OCRA language [293] to specify the architecture under analysis, and
employed the language SMV [155] and its associated tool XSAP [156] for the
symbolic representation of the system. In our case, architecture modeling is
performed completely using SMT. Lastly, we also integrate the exact method
with a heuristic that can help solve the optimization problem when the sheer

136 Chapter 5. Reliability Assessment of Redundant Architectures

Total Patterns Caching Time elapsed [s] Memory usage [Mb]

12 No 100.964 2.220
Yes 0.825 2.046

18 No 212.336 2.222
Yes 1.429 2.202

24 No 580.579 2.272
Yes 43.535 2.225

Table 5.1: Time and memory performance for the complex sys-
tem of the running example illustrated in Figure 7.2

size of the design space makes enumerating every design point prohibitive.
Besides, we introduce some refinements and smart solutions in every step of
our method, in order to further improve the performance.

Chapter 6

Design Space Exploration of
Redundant Architectures

In the following we present how to obtain an automated and optimal allocation
of redundant component instances. The main challenge in DSE arises from the
sheer size of the design space that must be explored.

6.1 DSE Features

There are a number of approaches to DSE. These range from simple brute force
approaches to more complex mechanisms mimicking processes such as genetic
evolution. Anyway, all these approaches share a common set of features:

• Design space representation: a suitable representation of the design
space is essential. The representation should be formal, so that it can be
subject to automated analysis and exploration techniques.

• Design space generation: definition of the complete set of potential
and feasible design architectures.

• Exploration method: the framework must provide a method for nav-
igating to interesting solutions.

137

138 Chapter 6. Design Space Exploration of Redundant Architectures

• Evaluation: estimation of non-functional proprieties on the basis of a
set of parameters.

• Selection: pruning the design space from a large pool to a smaller,
Pareto-optimal set.

• Refinement: further improvement to provide more accurate results.

In the following, we present how these features are designed in our method.

6.1.1 Design Space Representation

An architecture alternative is an assignment of redundancy patterns for all
components. Each architectural parameter relevant to us becomes an objec-
tive function. Each component of the basic system architecture has a set of
assignable patterns (usually assigned on the basis of its data-flow type and/or
the kind of faults that the patterns can manage). The architecture is modeled
using uninterpreted function to express computing modules, and Boolean logic
to express the connections between them. Uninterpreted functions allow us to
express the functional properties of the behavior of the components. In addi-
tion, being uninterpreted, we can concentrate on the features of the redundant
architecture, abstracting from the specific module implementations.

6.1.2 Design Space Generation

One redundant architecture is obtained by choosing one redundant pattern
for each component, and thus the full redundant architectures space can be
obtained by a full factorial enumeration algorithm. However, some combina-
tions of alternatives are not valid and must be therefore eliminated from the
architecture space by means of constraints.

6.1.3 Exploration Method

The goal is to determine the set of all Pareto optimal solutions. This task
can be computationally intractable, and, hence, usually it is preferable to
approximate the Pareto set as well as possible in a given amount of time. We
adopt an exact method: we can take advantage of the existing highly-optimized
SMT solvers without having to dive into their intricate implementations, and
directly benefiting from future advances in SMT solving. Thus, we can treat

6.1. DSE Features 139

the underlying SMT solver as a black-box, using it to generate models and
check validity.

6.1.4 Evaluation

The goal is to find solutions with optimal objective function values or at least
improving the quality of the Pareto front approximation. To drive the search
and to evaluate the quality of an assignment, we require a so called fitness
function. To compare the output of multi-objective optimizers we can use dom-
inance relations between sets. An advantage of dominance-based algorithms
is that they deal with an archive of solutions rather than a single solution.
Therefore, they can return quickly numerous non-dominated solutions to the
problem. However, this can also be a drawback since dealing with possibly
many solutions can make the exploration of the search space slower in terms
of progressing towards high-quality regions of the Pareto front.

6.1.5 Selection

The adopted criterion used to discriminate among solutions in the multi-
objective context is the Pareto dominance. By definition, a feasible solution x
Pareto-dominates another point x′ if the following relation holds:

f(x) ≤ f(x′) ∧ f(x) ̸= f(x′)

in which the relation operators ≤ and ̸= are defined as follows:

f(a) ≤ f(b) ⇐⇒ fi(a) ≤ fi(b), ∀i ∈ {1, 2, ..., m}
f(a) ̸= f(b) ⇐⇒ ∃i ∈ {1, 2, ..., m} : fi(a) ̸= fi(b)

in which a and b represent two different decision vectors. This dominance
is usually expressed as f(x) ≺ f(x′). Consider an order binary relationship, ⪯,
between any two elements in the objective space. Without loss of generality,
only minimization is considered. In Table 6.1, we present the relationships
between objective vectors and sets of objective vectors used in this paper.

6.1.6 Refinement

At each stage of our method, different refinement solutions will be investigated
in order to improve speed and efficiency.

140 Chapter 6. Design Space Exploration of Redundant Architectures

Table 6.1: Relations

Relation Objective
vectors Meaning Sets of

objective vectors Meaning

Dominance f(a) ≺ f(b) ∃i, fi(a) < fi(b) and
∀j ̸= i, fj(a) ≤ fj(b) A ≺ B

∀f(b) ∈ B, ∃f(a) ∈ A
s.t.f(a) ≺ f(b)

Weakly dominates f(a) ⪯ f(b) ∀i, fi(a) ≤ fi(b) A ⪯ B
∀f(b) ∈ B, ∃f(a) ∈ A

s.t.f(a) ⪯ f(b)

Incomparable f(a) ∥ f(b) f(a) ⪯̸ f(b) and
f(b) ⪯̸ f(a) A ∥ B A ⪯̸ B and B ⪯̸ A

Non-dominated by f(a) ⊁ f(b) f(a) ⪯ f(b) or
f(a) ∥ f(b) A ⊁ B A ⪯ B or B ∥ A

6.2 Constraint Solving Approach

Although the DSE is considerably less complicated than the overall problem
that we need to solve in the development of ES (i.e., the deployment on a
specific target), it is not easy to find a good and fast algorithm that we could
use to solve efficiently any instance of the redundant architecture problem. Be-
cause of the complex structure of the problem and the heterogeneous nature
of its instances, we have decided that the best course of action would be to
employ a flexible and adjustable method. This is how we came up with the
idea of using the constraint solving approach. Such approach has some key
advantages. Firstly, it is applicable to all the instances of the redundant archi-
tecture synthesis problem and is reasonably efficient in practice. In addition,
as we want to find optimal solutions, constraint solving supports optimization
intrinsically. Furthermore, there are numerous state of the art solvers available
on the market, giving us the chance to choose among them when implementing
this solution in practice. Moreover, further adaptation of the solving process is
possible. In fact, many solvers offer methods of adapting their search strategy
in function of the given problem, or by using high-level knowledge about the
specific problem’s structure. More in general, the constraint solving approach
is flexible with regard to the changes in the underlying problem.

6.2.1 Formalization of Constraints

In the following we illustrate how system constraints can be formalized. For
example, product cost is a very important factor in industrial projects. It is
thus relevant to define a constraint to limit component costs, without violating
any other constraints. It is possible to calculate the total cost of the system
as the sum of the single costs of the patterns used in the current redundancy

6.2. Constraint Solving Approach 141

allocation. Subsequently, we restrict the maximum cost of the system as fol-
lows:

total_cost ≤ max_cost

where
total_cost =

∑
i

cost(patterni)

Similarly, we can constrain the whole power consumption of the used hardware,
or apply a specific constraint. If we define the consumption of a node n as
n.energy, the total consumption of the system can be formalized with the
following equations:

total_energy_cons ≤ max_energy

where:
total_energy_cons =

∑
n

n.energy

To reduce the complexity of the hardware architecture we can impose con-
straints to the whole system size or the number of devices. We can also limit
the number of available identical units from each redundant pattern type.

total_used_patterni ≤ max_number_patterni

where:
total_used_patterni =

∑
i

i.used

We can also formalize constraints on the deployment (at logical level). For
instance, some applications may require special computation hardware, access
to sensors and actuators, communication interfaces, etc. Thus, the designer
should be able to specify the required and available skills, and allocate par-
ticular functions to particular devices, or constraints the deploying of some
functions onto multiple resources to achieve a parallel execution. Similarly, he
may want to couple some functions, so that they are executing within the same
device, or within the same resource. For instance, suppose there is a function
that includes two tasks that communicate with each other, and we want to
deploy them on two different nodes. They have to communicate over a bus b,
which also have a fault model. If the task t1 sends messages to t2, and those

142 Chapter 6. Design Space Exploration of Redundant Architectures

tasks are mapped on different nodes, the constraint can be formalized as:

t1.safety ≥ t2.safety

where safety could be another objective about safety requirements that ad-
dresses the severity of failures. To provide a safety assessment method at
abstract level of design patterns, we can define a safety metric based on the
computation of the relative safety improvement achieved when using the de-
sign patterns under consideration, basing for example our calculations on the
safety recommendations of the IEC 61508 standard (the international standard
for the functional safety of electrical, electronic, and programmable electronic
equipment), which is the most general standard that can be applied to any
safety-related system. We could also provide a method to derive general safety
recommendations for safety integrity levels at the abstract level of design pat-
terns, computing.

More in general, using this formalization, we can impose any kind of con-
straints.

6.3 Problem Encoding

System reliability enhancement usually comes with a higher cost, size and
power consumption, and lower performance. For the design of a reliable sys-
tem, it is desired to not only maximize reliability but also minimize cost, size
and power consumption, and maximize performance. Design problem can be
therefore formulated as a MOOP. The aim is to find the solution vector of the
redundancy allocation for the system, or vector of n design variables

X = (x1, x2, ..., xn)T

that optimizes a vector of p (conflicting) objective functions

F (X) = (f1(X), f2(X), ..., fp(X))

over the feasible region of design space X formed by the vector of m constraint
functions

G(X) = (g1(X), g2(X), ..., gm(X)).

6.3. Problem Encoding 143

STEP 1: Modeling

System architecture

Llibrary of FT patterns

Redundant architectures

STEP 2: Assessment

Assessment of
other parameters

Reliability assessment

Miter composition

MCS computation

Reliability extraction

STEP 3: Optimization

Enumerative approach

Symbolic approach

Hybrid approach

Figure 6.1: The proposed method consists of three main phases:
modeling of redundant system, assessment of non-functional

parameters, and optimization.

The problem can be therefore loosely written as follows.

minF (X)

s.t.G(X) ≤ 0

where:
X ∈ Rn

F : X ∈ Rn 7→ RP

G ∈ Rn 7→ Rm

In the following, we discuss the problem from an optimization perspective
where redundant system synthesis can be considered a COP. We propose a
multi-objectives DSE process that automatically selects the appropriate set of
FT techniques (at logical level) to be applied to the basic (non-redundant)
system to obtain a redundant one, optimizing simultaneously a collection of
objective functions

The steps of our method are outlined in Figure 6.1.
The automatic DSE proposed is heavily based on the reliability assessment

of redundant architecture candidates, which we have discussed in Chapter 5.
To evaluate the probability of failure of a redundant architecture, we are going
to express the system reliability in terms of the reliability of individual com-
ponents. We are going to express the constraints as SMT formulae. When
solving an SMT COP, the standard optimization procedure is called each time
the SAT engine reaches a feasible assignment. It is vital to the efficiency of the

144 Chapter 6. Design Space Exploration of Redundant Architectures

algorithm to reduce the number of calls to classical optimization procedures.
If it is possible to obtain more information other than the optimal solution
in the optimization subroutine, the whole searching process might benefit a
lot. That is why, on large optimization problems, computationally too hard
to explore the whole search space, incomplete search algorithms often find a
solution much more quickly than complete algorithms. The incomplete search
algorithms search for a solution heuristically without passing by the whole
search space. Neighborhood (or local) search algorithms are the most suc-
cessful class of approximate algorithms where at each iteration an improving
solution is found by searching the "neighborhood" of the current solution. The
weakness of incomplete search algorithms is that they are not able to deter-
mine whether a solution exists or not, and they have no guarantee to find a
solution if it exists. Anyway, our case is of practical application and input
formulae are expected to be satisfiable, making them well-suited for complete
search algorithms. Despite known successes, exact methods have also some
disadvantages. First of all, the computational time increases strongly with the
instance size. In addition, the memory consumption of exact algorithms can
be very large and lead to the early abortion of a program.

The steps of our method are reported in Algorithm 1 and detailed in the
following according to the flow illustrated in Figure 6.2.

Algorithm 1 DSE general framework
1: Modeling the system architecture
2: Construction of a library of redundant design patterns
3: Modeling the redundant architectures
4: Generation of all possible redundant configurations
5: Modeling the Miter
6: Assessment of reliability and other non-functional requirements
7: Perform Optimization

6.3.1 Modeling the System Architecture

A high-level system architecture model is our starting point. We describe the
basic (non-redundant) system via data-flow modeling, which examines how
data moves around the system, focusing on how things connect. The simplest
way to implement that is to specify for each node n a list of neighbors, i.e.
nodes connected to n. This means that we are going to model the architecture
in terms of connections between its components. The basic system is therefore

6.3. Problem Encoding 145

Non-redundant
system architecture

Hw/Sw
failure modes Requirements

Redundant
Design Patterns

SMT-based
exploration

Patterns model

Fault model Design objectiveSystem model

MOOP

Performance
indices

Architectural
constraints

Set of non-dominated solutions

Archive of
solutions

Redundant system
architecture

Choice

Space of redundant
architectures

Assessmnet of
non-functional

parameters

Figure 6.2: Multi-objective DSE flow

represented by DAG in which nodes represent the components of the architec-
ture (denoted by Ci) and edges describe how components are connected.

6.3.2 Construction of a Library of Redundant Patterns

The concept of design patterns is a universal approach to describe common
solutions to widely recurring design problems. A design pattern is an abstract
representation for how to solve a general design problem which occurs over
and over in many applications. To construct the library of redundant design
patterns, widely used and proven solutions in the field of ES have to be col-
lected from literature. These solutions should be generalized establishing a
high-level and abstract representation which can be used to evaluate the im-
pact of the collected solutions when applied to the basic system architecture,
independently from a specific application or a specific implementation.

• Comparator (CMP). Two components perform the same task in par-
allel and their results are compared by a comparator. A fault can be
detected if the results disagree. In this case, the switch can shut down
the system or switch to a fail-safe state. CMP will work correctly as long
as the two components, the switch, and the comparator have no faults.
Assuming that the faults of the two computing elements and of the voter

146 Chapter 6. Design Space Exploration of Redundant Architectures

are independent, and since the two components are identical (i.e. same
failure rate), the probability of failure is symbolically expressed as fol-
lows:

Pfailure = FC + (1 − FC)(F 2
M)

Module 1

Module 2

SwitchComparator

Figure 6.3: Comparator design pattern

Since there are two identical modules, the recurring cost, power dissipa-
tion, and size will be increased by 200% comparing to the basic module
(ignoring the comparator).

• Duplex (DPX). It is a pattern used to increase the reliability and
safety of the system by providing a replication of the same module to
deal with the random faults. It is based on the assumption that it is
highly unlikely for two identical components to suffer a random fault si-
multaneously. Generally, it consists of two identical modules, a primary
and a secondary, and a fault detection unit that monitors the primary
module and switches to the secondary module when a fault occurs in
the primary. Without faults, the two components give the same result,
so the primary component is used to accomplish the required task, but
when there is a fault, a fault-detector detects it and generate an instruc-
tion to switch to the secondary component. DPX will continue to work
correctly as long as one of the two channels has no fault. Assuming
that the faults of the two computing elements and of the fault detector
are independent, and since the two components are identical (i.e. same
failure rate), assuming that the probability of failure for a module M is
FM , and for the detector is Ffd, the probability of failure is symbolically
expressed as follows:

Pfailure = Ffd + (1 − Ffd)((FM)(1 − FM))

Cost, power dissipation, and size will be increased by 200% comparing
to the basic module (ignoring the fault detection unit). In case of het-
erogeneous modules, i.e., employing two independent different modules,

6.3. Problem Encoding 147

Module 1

Module 2

SwitchFault detector

Figure 6.4: Duplex design pattern

development cost that includes two independent designs and two devel-
opment teams to provide independence of systematic faults should be
considered. Please note: with our formalism and fault model considered,
CMP and DPX will collapse in the same model.

• Triple Modular Redundancy (TMR). It consists of three identical
modules that operate in parallel to detect random faults, in order to
enhance reliability and safety. The modules produce three results that
are compared using a voting system to produce a common result as long
as two channels or more have the same result. The redundant system will
not fail if the voting circuit does not fail and if none of the three modules
fails, or if exactly one of the three modules fails. It is assumed that the
failures of the three modules are independent. Since the two events are
mutually exclusive, the reliability of the redundant system is equal to the
sum of the probabilities of these two events. Hence, assuming that the
faults of the three computing elements and of the voter are independent,
and since the three components are identical (i.e. same failure rate),
assuming that the probability of failure for a module M is FM , and for
a voter V is FV , the probability of failure is symbolically expressed as
follows:

Pfailure = FV + (1 − FV)(3F 2
M − 2F 3

M)

Module 1

Module 2

Module 3

Voter

Figure 6.5: TMR design pattern (TMR_V111)

148 Chapter 6. Design Space Exploration of Redundant Architectures

Since there are three identical modules, we can consider an increase of
cost, power dissipation, and size of 300% comparing to the basic module.
TMR patterns may have up to three voters, and different connections be-
tween them, resulting in various combinations. Figure 6.6 shows various
TMR configurations, with one, two, and three voters. In these cases,
cost, power dissipation, and size vary accordingly.

Module 1

Module 2

Module 3 Voter

(a) TMR_V001

Module 1

Module 2

Module 3

Voter

(b) TMR_V010

Module 1

Module 2

Module 3

Voter

(c) TMR_V100

Module 1

Module 2

Module 3 Voter

(d) TMR_V011

Module 1

Module 2

Module 3

Voter

(e) TMR_V101

Module 1

Module 2

Module 3

Voter

(f) TMR_V110

Module 1

Module 2

Module 3

Voter

Voter

(g) TMR_V112

Module 1

Module 2

Module 3

Voter

Voter

(h) TMR_V122

Module 1

Module 2

Module 3

Voter

Voter

(i) TMR_V102

Module 1

Module 2

Module 3

Voter

Voter

(j) TMR_V012

Module 1

Module 2

Module 3

Voter

Voter

(k) TMR_V120

Module 1

Module 2

Module 3

Voter

Voter

Voter

(l) TMR_V123

Figure 6.6: Different TMR configurations

• M out of N (M-oo-N). It consists of N identical modules which operate
in parallel to mask random faults, and to enhance system safety and
reliability. It requires that at least M components succeed out of the total
N parallel modules for the system to succeed. The redundant system will
continue to work correctly as long as at least M modules have no fault,
and the voting circuit does not fail. For example, assuming the voting

6.3. Problem Encoding 149

circuit does not fail, a 3-o-o-5 will work correctly as long as three or more
components have no faults.

Pfailure = FV + (1 − FV)
(

N∑
i=M

(
N
i

)
(FM)i(1 − FM)N−i

)

Module 1

Module 2

Module N

Voter

.

.

.

Figure 6.7: M-o-o-N design pattern

The increase of cost, power dissipation, and size can be considered ap-
proximately Nx100% comparing to the basic system.

• Sparing (SPR). If a fault is detected by a built-in error detection unit
in the active component, a spare component takes over. The redundant
system can tolerate N-1 faults as long as the switching circuit does not
fail.

Pfailure = (FC + (1 − FC)(FM))N

Module 1

Module 2

Switch
Comparator

Comparator

Module N-1

Comparator

.

.

.

Figure 6.8: Sparing design pattern

Ignoring the comparators and the switch, the increase of cost, power
dissipation, and size is Nx100% comparing to the basic system. Please

150 Chapter 6. Design Space Exploration of Redundant Architectures

note: with our formalism and fault model considered, M-oo-N and SPR
will collapse in the same model.

Of course, the library can be considered as extensible: we have the ability
to add new patterns.

6.3.3 Fault Model

We can augment the original architecture model with fault information to
characterize anomalous conditions, producing the architecture fault model.
As we have done in Section 5.2, the occurrence of faults is modeled with the
introduction of variables that enable the components to have internal failures.
A failure leads a component to behave incorrectly and produce an arbitrary
output. Failure probabilities are given and can be considered constant during
the life-cycle of each component, or expressed as function of time. Components
are extended by defining two separate behaviors: nominal and faulty, both
represented as uninterpreted functions. Each extended component receives as
parameters: the input representing the input values of the computation (of
type real), a Boolean parameter can_fail that enables the component to have
internal failures, and the nominal behavior of the computation (see Figure 6.9).
The outputs of each pair of nominal and faulty components are provided to
a multiplexer, which selects the proper signal according to the fault event.
Denoting by FC the probability of fault of a given component, the formal
model that describes the setting shown in Figure 6.9 is defined using SMT
with the following formula.

¬FC =⇒ output = nominal_behavior(input). (6.1)

Extended Component

CN

CF

M
U

X

nominal_behavior

can_fail

input output

Figure 6.9: An example of extended component

6.3. Problem Encoding 151

Equation 6.1 states that if no failure occurs, the output is the nominal one,
otherwise the output is arbitrary (hence, it is not specified).

6.3.4 Modeling the Redundant Architecture

We can use the same approach to model the redundant components: Fig-
ure 6.10 illustrates this modeling technique applied to a TMR.

input

MF

VFMF

MF

output

outputinput

MN

VNMN

MN

Figure 6.10: An example of extended component

In addition, since an ideal redundant pattern is made up of sub-components
that never fail, the output of such pattern must be equal to the output of the
nominal version of the basic component to which it is allocated. For this reason,
we can apply the refinement presented in Section 5.6.1, and reduce each stage
by substituting the nominal pattern with a nominal component, halving in
this way the number of faulty variables, obtaining the setting illustrated in
Figure 6.11.

input

MF

VFMF

MF

output

outputinput CN

Figure 6.11: Extended TMR

The computing modules can be represented as uninterpreted functions,
while voters and comparators as logical formulae (because they have well de-
fined implementations). Using a formal notation, the single redundant compo-
nents of a redundant architecture can be modeled as combinatorial elements

152 Chapter 6. Design Space Exploration of Redundant Architectures

equipped with sets of Boolean fault variables (that determine the behavior
when one or more faults occur), and can therefore be defined as follows.

Definition 3 (Redundant component). A redundant component CiR is a tuple
< I⃗, O⃗, F⃗ , π > where:

• I⃗ is the vector of inputs

• O⃗ is the vector of outputs

• F⃗ is the set of faults events

• π(I⃗ , O⃗, F⃗) is an SMT formula

Leveraging this approach, we can model via SMT an entire redundant ar-
chitecture, specifying the connections by imposing that the outputs of a com-
ponent are equal to the inputs of the subsequent one, using linking constraints
(see Definition 2).

6.3.5 Generation of All Redundant Configurations.

Each component Ci of the basic system architecture has a set of assignable
patterns Pj form the library of FT patterns, designated for example on the
basis of its data-flow type and/or the kind of faults that the patterns can
manage. We can define a variable to keep track of all valid allocations (Ci, PJ).

Definition 4 (Configuration variable). A configuration variable cfgx = (Ci, Pj)
is a Boolean variable that defines the mapping between a component Ci of the
basic system and a redundant pattern Pj of the library, such that (Ci, Pj) = 1
iff Pj is a valid pattern for Ci.

Each configuration variable translates into a building block of the redundant
architecture. Each block is defined as in Definition 3, i.e., it is characterized
by one or more inputs, one or more outputs, some faulty variables, and a be-
haviour represented as a set of SMT constraints describing the input-output
relationship. Configuration variables are arranged in a configuration vector
c⃗fgi specifying all the possible allocations of candidate patterns to the basic
component Ci, in order to define a redundant architecture. The set of config-
uration variables for an architecture is obtained by choosing a valid pattern
assignment for each basic component. Hence, the redundant patterns for each

6.3. Problem Encoding 153

component can be binary encoded, and the length of the configuration vector
c⃗fgi of a component Ci depends on the number of valid redundant patterns
libCi allocable to Ci, which is computed as follows:

len(c⃗fgi) = ⌈log2(len(libCi))⌉.

Note that some values encoded by the configuration vector may not be as-
sociated to any pattern. Each configuration vector c⃗fgi should be therefore
constrained in order to encode only meaningful values. Assuming that c⃗fgi is
an SMT bit-vector variable (in the theory BV of bit vectors), we must con-
straint its values using configuration constraints, defined as follows.

Definition 5 (Configuration constraint). Given a configuration variable cfgx =
(Ci, Pj), a configuration constraint is defined as follows:

c⃗fgi < len(libCi).

Configuration constraints are needed in order to prevent the modeled ar-
chitecture from assuming undefined behaviors. The patterns available for each
component could also be encoded using one-hot encoding, i.e., a group of bits
among which the legal combinations of values are only those with a single high
(1) bit and all the others low (0) [296], but in this case it would be necessary
to add the mutex constraint on the configurations that cannot occur, in order
to guarantee the hypothesis of monotonicity.

A redundant architecture corresponds to an assignment of redundancy pat-
terns for all components. Since each component Ci of the basic system archi-
tecture has a finite set of assignable patterns Pj, the number of all possible
redundant alternatives is combinatorial, and depends on the number of basic
components composing the architecture and on the number of available redun-
dant patterns for each component. This number can be computed as follows:

Number_of_alternative_designs =
n∏

i=1
len(libCi) (6.2)

Two redundant configurations differ in the way the valid patterns allocated
are connected. By combining all valid allocations, we obtain the set of the
redundant architectures. Thus, all the redundant architectures are obtained
by assigning in turn one (valid) pattern to each component, i.e:

∑N
i=1 ite((C, Pi), 1, 0) = 1

154 Chapter 6. Design Space Exploration of Redundant Architectures

Since each redundant pattern has a specific number of input and output
ports, two redundant components may be incompatible, i.e., the output ports
of the first does not match with the inputs of the second one. To deal with this
occurrence, we inhibit some configuration compositions, by introducing what
we call compatibility constraints.

Definition 6 (Compatibility constraint). A compatibility constraint is a spe-
cialized constraint that inhibits the connections between two redundant compo-
nents if the number of outputs of the former is not equal to the number of the
inputs of the latter.

As a running example, Figure 6.12 illustrates a system of three components,
namely {C1, C2, C3}, connected in series, and a library of three redundant de-
sign patterns providing a total of seven instantiations (the same pattern can
be implemented in different ways, depending on the internal sub-components),
namely {P1, ... P7}, supposing that {P1, P2, P3} are valid patterns for C1,
{P4, P5} are valid for C2, and {P6, P7} are valid for C3. Suppose also that
the library is composed as in Table 6.2. We name libCi the part of library
that includes the patterns allocable to component Ci. We assume that the
computing elements have different failure probabilities. Specifically, probabil-
ity of failure of module Mi is Fi. as illustrated in Figure 6.13. On the basis of
the previous assumptions, Figure 6.14 illustrates an example of fault variables
involved depending on the configuration of the patterns selected. Note: the
number of variables can be reduced as proposed in Section 5.6.2.

C1 C2 C3

P4

LibC2

P5

P6

LibC3

P7

P1

LibC1

P2

P3

Figure 6.12: Example of basic (non-redundant) architecture
composed of three components connected in series and a library

of seven redundant design patterns.

6.3. Problem Encoding 155

Table 6.2: Library of patterns for example system in Fig-
ure 6.12

Component Pattern Type

C1

P1 DPX
P2 TMR with 1 Voter (TMR_V 111)
P3 TMR with 3 Voters (TMR_V 123)

C2
P4 DPX
P5 TMR with 1 Voter (TMR_V 111)

C3
P6 DPX
P7 TMR with 1 Voter (TMR_V 111)

F1

F2

 F3

(a)

F4

F5

F6

F7

(b)

F8

F9

F10

F12

F11

F13

(c)

Figure 6.13: Fault atoms for patterns P1 (a), P2 (b), and P3
(c).

Figure 6.15 illustrates how to combine valid allocations in order to obtain
the set of redundant architectures for our running example. Combinations
of building blocks that generate the redundant architectures can all be mod-
eled in a single formula specifying the linking constraints, according to the
configuration.(

(C1,P1)=1 → block11.out=block24.in ∧ block11.out=block25.in

)
∧(

(C1,P2)=1 → block12.out=block24.in ∧ block12.out=block25.in

)
∧(

(C1,P3)=1 →block13.out=block24.in ∧ block13.out=block25.in

)
∧

C1 C2

F1
F2
F3

F8
F9
F10
F11
F12

F13

F14
F15
F16

F17
F18
F19

F20

C3

F21
F22
F23

F24
F25

F26

F27

F4
F5
F6
F7

cfg1 cfg2 cfg3 cfg4 cfg5 cfg6 cfg7

 P1 P2 P3 P4 P5 P6 P7

Figure 6.14: Configuration and fault variables

156 Chapter 6. Design Space Exploration of Redundant Architectures

Table 6.3: Binary encoding of (Ci, Pj) allocations

cfg1 C1-1 C1-0
(C1 − P1) 0 0
(C1 − P2) 0 1
(C1 − P3) 1 0

cfg2 C1-1 C2-0
(C2 − P4) 0
(C2 − P5) 1

cfg3 C1-1 C3-0
(C3 − P6) 0
(C3 − P7) 1

(
(C2,P4)=1 →block24.out=block36.in ∧ block24.out=block37.in

)
∧(

(C2,P5)=1 →block25.out=block36.in ∧ block24.out=block37.in

)
I.e., for each configuration and for each blockij connected to blocki′j′ holds

that:

N∧
i=1

((Ci, Pj) =⇒ (blockij.out = blocki′j′ .in)), ∀j : j ∈ LibCi
, (6.3)

Note that the formulae involved are composed by configuration variables
cfgi that determine selected patterns, and fault variables Fi that depend on
configuration, and indicate whether a certain component Ci is faulty or not.

Figures 6.16a to 6.16l show the redundant architecture alternatives. Ta-
ble 6.3 reports the binary encoding of the configurations. The first component,
namely C1, has three available patterns. It requires therefore a configuration
vector of length 2. Components C2 and C3 have two available patterns each,
hence they require a configuration vector of length 1. The failure of each
component leads to a TLE.

6.3. Problem Encoding 157

(C1,P1)

(C2,P4)

(C1,P2)

(C3,P6)

(C1,P3)

(C2,P5) (C3,P7)

Figure 6.15: Set of redundant architectures for example system

(C1,P1)

(C2,P4)

(C2,P5)

(C1,P2)

(C3,P6)

(C1,P3)

Text

(C1,P1) = 1, (C1,P2) = 0, (C1,P3) = 0, (C2,P4) = 0, (C2,P5) = 1, (C3,P6) = 1, (C3,P7) = 0

(C3,P7)

(a)

(C1,P1)

(C2,P4)

(C2,P5)

(C1,P2)

(C3,P6)

(C1,P3)

Text

(C1,P1) = 1, (C1,P2) = 0, (C1,P3) = 0, (C2,P4) = 0, (C2,P5) = 1, (C3,P6) = 0, (C3,P7) = 1

(C3,P7)

(b)

(C1,P1)

(C2,P4)

(C2,P5)

(C1,P2)

(C3,P6)

(C1,P3)

Text

(C1,P1) = 1, (C1,P2) = 0, (C1,P3) = 0, (C2,P4) = 1, (C2,P5) = 0, (C3,P6) = 0, (C3,P7) = 1

(C3,P7)

(c)
(C1,P1)

(C2,P4)

(C2,P5)

(C1,P2)

(C3,P6)

(C1,P3)

Text

(C1,P1) = 1, (C1,P2) = 0, (C1,P3) = 0, (C2,P4) = 1, (C2,P5) = 0, (C3,P6) = 1, (C3,P7) = 0

(C3,P7)

(d)

(C1,P1)

(C2,P4)

(C2,P5)

(C1,P2)

(C3,P6)

(C1,P3)

(C1,P1) = 0, (C1,P2) = 1, (C1,P3) = 0, (C2,P4) = 1, (C2,P5) = 0, (C3,P6) = 0, (C3,P7) = 1

(C3,P7)

(e)

(C1,P1)

(C2,P4)

(C2,P5)

(C1,P2)

(C3,P6)

(C1,P3)

(C1,P1) = 0, (C1,P2) = 1, (C1,P3) = 0, (C2,P4) = 1, (C2,P5) = 0, (C3,P6) = 1, (C3,P7) = 0

(C3,P7)

(f)
(C1,P1)

(C2,P4)

(C2,P5)

(C1,P2)

(C3,P6)

(C1,P3)

(C1,P1) = 0, (C1,P2) = 1, (C1,P3) = 0, (C2,P4) = 0, (C2,P5) = 1, (C3,P6) = 1, (C3,P7) = 0

(C3,P7)

(g)

(C1,P1)

(C2,P4)

(C2,P5)

(C1,P2)

(C3,P6)

(C1,P3)

(C1,P1) = 0, (C1,P2) = 1, (C1,P3) = 0, (C2,P4) = 0, (C2,P5) = 1, (C3,P6) = 0, (C3,P7) = 1

(C3,P7)

(h)

(C1,P1)

(C2,P4)

(C2,P5)

(C1,P2)

(C3,P6)

(C1,P3)

(C1,P1) = 0, (C1,P2) = 0, (C1,P3) = 1, (C2,P4) = 1, (C2,P5) = 0, (C3,P6) = 0, (C3,P7) = 1

(C3,P7)

(i)
(C1,P1)

(C2,P4)

(C2,P5)

(C1,P2)

(C3,P6)

(C1,P3)

(C1,P1) = 0, (C1,P2) = 0, (C1,P3) = 1, (C2,P4) = 1, (C2,P5) = 0, (C3,P6) = 1, (C3,P7) = 0

(C3,P7)

(j)

(C1,P1)

(C2,P4)

(C2,P5)

(C1,P2)

(C3,P6)

(C1,P3)

(C1,P1) = 0, (C1,P2) = 0, (C1,P3) = 1, (C2,P4) = 0, (C2,P5) = 1, (C3,P6) = 1, (C3,P7) = 0

(C3,P7)

(k)

(C1,P1)

(C2,P4)

(C2,P5)

(C1,P2)

(C3,P6)

(C1,P3)

(C1,P1) = 0, (C1,P2) = 0, (C1,P3) = 1, (C2,P4) = 0, (C2,P5) = 1, (C3,P6) = 0, (C3,P7) = 1

(C3,P7)

(l)

Figure 6.16: Redundant alternatives for system in Figure 6.12

158 Chapter 6. Design Space Exploration of Redundant Architectures

6.3.6 Modeling the Miter

As seen in Section 5.3, with a Miter composition we can detect deviations of
the system under analysis from its nominal behavior, i.e. the TLE. Figure 6.17
shows the Miter composition for the alternative architecture of Figure 6.16a,
Figure 6.18 shows the stage-based Miter composition for the same architecture,
Figure 6.19 shows the respective abstract Miter composition.

Faulty architecture

Nominal architecture

(C1,P1)

(C2,P4)

(C2,P5)

(C1,P2)

(C3,P6)

(C1,P3)

(C3,P7)

(C1,P1)

(C2,P4)

(C2,P5)

(C1,P2)

(C3,P6)

(C1,P3)

Text

(C3,P7)

TLE

Figure 6.17: Miter composition for architecture of Figure 6.16a

TLE

(C1,P1)

(C1,P1)

(C1,P2)

(C1,P2)

(C1,P3)

(C1,P3)

(C2,P5)

(C2,P5)

(C2,P4)

(C2,P4)

(C3,P7)

(C3,P7)

(C3,P6)

(C3,P6)

Figure 6.18: Stage-based Miter for architecture of Figure 6.16a

6.3. Problem Encoding 159

C
1

(C
1,
P1

)

(C
1,
P1

)

F T
A 1

C
4

(C
2,
P4

)

(C
2,
P4

)

F T
A 4

C
2

(C
1,
P2

)

(C
1,
P2

)

F T
A 2

C
3

(C
1,
P3

)

(C
1,
P3

)

F T
A 3

C
5

(C
2,
P4

)

(C
2,
P4

)

F T
A 5

C
6

(C
3,
P6

)

(C
3,
P6

)

F T
A 6

A 0 A 0 A 0

C
7

(C
3,
P7

)

(C
3,
P7

)

F T
A 7

TL
E

Fi
gu

re
6.

19
:

A
bs

tr
ac

t
M

ite
r

co
m

po
sit

io
n

fo
r

ar
ch

ite
ct

ur
e

of
Fi

gu
re

6.
16

a

160 Chapter 6. Design Space Exploration of Redundant Architectures

6.3.7 Reliability assessment

To produce the reliability function, we follow the same steps presented by
Bozzano et al. [154]:

• STEP 1: we model the modules and the connections between them as
specified above, using uninterpreted functions that allow us to abstract
from the specific module implementations, focusing on the features of
the redundant architecture.

• STEP 2: We model the abstract Miter described above.

• STEP 3: We construct the set of all fault configurations that are sufficient
for the architecture under analysis to fail in order to calculate the set of
CSs.

• STEP 4: We generate the Reliability Function by traversing the BDD-
based representation of the set of CSs.

In Chapter 5 we presented the method to extract the reliability formula of
a given redundant architecture. In the following, we extend that method and
present a fully automated approach to the assessment of reliability and other
non-functional parameters of families of complex redundant architectures, and
therefore support the DSE. A key design choice in our approach is how to define
the system reliability. Assuming that there is no dependence between the com-
ponents, we can define the formula for the reliability of the system as a function
of that of the individual components. Under this assumption, we could pro-
vide the solver with the individual reliabilities (in terms of failure probability)
and the global reliability formula of the system, relying on the solver to find
the solutions. Please note that with non-homogeneous patterns (for example
a TMR with 1 input and 3 outputs) the hypothesis of independence of the
components would fail. As alternative, we can make semi-symbolic choices,
acting on the components: one could treat some components symbolically,
while the others would be made explicit. For instance, if we have 24 possible
combinations, we could deal with a single problem with four decision variables,
or with four problems each of these with only two symbolic possible choices
at run-time, or with sixteen different problems, each one corresponding to a
possible redundant configuration. Or more in general, we can build a single
symbolic representation of the problem, leaving the choice at run-time, lever-
aging symbolic methods to reduce the design space that needs to be explored.

6.3. Problem Encoding 161

To sum up, either the system is parameterized and the parameters are made
explicit before the search (it corresponds to doing no search), or one of the pa-
rameters is fixed and the remaining ones are enumerated, or a single symbolic
representation of the problem is used. Once we have the symbolic formula,
we have the chance to make all the available choices. All the above solutions
have advantages and disadvantages. The problem in which parameters are
instantiated is easy to be implemented, and highly parallelizable: for example,
by setting 10 parameters, 1024 problems can be generated to be assigned to
1024 different CPUs. The drawback is that we have to analyze the reliability
individually on a combinatorial number of possible configurations. With the
symbolic approach, the reliability is not calculated but it is represented (in our
case using a BDD with an SMT formula), and then can be optimized (with
OMT), but it can potentially lead to an exponential number of models.

Explicit Representation

The simplest approach to extract the reliability function consists in consider-
ing all possible design alternatives in separate way, and compute the reliability
individually, as described in Chapter 5. Since each alternative redundant archi-
tecture is composed by a different combination of redundant patterns from the
library, we have to compose a new Miter for each alternative. Given the failure
probability of each sub-component, we can obtain the value of the overall sys-
tem failure probability, and easily map each configuration to the corresponding
reliability value. Hence, with this method the reliability function is represented
as a sequence of implications:

configuration → reliability

Consider for example the first design alternative of our running example,
illustrated in Figure 6.20. We can compute its reliability as follows:

cfg1 = [0, 0] ∧ cfg2 = [1] ∧ cfg3 = [0] → Ralt1 = 0.93

As stated above, the overall reliability function can be expressed as a con-
junction of implications. Iterating the procedure for all alternative architec-
tures illustrated in Figure 6.16, we can extract the reliability of the redundant
system, which has the following structure.

162 Chapter 6. Design Space Exploration of Redundant Architectures

(C1,P1)

(C2,P4)

(C1,P2)

(C3,P6)

(C1,P3)

(C2,P5) (C3,P7)

(C1,P1) =1, (C1,P2) =0, (C1,P3) =0, (C2,P4) =0, (C2,P5) =1, (C3,P6) =1, (C3,P7) =0

Figure 6.20: Redundant architecture alternative 1 of running
example

cfg1 = [0, 0] ∧ cfg2 = [1] ∧ cfg3 = [0] → Ralt1 = 0.93 ∧

cfg1 = [0, 0] ∧ cfg2 = [1] ∧ cfg3 = [1] → Ralt2 = 0.97 ∧

cfg1 = [0, 0] ∧ cfg2 = [0] ∧ cfg3 = [1] → Ralt3 = 0.96 ∧

...

(6.4)

As stated above, the reliability of each configuration can be computed indi-
vidually. As a consequence, this method is strongly parallelizable. However, it
entails the creation of a new abstract Miter and the subsequent computation
of the CSs for every configuration. Since the number of possible configura-
tions grows exponentially as the complexity of the system increases, the main
drawback of this method is the high computational complexity.

Symbolic Representation

In our running example, different allocations of patterns to basic components
produce twelve different redundant architecture candidates. With more com-
plex examples, this number can quickly grow exponentially. In order to create
a more efficient method, we can leverage the similarities among alternative ar-
chitectures. For example, the first two candidate architectures in Figure 6.16
differ for the third redundant component only, which is reflected in equa-
tion 6.4. This means that the Miter for the two architectures differs only for
the last stage. Thus, creating a brand new Miter for each architecture - as
it happens with the explicit representation - can be avoided by finding out a

6.3. Problem Encoding 163

single Boolean formula composed by configuration variables cfgi that deter-
mine selected patterns, and fault variables Fi that depend on configuration
and indicate whether a certain component Ci is faulty or not. Each solution
of this formula encodes a CS that can be represented, via a propositional for-
mula, as a conjunction of component faults, and the set of configurations can
be represented as a disjunction of CSs. Once this formula is extracted, we can
apply a recursive algorithm that extracts a symbolic reliability function that
maps each configuration to its fault probability.

Minimal Cut-Sets Computation. Once we have completed the Miter
composition, it allows us to generate the set of conditions that may cause the
two systems to provide different outputs in presence of the same inputs, i.e.,
the CSs. Please remember that CS analysis is defined for coherent systems, i.e.
without negation operators. Intuitively, coherence means that whenever the
system has failed, no occurrence of any further basic event will ever result in
a state where the system resumes functioning. We have represented the Miter
as an SMT formula over input ports I⃗, output ports O⃗, fault variables F⃗ , and
TLE. Thus, the formula 5.7 describing the CSs represents the set of assign-
ments to the fault variables such that there exists an assignment to the inputs
that allows the two architectures to provide different output values. Since the
Miter formula consists of input variables, output variables, and fault variables,
quantifying out the inputs and outputs of each sub-component, we obtain a
Boolean formula with only fault variables. The problem of extracting the CSs
can be therefore encoded as an AllSMT for the theory of EUF, i.e., computing
all minimal solutions with respect to the set of decision variables, as illustrated
by Bozzano et al. [154]. The resulting formula is a Boolean formula consisting
of fault variables, and Boolean input and output ports. The employment of
the abstract Miter allows us to partition a global AllSMT(EUF) computation
into a number of smaller and less complex AllSMT(EUF) applied to each CSA.
Listing 6.1 shows the Python for AllSMT implementation.

Afterwards, to obtain a formula containing fault variables and configura-
tion variables only, an additional quantifier elimination of Boolean inputs and
outputs has to be performed on the global formula: to this aim we can use
BDD-based projection techniques.

164 Chapter 6. Design Space Exploration of Redundant Architectures

1 def allsmt (formula , to_keep_atoms : list):
2 msat = Solver (name="msat")
3 converter = msat. converter
4
5 # add the CSA formula to the solver
6 msat. add_assertion (formula)
7 result = []
8 model_counter = [0]
9 models_sec = [0]

10
11 # Invoke MathSAT APIs
12 print ("[AllSMT] Compute allSMT on the formula ...")
13 mathsat . msat_all_sat (msat. msat_env () ,
14 [converter . convert (atom) for atom in to_keep_atoms],
15 # Convert the pySMT term into a MathSAT term
16 lambda model : callback (model , converter , result , model_counter ,

start_time))
17 res_formula = Or(result)
18 print ("[AllSMT] -> Done! " + str(model_counter [0]) + " models found ", flush =True)
19 return res_formula

Listing 6.1: AllSMT computation

Reliability Function Extraction. Finally, once we have obtained the Boolean
formula representing the CSs of the possible redundant architectures, we have
to extract a symbolic function that maps each configuration to its failure prob-
ability. To do that we associate a probability of failure fi to each fault variable
Fi, and convert the formula of the CSs of all valid redundant configurations
into a BDD-based representation. Figure 6.21 illustrates the fault variables
that contribute to the reliability of the redundant alternative architecture of
Figure 6.20. We can find out a Boolean formula composed by configuration
variables cfgi that determine selected patterns, and fault variables Fi that de-
pend on configuration and indicate whether a certain component Ci is faulty
or not. Since on the basis of the refinement presented in Section 5.6.2 about
the sharing of fault variables of patterns allocable to the same component we
can reduce the number of fault variables, the assignment of each value of prob-
ability to the corresponding probability variable depends on the configuration.
The association of failure probabilities is therefore encoded as a conjunction
of implications as shown in the following example.

cfg1 = [0, 0] →

f1 = 0.025 ∧
f2 = 0.030 ∧
f3 = 0.020

 ∧ cfg2 = [1] →

f1 = 0.025 ∧
f2 = 0.023 ∧
f3 = 0.022 ∧
f4 = 0.020

 ∧ cfg3 = [0] →

f1 = 0.022 ∧
f2 = 0.021 ∧
f3 = 0.015

Similarly to the technique presented in Chapter 5, we extract the reliability
function using the BDD equivalent to the Boolean formula representing the

6.3. Problem Encoding 165

F1

F2

 F3

F4

F5

F6

F7

F8

F9

 F10

Figure 6.21: Fault variables for redundant architecture alter-
native 1

CSs of each configuration. Each inner node of the BDD represents a configu-
ration or a fault variable that belongs to a certain block. Every assignment of
configuration and fault variables determines a path from the root to a True-
leaf, which leads to TLE. Each path from the root to a False-leaf, instead,
represents an invalid assignment of configuration variables (i.e., an assignment
that does not satisfy the configuration constraints) or an assignment that does
not cause the TLE.

The OBDD of the DNF formula represents the MCS of the redundant
system as function of the configuration and fault variables. Hence, analogously
to the formula, the BDD representing its CSs contains two types of nodes:
configuration nodes and fault nodes. Figure 6.22 illustrates an excerpt of the
OBDD produced for the running example.

From the BDD we can calculate the fault probability of the entire system by
recursively applying the formula 5.9. In case of a configuration node, evaluation
of formula 5.9 translates into a ITE (see Figure 6.22) that basically selects
the path to be followed and the fault variables involved in the computation of
reliability function. The probability is then modeled by a variable fn whose
value is either equal to the probability computed in the high node or equal to
the probability computed in the low node, depending on the truth value of the
configuration variable. In case of a fault node, the function is assembled by
simply applying the formula 5.9.

More in details, the OBDD can be built as follows.

166 Chapter 6. Design Space Exploration of Redundant Architectures

ite(cfg1, Rcfg1 = RF1, Rcfg1 = RF1)

RF1 = PF1*PF2 + (1- PF1)*Rcfg2

cfg1

F1

F2

F1

0 1

F1

cfg2

0

1 0 1

1
0

0 1

F7

1

0

10

Figure 6.22: Excerpt of an OBDD encoding the CSs of the
running example

• For each configuration node, tag with 1 the if edge and 0 the else edge
if the variable encoded by the node has a True value, do the opposite if
it has a False value.

• Traverse the OBDD from its root. Whenever a configuration node is
encountered, bypass such node by adding an edge directed to the node
pointed by the edge tagged with 1 and delete that configuration node.
Tag each traversed fault node.

• Prune each fault node which is not tagged.

Those steps translates into Listing 6.2 that implements the traversing of the
OBDD through a DFS. Figure 6.23 depicts a scenario with two configuration
nodes. Bold lines represent the paths to be followed depending on the values
assumed by the configuration variables. Once the failure probability of the
redundant architecture AR has been extracted, the reliability can be trivially
obtained by complementing it:

RelAR = 1 − fAR.

6.3. Problem Encoding 167

1 def extract_reliability (self):
2 """
3 Perform a DFS over a Networkx structure representing the BDD
4 : return : reliability formula
5 """
6
7 [...]
8
9 rel_formulas = []

10 # 1th dfs: Define rel variable for each fault node and ite variable for each cfg node
11 root = tree. nodes [0]
12 root_data = root[’data ’]
13 rel = root_data .rel
14 if root_data . type != NodeType .LEAF:
15 f_data = None
16 t_data = None
17 for neighbour , data in tree.adj [0]. items ():
18 if data[’branch ’] == 0:
19 f_data = tree. nodes [neighbour][’data ’]
20 else :
21 t_data = tree. nodes [neighbour][’data ’]
22 assert f_data is not None and t_data is not None , "A BDD node not 2 neighbours "
23 if root_data . type == NodeType . FAULT :
24 rel_formulas . append (
25 self. _get_rel_formula (root_data .rel , self. _f_symbols2prob [root_data .var],

f_data .rel , t_data .rel))
26 else :
27 rel_formulas . append (
28 Ite(
29 root_data .var ,
30 Equals (root_data .rel , t_data .rel),
31 Equals (root_data .rel , f_data .rel)
32)
33)
34 else :
35 assert True , " Valid or unsatisfiable formulas are not accepted "
36
37 for (s, d) in nx. dfs_edges (tree , source =0):
38 node_data = tree. nodes [d][’data ’]
39 branch = tree. edges [(s, d)][’branch ’]
40 f_data = None
41 t_data = None
42
43 if node_data . type != NodeType .LEAF:
44 for neighbour , data in tree.adj[d]. items ():
45 if data[’branch ’] == 0:
46 f_data = tree. nodes [neighbour][’data ’]
47 else :
48 t_data = tree. nodes [neighbour][’data ’]
49 assert f_data is not None and t_data is not None , "A node of the bdd has not 2

neighbours "
50
51 if node_data . type == NodeType . FAULT : # case: fault node
52 rel_formulas . append (
53 self. _get_rel_formula (node_data .rel , self. _f_symbols2prob [node_data .

var], f_data .rel , t_data .rel))
54
55 else : # case: cfg node
56 rel_formulas . append (
57 Ite(
58 node_data .var ,
59 Equals (node_data .rel , t_data .rel),
60 Equals (node_data .rel , f_data .rel)
61)
62)
63
64 else : # case: leaf
65 if node_data . value :
66 rel_formulas . append (Equals (node_data .rel , Real (1)))
67 else :
68 rel_formulas . append (Equals (node_data .rel , Real (0)))
69
70 print ("[Extractor] Done!")
71 return And(And(rel_formulas), Equals (self. _rel_symbol , rel))

Listing 6.2: Extraction of reliability formula (excerpt)

168 Chapter 6. Design Space Exploration of Redundant Architectures

F

cfg1F

FF

cfg2

F

FF

F

FF

cfg1 = True

cfg2= True

F

FF

(a)
F

cfg1F

FF

cfg2

F

FF

F

FF

cfg1 = True

cfg2= False

F

FF

(b)

F

cfg1F

FF

cfg2

F

FF

F

FF

cfg1 = False

F

FF

(c)

Figure 6.23: Examples of BDD traversing: cfg1 = ⊤ and
cfg2 = ⊤ (a), cfg1 = ⊤ and cfg2 = ⊥ (b), cfg1 = ⊥ and

cfg2 = ⊥ (c).

6.3. Problem Encoding 169

Semi-symbolic Representation

An intermediate solution could be considered, by making simplifications or
"semi-symbolic" choices. For example, one could split the redundant compo-
nents in two sets, and treating some of them symbolically, while the others
would be made explicit. For instance, if we consider a scenario with 24 possi-
ble combinations, we can choose to face a single problem with four variables,
or sixteen different problems each of which corresponds to a possible redun-
dant configuration, or four problems in which each has only 2 symbolic choices
possible at run-time and can choose each choice, or 4 problems each of which
has only two possible symbolic choices at run-time.

To sum up, either the system is parameterized and the parameters are
made explicit before the search (it corresponds to doing no search), or one of
the parameters is fixed and the remaining ones are enumerated, or a single
symbolic representation of the problem is used. Once we have the symbolic
formula, we have the possibility to make all the available choices, ranging from
an enumerative to a fully symbolic approach.

6.3.8 Assessment of Other Non-functional Parameters

Together with reliability, we also consider other non-functional requirements
such as cost, power dissipation, and size, facing therefore a MOOP. The as-
sessment of new design objectives may vary from case to case, but since the
main focus of our work is reliability, for simplicity we suppose that the other
requirements are cumulative. In this case, the assessment is quite simple as
we can consider the cost, power dissipation, and size of the redundant system
equal to the sum of the cost, power dissipation, and size of the single com-
posing redundant patterns. This is not a restriction for our methodology. It
could easily accommodate more complex functions. Once the objective func-
tion of each non-functional parameter is computed, the optimizer has the task
to explore the design space in order to finding the Pareto optimal solutions.
Likewise, our methodology allow us to address the problem of synthesizing
system architectures to minimize one or more cost functions while guarantee-
ing the desired reliability, i.e., reliability is a constraint and optimization is
performed on other metrics.

170 Chapter 6. Design Space Exploration of Redundant Architectures

6.3.9 Optimization

To explore the design space and find the allocations that optimize the objective
functions of the redundant system, we use the Z3 solver, taking advantage of its
highly optimized OMT solver, without having to dive into its implementation.
Considering that the number of configurations is combinatorial with respect
to the size of the architecture, the resulting function defining the space of the
design alternatives is very complex. Since vanilla OMT is not very efficient
with it, making the problems intractable when the number of components or
patterns is of the order of dozens, we adopt a trade-off between fully symbolic
and enumerative methods, which consists in extracting the symbolic reliability
function of each parameter, and then using it to retrieve the actual values of
each configuration, in order to build a function that explicitly defines all the
design points of the space. This approach makes those problems affordable.
More in general, we can parameterize the system and choose between a single
symbolic representation of the problem (leaving the choice at execution time),
a representation where a parameter is fixed and the remaining ones are enu-
merated, and a representation in which the parameters are made explicit before
the search (it corresponds to doing no search), going from a fully symbolic, to
a semi-symbolic, to an enumerative approach, which is strongly parallelizable.

6.3.10 Improvements and Refinements

In the following, we present two strategies in order to enhance our method. The
first strategy leverages similarities among the set of redundant architectures we
deal with, improving the performance of our method by reducing the number
of CSA needed to compose the Miter. The second strategy aims at reducing
the size of the OBDD representing the formula of the CSs, in order to decrease
the time needed for quantifier elimination.

Minimal Cut-Sets Computation of Symbolic representations

Many candidate redundant architectures differ for only one component, and
more in general they share some similarities. This propriety can be exploited
in order to make the assessment of reliability more efficient. Get back to
our running example of Figure 6.12, with a slightly modification, as reported
in Table 6.4. Basically, components C1 and C2 have two suitable redundant

6.3. Problem Encoding 171

patterns that are different instances of the same type, namely a TMR_V111 ,
as illustrated in Figure 6.24.

Table 6.4: Library of patterns for example system in Fig-
ure 6.12

Component Pattern Type

C1

P1 TMR with 1 Voter (TMR_V111)
P2 TMR with 1 Voter (TMR_V111)
P3 TMR with 3 Voters (TMR_V123)

C2
P4 TMR with 1 Voter (TMR_V111)
P5 TMR with 1 Voter (TMR_V111)

C3
P6 TMR with 1 Voter (TMR_V111)
P7 TMR with 3 Voters (TMR_V123)

C1 C2 C3

P4

LibC2

P5

P6

LibC3

P7

P1

LibC1

P2

P3

cfg Pattern Instance

[0,0] TMR_V111

m1 = 0.025
m2= 0.027
m3=0.030
v=0.015

[0,1] TMR_V111

m1 = 0.022
m2= 0.026
m3=0.028
v=0.015

[1,0] TMR_V123

m1 = 0.025
m2= 0.024
m3=0.026
v1=0.015
v2=0.015
v3=0.015

[1,1] null null

cfg Pattern Instance

[0] TMR_V111

m1 = 0.023
m2= 0.022
m3=0.024
v=0.020

[1] TMR_V111

m1 = 0.022
m2= 0.020
m3=0.025
v=0.020

cfg Pattern Instance

[0] TMR_V111

m1 = 0.023
m2= 0.022
m3=0.024
v=0.020

[1] TMR_V123

m1 = 0.022
m2= 0.023
m3=0.021
v1=0.020
v2=0.020
v3=0.020

Figure 6.24: Example of basic (non-redundant) system and a
library including instances of the same pattern type.

The Miter composition is illustrated in Figure 6.25. It allows us to encode
the set of alternative redundant architectures in a single formula. Please note
that since in this step the aim is finding the CSs, we are only interested in

172 Chapter 6. Design Space Exploration of Redundant Architectures

the internal behavior of each single pattern, overlooking for the moment their
probabilities of failure. Thus, we only consider the pattern types for each
component, referencing them through a disjunction of configuration variables
that identify the same pattern type. For your better understanding, in the
example of Figure 6.24, the pattern type TMR_V111 valid for the component
C1 is referenced by the following formula:

cfg1 = [0, 0] ∨ cfg1 = [0, 1]

and the pattern type TMR_V111 valid for the component C2 is referenced by
the following formula:

cfg2 = [0] ∨ cfg2 = [1]

The Miter is fed with the Boolean constant True because we assume that
the input of the overall architecture is nominal. Blue arrows represent the se-
lection of redundant pattern for the upstream component. Downstream CSA2

there is no selection as the library of redundant patterns available for compo-
nent C2 include only the pattern type TMR_V111 . Please note that the CSA
stage in figure have only one input and output ports. Obviously, redundant
pattern may have multiple input and output ports, and the multiplexer has
to select all outputs of a given redundant pattern. Compared to the abstract
Miter of Figure 6.17, this new Miter has multiple CSA modules for a single
component. The specification of which CSA is active at time (and consequently
which is the output of each stage) is performed by configuration variables that
select the redundant pattern assigned to each component.

As we have done before, selected outputs are linked to the inputs of ev-
ery subsequent redundant component via linking constraints. In our running
example this translates into the following constraints:

(cfg1 = [0, 0] ∨ cfg1 = [0, 1]) →
(
CSA11.out ↔ CSA2.in

)
∩ (6.5)

(cfg1 = [1, 0] →
(
CSA12.out ↔ CSA2.in

)
(6.6)

and

(cfg2 = [0] ∨ cfg2 = [1]) →

CSA2.out ↔ CSA31.in∩
CSA2.out ↔ CSA32.in

6.3. Problem Encoding 173

C
SA

2

C
SA

12

M
1

M
2

M
3

V 2

C
12

A 1
2

 C
1

TM
R

_V
12

3 V 1 V 3

Tr
ue

C
SA

11

M
1

M
2

M
3

V

C
11

A 1
1

 C
1

TM
R

_V
11

1

M
1

M
2

M
3

V

C
2

A 2

 C
2

TM
R

_V
11

1

C
SA

32

M
1

M
2

M
3

V 2

C
32

A 3
2

 C
3

TM
R

_V
12

3 V 1 V 3

C
SA

31

M
1

M
2

M
3

V

C
31

A 3
1

 C
3

TM
R

_V
11

1

TL
E

S
el
ec
t P
t1

S
el
ec
t P
t3

Fi
gu

re
6.

25
:

C
om

bi
na

to
ria

la
bs

tr
ac

t
M

ite
r

co
m

po
sit

io
n

fo
r

ar
ch

ite
ct

ur
e

of
Fi

gu
re

6.
24

174 Chapter 6. Design Space Exploration of Redundant Architectures

Also in this composition, incompatible patterns that cannot be connected
are excluded by adding compatibility constraints. As in the previous Miter,
each model of the formula representing the combinatorial abstract Miter mod-
els a possible state of the system that triggers the TLE. The main property of
this composition is that it is possible to encode all deviations from the nominal
behavior of each possible redundant system architecture using the configura-
tion variables.

Choosing Optimal Variable ordering

The main disadvantage of BDDs is low scalability: the size of a BDD corre-
sponding to a propositional formula can be exponential in the number of vari-
ables. To employ BDDs in SMT solving we apply quantifiers to the formula.
Considering existential quantification reduces size of a BDD as it decreases
the number of its variables. Usually, finding good variable orderings is an im-
portant task in CSPs and SAT, but it becomes fundamental when applying
symbolic search. As additional refinement to our method, we can build the
BDD using a specific variable ordering, as the ordering has influence on the
BDD size. A good ordering gives a concise BDD form. A bad ordering may
lead to an explosion in the size of the BDD used to represent the fault tree.
A fault tree with xl, x2, ..., xn basic events has its equivalent boolean function
f(x1, x2, ..., xn) and vice versa. However, the order that yields the smallest
BDD representation does not necessarily have the best performance (due to
BDD cache effects). The run time depends greatly on the characteristics of
the inputs. Finding the optimal order for a given function is an NP-complete
problem, and it is out of our scope. However, we are going to consider three
different variable orderings, in order to show the impacts on the computation
times.

For sake of simplicity, consider the example system in Figure 6.26 composed
of only two components, C1 and C2, each one with two valid patterns for
redundancy, P1 and P2 for the former P3 and P4 for the latter. Suppose that
P1 and P3 are made of two sub-components and the entire components fail
if both sub-components fail. P2 and P4 are are modeled with a single fault
variable that determine the failure.

6.3. Problem Encoding 175

C1 C2

LibC2

P3

P4

P1

LibC1

P2

cfg1

F1
F2

F3

cfg2

F4
F5

cfg3

P1 P2

F6

cfg4

P3 P4

Figure 6.26: Example system of two components, each with
one two redundant pattern.

The system will fail if C1 or C2 will fail. The first occurrence can be
modeled with the following formula:

(cfg1 ∧ (F1 ∧ F2)) ∨ (cfg2 ∧ F3) (6.7)

Similarly, the second occurrence can be modeled with the following formula:

(cfg3 ∧ (F4 ∧ F5)) ∨ (cfg4 ∧ F6) (6.8)

Putting all together, the formula describing the CSs is the following:

(cfg1 ∧ (F1 ∧ F2)) ∨ (cfg2 ∧ F3) ∨ (cfg3 ∧ (F4 ∧ F5)) ∨ (cfg4 ∧ F6) ↔ TLE

(6.9)

Equation 6.9 states that the system depicted in Figure 6.26 will fail if one of
the two composing components will fail, and that the faulty variables involved
depend on the redundant pattern allocated. In case of component C1, faulty
variables will be F1 and F2 if the pattern selected for redundancy if P1, it will
be F3 if the pattern selected is P2. For component C2, faulty variables will
be F4 and F5 if the pattern selected for redundancy is P3, it will be F6 if the
pattern selected is P4. To facilitate the understanding, please note that in the
above example we did not employ the refinements introduced in Section 5.6.2.
Furthermore, we used a 1-hot encoding. In the following, we examine how the
BDD representing equation 6.9 looks like for different variable orderings.

176 Chapter 6. Design Space Exploration of Redundant Architectures

Ordering 1: All Configuration Variables Precede Fault Variables.
The OBDD is organized in a first part that is a kind of configuration DAG,
followed by a second part that is composed of fault variables only. Hence, the
configuration variables are on top of the BDD, and fault variables are in the
bottom part. Figure 6.27 shows the resulting BDD of the example in Fig-
ure 6.26. Orange nodes are configuration nodes, while white nodes are fault
nodes.

1

ite(cfg2 , Rcfg2=Rcfg3 , Rcfg3=Rcfg3)

ite(cfg4 , Rcfg4=RF1, Rcfg4=RF1)

cfg1

cfg2

cfg3

F1F1

cfg4

F2

F3

cfg2

cfg3

10

F4

F5

F6

0

10

1

10

ite(cfg1 , Rcfg1=Rcfg2 , Rcfg1=Rcfg2)

RF1 = PF1 * RF2 + (1 - PF1) * RF3

1

11

1

1

1

0

0

0

0

0

0

Figure 6.27: Partial BDD for example in Figure 6.26, using
ordering with all configuration variables on top.

6.3. Problem Encoding 177

Ordering 2: Arbitrary, no Assumption. Assign arbitrary total ordering
to variables. Figure 6.28 and Figure 6.29 shows the resulting BDD of two
different arbitrary orderings. We can try different heuristics to find an order
that keeps the OBDD size manageable. For example, we can enable dynamic
variable ordering using the SIFT heuristic [297] or other existing algorithms.

1

cfg1

cfg2

0

F1

cfg3

F2

0

0

1

F3

F4

1

cfg4

cfg4

F5F5

F6

0

1

1

1

1

1

1

0

0

0

0

0

0 1

1
1

0
0

RF1 = PF1 * RF2 + (1 - PF1) * Rcfg2

ite(cfg1 , Rcfg1=RF1, Rcfg1=Rcfg2)

0
1

ite(cfg2 , Rcfg2=RF3, Rcfg2=RF4)

Figure 6.28: BDD for example in Figure 6.26, using arbitrary
ordering of variables.

178 Chapter 6. Design Space Exploration of Redundant Architectures

F1

F2

0

0

1

F3

10

1

1

0 1

10

RF1 = PF1 * RF2 + (1 - PF1) * RF3

F3

cfg1

cfg2

1

F4

cfg1

RF3 = Rcfg1 + (1-PF3) * Rcfg1

F4

F5

cfg3

F6

cfg4

11
cfg2

11

1

1

1

0

0

0

0

0
0

0

0

0

1

Figure 6.29: BDD for example in Figure 6.26, using an alter-
native arbitrary ordering of variables.

6.3. Problem Encoding 179

Ordering 3: Driven by Architecture. The ordering is static and is based
on the topology of the basic architecture. The first level of variables is com-
posed by configuration variables of the first component C1, followed by the
faults and output predicates of the two patterns applicable to the compo-
nent. Similarly, the second level includes the configuration variables followed
by faults and output predicates of component C2. And so on for all compo-
nents of given architecture. The resulting BDD construction for example of
Figure 6.26 is illustrated in Figure 6.30.

cfg1

F1

F2

0
1

1

cfg2

0

0

F3

cfg3

10

F4

F5

cfg4

F6

RF1 = PF1 * RF2 + (1 - PF1) * Rcfg2

ite(cfg1 , Rcfg1=RF1 , Rcfg1==Rcfg2)

0

0

0

0

0

1

1

1

1
0

0

Figure 6.30: BDD for example in Figure 6.26, using an ordering
that follows architecture’s topology.

180 Chapter 6. Design Space Exploration of Redundant Architectures

The different orderings we have used are compared in Figure 6.31.

cfg1
cfg2
cfg3
cfg4

F1
F2
F3
F4
F5
F6

cfg1

F1
F2

cfg3
cfg4

cfg2

F3
F4

F5
F6

F1
F2
F3

cfg1
F4

cfg2
F5

cfg3
F6

cfg4

cfg1

F1
F2

cfg2
F3

cfg3

F4
F5

cfg2
F6

Figure 6.31: Variable orderings used for the BDD construction
of example in Figure 6.26

Figure 6.32 compares the resulting BDDs.
The importance of choosing an optimal variable ordering is also visible

from the length of satisfy assignments, reported in the following. Satisfy as-
signments using ordering 1 follow:
{cfg1: 0, cfg2: 0, cfg3: 0, cfg4: 1, F6: 1}, {cfg1: 0, cfg2: 0, cfg3: 1, cfg4: 0, F4: 1, F5: 1}, {cfg1: 0, cfg2: 0,

cfg3: 1, cfg4: 1, F4: 0, F6: 1}, {cfg1: 0, cfg2: 0, cfg3: 1, cfg4: 1, F4: 1, F5: 0, F6: 1}, {cfg1: 0, cfg2: 0,

cfg3: 1, cfg4: 1, F4: 1, F5: 1}, {cfg1: 0, cfg2: 1, cfg3: 0, cfg4: 0, F3: 1}, {cfg1: 0, cfg2: 1, cfg3: 0, cfg4: 1,

F3: 0, F6: 1}, {cfg1: 0, cfg2: 1, cfg3: 0, cfg4: 1, F3: 1}, {cfg1: 0, cfg2: 1, cfg3: 1, cfg4: 0, F3: 0, F4: 1,

F5: 1}, {cfg1: 0, cfg2: 1, cfg3: 1, cfg4: 0, F3: 1}, {cfg1: 0, cfg2: 1, cfg3: 1, cfg4: 1, F3: 0, F4: 0, F6: 1},

{cfg1: 0, cfg2: 1, cfg3: 1, cfg4: 1, F3: 0, F4: 1, F5: 0, F6: 1}, {cfg1: 0, cfg2: 1, cfg3: 1, cfg4: 1, F3: 0,

F4: 1, F5: 1}, {cfg1: 0, cfg2: 1, cfg3: 1, cfg4: 1, F3: 1}, {cfg1: 1, cfg2: 0, cfg3: 0, cfg4: 0, F1: 1, F2: 1},

{cfg1: 1, cfg2: 0, cfg3: 0, cfg4: 1, F1: 0, F6: 1}, {cfg1: 1, cfg2: 0, cfg3: 0, cfg4: 1, F1: 1, F2: 0, F6: 1},

{cfg1: 1, cfg2: 0, cfg3: 0, cfg4: 1, F1: 1, F2: 1}, {cfg1: 1, cfg2: 0, cfg3: 1, cfg4: 0, F1: 0, F4: 1, F5: 1},

{cfg1: 1, cfg2: 0, cfg3: 1, cfg4: 0, F1: 1, F2: 0, F4: 1, F5: 1}, {cfg1: 1, cfg2: 0, cfg3: 1, cfg4: 0, F1: 1, F2:

1}, {cfg1: 1, cfg2: 0, cfg3: 1, cfg4: 1, F1: 0, F4: 0, F6: 1}, {cfg1: 1, cfg2: 0, cfg3: 1, cfg4: 1, F1: 0, F4: 1,

F5: 0, F6: 1}, {cfg1: 1, cfg2: 0, cfg3: 1, cfg4: 1, F1: 0, F4: 1, F5: 1}, {cfg1: 1, cfg2: 0, cfg3: 1, cfg4: 1,

F1: 1, F2: 0, F4: 0, F6: 1}, {cfg1: 1, cfg2: 0, cfg3: 1, cfg4: 1, F1: 1, F2: 0, F4: 1, F5: 0, F6: 1}, {cfg1:

1, cfg2: 0, cfg3: 1, cfg4: 1, F1: 1, F2: 0, F4: 1, F5: 1}, {cfg1: 1, cfg2: 0, cfg3: 1, cfg4: 1, F1: 1, F2: 1},

{cfg1: 1, cfg2: 1, cfg3: 0, cfg4: 0, F1: 0, F3: 1}, {cfg1: 1, cfg2: 1, cfg3: 0, cfg4: 0, F1: 1, F2: 0, F3: 1},

{cfg1: 1, cfg2: 1, cfg3: 0, cfg4: 0, F1: 1, F2: 1}, {cfg1: 1, cfg2: 1, cfg3: 0, cfg4: 1, F1: 0, F3: 0, F6: 1},

{cfg1: 1, cfg2: 1, cfg3: 0, cfg4: 1, F1: 0, F3: 1}, {cfg1: 1, cfg2: 1, cfg3: 0, cfg4: 1, F1: 1, F2: 0, F3: 0, F6:

1}, {cfg1: 1, cfg2: 1, cfg3: 0, cfg4: 1, F1: 1, F2: 0, F3: 1}, {cfg1: 1, cfg2: 1, cfg3: 0, cfg4: 1, F1: 1, F2:

1}, {cfg1: 1, cfg2: 1, cfg3: 1, cfg4: 0, F1: 0, F3: 0, F4: 1, F5: 1}, {cfg1: 1, cfg2: 1, cfg3: 1, cfg4: 0, F1:

0, F3: 1}, {cfg1: 1, cfg2: 1, cfg3: 1, cfg4: 0, F1: 1, F2: 0, F3: 0, F4: 1, F5: 1}, {cfg1: 1, cfg2: 1, cfg3: 1,

cfg4: 0, F1: 1, F2: 0, F3: 1}, {cfg1: 1, cfg2: 1, cfg3: 1, cfg4: 0, F1: 1, F2: 1}, {cfg1: 1, cfg2: 1, cfg3: 1,

6.3. Problem Encoding 181

cfg4: 1, F1: 0, F3: 0, F4: 0, F6: 1}, {cfg1: 1, cfg2: 1, cfg3: 1, cfg4: 1, F1: 0, F3: 0, F4: 1, F5: 0, F6: 1},

{cfg1: 1, cfg2: 1, cfg3: 1, cfg4: 1, F1: 0, F3: 0, F4: 1, F5: 1}, {cfg1: 1, cfg2: 1, cfg3: 1, cfg4: 1, F1: 0, F3:

1}, {cfg1: 1, cfg2: 1, cfg3: 1, cfg4: 1, F1: 1, F2: 0, F3: 0, F4: 0, F6: 1}, {cfg1: 1, cfg2: 1, cfg3: 1, cfg4: 1,

F1: 1, F2: 0, F3: 0, F4: 1, F5: 0, F6: 1}, {cfg1: 1, cfg2: 1, cfg3: 1, cfg4: 1, F1: 1, F2: 0, F3: 0, F4: 1,

F5: 1}, {cfg1: 1, cfg2: 1, cfg3: 1, cfg4: 1, F1: 1, F2: 0, F3: 1}, {cfg1: 1, cfg2: 1, cfg3: 1, cfg4: 1, F1: 1, F2: 1}

Satisfy assignments using ordering 2 follow:
{cfg1: 0, cfg2: 0, F4: 0, cfg4: 1, F6: 1}, {cfg1: 0, cfg2: 0, F4: 1, cfg3: 0, cfg4: 1, F6: 1}, {cfg1: 0, cfg2:

0, F4: 1, cfg3: 1, cfg4: 0, F5: 1}, {cfg1: 0, cfg2: 0, F4: 1, cfg3: 1, cfg4: 1, F5: 0, F6: 1}, {cfg1: 0, cfg2:

0, F4: 1, cfg3: 1, cfg4: 1, F5: 1}, {cfg1: 0, cfg2: 1, F3: 0, F4: 0, cfg4: 1, F6: 1}, {cfg1: 0, cfg2: 1, F3:

0, F4: 1, cfg3: 0, cfg4: 1, F6: 1}, {cfg1: 0, cfg2: 1, F3: 0, F4: 1, cfg3: 1, cfg4: 0, F5: 1}, {cfg1: 0, cfg2:

1, F3: 0, F4: 1, cfg3: 1, cfg4: 1, F5: 0, F6: 1}, {cfg1: 0, cfg2: 1, F3: 0, F4: 1, cfg3: 1, cfg4: 1, F5: 1},

{cfg1: 0, cfg2: 1, F3: 1}, {cfg1: 1, F1: 0, cfg2: 0, F4: 0, cfg4: 1, F6: 1}, {cfg1: 1, F1: 0, cfg2: 0, F4: 1,

cfg3: 0, cfg4: 1, F6: 1}, {cfg1: 1, F1: 0, cfg2: 0, F4: 1, cfg3: 1, cfg4: 0, F5: 1}, {cfg1: 1, F1: 0, cfg2: 0,

F4: 1, cfg3: 1, cfg4: 1, F5: 0, F6: 1}, {cfg1: 1, F1: 0, cfg2: 0, F4: 1, cfg3: 1, cfg4: 1, F5: 1}, {cfg1: 1,

F1: 0, cfg2: 1, F3: 0, F4: 0, cfg4: 1, F6: 1}, {cfg1: 1, F1: 0, cfg2: 1, F3: 0, F4: 1, cfg3: 0, cfg4: 1, F6:

1}, {cfg1: 1, F1: 0, cfg2: 1, F3: 0, F4: 1, cfg3: 1, cfg4: 0, F5: 1}, {cfg1: 1, F1: 0, cfg2: 1, F3: 0, F4: 1,

cfg3: 1, cfg4: 1, F5: 0, F6: 1}, {cfg1: 1, F1: 0, cfg2: 1, F3: 0, F4: 1, cfg3: 1, cfg4: 1, F5: 1}, {cfg1: 1,

F1: 0, cfg2: 1, F3: 1}, {cfg1: 1, F1: 1, F2: 0, cfg2: 0, F4: 0, cfg4: 1, F6: 1}, {cfg1: 1, F1: 1, F2: 0, cfg2:

0, F4: 1, cfg3: 0, cfg4: 1, F6: 1}, {cfg1: 1, F1: 1, F2: 0, cfg2: 0, F4: 1, cfg3: 1, cfg4: 0, F5: 1}, {cfg1: 1,

F1: 1, F2: 0, cfg2: 0, F4: 1, cfg3: 1, cfg4: 1, F5: 0, F6: 1}, {cfg1: 1, F1: 1, F2: 0, cfg2: 0, F4: 1, cfg3:

1, cfg4: 1, F5: 1}, {cfg1: 1, F1: 1, F2: 0, cfg2: 1, F3: 0, F4: 0, cfg4: 1, F6: 1}, {cfg1: 1, F1: 1, F2: 0,

cfg2: 1, F3: 0, F4: 1, cfg3: 0, cfg4: 1, F6: 1}, {cfg1: 1, F1: 1, F2: 0, cfg2: 1, F3: 0, F4: 1, cfg3: 1, cfg4: 0,

F5: 1}, {cfg1: 1, F1: 1, F2: 0, cfg2: 1, F3: 0, F4: 1, cfg3: 1, cfg4: 1, F5: 0, F6: 1}, {cfg1: 1, F1: 1, F2:

0, cfg2: 1, F3: 0, F4: 1, cfg3: 1, cfg4: 1, F5: 1}, {cfg1: 1, F1: 1, F2: 0, cfg2: 1, F3: 1}, {cfg1: 1, F1: 1, F2: 1}

Satisfy assignments using a different ordering 2 follow:
{F1: 0, F3: 0, F4: 0, F6: 1, cfg4: 1}, {F1: 0, F3: 0, F4: 1, F5: 0, F6: 1, cfg4: 1}, {F1: 0, F3: 0, F4: 1, F5:

1, cfg3: 0, F6: 1, cfg4: 1}, {F1: 0, F3: 0, F4: 1, F5: 1, cfg3: 1}, {F1: 0, F3: 1, F4: 0, cfg2: 0, F6: 1, cfg4:

1}, {F1: 0, F3: 1, F4: 0, cfg2: 1}, {F1: 0, F3: 1, F4: 1, cfg2: 0, F5: 0, F6: 1, cfg4: 1}, {F1: 0, F3: 1, F4:

1, cfg2: 0, F5: 1, cfg3: 0, F6: 1, cfg4: 1}, {F1: 0, F3: 1, F4: 1, cfg2: 0, F5: 1, cfg3: 1}, {F1: 0, F3: 1, F4:

1, cfg2: 1}, {F1: 1, F2: 0, F3: 0, F4: 0, F6: 1, cfg4: 1}, {F1: 1, F2: 0, F3: 0, F4: 1, F5: 0, F6: 1, cfg4: 1},

{F1: 1, F2: 0, F3: 0, F4: 1, F5: 1, cfg3: 0, F6: 1, cfg4: 1}, {F1: 1, F2: 0, F3: 0, F4: 1, F5: 1, cfg3: 1},

{F1: 1, F2: 0, F3: 1, F4: 0, cfg2: 0, F6: 1, cfg4: 1}, {F1: 1, F2: 0, F3: 1, F4: 0, cfg2: 1}, {F1: 1, F2: 0,

F3: 1, F4: 1, cfg2: 0, F5: 0, F6: 1, cfg4: 1}, {F1: 1, F2: 0, F3: 1, F4: 1, cfg2: 0, F5: 1, cfg3: 0, F6: 1, cfg4:

1}, {F1: 1, F2: 0, F3: 1, F4: 1, cfg2: 0, F5: 1, cfg3: 1}, {F1: 1, F2: 0, F3: 1, F4: 1, cfg2: 1}, {F1: 1, F2:

1, F3: 0, cfg1: 0, F4: 0, F6: 1, cfg4: 1}, {F1: 1, F2: 1, F3: 0, cfg1: 0, F4: 1, F5: 0, F6: 1, cfg4: 1}, {F1:

182 Chapter 6. Design Space Exploration of Redundant Architectures

1, F2: 1, F3: 0, cfg1: 0, F4: 1, F5: 1, cfg3: 0, F6: 1, cfg4: 1}, {F1: 1, F2: 1, F3: 0, cfg1: 0, F4: 1, F5: 1,

cfg3: 1}, {F1: 1, F2: 1, F3: 0, cfg1: 1}, {F1: 1, F2: 1, F3: 1, cfg1: 0, F4: 0, cfg2: 0, F6: 1, cfg4: 1}, {F1:

1, F2: 1, F3: 1, cfg1: 0, F4: 0, cfg2: 1}, {F1: 1, F2: 1, F3: 1, cfg1: 0, F4: 1, cfg2: 0, F5: 0, F6: 1, cfg4: 1},

{F1: 1, F2: 1, F3: 1, cfg1: 0, F4: 1, cfg2: 0, F5: 1, cfg3: 0, F6: 1, cfg4: 1}, {F1: 1, F2: 1, F3: 1, cfg1: 0,

F4: 1, cfg2: 0, F5: 1, cfg3: 1}, {F1: 1, F2: 1, F3: 1, cfg1: 0, F4: 1, cfg2: 1}, {F1: 1, F2: 1, F3: 1, cfg1: 1}

Satisfy assignments using ordering 3 follow:
{cfg1: 0, cfg2: 0, cfg3: 0, cfg4: 1, F6: 1}, {cfg1: 0, cfg2: 0, cfg3: 1, F4: 0, cfg4: 1, F6: 1}, {cfg1: 0, cfg2:

0, cfg3: 1, F4: 1, F5: 0, cfg4: 1, F6: 1}, {cfg1: 0, cfg2: 0, cfg3: 1, F4: 1, F5: 1}, {cfg1: 0, cfg2: 1, F3: 0,

cfg3: 0, cfg4: 1, F6: 1}, {cfg1: 0, cfg2: 1, F3: 0, cfg3: 1, F4: 0, cfg4: 1, F6: 1}, {cfg1: 0, cfg2: 1, F3: 0,

cfg3: 1, F4: 1, F5: 0, cfg4: 1, F6: 1}, {cfg1: 0, cfg2: 1, F3: 0, cfg3: 1, F4: 1, F5: 1}, {cfg1: 0, cfg2: 1, F3:

1}, {cfg1: 1, F1: 0, cfg2: 0, cfg3: 0, cfg4: 1, F6: 1}, {cfg1: 1, F1: 0, cfg2: 0, cfg3: 1, F4: 0, cfg4: 1, F6: 1},

{cfg1: 1, F1: 0, cfg2: 0, cfg3: 1, F4: 1, F5: 0, cfg4: 1, F6: 1}, {cfg1: 1, F1: 0, cfg2: 0, cfg3: 1, F4: 1, F5:

1}, {cfg1: 1, F1: 0, cfg2: 1, F3: 0, cfg3: 0, cfg4: 1, F6: 1}, {cfg1: 1, F1: 0, cfg2: 1, F3: 0, cfg3: 1, F4: 0,

cfg4: 1, F6: 1}, {cfg1: 1, F1: 0, cfg2: 1, F3: 0, cfg3: 1, F4: 1, F5: 0, cfg4: 1, F6: 1}, {cfg1: 1, F1: 0, cfg2:

1, F3: 0, cfg3: 1, F4: 1, F5: 1}, {cfg1: 1, F1: 0, cfg2: 1, F3: 1}, {cfg1: 1, F1: 1, F2: 0, cfg2: 0, cfg3: 0,

cfg4: 1, F6: 1}, {cfg1: 1, F1: 1, F2: 0, cfg2: 0, cfg3: 1, F4: 0, cfg4: 1, F6: 1}, {cfg1: 1, F1: 1, F2: 0, cfg2:

0, cfg3: 1, F4: 1, F5: 0, cfg4: 1, F6: 1}, {cfg1: 1, F1: 1, F2: 0, cfg2: 0, cfg3: 1, F4: 1, F5: 1}, {cfg1: 1,

F1: 1, F2: 0, cfg2: 1, F3: 0, cfg3: 0, cfg4: 1, F6: 1}, {cfg1: 1, F1: 1, F2: 0, cfg2: 1, F3: 0, cfg3: 1, F4: 0,

cfg4: 1, F6: 1}, {cfg1: 1, F1: 1, F2: 0, cfg2: 1, F3: 0, cfg3: 1, F4: 1, F5: 0, cfg4: 1, F6: 1}, {cfg1: 1, F1:

1, F2: 0, cfg2: 1, F3: 0, cfg3: 1, F4: 1, F5: 1}, {cfg1: 1, F1: 1, F2: 0, cfg2: 1, F3: 1}, {cfg1: 1, F1: 1, F2: 1}.

Using Binary Encoding to Encode Configuration Variables

As already stated, for the construction of the BDDs of Figure 6.32, we used a 1-
hot encoding. Using a binary encoding, we could employ only two configuration
variables, mapped as follows:

cfg1, cfg2 → cfg1 = [0, 1]

cfg3, cfg4 → cfg2 = [0, 1]

Rewriting the equation 6.9 as follows:

(cfg1 ∧ (F1 ∧ F2)) ∨ (¬ cfg1 ∧ F3) ∨ (cfg2 ∧ (F4 ∧ F5)) ∨ (¬cfg2 ∧ F6) ↔ TLE

(6.10)

The resulting BDDs are simplified, as illustrated in Figure 6.33.

6.3. Problem Encoding 183

The simplification is also visible from the length of satisfy assignments.
Satisfy assignments using ordering 1 follow:
{cfg1: 0, cfg2: 0, F3: 0, F6: 1}, {cfg1: 0, cfg2: 0, F3: 1}, {cfg1: 0, cfg2: 1, F3: 0, F4: 1, F5: 1}, {cfg1: 0,

cfg2: 1, F3: 1}, {cfg1: 1, cfg2: 0, F1: 0, F6: 1}, {cfg1: 1, cfg2: 0, F1: 1, F2: 0, F6: 1}, {cfg1: 1, cfg2: 0,

F1: 1, F2: 1}, {cfg1: 1, cfg2: 1, F1: 0, F4: 1, F5: 1}, {cfg1: 1, cfg2: 1, F1: 1, F2: 0, F4: 1, F5: 1}, {cfg1:

1, cfg2: 1, F1: 1, F2: 1}

Satisfy assignments using ordering 2 follow:
{cfg1: 0, cfg2: 0, F3: 0, F6: 1}, {cfg1: 0, cfg2: 0, F3: 1}, {cfg1: 0, cfg2: 1, F3: 0, F4: 1, F5: 1}, {cfg1: 0,

cfg2: 1, F3: 1}, {cfg1: 1, cfg2: 0, F1: 0, F6: 1}, {cfg1: 1, cfg2: 0, F1: 1, F2: 0, F6: 1}, {cfg1: 1, cfg2: 0,

F1: 1, F2: 1}, {cfg1: 1, cfg2: 1, F1: 0, F4: 1, F5: 1}, {cfg1: 1, cfg2: 1, F1: 1, F2: 0, F4: 1, F5: 1}, {cfg1:

1, cfg2: 1, F1: 1, F2: 1}

Satisfy assignments using a different ordering 2 follow:
{F1: 0, F3: 0, F4: 0, cfg2: 0, F6: 1}, {F1: 0, F3: 0, F4: 1, cfg2: 0, F6: 1}, {F1: 0, F3: 0, F4: 1, cfg2: 1,

F5: 1}, {F1: 0, F3: 1, cfg1: 0}, {F1: 0, F3: 1, cfg1: 1, F4: 0, cfg2: 0, F6: 1}, {F1: 0, F3: 1, cfg1: 1, F4: 1,

cfg2: 0, F6: 1}, {F1: 0, F3: 1, cfg1: 1, F4: 1, cfg2: 1, F5: 1}, {F1: 1, F2: 0, F3: 0, F4: 0, cfg2: 0, F6: 1},

{F1: 1, F2: 0, F3: 0, F4: 1, cfg2: 0, F6: 1}, {F1: 1, F2: 0, F3: 0, F4: 1, cfg2: 1, F5: 1}, {F1: 1, F2: 0, F3:

1, cfg1: 0}, {F1: 1, F2: 0, F3: 1, cfg1: 1, F4: 0, cfg2: 0, F6: 1}, {F1: 1, F2: 0, F3: 1, cfg1: 1, F4: 1, cfg2:

0, F6: 1}, {F1: 1, F2: 0, F3: 1, cfg1: 1, F4: 1, cfg2: 1, F5: 1}, {F1: 1, F2: 1, F3: 0, cfg1: 0, F4: 0, cfg2: 0,

F6: 1}, {F1: 1, F2: 1, F3: 0, cfg1: 0, F4: 1, cfg2: 0, F6: 1}, {F1: 1, F2: 1, F3: 0, cfg1: 0, F4: 1, cfg2: 1,

F5: 1}, {F1: 1, F2: 1, F3: 0, cfg1: 1}, {F1: 1, F2: 1, F3: 1}

Satisfy assignments using ordering 3 follow:
{cfg1: 0, cfg2: 0, F3: 0, F6: 1}, {cfg1: 0, cfg2: 0, F3: 1}, {cfg1: 0, cfg2: 1, F3: 0, F4: 1, F5: 1}, {cfg1: 0,

cfg2: 1, F3: 1}, {cfg1: 1, F1: 0, cfg2: 0, F6: 1}, {cfg1: 1, F1: 0, cfg2: 1, F4: 1, F5: 1}, {cfg1: 1, F1: 1, F2:

0, cfg2: 0, F6: 1}, {cfg1: 1, F1: 1, F2: 0, cfg2: 1, F4: 1, F5: 1}, {cfg1: 1, F1: 1, F2: 1}

As a final remark, note that ordering 1 allows us to easily identify the
different sub-trees representing the CSs of each configuration. With static
or dynamic ordering, configuration variables are positioned in different ways
along the tree, making it hard to identify the BDD representing the CSs of
each configuration.

The detailed steps of the exact method method proposed are reported in
Algorithm 2.

184 Chapter 6. Design Space Exploration of Redundant Architectures

Algorithm 2 DSE general framework
1: Input 1: system architecture model
2: Input 2: library of redundant patterns
3: Input 3: fault model
4: Input 4: design objectives
5: [OPT] Input 5: additional constraints (with local or global scope)
6: Output: set of optimum redundant architectures
7:
8: Phase 1 - Modeling
9: Define configuration variables cfgi = (Ci , Pj) and fault variables Fi

10: Define the behaviors of the components through SMT constraints
a: For each CSA use basic version as nominal behavior
b: For each Ci, find the Pj with highest number Fi for applying variable
sharing

11: Define the linking constraints ▷ SMT formula of the redundant
architectures

12: Define configuration constraints len(c⃗fgi) = ⌈log2(len(libCi))⌉
13: Define the compatibiliy constraints trough SMT constraints
14: Phase 2 - Assessment
15: Miter composition
16: Computation of MCSs ▷ AllSMT computation using MathSAT solver
17: Caching the resulting formula
18: Conversion of the formula into a BDD representation.
19: BDD-based quantifier elimination.
20: Symbolic Reliability function extraction ▷ by BDD traversing
21: Assessment of other non-functional parameters
22: Phase 3 - Optimization
23: if approach = ENUMERATIVE then
24: Compose a new Miter for each alternative
25: Compute the MCS for each alternative
26: Create a mapping configuration → cost functions
27: else if approach = SYMBOLIC then
28: Parameterize the system
29: Compute the values at run-time ▷ using Z3 solver
30: else approach = HYBRID
31: Perform semi-symbolic choices
32: end if

6.3. Problem Encoding 185

0
1

F
6

0
1

cf
g4

0

1

F
5

0
1

F
4

0

1

F
5

1

0

F
4

0

1

cf
g4 0

1

cf
g3

0

1

F
3

0
1

F
3

1

0

cf
g4

0

1

F
3

1

0

F
3

1

0

cf
g4 0

1

cf
g3 0

1

cf
g2

0

1

F
2

0
1

F
1 0

1

F
2

1

0

F
1 0

1cf
g4

0

1

F
2

1

0

F
1

0

1

F
2

1

0

F
1

0

1

cf
g4 0

1

cf
g3

0

1

F
2

1

0

F
1

0

1

F
2

1

0

F
1

0

1

cf
g4

0

1

F
2 1

0

F
1

0

1

F
2

1

0F
1 0

1

cf
g4

0

1

cf
g3 0

1

cf
g2 0

1

cf
g1

0

1

(a
)

0
1

F
6 0

1

cf
g4

0

1

F
5

0
1F
5

1

0

cf
g4

0

1

cf
g3

0
1

F
4

0

1

F
3

1

0cf
g2

0

1

F
2

1

0

F
1 0

1

cf
g1

0

1

(b
)

0
1

cf
g4

0
1

F
6

0

1

cf
g3

1

0

F
5

0

1

F
4

0

1

cf
g2 1

0

cf
g2 1

0

F
4

0

1

F
3

0

1

cf
g1

1

0

cf
g1

1

0

F
3

0

1

F
2

0
1

F
1 0

1 (c
)

0
1

F
6

0
1

cf
g4

0

1

F
5

1

0

F
4

0

1

cf
g3

0

1

F
3

1

0cf
g2

0

1

F
2

1

0

F
1 0

1

cf
g1

0

1

(d
)

Fi
gu

re
6.

32
:

B
D

D
of

ex
am

pl
e

in
Fi

gu
re

6.
26

re
su

lti
ng

fr
om

di
ffe

re
nt

or
de

rin
gs

:
al

l
va

ria
bl

es
on

to
p

(a
),

ar
bi

tr
ar

y
as

sig
nm

en
t

(b
),

al
te

rn
at

iv
e

ar
bi

tr
ar

y
as

sig
nm

en
t(

c)
,d

riv
en

by
ar

ch
ite

ct
ur

e’
s

to
po

lo
gy

(d
).

186 Chapter 6. Design Space Exploration of Redundant Architectures

0
1

F
6

0
1

F
3

1 0

F
5

0
1

F
4

0

1

F
3

1

0

cfg2

0

1

F
21

0 F
1

0

1

F
2

1

0

F
1

0

1

cfg20

1

cfg1

0

1(a)

0
1

F
6

0
1

F
31

0

F
50

1

F
4

0

1

F
3

1

0

cfg2

0

1

cfg20

1

F
2

1

0

F
1

0

1

cfg1

0

1

(b)

0
1

F
60

1

cfg2

1

0

F
5

0
1

cfg2

0
1

F
4

0
1

cfg1

0

1

F
3

0

1

cfg11

0

F
31

0

F
2

0
1

F
10

1

(c)

0
1

F
6

0
1

F
31

0

F
50

1

F
4

0

1

F
3

1

0

cfg2

0

1

cfg20

1

F
2

1

0

F
1

0

1

cfg1

0

1

(d)

Figure
6.33:

B
D

D
ofexam

ple
in

Figure
6.26

using
binary

encoding
ofconfiguration

variables
and

different
orderings:

allvariableson
top

(a),arbitrary
assignm

ent(b),alternative
arbitrary

assignm
ent(c),driven

by
architecture’stopology

(d).

Chapter 7

Experimental Evaluation of
Exact Method

Having described the theoretical concepts underlying the automatic optimiza-
tion approach in the previous chapters, in the following we describe the im-
plementation and validation of our method, and present results to evaluate its
performance.

7.1 Implementation Framework

The steps described in the previous section have been implemented in Python,
exploiting the PySMT [294] library for SMT formulae manipulation and solv-
ing. PySMT is an open-source Python library that provides a solver agnostic
interface to define, manipulate, and solve SMT formulae, leveraging the native
Application Programming Interface (API)s of solvers or their SMTLIB [298]
interface, allowing a fast prototyping of complex SMT-based algorithms. In
particular, we used the following solvers:

• MathSAT : developed by FBK [299], it supports a wide range of theories
and functionalities. We used it to quantify out non-Boolean variables
through AllSMT.

187

188 Chapter 7. Experimental Evaluation of Exact Method

• CUDD: developed by the Colorado University [300], it is a package for
the manipulation of BDDs, ZBDDs, and other canonical representations
of Boolean formulas. We used it to create and manipulate the OBDD
representing the CSs of the architectures. Note: we used RepyCUDD, a
Python wrapper for the CUDD BDD library.

• Z3 : developed by Microsoft [301], it supports MOOP through SMT-
based techniques. We employed it to explore the design space and find
the design points.

PySMT interacts with each specific solver by means of a converter layer
that converts each pySMT expression to a representation that the target solver
can manage. We used this layer to access features that are exposed by the
solver API but that are not wrapped by pySMT. This is the case of the All-
SMT computation function that has to be called directly through the MathSAT
python APIs by using a converter to create the internal MathSAT represen-
tation of an expression, and successively to reconstruct the PySMT version of
the result.

7.2 Implementation Details

There are a few standard representations for architecture: a list of edges, an
adjacency matrix, or an adjacency list. The choice of representation affects
both the storage and computational time to perform look-ups and algorithms.
The simplest way to implement that in Python is to use a "dictionary of lists",
where each node n is a key with a list of neighbors, i.e. nodes connected to n.
Hence, the basic system is represented as interconnected components, where
each node corresponds to a basic component, and each edge denotes the flow
of data between each component. For the creation and manipulation of system
connections, we used NetworkX [302]. It is a Python package for the creation,
manipulation, and study of the structure of complex networks, and manage-
ment of data structures for graphs. We defined the logic of each block through
SMT variables and constraints. We created a class that provides methods to
generate the SMT formula representing all configurations and allow to operate
on it in order to extract the reliability formula.
A library of candidate redundant patterns is associated to each node. Those
patterns determine all the design alternatives that compose the design space.
Afterwards, a formula modelling the CSA of each pair component-pattern is

7.2. Implementation Details 189

created. Non-Boolean variables are then quantified out from each CSA by
using the MathSAT function All-SMT that generates all the assignments to
the Boolean variables that satisfy the formula, and that are used to compose
an equisatisfiable formula in DNF.
As already stated before, the number of Boolean variables depends both on
the number of sub-components of a pattern, which determine how many fault
variables are used, and on the arity of each computing unit, which increases
the number of abstract inputs. In order to optimize the overall computation,
we exploited the analogies of the formulas modelling CSAs referring to the
same pattern applied to components having same arity, defining the combina-
torial abstract Miter presented in Section 6.3.10. Indeed, all these formulas can
be cached and reused when needed, avoiding to perform every time the same
(expensive) computation. PySMT offers APIs to serialize SMT formulae, but
we opted for the more efficient python module named Pickle. It implements
binary protocols for serializing and de-serializing a Python object structure.
“Pickling” is the process whereby a Python object hierarchy is converted into a
byte stream, and “unpickling” is the inverse operation, whereby a byte stream
(from a binary file or bytes-like object) is converted back into an object hier-
archy.
Once all Boolean formulae abstracting the behavior of each redundant com-
ponent has been created, all the other constraints (i.e., linking constraints,
compatibility constraints, probability constraints, and TLE formula) are ex-
tracted against the specification of basic system, and grouped together by
putting a conjunction between them.
The abstracted inputs and outputs are then quantified out by simply convert-
ing the quantified PySMT formula to a CUDD structure through a converter.
Since CUDD manipulates Boolean formulas through BDD structures, the tool
implicitly eliminates the quantifiers of the PySMT formula through BDD-based
techniques and creates the OBDD composed of fault and configuration vari-
ables.
BDDs are represented using complement edges, aka CCE BDD structures [303],
allowing to minimize as much as possible the space required to encode the for-
mula. CUDD framework handles all formulae through BDD structures, and it
is therefore able to manage formulae consisting of Boolean variables only. For
this reason, we explicitly binary encoded each configuration as a conjunction
of Boolean variables without leveraging the SMT theory of bit-vectors, which
would have made it possible to represent the configurations in a simpler and

190 Chapter 7. Experimental Evaluation of Exact Method

more compact way. The conversion is illustrated in Figure 7.1. Note that,
since we have assumed the hypothesis of monotonicity for our models, we can
assert that they are also coherent. For coherent models, the definition of MCS
fits well with the formal notion of Prime Implicant [304]. Once the CCE-BDD
is created, we use the CUDD APIs to traverse the nodes of the OBDD, and
create the SMT reliability formula as described in Paragraph 6.3.7.
The reliability assessment described above is the pillar of the DSE method
proposed. In addition to reliability, other non-functional parameters were con-
sidered, such as cost, power consumption, and size. Since the focus of our
work was the reliability, the other parameters were simply computed as addi-
tive, i.e. the cost of the system is calculated as the sum of the cost of single
components. For the DSE we used the Z3 SMT optimizer through the PySMT
APIs, because at the moment of writing it is the only one that supports the
theory of Non-Linear Arithmetic over the reals (N LRA).

pySMT formula
of the CSs of a given cfg

repyCUDD formula
and

CCE-BDD genera�on

pySMT converter Formula describing
Prime Implicant only

and
CCE-BDD genera�on

cudd_ForeachPrime()

Figure 7.1: Conversion from PySMT formula to CCE-BDD
repersentation using CUDD.

Summarizing what we have presented in the previous chapters, our software
tool implements the following steps.

• Creating an SMT formula modelling the CSA of each pair component-
pattern.

– Using the basic version of the system as nominal behavior.

– For each basic component, finding the applicable pattern with the
highest number of fault variables for applying variable sharing: due
to the mutual exclusivity, fault variables of different patterns asso-
ciated to the same component can be reused.

• Creating the formula representing the CSs of the system.

– Performing quantifier elimination via All-SMT on each CSA in order
to obtain a formula with Boolean variables only.

7.3. Running Example 191

– Caching the resulting formula in order to avoid the analog compu-
tation of a CSA related to the same pattern.

– Linking the CSAs by adding additional Boolean constraints over
input and output ports, according to the configuration variables
(this translate into a conjunction of implications).

– Adding compatibility constraints over configuration variables, to
exclude the connection of patterns that are not sequentially com-
patible.

• Converting the formula of the CSs into a BDD representation.

• Performing BDD-based quantifier elimination, in order to obtain a for-
mula with only fault and configuration variables.

• Apply the algorithm for the extraction of the symbolic formula of the
reliability.

• Performing the optimization on the basis of the reliability computed as
specified above, and other non-functional parameters, whose computa-
tion may vary from case to case.

In appendix A the dependency graph of the software implementing our
method is available.
All experiments have been executed on a desktop computer equipped with an
Intel Core i5-3400 running Ubuntu 20.04.3.

7.3 Running Example

In the following, we firstly present some results on a simple case study, in order
to show the impacts on results when varying the number of objective functions,
and/or the number of redundant patterns available.

As a first example, we considered the system illustrated in Figure 7.2,
which was also used by other authors [305], [154]. Although quite simple, it is
a complex system and cannot therefore be broken down to groups of series and
parallel components, which would make the reliability computation easier.

The system is composed of six components, each of which has two suitable
redundant patterns, namely a TMR with one voter and a TMR with three

192 Chapter 7. Experimental Evaluation of Exact Method

voters. The optimization problem involved a reliability function to be maxi-
mized and a cost function to be minimized. We assigned arbitrary values of
fault probability and cost, as illustrated in Table 7.1.

C1

C2

C3

C4

C5

C6

libC3
TMR_V111 TMR_V123

libC1
TMR_V111 TMR_V123

libC2
TMR_V111 TMR_V123

libC5
TMR_V111 TMR_V123

libC4
TMR_V111 TMR_V123

libC6
TMR_V111 TMR_V123

Figure 7.2: Basic system of first example.

Explicit Method

Our method, using explicit (aka enumerative) approach presented in Sec-
tion 6.3.7, exceeded the timeout (set to twenty minutes) for the optimization
task, although the basic system was made up of only six components. This
happens because the number of alternative designs is combinatorial with re-
spect to the number of components, and we need to extract the reliability
separately for each one of them. What is even worse is that the time needed
for reliability extraction grows very fast when the size of the system increases.
This method can be very useful if we perform the reliability extraction of each
alternative in parallel, using separate computing units.

Symbolic Method

Our method, using symbolic approach presented in Section 6.3.7, took 3.4 sec-
onds for BDD quantifier elimination, but exceeded the timeout (set to twenty

7.3. Running Example 193

Table 7.1: Library of patterns for example system in Figure 7.2,
2 objective functions.

Cmp Ptn Type Pattern specification (Reliability, Cost)

C1
P1 TMR_V 111 (0.2, 10), (0.2, 10), (0.2, 11), (0.1, 2)
P2 TMR_V 123 (0.1, 10), (0.1, 10), (0.1, 10), (0.1, 2), (0.1, 2), (0.1, 2)

C2
P3 TMR_V 111 (0.2, 11), (0.2, 11), (0.2, 11), (0.1, 4)
P4 TMR_V 123 (0.1, 10), (0.1, 10), (0.1, 10), (0.1, 2), (0.1, 2), (0.1, 2)

C3
P5 TMR_V 111 (0.2, 11), (0.2, 11), (0.2, 11), (0.1, 2)
P6 TMR_V 123 (0.1, 10), (0.1, 10), (0.1, 10), (0.1, 2), (0.1, 2), (0.1, 2)

C4
P7 TMR_V 111 (0.2, 11), (0.8, 11), (0.2, 11), (0.1, 2)
P8 TMR_V 123 (0.1, 10), (0.1, 10), (0.1, 10), (0.1, 2), (0.1, 2), (0.1, 2)

C5
P9 TMR_V 111 (0.2, 11), (0.2, 11), (0.2, 11), (0.2, 2)
P10 TMR_V 123 (0.2, 11), (0.2, 11), (0.2, 11), (0.1, 2), (0.1, 2), (0.1, 2)

C6
P11 TMR_V 111 (0.2, 12), (0.2, 12), (0.2, 12), (0.3, 3)
P12 TMR_V 123 (0.1, 12), (0.1, 12), (0.1, 12), (0.1, 2), (0.1, 2), (0.1, 2)

minutes) for the optimization task. This is attributable to the high complexity
of the symbolic representation.

Semi-symbolic Method

Our method, using semi-symbolic (aka Hybrid) approach presented in Section
6.3.7, produced eight solutions that define the best trade-off between the two
competing objectives. The objective function values of these solutions are
reported in Table 7.2. As could be expected, the result suggested that the
most reliable solution is also the most expensive, and dually the cheapest is
the one with highest value of fault probability. Figure 7.3 shows the Pareto
set. Figure 7.4a shows one of the alternative solutions (number 6). Figure 7.4b
shows the alternative solution with lower cost, Figure 7.4c shows the alternative
solution with higher reliability.

Table 7.2: Exact solutions for example system in Figure 7.2, 2
objective functions.

Solution Fault probability Cost
1 0.673964 225
2 0.692971 222
3 0.705806 221
4 0.722956 218
5 0.746054 217
6 0.767727 215
7 0.782202 214
8 0.854541 213

194 Chapter 7. Experimental Evaluation of Exact Method

Figure 7.3: Pareto solutions for the example system in Fig-
ure 7.2

7.3.1 Varying the Number of Objective Functions

Usually, with MOOPs, we need to compare more than two objectives. To
provide evidence of the efficiency of the proposed method, we added some
others objectives. As next step, we considered one more objective function to
be optimized (minimized): power consumption. We assigned arbitrary values
as illustrated in Table 7.3. Our algorithm found 18 solutions, whose values
are reported in Table 7.4. Figure 7.5 illustrates the Pareto surface of the
three functions considered. The darker color corresponds to a higher fault
probability. Let consider one more objective function: size area. Assigning
arbitrary values as illustrated in Table 7.5, our algorithm found 21 solutions,
whose values are reported in Table 7.6.

As additional step, we considered one more objective function to be op-
timized (minimized): weight. We assigned arbitrary values as illustrated in
Table 7.7. Our algorithm found 28 solutions, whose values are reported in
Table 7.8.

An additional objective function was the noise. Assigning arbitrary values
as illustrated in Table 7.9, our algorithm found 40 solutions, whose values are
reported in Table 7.10.

Figures 7.6 and 7.7 show the performance of our algorithm when varying
the number of objective functions. Please note that time is higher with two

7.3. Running Example 195

Table 7.3: Library of patterns for example system in Figure 7.2,
considering 3 objective functions.

Ptn Pattern specification (Reliability, Cost, Power)
P1 (0.2, 10, 9), (0.2, 10, 9), (0.2, 11, 9), (0.1, 2, 3)
P2 (0.1, 10, 11), (0.1, 10, 11), (0.1, 10, 11), (0.1, 2, 4), (0.1, 2, 4), (0.1, 2, 4)
P3 (0.2, 11, 13), (0.2, 11, 13), (0.2, 11, 13), (0.1, 4, 2)
P4 (0.1, 10, 12), (0.1, 10, 12), (0.1, 10, 12), (0.1, 2, 3), (0.1, 2, 3), (0.1, 2, 3)
P5 (0.2, 11, 15), (0.2, 11, 15), (0.2, 11, 15), (0.1, 2, 3)
P6 (0.1, 10, 12), (0.1, 10, 12), (0.1, 10, 12), (0.1, 2, 2), (0.1, 2, 2), (0.1, 2, 2)
P7 (0.2, 11, 12), (0.8, 11, 12), (0.2, 11, 12), (0.1, 2, 2)
P8 (0.1, 10, 14), (0.1, 10, 14), (0.1, 10, 14), (0.1, 2, 3), (0.1, 2, 3), (0.1, 2, 3)
P9 (0.2, 11, 12), (0.2, 11, 12), (0.2, 11, 12), (0.2, 2, 5)
P10 (0.2, 11, 13), (0.2, 11, 13), (0.2, 11, 13), (0.1, 2, 4), (0.1, 2, 4), (0.1, 2, 4)
P11 (0.2, 12, 11), (0.2, 12, 11), (0.2, 12, 11), (0.3, 3, 4)
P12 (0.1, 12, 12), (0.1, 12, 12), (0.1, 12, 12), (0.1, 2, 3), (0.1, 2, 3), (0.1, 2, 3)

Table 7.4: Solutions for example system in Figure 7.2, consid-
ering 3 objective functions.

Solution Fault probability Cost Power
1 0.6739644436312434 225.0 279.0
2 0.6844985760212222 226.0 275.0
3 0.6929706872988478 222.0 264.0
4 0.7058063295659203 221.0 269.0
5 0.7084385079107389 223.0 260.0
6 0.7126954744932213 221.0 261.0
7 0.7229563504041777 218.0 254.0
8 0.7369135241864181 219.0 250.0
9 0.7460535490548722 217.0 251.0
10 0.7588471097533224 218.0 247.0
11 0.7677269176540538 215.0 246.0
12 0.7794285963605267 216.0 242.0
13 0.7822023816175623 214.0 243.0
14 0.7931748013555948 215.0 239.0
15 0.8374944867793959 215.0 238.0
16 0.8417515885357502 214.0 242.0
17 0.8506274578629505 214.0 235.0
18 0.8545405196347040 213.0 239.0

functions because subsequent cases take advantage of the caching mechanism,
i.e., for some patterns they use formulae already computed and stored. A
qualitative method for the visualization of the Pareto set in the objective
space that aims at identifying the broad trends is illustrated in Figure 7.8,
through parallel coordinate plots. Each objective is given its own axis and all

196 Chapter 7. Experimental Evaluation of Exact Method

Table 7.5: Library of patterns for example system in Figure 7.2,
considering 4 objective functions.

Ptn Pattern specification (Reliability, Cost, Power, Size)
P1 (0.2, 10, 9, 16), (0.2, 10, 9, 16), (0.2, 11, 9, 16), (0.1, 2, 3, 3)
P2 (0.1, 10, 11, 20), (0.1, 10, 11, 20), (0.1, 10, 11, 20), (0.1, 2, 4, 3), (0.1, 2, 4, 3), (0.1, 2, 4, 3)
P3 (0.2, 11, 13, 17), (0.2, 11, 13, 17), (0.2, 11, 13, 17), (0.1, 4, 2, 3)
P4 (0.1, 10, 12, 22), (0.1, 10, 12, 22), (0.1, 10, 12, 22), (0.1, 2, 3, 2), (0.1, 2, 3, 2), (0.1, 2, 3, 2)
P5 (0.2, 11, 15, 16), (0.2, 11, 15, 16), (0.2, 11, 15, 16), (0.1, 2, 3, 3)
P6 (0.1, 10, 12, 21), (0.1, 10, 12, 21), (0.1, 10, 12, 21), (0.1, 2, 2, 4), (0.1, 2, 2, 4), (0.1, 2, 2, 4)
P7 (0.2, 11, 12, 15), (0.8, 11, 12, 15), (0.2, 11, 12, 15), (0.1, 2, 2, 5)
P8 (0.1, 10, 14, 19), (0.1, 10, 14, 19), (0.1, 10, 14, 19), (0.1, 2, 3, 4), (0.1, 2, 3, 4), (0.1, 2, 3, 4)
P9 (0.2, 11, 12, 16), (0.2, 11, 12, 16), (0.2, 11, 12, 16), (0.2, 2, 5, 4)
P10 (0.2, 11, 13, 21), (0.2, 11, 13, 21), (0.2, 11, 13, 21), (0.1, 2, 4, 3), (0.1, 2, 4, 3), (0.1, 2, 4, 3)
P11 (0.2, 12, 11, 14), (0.2, 12, 11, 14), (0.2, 12, 11, 14), (0.3, 3, 4, 3)
P12 (0.1, 12, 12, 18), (0.1, 12, 12, 18), (0.1, 12, 12, 18), (0.1, 2, 3, 2), (0.1, 2, 3, 2), (0.1, 2, 3, 2)

Table 7.6: Solutions for example system in Figure 7.2, consid-
ering 4 objective functions.

Solution Fault probability Cost Power Size
1 0.6739644436312434 225.0 279.0 417.0
2 0.6844985760212222 226.0 275.0 399.0
3 0.6929706872988478 222.0 264.0 399.0
4 0.702429368641965, 224.0 276.0 393.0
5 0.7058063295659203 221.0 269.0 397.0
6 0.7084385079107389 223.0 260.0 381.0
7 0.7126954744932213 221.0 261.0 375.0
8 0.7229563504041777 218.0 254.0 379.0
9 0.7271695806377669 222.0 257.0 357.0
10 0.7369135241864181 219.0 250.0 361.0
11 0.7460535490548722 217.0 251.0 355.0
12 0.7588471097533224 218.0 247.0 337.0
13 0.7677269176540538 215.0 246.0 364.0
14 0.7794285963605267 216.0 242.0 346.0
15 0.7822023816175623 214.0 243.0 340.0
16 0.7931748013555948 215.0 239.0 322.0
17 0.8312442747324496 217.0 243.0 318.0
18 0.8374944867793959 215.0 238.0 327.0
19 0.8417515885357502 214.0 242.0 345.0
20 0.8506274578629505 214.0 235.0 303.0
21 0.8545405196347040 213.0 239.0 321.0

the axes are placed in parallel to each other. Values are plotted as a series
of lines that connect across all the axes. They are ideal for comparing many
variables together and seeing the relationships between them. As we can see,
Cost, Power, Size, and Weight are inversely proportional to Fault probability.

7.3. Running Example 197

Table 7.7: Library of patterns for example system in Figure 7.2,
considering 5 objective functions.

Ptn Pattern specification (Reliability, Cost, Power, Size, Weight)
P1 (0.2, 10, 9, 16, 2.7), (0.2, 10, 9, 16, 2.7), (0.2, 11, 9, 16, 2.7), (0.1, 2, 3, 3, , 2.7)
P2 (0.1, 10, 11, 20, 2.5), (0.1, 10, 11, 20, 2.5), (0.1, 10, 11, 20, 2.5), (0.1, 2, 4, 3, 2.5), (0.1, 2, 4, 3, 2.5), (0.1, 2, 4, 3, 2.5)
P3 (0.2, 11, 13, 17, 2), (0.2, 11, 13, 17, 2), (0.2, 11, 13, 17, 2), (0.1, 4, 2, 3, 2.1)
P4 (0.1, 10, 12, 22, 2.1), (0.1, 10, 12, 22, 2.1), (0.1, 10, 12, 22, 2.1), (0.1, 2, 3, 2, 2.1), (0.1, 2, 3, 2, 2.1), (0.1, 2, 3, 2, 2.1)
P5 (0.2, 11, 15, 16, 2.7), (0.2, 11, 15, 16, 2.7), (0.2, 11, 15, 16, 2.7), (0.1, 2, 3, 3, 2.6)
P6 (0.1, 10, 12, 21, 2.2), (0.1, 10, 12, 21, 2.2), (0.1, 10, 12, 21, 2.2), (0.1, 2, 2, 4, 2.1), (0.1, 2, 2, 4, 2.1), (0.1, 2, 2, 4, 2.1)
P7 (0.2, 11, 12, 15, 3.3), (0.8, 11, 12, 15, 3.3), (0.2, 11, 12, 15, 3.3), (0.1, 2, 2, 5, 3.4)
P8 (0.1, 10, 14, 19, 3.1), (0.1, 10, 14, 19, 3.1), (0.1, 10, 14, 19, 3.1), (0.1, 2, 3, 4, 3.2), (0.1, 2, 3, 4, 3.2), (0.1, 2, 3, 4, 3.2)
P9 (0.2, 11, 12, 16, 1.8), (0.2, 11, 12, 16, 1.8), (0.2, 11, 12, 16, 1.8), (0.2, 2, 5, 4, 1.5)
P10 (0.2, 11, 13, 21, 2.6), (0.2, 11, 13, 21, 2.6), (0.2, 11, 13, 21, 2.6), (0.1, 2, 4, 3, 2.1), (0.1, 2, 4, 3, 2.1), (0.1, 2, 4, 3, 2.1)
P11 (0.2, 12, 11, 14, 5), (0.2, 12, 11, 14, 5), (0.2, 12, 11, 14, 5), (0.3, 3, 4, 3, 1.5)
P12 (0.1, 12, 12, 18, 4.9), (0.1, 12, 12, 18, 4.9), (0.1, 12, 12, 18, 4.9), (0.1, 2, 3, 2, 2.9), (0.1, 2, 3, 2, 2.9), (0.1, 2, 3, 2, 2.9)

Table 7.8: Solutions for example system in Figure 7.2, consid-
ering 5 objective functions.

Solution Fault probability Cost Power Size Weight
1 0.6739644436312434 225.0 279.0 417.0 282.030
2 0.6844985760212222 226.0 275.0 399.0 271.980
3 0.6929706872988478 222.0 264.0 399.0 273.690
4 0.7024293686419650 224.0 276.0 393.0 282.910
5 0.7058063295659203 221.0 269.0 397.0 260.490
6 0.7084385079107389 223.0 260.0 381.0 263.640
7 0.7126954744932213 225.0 272.0 375.0 272.860
8 0.7126954744932213 221.0 261.0 375.0 274.570
9 0.7153116580864123 222.0 265.0 379.0 250.440
10 0.7229563504041777 218.0 254.0 379.0 252.150
11 0.7271695806377669 222.0 257.0 357.0 264.520
12 0.7369135241864181 219.0 250.0 361.0 242.100
13 0.7460535490548722 221.0 262.0 355.0 251.320
14 0.7460535490548722 217.0 251.0 355.0 253.030
15 0.7533483595885260 218.0 261.0 382.0 240.480
16 0.7588471097533224 218.0 247.0 337.0 242.980
17 0.7613176162648169 219.0 257.0 364.0 230.430
18 0.7677269176540538 215.0 246.0 364.0 232.140
19 0.7744199305735989 217.0 258.0 358.0 241.360
20 0.7794285963605267 216.0 242.0 346.0 222.090
21 0.7822023816175623 218.0 254.0 340.0 231.310
22 0.7822023816175623 214.0 243.0 340.0 233.020
23 0.7931748013555948 215.0 239.0 322.0 222.970
24 0.8312442747324496 217.0 243.0 318.0 227.660
25 0.8374944867793959 215.0 238.0 327.0 206.770
26 0.8417515885357502 214.0 242.0 345.0 216.820
27 0.8506274578629505 214.0 235.0 303.0 207.650
28 0.8545405196347040 213.0 239.0 321.0 217.700

198 Chapter 7. Experimental Evaluation of Exact Method

Table 7.9: Library of patterns for example system in Figure 7.2,
considering 6 objective functions.

Ptn Pattern specification (Reliability, Cost, Power, Size, Weight, Noise)
P1 (0.2, 10, 9, 16, 2.7, 8), (0.2, 10, 9, 16, 2.7, 8), (0.2, 11, 9, 16, 2.7, 8), (0.1, 2, 3, 3, 2.7, 3)
P2 (0.1, 10, 11, 20, 2.5, 7), (0.1, 10, 11, 20, 2.5, 7), (0.1, 10, 11, 20, 2.5, 7), (0.1, 2, 4, 3, 2.5, 2), (0.1, 2, 4, 3, 2.5, 2), (0.1, 2, 4, 3, 2.5, 2)
P3 (0.2, 11, 13, 17, 2, 10), (0.2, 11, 13, 17, 2, 10), (0.2, 11, 13, 17, 2, 10), (0.1, 4, 2, 3, 2.1, 4)
P4 (0.1, 10, 12, 22, 2.1, 9), (0.1, 10, 12, 22, 2.1, 9), (0.1, 10, 12, 22, 2.1, 9), (0.1, 2, 3, 2, 2.1, 3), (0.1, 2, 3, 2, 2.1, 3), (0.1, 2, 3, 2, 2.1, 3)
P5 (0.2, 11, 15, 16, 2.7, 6), (0.2, 11, 15, 16, 2.7, 6), (0.2, 11, 15, 16, 2.7, 6), (0.1, 2, 3, 3, 2.6, 4)
P6 (0.1, 10, 12, 21, 2.2, 5), (0.1, 10, 12, 21, 2.2, 5), (0.1, 10, 12, 21, 2.2, 5), (0.1, 2, 2, 4, 2.1, 2), (0.1, 2, 2, 4, 2.1, 2), (0.1, 2, 2, 4, 2.1, 2)
P7 (0.2, 11, 12, 15, 3.3, 7), (0.8, 11, 12, 15, 3.3, 7), (0.2, 11, 12, 15, 3.3, 7), (0.1, 2, 2, 5, 3.4, 4)
P8 (0.1, 10, 14, 19, 3.1, 4), (0.1, 10, 14, 19, 3.1, 4), (0.1, 10, 14, 19, 3.1, 4), (0.1, 2, 3, 4, 3.2, 4), (0.1, 2, 3, 4, 3.2, 4), (0.1, 2, 3, 4, 3.2, 4)
P9 (0.2, 11, 12, 16, 1.8, 8), (0.2, 11, 12, 16, 1.8, 8), (0.2, 11, 12, 16, 1.8, 8), (0.2, 2, 5, 4, 1.5, 3)
P10 (0.2, 11, 13, 21, 2.6, 7), (0.2, 11, 13, 21, 2.6, 7), (0.2, 11, 13, 21, 2.6, 7), (0.1, 2, 4, 3, 2.1, 3), (0.1, 2, 4, 3, 2.1, 3), (0.1, 2, 4, 3, 2.1, 3)
P11 (0.2, 12, 11, 14, 5, 9), (0.2, 12, 11, 14, 5, 9), (0.2, 12, 11, 14, 5, 9), (0.3, 3, 4, 3, 1.5, 2)
P12 (0.1, 12, 12, 18, 4.9, 6), (0.1, 12, 12, 18, 4.9, 6), (0.1, 12, 12, 18, 4.9, 6), (0.1, 2, 3, 2, 2.9, 5), (0.1, 2, 3, 2, 2.9, 5), (0.1, 2, 3, 2, 2.9, 5)

Table 7.10: Solutions for example system in Figure 7.2, consid-
ering 6 objective functions.

Solution Fault probability Cost Power Size Weight Noise
1 0.7460535490548722 217.0 251.0 355.0 253.030 7513.0
2 0.6739644436312434 225.0 279.0 417.0 282.030 6237.0
3 0.6844985760212222 226.0 275.0 399.0 271.980 7033.0
4 0.6929706872988478 222.0 264.0 399.0 273.690 6747.0
5 0.7024293686419650 224.0 276.0 393.0 282.910 6550.0
6 0.7058063295659203 221.0 269.0 397.0 260.490 6690.0
7 0.7084385079107389 223.0 260.0 381.0 263.640 7543.0
8 0.7126954744932213 225.0 272.0 375.0 272.860 7346.0
9 0.7126954744932213 221.0 261.0 375.0 274.570 7060.0
10 0.7153116580864123 222.0 265.0 379.0 250.440 7486.0
11 0.7229563504041777 218.0 254.0 379.0 252.150 7200.0
12 0.7271695806377669 222.0 257.0 357.0 264.520 7856.0
13 0.7369135241864181 219.0 250.0 361.0 242.100 7996.0
14 0.7369794102422135 220.0 266.0 373.0 261.370 7003.0
15 0.7460535490548722 221.0 262.0 355.0 251.320 7799.0
16 0.7533483595885260 218.0 261.0 382.0 240.480 7862.0
17 0.7588471097533224 218.0 247.0 337.0 242.980 8309.0
18 0.7613176162648169 219.0 257.0 364.0 230.430 8658.0
19 0.7677269176540538 215.0 246.0 364.0 232.140 8372.0
20 0.7744199305735989 217.0 258.0 358.0 241.360 8175.0
21 0.7794285963605267 216.0 242.0 346.0 222.090 9168.0
22 0.7822023816175623 218.0 254.0 340.0 231.310 8971.0
23 0.7822023816175623 214.0 243.0 340.0 233.020 8685.0
24 0.7931748013555948 215.0 239.0 322.0 222.970 9481.0
25 0.8105227290918962 218.0 246.0 342.0 226.780 8705.0
26 0.8124832497987964 221.0 261.0 360.0 235.120 8195.0
27 0.8154864008270026 217.0 250.0 360.0 236.830 7909.0
28 0.8179286704985339 220.0 265.0 378.0 245.170 7399.0
29 0.8312442747324496 217.0 243.0 318.0 227.660 9018.0
30 0.8356651111717405 216.0 247.0 336.0 237.709 8222.0
31 0.8356651111717405 220.0 258.0 336.0 236.000 8508.0
32 0.8374944867793959 215.0 238.0 327.0 206.770 9877.0
33 0.8391759307970742 218.0 253.0 345.0 215.110 9367.0
34 0.8403771134483601 219.0 262.0 354.0 246.050 7712.0
35 0.8417515885357502 214.0 242.0 345.0 216.820 9081.0
36 0.8438462053966178 217.0 257.0 363.0 225.160 8571.0
37 0.8506274578629505 214.0 235.0 303.0 207.650 10190.0
38 0.8545405196347040 217.0 250.0 321.0 215.990 9680.0
39 0.8545405196347040 213.0 239.0 321.0 217.700 9394.0
40 0.8587113041073394 216.0 254.0 339.0 226.040 8884.0

7.3. Running Example 199

M1

M2

M3

V

M1

M2

M3

V

V

V

M1

M2

M3

V

V

V

M1

M2

M3

V

V

V

M1

M2

M3

V

M1

M2

M3

V

(a)
M1

M2

M3

V
M1

M2

M3

V

M1

M2

M3

V

M1

M2

M3

V

M1

M2

M3

V

M1

M2

M3

V

V

V

(b)

M1

M2

M3

V

V

V

M1

M2

M3

V

V

V

M1

M2

M3

V

V

V

M1

M2

M3

V

V

V

M1

M2

M3

V

V

V

M1

M2

M3

V

V

V

(c)

.

Figure 7.4: Alternative solutions for example system in Fig-
ure 7.2: (a) solution n.6, (b) redundant architecture scheme
with minimum cost, and (c) redundant architecture scheme

with maximum reliability.

200 Chapter 7. Experimental Evaluation of Exact Method

Figure 7.5: Pareto surface for example system in Figure 7.2
with three objective functions.

Figure 7.6: Time performance for optimization when varying
the number of objectives for example system in Figure 7.2

Figure 7.7: Memory usage for optimization when varying the
number of objectives for example system in Figure 7.2

7.3. Running Example 201

Fi
gu

re
7.

8:
Pa

ra
lle

lc
oo

rd
in

at
e

pl
ot

fo
r

th
e

ru
nn

in
g

ex
am

pl
e

w
ith

six
ob

je
ct

iv
e

fu
nc

tio
ns

202 Chapter 7. Experimental Evaluation of Exact Method

7.3.2 Varying the Number of Redundant Patterns

In order to test the performance of the algorithm proposed, we can vary the
size of the library of redundant patterns. Specifically, to the initial library
composed of only two patterns for each component we add in turn up to five
patterns, namely: TMR_V111 , TMR_V123 , TMR_V001 , TMR_V010 , and
TMR_V012 . The same library can include two or more instances of the same
pattern type. Table 7.11 reports the performance of the proposed method
and the number of solutions found by varying the size of the library and the
number of objective functions. The timeout for computation was set to twenty
minutes.

Table 7.11: Time and memory performance for the complex
system of six basic components illustrated in Figure 7.2

Library size Objectives Time elapsed [s] Memory usage [Mb] Number of solutions

2

2 0.825 2.046 8
3 0.102 1.948 18
4 0.119 2.033 21
5 0.153 2.138 28
6 0.205 2.158 40

3

2 1.429 2.202 23
3 2.638 1.880 99
4 118.01 2.015 154
5 timeout - -
6 timeout - -

4

2 43.535 2.225 23
3 53.291 1.938 166
4 timeout - -
5 timeout - -
6 timeout - -

7.3.3 Varying the Number of System Components

Varying the number of components means considering new systems. A deep-
ened analysis that considers - among others - different number of components
is performed in the next section.

7.3.4 Varying the BDD Ordering Strategy

Among other things, we also investigated how the BDD ordering influences its
size and, as a consequence, the performance of our method. The size of a BDD
for a given function is sensitive to the ordering of the variable in the BDD.
However, finding the optimal ordering that yields the smallest BDD for the

7.4. Benchmarks 203

given function is an NP-complete problem [306]. Several heuristic algorithms
have been therefore developed in order to find a variable ordering that help
reducing the BDD size.

The CUDD package that we have employed includes an implementation
of the SIFT algorithm [297], which is one of the most popular ones based on
dynamic variable reordering [307]. SIFT algorithm picks one BDD variable
at a time and tries to find a better position for this variable, such that the
resulting BDD is smaller in size. This algorithm is efficient because the search
for a better position is based on the exchange of adjacent variables, which
turns out to be an efficient operation. Unfortunately, the algorithm does not
provide guarantee to find the best ordering, or can even run out of memory.
For this reason, as already presented in Sub-section 6.3.10, we considered the
following orderings:

• a static ordering in which all configuration variables precede fault vari-
ables,

• a static ordering driven by architecture,

• an arbitrary ordering.

Through the APIs of CUDD, it is possible to select a large variety of reordering
strategies for the last case. Since the BDDs under study have a high number
of variables, we opted for the SIFT algorithm, which is agile. Other algorithms
like GA-based algorithms take long times even with very simple systems. We
applied the SIFT algorithm to the running example, but since with complex
architectures the reordering strategy adds a considerable overhead, the execu-
tion of the experiment reached the timeout. More details and numerical results
are provided in the next sections.

7.4 Benchmarks

As we have done for the example provided in the previous section, in order to
verify the feasibility and scalability of our method, we considered different test
scenarios, by varying:

• the kind of architecture (see Figure 7.9),

• the number of components,

204 Chapter 7. Experimental Evaluation of Exact Method

• the number and type of patterns available for each component,

• the number of instances of the same pattern,

• the number of objective functions,

• the kind of optimization approach: explicit, symbolic, or semi-symbolic
(aka hybrid).

C1 C2 CN

(a)

C1 C3 CN-1

C2 C4 CN

(b)

C1

C3

C2

C4 C6

C5

(c)

Figure 7.9: System architectures used fer experimental eval-
uation: (a) series (aka linear) (b) repeating pairs of parallel
components (aka rectangular), (c) complex random architec-

tures.

7.4.1 Experimental Setup

The setting for the experimental evaluation comprises the three steps illus-
trated in Figure 6.1. This means the generation of the basic architecture,
expressed in terms of nodes and connections between them, the generation
of the pattern library for each component, the definition of the configuration

7.4. Benchmarks 205

variables and fault variables, and the subsequent generation of the abstract
modules. Afterward, the next step is the construction of the combinatorial
abstract Miter and the computation of its MCS. The formula of the MCS is
then translated into a BDD that is traversed in order to evaluate the reliability
of the redundant systems. The evaluation of the other objectives is translates
into a simple addition operation. Eventually, a solver is used to perform the
optimization task.

7.4.2 Evaluation Criteria

As stated above, we considered different kinds of architectures, specifically
series (aka linear), repeating pairs of parallel components (aka rectangular),
and complex redundant architectures, varying the number of basic components,
patterns, instances of the same pattern, and design objectives. The overall
performance has two main contributions: the assessment of non-functional
parameters and optimization. In order to get a rough measurement of the
time complexity of the algorithm, the overall CPU time and memory usage
are measured when running the experiments. Another evaluation parameter is
the number of nodes of the BDDs generated, which can help figuring out the
dimension and complexity of the system we are dealing with.

7.4.3 Experiments on Linear Architectures

The basic architecture consists of a chain of basic components. We varied
the number of basic components up to one-hundred, the number of redundant
patterns up to ten for each basic component, the number of different instances
of the same component up to five, and the number of objectives up to six.
As expected, the results indicated that the time for the BDD-based quantifier
elimination grows with the number of components and with the size of the
pattern library, as illustrated in Figure 7.10. Thus, the performance is propor-
tional to the size of the BDD. Additional information is provided in Section 7.5
below.

As predictable, also the time needed to traverse the BDD and extract the
reliability formula depends on the size of the BDD. It is linear with respect to
the size of the BDD.

206 Chapter 7. Experimental Evaluation of Exact Method

Figure 7.10: Time performance for linear architectures, varying
the size of the system and library of patterns.

7.4.4 Experiments on Rectangular Architectures

As per linear architectures, also for rectangular architectures the time for
the BDD-based quantifier elimination and reliability function extraction grows
with the number of components and with the size of the pattern library, as
illustrated in Figure 7.11.

Figure 7.11: Time performance for rectangular architectures,
varying the size of the system and library of patterns.

7.4. Benchmarks 207

7.4.5 Experiments on Complex Architectures

The topology is modeled by a randomly generated graph. This graph is a
DAG in which each node has a maximum input degree d (i.e., each node has
maximum d incoming edges). In the following we report the outcomes of some
of the experiments we have performed. In order to illustrate how the number
of solutions and the performance change with the number of basic compo-
nents, we kept fixed the size of the pattern library (three patterns per each
component) and the number of objective functions (two objectives: maximize
reliability and minimize cost), while we varied the number of the components
(and edges). Table 7.12 and Figure 7.16 illustrate the outcomes. Compared
to linear and rectangular architectures, the results indicated that curves for
complex architectures become steeper already with few components (less than
ten). Especially if using more than five patterns for each of them. More details
follow in the next section.

C1

C2

C3

C4

C5

C6

C7

C8

Figure 7.12: Pareto solutions for a basic system composed of 8
components and 10 edges.

C1

C2

C3

C4

C5

C6

C7

C9

C10

C8

Figure 7.13: Pareto solutions for a basic system composed of
10 components and 10 edges.

208 Chapter 7. Experimental Evaluation of Exact Method

C1

C2

C3

C4

C5

C8

C9

C10

C11

C12C7

C6

Figure 7.14: Pareto solutions for a basic system composed of
12 components and 16 edges.

C1

C2

C3

C4

C5

C6

C7

C10

C8

C9

C11

C12

C13

C14

Figure 7.15: Pareto solutions for a basic system composed of
14 components and 20 edges.

7.5 Results

As stated above, the overall performance of the exact method has two main
contributions: assessment of non-functional parameters and optimization. We
present the respective results in the following.

Table 7.12: Performance for the complex system examples pre-
sented above.

Number of components 6 8 10 12 14
Number of solutions 8 11 12 15 29

Time elapsed [s] 24.38 36.71 213.27 2240.51 15630.07
Memory usage [Mb] 2.11 2.53 3.09 3.07 3.41

7.5. Results 209

Figure 7.16: Time and memory performance of exact method
varying the number of basic components.

7.5.1 Assessment Performance

The more burdensome parameter is reliability, as on the basis of our choice the
other parameters are cumulative, and their assessment translates therefore in
a simple addition. The overall performance of reliability assessment takes into
account three main tasks:

• Abstraction (AllSMT computation),

• BDD-based quantifier elimination,

• BDD traversing.

Please note that the first two tasks are two types of quantifier elimination.
The first one is performed through AllSMT, and it is applied to each CSA
in order to quantify out non-Boolean variables. The second one is performed
through BDD-based techniques to the entire architecture, in order to eliminate
Boolean variables that abstract the inputs and the outputs of each pattern.

Task 1: Abstraction

The first task is facilitated by applying the predicate abstraction described
above in Subsections 5.6.1 and 6.3.10. Furthermore, the caching mechanism
described in Subsection 5.6.4 considerably improves the time performance.
Thus, its contribute is negligible. However, note that the time required to per-
form the quantifier elimination task highly depends on the type of redundant

210 Chapter 7. Experimental Evaluation of Exact Method

Pattern # Inputs # Models Time [s] Memory [KB]

TMR_V111
1 239 0.09 13.2
2 2011 0.56 121.5
3 16307 5.23 1100

TMR_V012
1 1149 0.36 70.8
2 22849 3.48 782.7
3 186953 38 7700

TMR_V123
1 2621 0.75 168.4
2 22849 7.42 1600
3 186953 78 14500

Table 7.13: Performance of quantifier elimination of the CSA
of some redundant patterns.

pattern and on the arity of the basic component. For instance, the quanti-
fier elimination of the CSA referred to the pattern TMR_V123 (i.e., a TMR
with three voters) is much slower than the CSA of the pattern TMR_V111
(i.e., a TMR with one voter) because of the higher number of SMT variables
modeling it. In fact, the former has two more voters than the latter, and each
voter is modeled by a fault variable and a set of input and output ports. The
more complex a pattern is, the higher is the number of possible behaviours
described by its CSA formula, and therefore the higher is the number of its
models. Table 7.13 reports the number of models, time performance, and
memory consumption retrieved by the quantifier elimination. It clearly shows
that it depends on the number of modules composing the pattern, and on the
arity of the basic components, which influences the number of variables used
to model the connected concretizer.

Once the AllSMT procedure retrieves the list of all models (which are expo-
nential compared to the number of used variables), such models are aggregated
in a DNF formula that has a size proportional to the number of truth assign-
ments satisfying the CSA formula. This formula encodes all the deviations of
the system from the nominal behavior. It consists of Boolean variables used
to abstract the Real input ports and output ports of each pattern (i.e., the
Boolean inputs of each concretizer and the Boolean outputs of each Abstrac-
tor). Since the BDD representing the CSs of the possible alternatives designs
has to be made up of only configuration variables and fault variables, all the
others Boolean variables have to be quantified out. This task can be accom-
plished by employing a BDD-based quantifier elimination procedure that is

7.5. Results 211

Figure 7.17: Time performance for extraction of non-functional
parameters using a library of different redundant patterns for

serial architecture of 100 components.

applied on the Boolean formula and abstracts the unnecessary Boolean atoms.

Task 2: BDD-based Quantifier Elimination

As expected, results indicated that the time for the BDD-based quantifier
elimination grows with the number of components, the size of the pattern
library, and on how components are connected, as illustrated in Figure 7.17 and
in Figure 7.18, in which the labels on the vertical axis represent the different
fan-out of the TMR patterns employed int the library. As a consequence, the
performance is proportional to the BDD complexity.

Time performance on linear and rectangular architectures is linear with
respect to the size of the structure, as illustrated in Figure 7.19, while using a
library of instances of the same pattern type, the time is constant, as illustrated
in Figure 7.20.

Conversely, for complex architectures, the curves become steeper already
with few components (less than ten) if using more than five redundant patterns
for each of them (see Figure 7.23).

Please note that in our experiments we used a static ordering of BDD vari-
ables, as described in Sub-section 6.3.10. In order to improve the performance
related to this task, we can try and apply a dynamic reordering algorithm
on the OBDD before the quantifier elimination. Table 7.14 shows how the
size of the OBDD changes by varying the number of nodes in a linear and

212 Chapter 7. Experimental Evaluation of Exact Method

Figure 7.18: Time performance for extraction of non-functional
parameters using a library of different redundant patterns for
rectangular architecture of 100 components, organized in 50

levels.

rectangular architecture topology (the library of redundant patterns includes
a TMR_V111 and a TMR_V123 for each component).

Figure 7.21 indicates that as the size of the system increases, the time
needed to dynamically reduce the BDD grows much faster than the time re-
quired for the quantifier elimination. Furthermore, in this phase the OBDD is
made up also of input and output Boolean variables. Hence, the time required
for the reordering algorithm would increase even more. To sum up, although
dynamic reordering significantly reduces the size of the OBDD, it requires long
execution times, especially for very large and complex systems.

Topology Ordering 1 level 2 levels 3 levels 4 levels 5 levels

Linear

Static (Ordering 1) 15 53 129 281 585
Static (Ordering 3) 15 40 65 90 115

Dynamic: SIFT 11 32 49 66 83
Dynamic: Partial SIFT 11 30 47 64 81

Rectangular

Static (Ordering 1) 41 407 2015 8447 34175
Static (Ordering 3) 28 129 266 403 540

Dynamic: SIFT 21 98 210 309 408
Dynamic: Partial SIFT 19 210 211 315 419

Table 7.14: Number of nodes of the OBDD by varying the
ordering strategy. Ordering 1: all configuration variables on

top of the OBDD, Ordering 3: driven by architecture.

7.5. Results 213

Figure 7.19: Time performance of BDD-based quantifier elim-
ination using different redundant patterns, for linear and rect-

angular architectures.

Task 3: BDD Traversing

The performance of the reliability function extraction is linear with respect to
the size of the BDD, as illustrated in Figure 7.22. Conversely, for randomly
generated (i.e., complex) systems the curves grow faster because the topology
no longer has a periodicity, as illustrated in Figure 7.23. As expected, the
time curves grow faster as we add more components to the system and/or

Figure 7.20: Time performance of BDD-based quantifier elimi-
nation using different instances of the same redundant patterns,

for linear and rectangular architectures.

214 Chapter 7. Experimental Evaluation of Exact Method

Figure 7.21: Time performance of different types of dynamic
reordering strategies for linear and rectangular architectures.

more redundant patterns to the libraries. Anyway, once the OBDD has been
created, the reliability extraction is very efficient even with the most complex
systems.

Figure 7.22: Time performance of reliability function extrac-
tion for linear and rectangular architectures, using different

types of patterns.

7.5. Results 215

Figure 7.24 shows the total time needed to extract the reliability formula
in random topologies with different number of components. For each size, ten
different random architectures have been generated, and for each of them the
reliability has been extracted.

Figure 7.25 shows the performance for complex systems. We also inves-
tigated different BDD variable orderings, using the SIFT algorithm. Unfor-
tunately, with complex architectures, the application of a reordering strategy
adds a considerable overhead, resulting inapplicable for architectures consist-
ing of dozens of components. For this reason, we preferred a static ordering
according to the topology of the basic architecture.

7.5.2 Optimization Performance

As far as the optimization is concerned, the results indicated that with the
enumerative approach the time needed for reliability extraction grows very fast
when the size of the architecture increases. This happens because the number
of alternative architectures is combinatorial with respect to the number of
components, and we need to extract the reliability separately for each one of
them.

The symbolic approach allows an efficient encoding of the reliability, how-
ever the complexity of this representation significantly slows down the time
needed for the optimization task.

Figure 7.23: Time performance for BDD-based quantifier elim-
ination and reliability function extraction for complex architec-

tures.

216 Chapter 7. Experimental Evaluation of Exact Method

Figure 7.24: Time performance for reliability function extrac-
tion of complex architectures (d is the maximum incoming de-
gree of the components, i.e., the maximum number of incoming

connections).

The hybrid approach outperforms the symbolic one, as reported in Ta-
ble 7.15, because it allows us on the one hand to leverage the power of the
symbolic extraction of the reliability, and on the other hand to efficiently ex-
tract the design points by feeding the optimizer with an explicit function.

In addition, the results suggested that time performance is influenced mainly
by the number of components and patterns, rather than by the number of ob-
jective functions. Indeed, adding more objectives to the problem produced a
not relevant overhead (see Figure 7.26). This is mainly due to the fact that
except for the reliability, all cost functions were considered as cumulative.

Table 7.15: Optimization: symbolic vs hybrid approach.

Topology Linear Rectangular
Approach Symbolic Hybrid Symbolic Hybrid
Length 1 0.05s 0.04 s 5.85 s 0.07 s
Length 2 4.09 s 0.15 s 645 s 0.43 s
Length 3 153 s 0.32 s >5000 s 2.67 s

7.5. Results 217

Figure 7.25: Number of BDD nodes, time performance of BDD-
based quantifier elimination, and reliability function extraction
for complex architectures varying the number of components.

Figure 7.26: Performance of optimization when varying the
number of objectives (system of 6 components with 3 patterns

each).

218 Chapter 7. Experimental Evaluation of Exact Method

7.6 Test problem

In order to compare the performance of our method for reliability assessment
with other existing methods, we faced a test problem introduced by Beccuti
et al. [308]. The benchmark is a system with two hundred twenty-three nodes
and two hundred fifty-two edges connected as illustrated in Figure 7.27. In
their work, the authors derive the set of min-paths/min-cuts from the net-
work and encode them on a BDD. Then, they derive another BDD encoding
the connectivity function. Finally they compute the reliability, defined as the
probability that the source node is connected to the terminal node by at least
one path of working edges. Hence, they assume that only edges can fail (while
we reason on nodes). In addition they assume that all edges have same prob-
ability, and all components are identical. They compute the exact reliability
value by decomposing the system into as many sub-systems as the number
of repeating patterns with one source and one destination, solving each sub-
system in isolation, and then computing the reliability as the product of their
reliabilities (since they are connected in series). They also compute an ap-
proximate value of the system reliability by considering only a subset of all
the min-paths/min-cuts. The user can specify constraints on execution times,
so that only the min-paths/min-cuts generated under these constraints are
inserted in the BDDs. Table 7.16 reports the results of their heuristic.

Figure 7.27: Topology used in the Test Problem, with 223 nodes
and 252 edges.

Table 7.16: Results of the method proposed by Beccuti et
al. [308]

Min-paths Constraints Execution Time Min-cuts Constraints Execution Time
46656 4 s - 45 m 32 m 19223 30 s - 6 m 37 s

By setting the same fault probability for all nodes, and considering a pat-
tern library composed of plain components only (i.e., we just want to compute
the reliability of the given architecture, with no redundancy), our method
found the exact solution for the entire system with the following performance:

Time elapsed: 0.5719640550000236 s

7.7. Applicability and Limitations 219

Memory usage: 2.3109474182128906 Mb.

Considering only one stage, in the same manner of the cited work, memory
usage and time were further improved:

Time elapsed: 0.11293733299999076 s
Memory usage: 2.154712677001953 Mb.

Memory usage is the same, but time performance was reduced.

7.7 Applicability and Limitations

The main advantage of this method is the encoding of the reliability search
problem to symbolically explore the performance of different redundant schemes.
The approach automatically extracts a symbolic reliability function that maps
the probability of fault of the basic components to the probability that the
overall architecture deviates from the expected behavior. The benefit of the
symbolic encoding of the architecture-based reliability evaluation is evident,
but it could add complexity to the models.

The main challenge arises when the number of system components and
patterns is too high, and their connections is very complex, due to the sheer
size of the design space. Enumerating every point is prohibitive. On large
optimization problems, the computational time increases strongly with the
instance size. In addition, the excessive memory consumption can lead to
early abortion. We encounter this issue with complex architectures made up
of dozens of nodes and pattern libraries with more than six patterns for each
basic component, as showed in Section 7.4.5. For the above reason, in the
following we propose a meta-heuristic optimization approach for exploring the
design space in a cost-effective manner, reducing the complexity and fostering
parallelization.

Chapter 8

Near-Optimal Approximations

Despite known successes, exact methods have also some disadvantages. First
of all, the computational time increases strongly with the instance size. In
addition, the memory consumption can be very large and lead to early abor-
tion. In this chapter, we propose a slight modification to the exact algorithm
proposed above in order to achieve good performance for solving our RAP.

8.1 Simplifying the Exact Method

On large optimization problems, approximate search algorithms find a solution
more quickly, although their weakness is that they are not able to determine
whether a solution exists or not, and they have no guarantee to find a solution
if it exists. Anyway, our case is of practical application and input formulae
are actually expected to be satisfiable, making them well-suited for incomplete
search algorithms.

The first idea that came to mind was to integrate both techniques by per-
forming a sequential execution of an exact method applied to (simpler) sub-
problems that is launched before a meta-heuristic, in order to balance between
local and global search. For instance, instead of considering a single problem
with four different design objectives, we could consider two sub-problems with

221

222 Chapter 8. Near-Optimal Approximations

two objectives each, using information coming from solutions of relaxations of
initial formulation to provide good initial solutions for a local search, and re-
strict the area to be examined in the second phase. The meta-heuristics would
work on a problem that has a different nature from the considered optimization
problem. The information obtained from the relaxation should help restrict
the search space to areas where optimal solutions are located. However, since
the main bottleneck of our method is the number of components and patterns
rather than the number of objectives, we propose an alternative method for
complexity reduction and parallelization in the following. It is based on graph
partitioning, and the underlying idea is to partition the original system into
two or more parts, apply the exact method presented above to each part, and
then combine back the solution for the orignal system.

8.2 Graph Partitioning

A common method to face complex problems leverages graph partitioning, i.e.,
the reduction of the graph representing the system under study into smaller
graphs, by partitioning its set of nodes into mutually exclusive groups. This
issue can be posed as the following Graph Partitioning Problem (GPP). Given
a graph G = (V ; E), where nodes represent system’s components and edges
represent data communication, the goal is to divide V into equal sized parts
V1, ..., Vk while minimizing the edges cut. In other words, we want to split the
original system into two or more sub-systems while minimizing dependencies
from the point of view of reliability. Using this approach, first of all we can
simplify the reliability extraction, in addition we can parallelize the computa-
tion of the cost functions. Several variants of this problem exists, and several
solutions have been proposed, which range from very fast heuristics or simple
algorithms based on Breadth First Search (BFS) to sophisticated combinatorial
optimization methods. We are going to use the method of partitioning with
special attention to reliability, which is highly dependent on how components
are connected, and consequently, on how the original system is partitioned. To
this aim, we employ two well-known algorithms, presented in the following.

8.2.1 Kernighan–Lin Algorithm

The KL algorithm is a heuristic algorithm for finding partitions of graphs. The
input to the algorithm is an undirected graph G = (V ; E) with vertex set V ,

8.2. Graph Partitioning 223

edge set E, and (optionally) numerical weights on the edges. The goal of the
algorithm is to partition V into two disjoint subsets A and B of (nearly) equal
size, in a way that minimizes the sum T of the weights of the subset of edges
that cross from A to B. If the graph is unweighted, then instead the goal is to
minimize the number of crossing edges (this is equivalent to assigning weight
one to each edge).

Let us consider our running example made of six components. Figure 8.1a
shows the DAG with six vertices and seven edges corresponding to computing
dependencies. An edge (Ci; Cj) implies that Cj depends on Ci. If the edge
orientations are removed and the computation is modeled with an undirected
graph, the resulting balanced partition with a 3/3 vertex split could have
the edges in the cut producing a cyclic inter-dependency between the two
parts, as illustrated in Figure 8.1b. Inter-dependency means that the failure
of an element in one partition may cascade to the other partition and cause
the failure of dependent elements. In order to minimize the dependencies
for reliability calculation, we are interested in acyclic partitions, like the one
illustrated in Figure 8.1c. The KL algorithm is based on partition via exchange,
i.e., exchange the set of vertices of a given graph between the two parts, while
minimizing the cut-edges. It repeats this task until there are no exchanges
that optimize the cut-edges function.

8.2.2 Multi-level Partitioning

One of the most successful heuristics for partitioning large graphs is the Multi-
level Graph Partitioning (MGP) approach. It consists of the three main phases:
coarsening, initial partitioning, and uncoarsening. The main goal of the coars-
ening (aka contraction) phase is to gradually approximate the original prob-
lem and the input graph with fewer degrees of freedom. Coarsening is usually
stopped when the graph is sufficiently small to be initially partitioned using
some algorithm. Uncoarsening consists of two stages. First, the solution ob-
tained on the coarse level graph is mapped to the fine level graph. Then, the
partition is improved by using some heuristics (e.g., local search) that itera-
tively improve the solutions. The multi-level approach works so well for at
least three intuitive reasons. Firstly, at the coarse levels a lot of work per node
can be performed without increasing excessively the overall execution time.
Furthermore, a single node move at a coarse level corresponds to a big change
in the final solution. Hence, we might be able to find improvements easily that

224 Chapter 8. Near-Optimal Approximations

C1

C2

C3

C4

C5

C6

(a)

C1

C2

C3

C4

C5

C6

(b)

C1

C2

C3

C4

C5

C6

(c)

Figure 8.1: (a) A toy example with 6 vertices and seven edges,
(b) cyclic 2-way partitioning (c) acyclic partitioning of the same

directed graph.

8.3. Partitioning the System Architecture 225

would be difficult to find on the finest level. Finally, fine level local improve-
ments are expected to run fast since they already start from a good solution
inherited from the coarse level. We used the tool named Metis proposed by
Karypis and Kumar [309], which implements the above concepts.

8.3 Partitioning the System Architecture

The approximate method is illustrated in Figure 8.2. Compared to the exact
method, it introduces some new steps. First of all, the graph representing the
given architecture is partitioned in two or more parts depending on its size.
Experimentally, we found that with complex architectures when the basic sys-
tem has more than fourteen components and more than six redundant patterns
for each component, computing time increases excessively (more details follow
in the experimental evaluation). For this reason, we use the following heuristic
as partition rule: if the basic system is composed of a number of components
less than fifteen we use KL algorithm, if the basic system is composed of a
number of components greater than or equal to fifteen we use Metis algo-
rithm. Afterwards, we can apply the exact method as presented in Chapter 6
for each sub-architecture obtained from partitioning. The result is a set of
sub-solutions for each partition of the given system.

8.4 Combining Solutions from Sub-architectures

In order to create and evaluate the solutions for the basic system architecture,
the sub-solutions are combined together. We combine them by building a
formula made up of a conjunction of the relative configuration variables, in
order to obtain a set of solutions for the entire architecture. This formula and
the cost formulae of the entire system are then provided as assertions to a
solver that retrieves the models for the original architecture.

8.5 Pruning and Ranking for Large Problems

The approximate solutions are the result of a flattening process that produces
all possible combinations of the exact solutions of the various partitions. If
we have several partitions, the set of approximate solutions will contain every
ordered combinations of all the partitions elements. Since the number of this

226 Chapter 8. Near-Optimal Approximations

Non-redundant
system architecture

Hw/Sw
failure modes Requirements

Redundant
Design Patterns

SMT Solver

Patterns model

Fault model Design objectiveSystem model

MOOP

Performance
indices

Archive of
solutions

Redundant system
architecture

Choice

Space of redundant
architectures

Set of near-optimal solutions

Set of approximate solutions

Pruning

Graph partitioning

SMT-based
exploration

. . .

Partition 1 Partition 2 Partition N

Solutions of sub-architectures

Combine
sub-solutions

Selected sub-solutions

. . .

Assessmnet of
non-functional

parameters

SMT-based
exploration

SMT-based
exploration

Pruning Pruning

Figure 8.2: Approximate method for DSE of redundant archi-
tectures, overall process flow.

set can increase rapidly, a pruning technique is advised, in order to reduce
the size of the search area by removing less promising sections. The pruning
and ranking methods basically select the most relevant Pareto solutions. The
literature is extensive as there are numerous methods that can for example be
classified on the type of data they use. Here, we introduce a simple pruning
rule, before combining the sub-solutions. For each partition, we discard the
solutions with each cost over a certain threshold th. This threshold is variable
and can be found empirically starting from the average solution avgcost and
gradually reducing or increasing the distance ∆ from it, as follows:

th = avgcost ± ∆

8.5. Pruning and Ranking for Large Problems 227

Cost 1

Cost 2

Exact solutions

th3 th1 th2

Δ2 Δ1

th2

th1

th3

Average
Solution

Figure 8.3: The pruning strategy allows us to adapt the search
area by varying a threshold for solution acceptance: all the
solutions above the threshold are discarded. This is a flexible
solution that can be tuned on the basis of problem instance size

and resources available.

thus, reducing or enlarging the search area, as illustrated in Figure 8.3 for a
problem with two objective functions. In this example, setting the threshold
to th2 allowed us to identify eight solutions out of twelve total solutions, while
setting it to th3 reduced the searching area, missing some solutions (we ob-
tained four solutions), but speeding up the process. In addition, discarding
dominated solutions (those circled in violet) reduced the final set to two solu-
tions. The average costs can also be asymmetric, in order to favor extremal
or medial variables with reference to the Pareto front, if wanted. Afterwards,
we scan iteratively all solutions, discarding the dominated ones. The advan-
tage of this method is that it is very flexible: we can adapt the search area to
the instance size of the problem and to resources available, considering more
solutions if possible or speeding up the process with strict thresholds in case
of very large systems. Please note that when using pruning there is a risk
of missing some “good” global solutions. To address this issue, we favoured
symmetric cost thresholds that would guarantee balanced solutions, and used
the smallest number possible of partitions that would lead to reasonable com-
puting times, in order to limit the explosion of the number of global solutions.
Further details are provided in Section 9.5. The final algorithm is outlined in
Algorithm 3.

228 Chapter 8. Near-Optimal Approximations

Algorithm 3 DSE general framework
1: Input 1: system architecture model
2: Input 2: library of redundant patterns
3: Input 3: fault model
4: Input 4: design objectives
5: [OPT] Input 5: additional constraints (with local or global scope)
6: Output: set of optimum redundant architectures
7:
8: Phase 1 - Modeling
9: Define configuration variables cfgi = (Ci , Pj) and fault variables Fi

10: Define the behaviors of the components through SMT constraints
a: For each CSA use basic version as nominal behavior
b: For each Ci, find the Pj with highest number Fi for applying variable
sharing

11: Define the linking constraints ▷ SMT formula of the redundant
architectures

12: Define configuration constraints len(c⃗fgi) = ⌈log2(len(libCi))⌉
13: Define the compatibiliy constraints trough SMT constraints
14: Phase 2 - Graph partitioning
15: if number(Ci) > 14 then
16: method = METIS
17: else method = KERNIGHAN − LIN
18: end if
19: Compute partitions
20: for each partition in partitions do
21: Phase 3 - Assessment
22: Miter composition
23: Computation of MCSs ▷ AllSMT computation using MathSAT solver
24: Caching the resulting formula
25: Conversion of the formula into a BDD representation.
26: BDD-based quantifier elimination.
27: Symbolic Reliability function extraction ▷ by BDD traversing
28: Assessment of other non-functional parameters
29: Phase 4 - Optimization
30: if approach = ENUMERATIVE then
31: Compose a new Miter for each alternative
32: Compute the MCs for each alternative
33: Create a mapping configuration → cost functions
34: else if approach = SYMBOLIC then
35: Parameterize the system
36: Compute the values at run-time ▷ using Z3 solver
37: else approach = HYBRID
38: Perform semi-symbolic choices
39: end if
40: Pruning and selection of solutions
41: end for
42: Phase 5 - Combine sub-solutions
43: Combining solutions of sub-architectures
44: Evaluate combined solutions for the global system ▷ using Z3 solver

8.6. Running Example 229

8.6 Running Example

To help illustrate the above concepts, we applied the approximate method
proposed to the running example. We considered three different partitions, as
illustrated in Figure 8.4. In this case, since the system is composed of only six
components, we used the KL algorithm for partitioning (obtaining only two
partitions).

C1

C2

C3

C4

C5

C6

(a)

C1

C2

C3

C4

C5

C6

(b)

C1

C2

C3

C4

C5

C6

(c)

Figure 8.4: Three different partitions for the running example,
using KL algorithm.

The approximate method using the partitioning of Figure 8.4a found eigh-
teen solutions reported in Table 8.1 (including the eight optimal ones retrieved
with the exact method), produced by flattening the two sets of solutions re-
ported in Table 8.2.

Applying the pruning strategy to the the two partitions of Figure 8.4a,
we obtained respectively four and one solutions, as reported in Table 8.3.
By flattening these solutions we obtained a total of four solutions for the
original architecture, reported in Table 8.4. Figures 8.5a and 8.5b illustrate
how the pruning strategy selects more promising solutions. Table 8.5 reports
the comparison of solutions.

Figure 8.6 and Figure 8.7 show the comparison of exact and approximate
solutions without and with pruning strategy for the three partitionings con-
sidered.

Partitioning of Figure 8.4c generated cheaper solutions, while that of of
Figure 8.4a generated solutions with higher reliability.

The results presented in Chapter 9 will indicate that for a system with few
components the exact method is preferable to the approximate one as this takes
more time since it needs two calls to the solver for the optimization of the two
partitions, and one more to evaluate the models of the original architecture.

230 Chapter 8. Near-Optimal Approximations

Table 8.1: Approximate solutions for system in Figure 8.4a
(considering two objective functions).

Solution Fault probability Cost
1 0.6739644436312434 225.0
2 0.6929706872988478 222.0
3 0.7024293686419650 224.0
4 0.7058063295659203 221.0
5 0.7126954744932213 221.0
6 0.7229563504041777 218.0
7 0.7369794102422135 220.0
8 0.7460535490548722 217.0
9 0.7533483595885260 218.0
10 0.7677269176540538 215.0
11 0.7744199305735989 217.0
12 0.7822023816175623 214.0
13 0.7912489351095497 221.0
14 0.8086525638205954 220.0
15 0.8154864008270026 217.0
16 0.8356651111717405 216.0
17 0.8417515885357502 214.0
18 0.8545405196347040 213.0

Table 8.2: Solutions of the two partitions of system in Fig-
ure 8.4a

Partition 1
Solution Fault probability Cost Redundant patterns

1 0.4797150862035774 117 C3 : Tmr_V123 , C5 : Tmr_V123 , C6 : Tmr_V123
2 0.5230913701445632 116 C3 : Tmr_V123 , C5 : Tmr_V111 , C6 : Tmr_V123
3 0.5401238212108288 113 C3 : Tmr_V123 , C5 : Tmr_V123 , C6 : Tmr_V111
4 0.59041663565824 112 C3 : Tmr_V123 , C5 : Tmr_V111 , C6 : Tmr_V111
5 0.60558638989312 110 C3 : Tmr_V111 , C5 : Tmr_V123 , C6 : Tmr_V111
6 0.637461139456 109 C3 : Tmr_V111 , C5 : Tmr_V111 , C6 : Tmr_V111

Partition 2
Solution Fault probability Cost Redundant patterns

1 0.43558377655120223 108 C1 : Tmr_V123 , C2 : Tmr_V123 , C4 : Tmr_V123
2 0.48263929886218243 105 C1 : Tmr_V123 , C2 : Tmr_V111 , C4 : Tmr_V123
3 0.58310264700928 104 C1 : Tmr_V111 , C2 : Tmr_V111 , C4 : Tmr_V123

But when the number of components begins to grow, the approximate method
outperforms the exact one.

8.6. Running Example 231

(a) (b)

Figure 8.5: Applying the pruning strategy to the two partitions
of our running example lead to the selection of four solutions

for the first partition and one solution for the second one.

Table 8.3: Solutions of the two partitions of system in Fig-
ure 8.4a after pruning

Partition 1
Solution Fault probability Cost Redundant patterns

1 0.5230913701445632 116 C3 : Tmr_V123 , C5 : Tmr_V111 , C6 : Tmr_V123
2 0.5401238212108288 113 C3 : Tmr_V123 , C5 : Tmr_V123 , C6 : Tmr_V111
3 0.59041663565824 112 C3 : Tmr_V123 , C5 : Tmr_V111 , C6 : Tmr_V111
4 0.60558638989312 110 C3 : Tmr_V111 , C5 : Tmr_V123 , C6 : Tmr_V111

Partition 2
Solution Fault probability Cost Redundant patterns

1 0.48263929886218243 105 C1 : Tmr_V123 , C2 : Tmr_V111 , C4 : Tmr_V123

Table 8.4: Approximate solutions for example system in Fig-
ure 8.4a

Solution Fault probability Cost
1 0.7126954744932213 221.0
2 0.7229563504041777 218.0
3 0.7460535490548722 217.0
4 0.7677269176540538 215.0

232 Chapter 8. Near-Optimal Approximations

Ta
bl

e
8.

5:
C

om
pa

ris
on

of
so

lu
tio

ns
fo

r
sy

st
em

in
Fi

gu
re

8.
4a

(c
on

sid
er

in
g

tw
o

ob
je

ct
iv

e
fu

nc
tio

ns
)

So
lu

tio
n

Ex
ac

t
so

lu
tio

ns
A

pp
ro

xi
m

at
e

so
lu

tio
ns

A
pp

ro
xi

m
at

e
so

lu
tio

ns
w

ith
Pr

un
in

g
Fa

ul
t

pr
ob

ab
ili

ty
C

os
t

Fa
ul

t
pr

ob
ab

ili
ty

C
os

t
Fa

ul
t

pr
ob

ab
ili

ty
C

os
t

1
0.

67
39

64
44

36
31

24
34

22
5

0.
67

39
64

44
36

31
24

34
22

5
-

-
2

0.
69

29
70

68
72

98
84

78
22

2
0.

69
29

70
68

72
98

84
78

22
2

-
-

3
-

-
0.

70
24

29
36

86
41

96
50

22
4

-
-

4
0.

70
58

06
32

95
65

92
03

22
1

0.
70

58
06

32
95

65
92

03
22

1
-

-
5

-
-

0.
71

26
95

47
44

93
22

13
22

1
0.

71
26

95
47

44
93

22
13

22
1

6
0.

72
29

56
35

04
04

17
77

21
8

0.
72

29
56

35
04

04
17

77
21

8
0.

72
29

56
35

04
04

17
77

21
8

7
-

-
0.

73
69

79
41

02
42

21
35

22
0

-
-

8
0.

74
60

53
54

90
54

87
22

21
7

0.
74

60
53

54
90

54
87

22
21

7
0.

74
60

53
54

90
54

87
22

21
7

9
-

-
0.

75
33

48
35

95
88

52
60

21
8

-
-

10
0.

76
77

26
91

76
54

05
38

21
5

0.
76

77
26

91
76

54
05

38
21

5
0.

76
77

26
91

76
54

05
38

21
5

11
-

-
0.

77
44

19
93

05
73

59
89

21
7

-
-

12
0.

78
22

02
38

16
17

56
23

21
4

0.
78

22
02

38
16

17
56

23
21

4
-

-
13

-
-

0.
79

12
48

93
51

09
54

97
22

1
-

-
14

-
-

0.
80

86
52

56
38

20
59

54
22

0
-

-
15

-
-

0.
81

54
86

40
08

27
00

26
21

7
-

-
16

-
-

0.
83

56
65

11
11

71
74

05
21

6
-

-
17

-
-

0.
84

17
51

58
85

35
75

02
21

4
-

-
18

0.
85

45
40

51
96

34
70

40
21

3
0.

85
45

40
51

96
34

70
40

21
3

-
-

8.6. Running Example 233

Figure 8.6: Comparison of approximate solutions for the three
partitionings in Figure 8.4 without pruning.

Figure 8.7: Comparison of approximate solutions for the three
partitionings in Figure 8.4 with pruning.

Chapter 9

Experimental Evaluation of
Approximate Method

In this chapter we validate the approximate method, highlighting how it can
face problems that are prohibitive for the exact method illustrated in Chapter
6. In addition we compare it with existing related works.

9.1 Implementation details

The KL heuristic algorithm employed in our method is the one included in the
NetworkX package (see Figure 9.1). It partitions a given architecture into two
sets by iteratively swapping pairs of nodes to reduce the edge-cut between the
two sets. The pairs are chosen according to a modified form of the original KL
algorithm, which moves node individually, alternating between sides to keep
the bisection balanced. The source code is reported in Figure 9.2.

For MGP we employed the already mentioned METIS package that imple-
ments various multi-level algorithms. We use it through the Python wrapper
named PyMetis [310]. It only wraps the most basic graph partitioning func-
tionalities, but it is enough for our use.

235

236 Chapter 9. Experimental Evaluation of Approximate Method

Figure 9.1: The KL algorithm included in the NetworkX pack-
age.

9.2 Benchmarks

In this Section, we present some of the experiments used for validating our
method. Firstly, we show the application of the approximate method to the
same experiments used for validating the exact one. In addition, we present
some examples on larger systems.

9.2.1 Experimental setup

Compared to the exact method, the setting for the experimental evaluation
comprises some additional tasks. First of all, the original architecture is par-
titioned into smaller sub-architectures. To each sub-architecture the exact
method and subsequent pruning action are applied in sequence. Then, the
solutions retrieved for each sub-architecture are combined together. Eventu-
ally, the solver is invoked again in order to retrieve the models for the original
architecture.

9.2.2 Evaluation criteria

Since S-P systems can be easily decomposed in combinations of smaller S-P
systems, and their reliability can be easily computed as seen in Section 2.2,

9.2. Benchmarks 237

Figure 9.2: Source code for the KL algorithm employed.

we are mainly interested in complex architectures. Furthermore, as concerns
the optimization, we only use the hybrid approach as we have already showed
that it outperforms the enumerative and symbolic ones.

The overall performance of the approximate method has four main contri-
butions: the system partitioning, the application of the exact method to the
individual partitions, the selection and pruning of sub-solutions, the assembly
of the selected solutions for the original system and their evaluation. In order
to get a rough measurement of the time complexity of the algorithm, the over-
all CPU time and memory usage are measured when running the experiments.
Another evaluation parameter is the number of nodes of the BDDs generated,
which can help figuring out the dimension and complexity of the system we
are dealing with.

238 Chapter 9. Experimental Evaluation of Approximate Method

9.2.3 Experiments on complex architectures

In the following we report, among others, the outcomes of the same experi-
ments we have used for the exact method, in order to perform a comparison
between the two methods proposed. Afterwards, we provide example of larger
architectures whose analysis is prohibitive with the exact method, but can be
faced smoothly with the approximate one. Moreover, we evaluate the KL and
Metis algorithms for partitioning, and illustrates the effects of the pruning
strategy employed.

Example system with 8 components

Recall the example system composed of eight components that we have intro-
duced in Section 7.4.5, and consider the KL partitioning of Figure 9.3a.

C1

C2

C3

C4

C5

C6

C7

C8

(a)

(b)

Figure 9.3: (a) Basic system composed of 8 components and 10
edges, (b) Pareto solutions of exact and approximate methods.

Compared to the results obtained with the exact method, we obtained
twenty-eight approximate solutions, produced by four sub-solutions from Part
1 and seven sub-solutions from Part 2. We obtained only four solutions by
applying the pruning rule with the following threshold:

th = avgcost ± (maxcost − avgcost)/2.

Table 9.1 lists the comparison of the solutions. Figure 9.4 shows the per-
formance for the three methods employed. Compared to the exact method,
execution time for the approximate method without pruning is higher as the

9.2. Benchmarks 239

number of of approximate solutions (retrieved by combining the two sets of
sub-solutions) is higher. Instead, the memory consumption is lower as the
partitioning reduces the size of the original problem.

Figure 9.4: Comparison of performance of exact and approxi-
mate methods for a complex system of eight components.

Example system with 10 components

Recall the example system composed of ten components that we have intro-
duced in Section 7.4.5, and consider the KL partitioning of Figure 9.5a. In
order to highlight the influence of the pruning threshold on the number of the
resulting solutions, on the execution time, and - as a consequence - on the
quality of those solutions, we considered the following cases:

• Exact method

• Approximate method case 1: without pruning

• Approximate method case 2, pruning threshold set to:

th1 = avgcost + (maxcost − avgcost)/2

• Approximate method case 3, pruning threshold set to: th2 = avgcost

240 Chapter 9. Experimental Evaluation of Approximate Method

Table 9.1: Comparison of solutions for system in Figure 8.4a
(considering two objective functions).

Exact solutions Approximate solutions Approximate solutions with Pruning
Fault probability Cost Fault probability Cost Fault probability Cost
0.8428742271125870 267.0 0.8428742271125870 267.0 0.8428742271125870 267

- - 0.8384519153632812 270.0 - -
- - 0.8268684883311485 273.0 - -

0.8211849152731773 268.0 0.8211849152731773 268.0 - -
- - 0.8161521568936392 271.0 - -
- - 0.8126527681152138 276.0 0.8126527681152138 276

0.8054633288060601 271.0 - - - -
- - 0.8054633288060601 271.0 - -
- - 0.8029697779107720 274.0 - -
- - 0.8029697779107720 274.0 - -

0.8019181711701844 273.0 0.8019181711701844 273.0 - -
- - 0.7959141452842944 276.0 - -
- - 0.7914096016987506 276.0 - -
- - 0.7885578430936907 277.0 - -
- - 0.7867917495189143 277.0 0.7699883880550559 277

0.7815761362114649 274.0 0.7815761362114649 274.0 - -
- - 0.7813215583627837 279.0 - -
- - 0.7791567833072470 279.0 - -
- - 0.7749555262341146 277.0 - -
- - 0.7711964597414617 280.0 - -
- - 0.7699883880550559 277.0 0.7699883880550559 277
- - 0.7633660081939778 282.0 - -
- - 0.7633660081939778 282.0 - -

0.7623721095138326 277.0 - - - -
- - 0.7588643520113397 280.0 - -

0.7573673206150622 279.0 - - - -
- - 0.7564772651459938 280.0 - -
- - 0.7493645944397505 285.0 - -
- - 0.7390648546647709 283.0 - -
- - 0.7390648546647709 283.0 - -

0.7384561893264687 280.0 - - - -
0.7245808564878988 283.0 - - - -

- - 0.7236255642020005 286.0 0.7236255642020005 286
0.7077806036827384 286.0 - - - -
0.6904902531138207 289.0 - - - -

• Approximate method case 4, pruning threshold set to:

th3 = avgcost − (maxcost − avgcost)/2

Figures 9.6 shows the comparison of performance for the methods employed.
Partitioning speeds up the optimization task because the more strict the
threshold is, the more sub-solutions are discarded.

9.2. Benchmarks 241

C1

C2

C3

C4

C5

C6

C7

C9

C10

C8

(a)

(b)

Figure 9.5: (a) Partitioning of a basic system composed of 10
components and 13 edges, (b) Pareto solutions of exact and

approximate methods.

Figure 9.6: Comparison of performance of exact and approxi-
mate methods for a complex system of ten components.

242 Chapter 9. Experimental Evaluation of Approximate Method

Example system with 14 components

We did the same for the example system of fourteen components presented in
Section 7.4.5, and considering the KL partitioning of Figure 9.7a.

C1

C2

C3

C4

C5

C6

C7

C10

C8

C9

C11

C12

C13

C14

(a)

(b)

Figure 9.7: (a) Partitioning of a basic system composed of 14
components and 20 edges, (b) Pareto solutions of exact and

approximate methods.

From Figures 9.8a and 9.8b, it is evident that partitioning drastically re-
duces time executions, but the more strict the threshold is, the more sub-
solutions we discard, and the lower is the quality of the combined solutions.
The bar diagram in Figure 9.8a reports the comparison between the exact
method, the approximate method (without pruning), and the approximate
method pruning all dominated solutions. The graph in Figure 9.8b considers
the following cases:

• Exact method

• Approximate method case 1: pruning all dominated solutions (without
using any threshold for solutions acceptance).

• Approximate method case 2, pruning threshold set to:

th1 = avgcost + (maxcost − avgcost)/2

• Approximate method case 3, pruning threshold set to: th2 = avgcost

9.2. Benchmarks 243

(a) (b)

Figure 9.8: (a) Comparison of performance of exact and ap-
proximate methods for a complex system of fourteen compo-
nents, (b) Approximate solutions move away from exact solu-
tions as the pruning threshold is tighten up (th1 < th2 < th3).

• Approximate method case 4, pruning threshold set to:

th3 = avgcost − (maxcost − avgcost)/2

Example system with 24 components

In this experiment, we performed a comparison between KL and Metis al-
gorithms for partitioning the same given system. We considered an example
system composed of twenty-four basic components, with two redundant pat-
terns each, and two design objectives. We used the approximate method with
pruning, executing two different runs to apply the two partitioning algorithms
to the same example systems (see Figure 9.9 and Figure 9.10). This led to the
very same solutions, as illustrated in Figure 9.11. Figure 9.12 illustrates that
partitioning the systems in more parts improved time performance.

Please note that in this case partitioning the given system in two and three
parts respectively led to the very same solutions, but in general this is not
always true. That depends on the edge-cut of the specific partitioning, as
illustrated in the next example, and detailed in Section 9.5.

244 Chapter 9. Experimental Evaluation of Approximate Method

C1

C2

C4

C5

C6

C8

C9

C13

C10

C11

C14

C15

C18

C19

C3

C7

C12

C16

C17

C20

C21

C22

C23

C24

Figure 9.9: Partitioning of a system composed of 24 compo-
nents and 33 edges using KL.

C1

C2

C4

C5

C6

C8

C9

C13

C10

C11

C14

C15

C18

C19

C3

C7

C12

C16

C17

C20

C21

C22

C23

C24

Figure 9.10: Partitioning of a system composed of 24 compo-
nents and 33 edges using Metis.

9.2. Benchmarks 245

Figure 9.11: Comparison of KL (2 parts) and Metis (3 parts)
algorithms for partitioning the example system of 24 compo-

nents: the two algorithms led to the very same solutions.

Figure 9.12: For large systems, partitioning in more sub-
architectures improves time performance.

246 Chapter 9. Experimental Evaluation of Approximate Method

Example system with 69 components

With a system of sixty-nine components, we first tried to partition the sys-
tem using the KL algorithm, then used Metis and partitioned the system into
three, four, and eventually five parts. With complex architectures and large
libraries of redundant patterns, we found experimentally that to obtain rea-
sonable execution times we should limit the number of components for each
part to around fourteen.

Figure 9.13: Partitioning of a system composed of 69 compo-
nents and 120 edges using Metis (Number of parts = 3, Edge-

cut = 17).

Figure 9.14: Partitioning of a system composed of 69 compo-
nents and 120 edges using Metis (Number of parts = 5, Edge-

cut = 41).

9.2. Benchmarks 247

Partitioning the system into three parts (as illustrated in Figure 9.13) re-
sulted into an edge-cut value of 17, while partitioning it into five parts (as
illustrated in Figure 9.14) resulted into an edge-cut value of 41. Increasing the
number of partitions is crucial to speed up the computation, but the higher the
number of partitions, the higher the number of edge-cuts, the lower the quality
of the solutions for the basic system. More details are provided in Section 9.5.

Strategy to determine the pruning threshold

As already stated in Sub-section 8.5, since the number of approximate solu-
tions can increase rapidly, a pruning technique is advised, in order to reduce
the size of the search area by removing less promising sections. The pruning
and ranking methods basically select the most relevant sub-solutions that will
be combined into near-optimal solutions for the original architecture. Fig-
ure 9.15 illustrates the concept described in Figure 8.3 for the example system
of ten components of Figure 9.5. We applied the pruning strategy to the two
sub-architectures resulting by partitioning the system with the KL algorithm.
By tightening or widening the acceptance threshold, we exclude or include a
set of sub-solutions, resulting in quicker computations but less accurate final
solutions, or slower computations but more accurate final solutions. If setting
a threshold, it should be not too much wide if you want to obtain advantages
from it, but it should be not too much tight otherwise you can incur in the
situation of Figure 9.15b, in which the threshold 1 (in red) is not suitable
because it would prune every sub-solution.

(a) (b)

Figure 9.15: Pruning of sub-solutions of Part 1 (a) and Part 2
(b) for two different thresholds.

248 Chapter 9. Experimental Evaluation of Approximate Method

The threshold selection may be adapted from case to case, depending on
the number of basic components, the size of redundant pattern library, and on
the number and kind of optimization objectives. Please note that the more
sub-solutions we have, the higher is the number of global solutions obtained
by combining them. With very large systems, we determined the value of
the threshold experimentally using the following procedure. First execute the
algorithm without pruning, if the computation time is too slow or the memory
usage too high, then perform the execution again lowering the threshold by
incremental steps until you observe a reasonable computing time or a memory
consumption that does not saturate the RAM memory, and allow you to obtain
an adequate number of sub-solutions.

9.3 Results

The overall performance of the approximate method has three main contribu-
tions:

• the system partitioning,

• the application of the exact method to the individual partitions,

• the assembly of solutions for the original system and their evaluation.

Partitioning is performed using the KL algorithm to split the original graph
in two partitions. We use instead Metis to have three or more partitions, which
could be useful for very large systems. In both cases, the time required for
partitioning is negligible compared to the time for DSE. The results indicated
that the quality of the solutions is not affected by the number of partitions
if the edge-cut is the same and if we do not apply any pruning strategy, as
illustrated in Figure 9.11. However, the larger the system, the more convenient
it is to divide it into multiple partitions. On one hand, the time for the DSE
of various small partitions is significantly more restrained compared to that of
few large partitions. On the other hand, the higher the number of partitions,
the higher the edge-cut value. See Section 9.5 for more details.

Regarding the performance of the application of the exact method to the
partitions, it has been analyzed extensively in Chapter 7. Obviously, we need
a call to the solver for each partition, but the sub-problems are much less
complex than the original problem.

9.4. Test problem 249

(a) (b)

Figure 9.16: Comparison of time performance of solution meth-
ods by varying the number of nodes (a) and the number of edges
(b). Note: there is a bump in the curve of approximate solu-
tions because for systems composed by 14 components onwards

we employed graph partitioning.

As for partitioning, also combining solutions is a negligible task, since it is a
simple flattening process. Conversely, their evaluation is another burdensome
task, since we recall the solver for each solution. The results indicate that
the number of approximate solutions grows exponentially with the number of
components and that of partitions (see Figure 9.16). For complex architectures
with more than thirty components and more than three redundant patterns for
each basic component, the pruning strategy with an appropriate acceptance
threshold that speeds up the search is therefore fundamental. As already stated
above, partitioning drastically reduces time executions, but the more strict the
threshold is, the more sub-solutions we discard, and the lower is the quality of
the combined solutions, as illustrated in Figure 9.8b. If we consider all possible
combinations of sub-solutions from partitions, we will obtain a set of solutions
that will surely include the exact solutions computed without partitioning.
Using an acceptance threshold will make we miss some of the exact solutions.
And it will be more likely to happen when the tighter the threshold is.

9.4 Test problem

In order to compare our method with other existing methods, we explored a
test problem introduced by Fyffe et al. [178] that is widely used in the reliability
optimization literature [179, 311, 312, 313, 185, 314, 315, 316, 317, 318, 319,

250 Chapter 9. Experimental Evaluation of Approximate Method

320, 321, 322, 323, 324, 325]. It is a S-P system with fourteen components
connected in series, each with three or four component choices for redundancy.
The failure probability of each unit in the system is assumed to be independent.
Given the total amount of 130 units of system cost and 170 units of system
weight constraint, the problem is to find the optimum number of redundancy
to use and the optimum design alternative of each stage that will result in the
greatest system reliability while keeping the total cost and weight less than the
given amount. Table 9.2 reports the input data for the given problem. Each
component is characterized by a reliability (R), a cost (C), and a weight (W),
as reported in Table 9.2.

Table 9.2: Input data for the test problem

Component
Design alternative

1 2 3 4
R C W R C W R C W R C W

1 0.90 1 3 0.93 1 4 0.91 2 2 0.95 2 5
2 0.95 2 8 0.94 1 10 0.93 1 9 - - -
3 0.85 2 7 0.90 3 5 0.87 1 6 0.92 4 4
4 0.83 3 5 0.87 4 6 0.85 5 4 - - -
5 0.94 2 4 0.93 2 3 0.95 3 5 - - -
6 0.99 3 5 0.98 3 4 0.97 2 5 0.96 2 4
7 0.91 4 7 0.92 4 8 0.94 5 9 - - -
8 0.81 3 4 0.90 5 7 0.91 6 6 - - -
9 0.97 2 8 0.99 3 9 0.96 4 7 0.91 3 8
10 0.83 4 6 0.85 4 5 0.90 5 6 - - -
11 0.94 3 5 0.95 4 6 0.96 5 6 - - -
12 0.79 2 4 0.82 3 5 0.85 4 6 0.90 5 7
13 0.98 2 5 0.99 3 5 0.97 2 6 - - -
14 0.90 4 6 0.92 4 7 0.95 5 6 0.99 6 9

The problem can be generalized as follows (see Figure 9.17). The system
has a total of s sub-systems arranged in series. For each sub-system, there are
n functionally equivalent components arranged in parallel. Each component
has three different parameters: cost, weight, and reliability. The n components
are to be selected from m available component types, where multiple copies of
each type can be selected.

To compare the results we had to perform a slight modification to our
formalism. In Section 5.1, we assumed - among other things - to consider
for each component only one redundant pattern for redundancy. To face the

9.4. Test problem 251

1

2

n1

. . .

1

1

2

n2

. . .

2

1

2

ns

. . .

s

Figure 9.17: Structure of the S-P system of the test problem

test problem, we considered the computing modules of the redundant patterns
employed as redundant alternatives in parallel, and set the fault probability
of comparators and voters to zero. The redundant patterns employed were:
CMP, TMR, and 3oo4. Furthermore, since in some works the authors also
model an imperfect switching mechanism with a switch reliability set to 0.99,
we performed an additional execution with fault probability of comparators
and voters FC/FV = 0, 01, in place of the switch.

For instance, the first design alternative for the component 1 has the fol-
lowing cost values:

M1 → R = 0.90, C = 1, W = 3

And the second design alternative for the component 1 has the following cost
values:

M2 → R = 0.93, C = 1, W = 4

This means that, according to our formalism, the example configuration
in Figure 9.18 translates in the configuration of Figure 9.19. Moreover, since
the test problem states that for each stage only one design alternative should
be used, we had to exclude component mixing, i.e., we had to use identical
modules for each stage (see Figure 9.20).

With our formalism, the given optimization problem has a basic system
of fourteen components and a global pattern library of one hundred twenty
redundant patterns. In order to obtain a reasonable time performance, we
split the original system into four partitions, as illustrated in Figure 9.21.
Our method found a total number of 334.805 exact solutions satisfying the
requirements, resulting from the combination of the sub-solutions reported in
Table 9.3. The solution with highest reliability using ideal comparators/voters
resulted the following:

252 Chapter 9. Experimental Evaluation of Approximate Method

M1

M1

M1

M2

Figure 9.18: Each stage of the redundant architecture is com-
posed by one to four identical modules in parallel

M1

M1

M1

M2

Figure 9.19: With our formalism, we used CMP, TMR, and
M-oo-N patterns to face the test problem.

Reliability, Weight, Cost = [0.998849923, 170, 112].

The solution with highest reliability using comparators/voters with R =
0, 99 (i.e., Fprob = 0, 01) resulted the following:

Reliability, Weight, Cost = [0.9977464147, 170, 112].

M1

M1

M1

M2

Figure 9.20: Component mixing is not allowed in the test prob-
lem, i.e., we have to use identical modules for each stage of the

architecture.

Figure 9.21: Partitioning for the test problem system

9.4. Test problem 253

Table 9.3: Sub-solutions for the test problem.

Part Solutions Execution Time [s] Memory Usage [Mb]
1 140 67.85587217699958 2.4559555053710938
2 65 27.189838600001167 2.466968536376953
3 29 3.693340691999765 2.468883514404297
4 37 13.103370544999052 2.47003173828125

Figure 9.23 illustrates a comparison of our best solution with those of re-
lated works. Please note: only Reliability and Cost are reported, as all those
solutions have Weight=170.

Figure 9.22: Solutions for the test problem system. In red, the
one with highest reliability.

254 Chapter 9. Experimental Evaluation of Approximate Method

Figure 9.23: Comparison of solutions with related works

In order to figure out if we could improve the solution, we repeated the
experiment extending the library of patterns to include component mixing
scenarios. At first run, the solution with highest reliability allowing component
mixing and using comparators/voters with R = 0, 99 (i.e., Fprob = 0, 01) was
the following:

Reliability, Weight, Cost = [0.998849923, 170, 104].

This means that the employment of component mixing allowed us to improve
cost and reliability, still meeting the requirement on weight. Figure 9.24 shows
the comparison of the solutions with highest reliability found with and without
component mixing. Figure 9.25 shows the comparison with related works, with
reference to reliability and cost objectives. The solution found with our method
using component mixing had higher reliability and lower cost compared to the
solution found with our method not using component mixing. In any case,
at best of our knowledge, both solutions outperform all the other existing
methods.

9.4. Test problem 255

Figure 9.24: Solutions for the test problem system. In red, the
solution with highest reliability allowing component mixing,
in orange the solution obtained without component mixing,

illustrated in Figure 9.22.

Figure 9.25: Comparison of solutions with related works. In
red, the solution found by our method with component mixing
and applying partitioning with a balanced pruning strategy.

256 Chapter 9. Experimental Evaluation of Approximate Method

Please note that using component mixing, according to our formalism, led
to a library of three hundred and fifty-two patterns. To face this problem,
we used again graph partitioning. Furthermore, we had to prune some solu-
tions. Without pruning, the total number of solutions found with our method
was 16.770.539.520. Anyway, our computing system ran out of memory when
evaluating all those solution. With pruning, we reduced the total number of
solutions to 1.523.712. Hence, there might still be the chance that we missed
some optimal solutions. We repeated the execution again, varying the pruning
strategy in order to favor sub-solutions with higher reliability, and obtain as
solution with highest reliability the following one:

Reliability, Weight, Cost = [0.999716964 167 95].

Figure 9.26 illustrates the solutions found by our method, described above.
In orange, the best solution found by our method without component mixing,
as requested by the test problem. In red, the solution found by our method
with component mixing and applying partitioning with a balanced pruning
strategy for all design objectives (the same for each sub-architecture). In
purple, the best solution found by our method so far, by applying partitioning
with a pruning strategy (specific for each sub-architecture) designed to favor
sub-solutions with higher reliability and lower cost. Figure 9.27 illustrates the
comparison of our solutions with those of related works.

Figure 9.26: Solutions with higher reliability found by our
method.

9.4. Test problem 257

Fi
gu

re
9.

27
:

C
om

pa
ris

on
of

so
lu

tio
ns

w
ith

re
la

te
d

w
or

ks
.

In
pu

rp
le

,
th

e
be

st
so

lu
tio

n
fo

un
d

by
ou

r
m

et
ho

d,
by

ap
pl

yi
ng

pa
rt

iti
on

in
g

w
ith

a
pr

un
in

g
st

ra
te

gy
de

sig
ne

d
to

fa
vo

r
su

b-
so

lu
tio

ns
w

ith
hi

gh
er

re
lia

bi
lit

y
an

d
lo

w
er

co
st

,
sp

ec
ifi

c
fo

r
ea

ch
su

b-
ar

ch
ite

ct
ur

e.

258 Chapter 9. Experimental Evaluation of Approximate Method

Figure 9.28a and Figure 9.28 illustrate the comparison of our solutions
(without and with component mixing) with those of related work in terms of
Kyviat diagrams.

(a)

(b)

Figure 9.28: Comparison of our solution with related works:
(a) without component mixing, (b) with component mixing .

9.5. Applicability and Limitations 259

9.5 Applicability and Limitations

The approximate method allows us to face problems that are prohibitive for
the exact method, such as complex architectures with dozens of components
and patterns. Nevertheless, there are a couple of drawbacks.

First, the efficiency of the method is highly dependent on the partitioning
method, which aims at reducing the edge-cut. Because of cyclic partitions in
the basic systems, there could be different architectures leading to the same
partitioning, resulting in a wrong approximation of the final solutions. For
instance, the two architectures in Fig.9.29a and Fig.9.29b are both composed of
seven components, but the second one has some edges that connect components
in a way that lead to cyclic partitions, causing a high edge-cut. How the system
is partitioned is therefore a key point.

C2

C3

C4

C5

C6

C7

C1

(a)

C2

C3

C4

C5

C6

C7

C1

(b)

(c) (d)

Figure 9.29: Example of two architectures producing the
same partitionings, without (a) and with (b) cyclic inter-
dependencies among components, resulting in good (c) and bad

(d) approximate solutions.

A second issue can arise when partitions include components that are not
connected in the basic system. Common partitioning algorithms aim at reduc-
ing the edge-cut, without checking if the nodes included in the same partition
are connected or not. As a consequence, a scenario like the one depicted in

260 Chapter 9. Experimental Evaluation of Approximate Method

Fig.9.30 could happen. To prevent that situation, we employed partitioning al-
gorithms with weight functions on nodes and edges, which means minimize the
total communications volume, i.e., the sum of node/edge weights cut. With
reference to our specific problem, those weights must be related to the reliabil-
ity of the individual components. For example, among our tests, we assigned
a greater weight to nodes with higher probability of fault or to the edges con-
necting those nodes. In other words, our aim was to split the original system
into two or more sub-systems while minimizing dependencies from the point
of view of reliability. However, this does not solve the problem. To split the
system in partitions including connected components only, we should modify
the partitioning algorithm to express such constraint. We reserve this for our
future work.

C2

C3

C4

C5

C6

C7

C1

C8

C9

Figure 9.30: The sub-architecture in red includes components
not connected in the original architecture.

Chapter 10

Conclusions and Future Work

The increasing demands on ES functionality make their design a challenging
issue that requires design automation. Given that many ES are enclosed within
safety-critical systems, reliability becomes mandatory to be targeted at design
time. In this thesis, we aim at optimizing a system design with respect to
multiple objectives with a special focus on reliability as a fundamental design
objective. In this chapter, we summarize the main contributions of this work
followed by a perspective on future work.

10.1 Summary

When it comes to creating reliable systems, redundancy plays a fundamental
role. In this work we presented an approach to the automated analysis of re-
dundancy architectures, which is able to produce a symbolic representation of
the reliability function and other non-functional requirements of an ES archi-
tecture from the architectural description. We used this symbolic approach to
encode the RAP, leveraging the power of SMT to systematically explore the
design space, allowing us to deal with a set of architectures at the same time,
in front of multiple design objectives, and thus, easing the way to redundant
architecture synthesis. In this approach, a system architecture is modeled by

261

262 Chapter 10. Conclusions and Future Work

a DAG, and each computing element has a set of redundant patterns that
can improve the reliability (and affect other non-functional parameters). Each
system alternative design explored by the DSE process is specified by a list
of allocated patterns resources. The process relies on FM in different phases:
we model the architecture using SMT(EUF), we adopt a Miter construction
to describe the occurrence of a system failure, we reduce the problem of ex-
tracting the set of relevant fault configurations by reduction to an AllSMT
problem, we leverage predicate abstraction for the efficient extraction of the
CSs, we use BDDs to extract the symbolic functions. The proposed method
scales very well, and allows us to analyze configurations of realistic size. One
of the main contributions is the novel assessment of reliability. Another rel-
evant contribution is the introduction of the approximate method that can
help solve the optimization problem when enumerating every point is pro-
hibitive. Furthermore, we introduced some refinements and smart solutions
that improved further the performance, like binary encoding of configurations,
halving of fault variables, implementation of different variable orderings for
the BDD construction, and a pruning strategy for very large design spaces.

Chapter 5 is mainly dedicated to how the reliability function of a system
is derived automatically. Chapter 6 presents how to obtain an automated and
optimal allocation of redundant component instances. Chapter 7 presents case
studies and experimental data to support the validity and efficiency of the
method. Chapter 8 proposes a meta-heuristic optimization approach to deal
with large optimization problems, in order to find a solution more quickly.
Chapter 9 presents experimental data to support the validity and efficiency of
the proposed method, and a test problem to compare it with other existing
methods.

10.2 Models Assumptions, Limitations, and Ap-
plicability

In this work we made some assumptions, a detailed list is reported in Sec-
tion 5.1. Among these, we assumed that there is no dependence between the
components, and that each component is critical, meaning that its failure trig-
gers the TLE. With this assumption, we can define the formula of the reliability
of the system as a function of that of the individual components. Hence, we
can provide the solver with the individual reliabilities (in terms of probability

10.3. Exact or Approximate Method? 263

of failure) and the formula for the overall reliability of the system, and then
rely on it for the solutions. However, if the failure behavior of a component
is affected in any way by the previous component being executed, or by the
interface between them, these assumptions are no longer acceptable. For ex-
ample, with non-homogeneous patterns (a TMR with 1 input and 3 outputs)
the hypothesis of independence would fail.

We also assumed to refer to a coherent (or monotone) model. For coherent
models, the definition of MCS corresponds with the formal notion of Prime
Implicants (PI). For non-coherent models, MCS and PI differ for the latter
contains negative literals while the former does not. In practice, a negative
literal means that a component recovers from failure. We are excluding this
scenario: if a component is faulty, it cannot recover from failure, and adding
more failure events maintains the failure condition of the system.

The benefit of the architecture-based approach to reliability evaluation is
evident, but it could add complexity to the models. A first trade off is in
deciding when switching from exact to approximate method. From results
presented above, this choice is based on the topology of the system under
study, its size, the pattern library available, and the design objectives and
constraints.

Another key trade off is in defining the number of partitions for decompo-
sition of very large systems. Too many small partitions could lead to a large
state space that may pose difficulties to its exploration or to a high edge-cut,
resulting in missed solutions or wrong approximations. On the other hand,
too few partitions may cause too long computing times and excessive resource
usage, leading to abortion.

Having said that, the proposed method is suitable to reliability modeling of
parametric families of ES architectures, is capable of exploring the design space
in an efficient way, and scales very well, allowing us to analyze configurations
of realistic size.

10.3 Exact or Approximate Method?

An efficient DSE basically requires a good exploration algorithm and auto-
matic evaluation methods to flexibly evaluate the design objectives. With
large MOOPs, because of the high complexity of finding Pareto optimal so-
lutions and their usually very large number, the exact solution is often very

264 Chapter 10. Conclusions and Future Work

difficult, which motivates the study of approximation algorithms. Also in our
case, we can address the RAP either exactly or approximately to find a set
of optimal or sub-optimal solutions. The exact approach has the advantage
of accuracy, but often takes too long for large-scale problems or even worst
leads to abortion because of high resource usage. On the other hand, the ap-
proximate approach may solve those problems in a reasonable time, but suffers
from sensitivity to parameter settings and lower accuracy with missed optimal
solutions.

In general, in order to decide whether to use exact or approximate method,
it is important to understand the trade-off between the resources and time
required by exact approaches versus the difficulty in searching for appropriate
parameters and the risk of missing relevant solutions when using approximate
techniques. Experimentally, we found that for linear and rectangular architec-
tures, the exact method can be applied even for systems composed of hundreds
of components, if the pattern library is contained. Instead, for complex sys-
tems composed of dozens of components the resource usage is excessive. In this
case, the approximate method is preferable to the exact one. More precisely,
the decision is imposed as a result of the number of components of the basic
system architecture, their connections, the size of the pattern library, and the
number of design objectives.

10.4 Application to real systems

To give a glimpse of the power of the approach proposed, we present a real
system case study and show how our model could be applied to it, although
without providing real fault analysis results. Figure 10.1 illustrates an electric
power system for power generation and distribution in a passenger aircraft
[326, 327, 62, 170]. The main components are generators, contactors, buses,
and loads. One or more supervisory control units actuate a set of electrome-
chanical switches to dynamically distribute power from generators to loads,
while satisfying safety, reliability, and real-time performance requirements.
Buses deliver power to a number of loads. Contactors are electromechani-
cal switches that connect components, and therefore determine the power flow
from sources to loads. More in details, the system is divided into left and
right parts. The corresponding generators (L-GEN and R-GEN) and Auxil-
iary Power Units (APUs) can power both parts. Components can be further

10.4. Application to real systems 265

classified as High-Voltage (HV) and Low-Voltage (LV). Rectifier Units (RU)
are used to convert AC power to DC power, while HV levels can be converted
into LV levels using a Transformer-Rectifier Unit (TRU).

Figure 10.1: Power distribution network of an aircraft.

We can define the given system in terms of a graph structure in which both
the components (nodes) and interconnections (edges) may fail. Both nodes and
edges represent system components. In our formulation, the design consists
of an interconnection of components taken from a library. In practice, every
node and edge can be mapped to a library element that implements it. In other
words, a component can be seen as an abstraction representing an element of
the design, characterized by the following component attributes that are used
to capture its properties:

• A set of input and output variables.

• A set of configuration parameters.

• A set of input and output ports for connection with other components.

• A set of behaviors, which can be generic functions.

266 Chapter 10. Conclusions and Future Work

• A set of non-functional models that allow computing non-functional
properties of a component corresponding to particular valuations of its
input variables and configuration parameters, including a cost and a fail-
ure probability (reliability model).

We could therefore create a library with the components mentioned above
(generators, buses, and loads), while contactors could be modeled with edges.
In a first approximation, we could assume that contactors and loads have no
failures, while using a given fail probability for the other components. To sum
up, we could produce a graph-based representation of the given system, and
our approach could be very effective to achieve an optimal implementation
that for example maximizes the reliability and minimizes a cost function.

10.5 Remarks

In this thesis, the following results have been accomplished. We designed a
DSE process in which design alternatives are evaluated to optimize the archi-
tecture. We built a library of redundancy architectures applicable to the basic
components, dealing with the complexities related to their selection and con-
nections. We introduced a novel assessment of reliability which is part of the
evaluation of alternative designs. In addition, we also considered other non-
functional parameters, facing therefore a MOOP. Lastly, we also integrated the
exact method with a heuristic that can help solve the optimization problem
when the size of the design space makes enumerating every design point pro-
hibitive. This approximate method is very flexible and adaptable to time and
resources available. Besides, we introduced some refinements and smart solu-
tions in every step of our method, in order to further improve the performance,
such as binary encoding of configurations, fault variable sharing in redundant
components, implementation of different variable orderings for the BDD, and a
caching mechanism. We heavily relied on FM: architecture modeling was per-
formed completely using SMT, we adopted a Miter construction to describe
the occurrence of a system failure, we reduced the problem of extracting the
set of relevant fault configurations by reduction to an AllSMT problem, we
leveraged predicate abstraction for the efficient extraction of the CSs, we used
BDDs to extract the symbolic functions. We used graph partitioning for facing
very large problem instances. A key point worth to recall is that the symbolic

10.6. Future work 267

approach is strongly parallelizable, and, thus, our method could run efficiently
on modern computing systems that offer more computational power.

10.6 Future work

Several topics have been taken into account to face the RAP, nevertheless
there is still room for improvement. We are currently working on the following
tasks:

• Investigating alternative and more efficient methods for the reliability
assessment starting with the BDD of an instantiated architecture.

• Improving the strategy for sub-architectures pruning, and evaluating also
additional strategies.

• In case of a high number of redundant patters, investigating the pruning
of the pattern library.

• Employment of different solvers for optimization, in order to perform a
comparison.

In future work, we would also like to modify the partitioning algorithm to
solve the issue illustrated in Fig. 9.30, and validate our method on real use
case scenarios, like the one presented in Section 10.4. Successively, we will
investigate the case where faults are associated with dynamics, going beyond
combinatorial problems.

References

[1] P. Derler, E. A. Lee, and A. L. Sangiovanni-Vincentelli, “Modeling cyber-
physical systems,” Proceedings of the IEEE, vol. 100, no. 1, pp. 13–28,
2012. [Cited on page 1]

[2] A. Burns and R. Davis, “Mixed criticality systems-a review,” Department
of Computer Science, University of York, Tech. Rep, pp. 1–69, 2013.
[Cited on page 2]

[3] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, “Assessing
the state-of-practice of model-based engineering in the embedded sys-
tems domain,” in International conference on model driven engineering
languages and systems, pp. 166–182, Springer, 2014. [Cited on page 2]

[4] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE transactions
on dependable and secure computing, vol. 1, no. 1, pp. 11–33, 2004. [Cited

on pages 6 and 19]

[5] M. R. Lyu et al., Handbook of software reliability engineering, vol. 222.
IEEE computer society press CA, 1996. [Cited on page 6]

[6] M. Trapp, D. Schneider, and P. Liggesmeyer, “A safety roadmap to
cyber-physical systems,” in Perspectives on the future of software en-
gineering, pp. 81–94, Springer, 2013. [Cited on pages xi, 7, and 8]

[7] A. Birolini, Reliability engineering: theory and practice. Springer Science
& Business Media, 2013. [Cited on page 8]

[8] K. Schneider, Verification of reactive systems: formal methods and algo-
rithms. Springer Science & Business Media, 2013. [Cited on pages 11, 21,

50, and 51]

[9] J. Thomson, High integrity systems and safety management in hazardous
industries. Butterworth-Heinemann, 2015. [Cited on page 12]

269

270 REFERENCES

[10] W. F. Larsen, “Fault tree analysis,” tech. rep., PICATINNY ARSENAL
DOVER NJ, 1974. [Cited on page 14]

[11] C. A. Ericson and C. Ll, “Fault tree analysis,” in System Safety Confer-
ence, Orlando, Florida, vol. 1, pp. 1–9, 1999. [Cited on page 14]

[12] M. Bozzano and A. Villafiorita, Design and safety assessment of critical
systems. Auerbach Publications, 2010. [Cited on page 14]

[13] B. IEC, “60812: 2018 bsi: Failure modes and effects analysis (fmea and
fmeca),” British Standards Institution, 2018. [Cited on page 17]

[14] I. E. Commission et al., “Iec 61025: Fault tree analysis (fta),” IEC Stan-
dards Online, 2006. [Cited on page 17]

[15] N. G. Leveson, “A systems-theoretic approach to safety in software-
intensive systems,” IEEE Transactions on Dependable and Secure com-
puting, vol. 1, no. 1, pp. 66–86, 2004. [Cited on page 18]

[16] A. Abdulkhaleq and S. Wagner, “Experiences with applying stpa to
software-intensive systems in the automotive domain,” STPA Applica-
tion Areas, pp. 1–17, 2013. [Cited on page 18]

[17] A. Abdulkhaleq, D. Lammering, S. Wagner, J. Röder, N. Balbierer,
L. Ramsauer, T. Raste, and H. Boehmert, “A systematic approach based
on stpa for developing a dependable architecture for fully automated
driving vehicles,” Procedia Engineering, vol. 179, pp. 41–51, 2017. [Cited

on page 18]

[18] H. L. V. de Matos, A. M. da Cunha, and L. A. V. Dias, “Using de-
sign patterns for safety assessment of integrated modular avionics,” in
2014 IEEE/AIAA 33rd Digital Avionics Systems Conference (DASC),
pp. 4D1–1, IEEE, 2014. [Cited on page 20]

[19] A. Armoush, Design patterns for safety-critical embedded systems. PhD
thesis, RWTH Aachen University, 2010. [Cited on page 20]

[20] J. B. Almeida, M. J. Frade, J. S. Pinto, and S. M. de Sousa, Rigorous
software development: an introduction to program verification. Springer
Science & Business Media, 2011. [Cited on page 22]

REFERENCES 271

[21] F. Khan, S. R. Jan, M. Tahir, S. Khan, and F. Ullah, “Survey: dealing
non-functional requirements at architecture level,” VFAST Transactions
on Software Engineering, vol. 9, no. 2, pp. 7–13, 2016. [Cited on page 22]

[22] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” Computers, IEEE Transactions on, vol. 100, no. 8, pp. 677–691,
1986. [Cited on pages 27 and 31]

[23] A. Mishchenko, “An introduction to zero-suppressed binary decision dia-
grams,” in Proceedings of the 12th Symposium on the Integration of Sym-
bolic Computation and Mechanized Reasoning, vol. 8, pp. 1–15, Citeseer,
2001. [Cited on page 31]

[24] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal
methods: Practice and experience,” ACM computing surveys (CSUR),
vol. 41, no. 4, p. 19, 2009. [Cited on page 35]

[25] R. Allen and D. Garlan, Towards formalized software architectures.
Carnegie-Mellon University. Department of Computer Science, 1992.
[Cited on page 35]

[26] A. Van Lamsweerde, “From system goals to software architecture,” in
International School on Formal Methods for the Design of Computer,
Communication and Software Systems, pp. 25–43, Springer, 2003. [Cited

on page 35]

[27] C. A. Hoare, “Proof of correctness of data representations,” Acta Inf.,
vol. 1, pp. 271–281, Dec. 1972. [Cited on page 35]

[28] C. B. Jones, Systematic software development using VDM, vol. 2. Pren-
tice Hall Englewood Cliffs, 1990. [Cited on page 35]

[29] E. W. Dijkstra, “Guarded commands, nondeterminacy and formal
derivation of programs,” Commun. ACM, vol. 18, pp. 453–457, Aug.
1975. [Cited on page 35]

[30] J. M. Morris, “A theoretical basis for stepwise refinement and the pro-
gramming calculus,” Science of Computer programming, vol. 9, no. 3,
pp. 287–306, 1987. [Cited on page 35]

272 REFERENCES

[31] C. Morgan, “The specification statement,” ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 10, no. 3, pp. 403–
419, 1988. [Cited on page 35]

[32] R. J. R. Back and J. von Wright, “Refinement calculus, part i: Sequential
nondeterministic programs,” in Proceedings on Stepwise Refinement of
Distributed Systems: Models, Formalisms, Correctness, REX workshop,
(New York, NY, USA), pp. 42–66, Springer-Verlag New York, Inc., 1990.
[Cited on page 35]

[33] R. W. Floyd, “Assigning meanings to programs,” Proceedings of Sym-
posium on Applied Mathematics, vol. 19, pp. 19–32, 1967. [Cited on page

35]

[34] C. A. R. Hoare, “An axiomatic basis for computer programming,” Com-
mun. ACM, vol. 12, pp. 576–580, Oct. 1969. [Cited on page 35]

[35] E. Younger, Z. Luo, K. H. Bennett, and T. Bull, “Reverse engineer-
ing concurrent programs using formal modelling and analysis,” in Pro-
ceedings of WCRE’96: 4rd Working Conference on Reverse Engineering,
pp. 239–248, IEEE, 1996. [Cited on page 36]

[36] M. P. Ward and K. H. Bennett, “Formal methods to aid the evolution of
software,” International Journal of Software Engineering and Knowledge
Engineering, vol. 5, no. 01, pp. 25–47, 1995. [Cited on page 36]

[37] H. Gomaa, “Software design methods for the design of large-scale real-
time systems,” J. Syst. Softw., vol. 25, no. 2, pp. 127–146, 1994. [Cited

on page 36]

[38] A. S. Staines, “A comparison of software analysis and design methods for
real time systems,” World Academy of Science, Engineering and Tech-
nology, pp. 55–59, 2007. [Cited on page 36]

[39] N. Esfahani, S.-H. Mirian-Hosseinabadi, and K. Rafati, “Real-time anal-
ysis process patterns,” in Computer Society of Iran Computer Confer-
ence, pp. 777–781, Springer, 2008. [Cited on page 36]

[40] V. M. Monthe, L. Nana, G. E. Kouamou, and C. Tangha, “A decision
support framework for the choice of languages and methods for the design

REFERENCES 273

of real time embedded systems,” Journal of Software Engineering and
Applications, vol. 9, no. 07, p. 353, 2016. [Cited on page 36]

[41] M. Ponnapalli and P. B. Rao, “A comparative study of software archi-
tectures for embedded mission critical applications,” in 2016 IEEE 6th
International Conference on Advanced Computing (IACC), pp. 741–746,
IEEE, 2016. [Cited on page 36]

[42] I. ISO, “Iec/ieee systems and software engineering: Architecture descrip-
tion,” 2011. [Cited on page 38]

[43] S. Björnander, “Architecture description languages,” Mrtc. Mdh. Se,
2011. [Cited on page 38]

[44] P. C. Clements, “A survey of architecture description languages,” in
Proceedings of the 8th international workshop on software specification
and design, p. 16, IEEE Computer Society, 1996. [Cited on page 38]

[45] S. Hussain, “Investigating architecture description languages (adls) a
systematic literature review,” 2013. [Cited on page 38]

[46] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What
industry needs from architectural languages: A survey,” IEEE Transac-
tions on Software Engineering, vol. 39, no. 6, pp. 869–891, 2012. [Cited

on page 38]

[47] N. Medvidovic and R. N. Taylor, “A framework for classifying and com-
paring architecture description languages,” in Software Engineering ES-
EC/FSE’97, pp. 60–76, Springer, 1997. [Cited on page 38]

[48] P. Mishra and N. Dutt, “Architecture description languages,” in Cus-
tomizable Embedded Processors, pp. 59–76, Elsevier, 2007. [Cited on page

38]

[49] I. Sommerville, “Software engineering 9th edition,” ISBN-10137035152,
2011. [Cited on page 41]

[50] E. Clarke, K. McMillan, S. Campos, and V. Hartonas-Garmhausen,
“Symbolic model checking,” in International conference on computer
aided verification, pp. 419–422, Springer, 1996. [Cited on page 49]

274 REFERENCES

[51] “World wide web virtual library on formal methods.” https://
formalmethods.wikia.org/wiki/Formal_methods. Accessed: 2021-07-
09. [Cited on page 49]

[52] V. Kumar, “Algorithms for constraint-satisfaction problems: A survey,”
AI magazine, vol. 13, no. 1, pp. 32–32, 1992. [Cited on page 52]

[53] A. Petcu and B. Faltings, “Dpop: A scalable method for multiagent
constraint optimization,” in IJCAI 05, pp. 266–271, 01 2005. [Cited on

page 52]

[54] T. Saxena, A generic framework for design space exploration. Vanderbilt
University, 2012. [Cited on page 52]

[55] A. H. Land and A. G. Doig, “An automatic method for solving discrete
programming problems,” in 50 Years of Integer Programming 1958-2008,
pp. 105–132, Springer, 2010. [Cited on pages 52, 54, and 61]

[56] J. Jonsson and K. G. Shin, “A parametrized branch-and-bound strategy
for scheduling precedence-constrained tasks on a multiprocessor system,”
in Proceedings of the 1997 International Conference on Parallel Process-
ing (Cat. No. 97TB100162), pp. 158–165, IEEE, 1997. [Cited on page

53]

[57] A. Schrijver, Theory of linear and integer programming. John Wiley &
Sons, 1998. [Cited on page 53]

[58] S. Prakash and A. C. Parker, “Synthesis of application-specific multi-
processor architectures,” in Proceedings of the 28th ACM/IEEE Design
Automation Conference, pp. 8–13, 1991. [Cited on page 53]

[59] R. Niemann and P. Marwedel, “An algorithm for hardware/software par-
titioning using mixed integer linear programming,” Design Automation
for Embedded Systems, vol. 2, no. 2, pp. 165–193, 1997. [Cited on page 53]

[60] H. Cambazard, D. Mehta, B. O’Sullivan, L. Quesada, M. Ruffini,
D. Payne, and L. Doyle, “A combinatorial optimisation approach to the
design of dual parented long-reach passive optical networks,” in 2011
IEEE 23rd International Conference on Tools with Artificial Intelligence,
pp. 785–792, IEEE, 2011. [Cited on page 53]

https://formalmethods.wikia.org/wiki/Formal_methods
https://formalmethods.wikia.org/wiki/Formal_methods

REFERENCES 275

[61] H. Kooti, E. Bozorgzadeh, S. Liao, and L. Bao, “Transition-aware real-
time task scheduling for reconfigurable embedded systems,” in 2010 De-
sign, Automation & Test in Europe Conference & Exhibition (DATE
2010), pp. 232–237, IEEE, 2010. [Cited on page 53]

[62] D. Kirov, P. Nuzzo, R. Passerone, and A. Sangiovanni-Vincentelli,
“Archex: An extensible framework for the exploration of cyber-physical
system architectures,” in 2017 54th ACM/EDAC/IEEE Design Automa-
tion Conference (DAC), pp. 1–6, IEEE, 2017. [Cited on pages 53, 89, 90,

and 264]

[63] D. Kirov, P. Nuzzo, R. Passerone, and A. Sangiovanni-Vincentelli, “Op-
timized selection of wireless network topologies and components via effi-
cient pruning of feasible paths,” in Proceedings of the 55th Annual Design
Automation Conference, pp. 1–6, 2018. [Cited on page 53]

[64] J. C. Nash, “The (dantzig) simplex method for linear programming,”
Computing in Science & Engineering, vol. 2, no. 1, pp. 29–31, 2000.
[Cited on pages 53 and 61]

[65] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” in Proceedings of the sixteenth annual ACM symposium on Theory
of computing, pp. 302–311, 1984. [Cited on page 53]

[66] J. P. Walser, Domain-independent local search for linear integer opti-
mization. PhD thesis, Universität des Saarlandes, 1998. [Cited on pages 54

and 61]

[67] H. Ramalhinho-Lourenço, O. C. Martin, and T. Stützle, “Iterated local
search,” in Handbook of Metaheuristics (F. Glover and G. Kochenberger,
eds.), pp. 2321–353, Kluwer Academic, 2000. [Cited on page 54]

[68] T. A. Feo and M. G. Resende, “Greedy randomized adaptive search
procedures,” Journal of global optimization, vol. 6, no. 2, pp. 109–133,
1995. [Cited on page 54]

[69] P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in Simu-
lated annealing: Theory and applications, pp. 7–15, Springer, 1987. [Cited

on page 54]

276 REFERENCES

[70] F. Glover, Tabu search fundamentals and uses. Graduate School of Busi-
ness, University of Colorado Boulder, 1995. [Cited on pages 54 and 55]

[71] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by sim-
ulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983. [Cited

on pages 54 and 58]

[72] S. Gupta and L. Bic, “Distributed adaptive simulated annealing for
synthesis design space exploration,” tech. rep., University of California,
Irvine, CA 92697-3425, 1999. [Cited on page 55]

[73] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “System level hardware/-
software partitioning based on simulated annealing and tabu search,”
Design automation for embedded systems, vol. 2, no. 1, pp. 5–32, 1997.
[Cited on page 55]

[74] K. Miettinen, Nonlinear multiobjective optimization, vol. 12. Springer
Science & Business Media, 2012. [Cited on page 56]

[75] J. Hall and Q. Huangfu, “A high performance dual revised simplex
solver,” in International Conference on Parallel Processing and Applied
Mathematics, pp. 143–151, Springer, 2011. [Cited on page 58]

[76] P. Kall, S. W. Wallace, and P. Kall, Stochastic programming. Springer,
1994. [Cited on page 58]

[77] D.-T. Peng, K. G. Shin, and T. F. Abdelzaher, “Assignment and schedul-
ing communicating periodic tasks in distributed real-time systems,”
IEEE Transactions on Software Engineering, vol. 23, no. 12, pp. 745–
758, 1997. [Cited on page 58]

[78] S. Fazlollahi, P. Mandel, G. Becker, and F. Maréchal, “Methods for
multi-objective investment and operating optimization of complex energy
systems,” Energy, vol. 45, no. 1, pp. 12–22, 2012. [Cited on page 58]

[79] M. Lukasiewycz, M. Glaß, C. Haubelt, and J. Teich, “Efficient symbolic
multi-objective design space exploration,” in 2008 Asia and South Pacific
Design Automation Conference, pp. 691–696, IEEE, 2008. [Cited on page

58]

[80] I. H. Osman and G. Laporte, “Metaheuristics: A bibliography,” Annals
of Operations Research, no. 63, pp. 513–623, 1996. [Cited on page 58]

REFERENCES 277

[81] S. Greco, J. Figueira, and M. Ehrgott, Multiple criteria decision analysis.
Springer, 2016. [Cited on page 58]

[82] F. Glover, “Future paths for integer programming and links to ar tifi cial
intelli g en ce,” Computers operations research, vol. 13, no. 5, pp. 533–
549, 1986. [Cited on page 58]

[83] K. Nonobe and T. Ibaraki, “A tabu search approach to the constraint
satisfaction problem as a general problem solver,” European journal of
operational research, vol. 106, no. 2-3, pp. 599–623, 1998. [Cited on page

58]

[84] T. Bäck and H.-P. Schwefel, “An overview of evolutionary algorithms
for parameter optimization,” Evolutionary computation, vol. 1, no. 1,
pp. 1–23, 1993. [Cited on pages 58 and 61]

[85] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algo-
rithms in multiobjective optimization,” Evolutionary computation, vol. 3,
no. 1, pp. 1–16, 1995. [Cited on page 58]

[86] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine
learning,” Machine Learning, vol. 3, pp. 95–99, 1988. [Cited on pages 58

and 61]

[87] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95-International Conference on Neural Networks, vol. 4,
pp. 1942–1948, IEEE, 1995. [Cited on page 59]

[88] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by
a colony of cooperating agents,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 26, no. 1, pp. 29–41, 1996.
[Cited on page 59]

[89] M. Gelfond and V. Lifschitz, “The stable model semantics for logic pro-
gramming.,” in ICLP/SLP, vol. 88, pp. 1070–1080, 1988. [Cited on page

59]

[90] T. Crick, Superoptimisation: provably optimal code generation using an-
swer set programming. PhD thesis, University of Bath, 2009. [Cited on

page 59]

278 REFERENCES

[91] A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability,
vol. 185. IOS press, 2009. [Cited on page 59]

[92] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook
of Model Checking, pp. 305–343, Springer, 2018. [Cited on page 59]

[93] A. Cimatti, A. Griggio, and R. Sebastiani, “Computing small unsatisfi-
able cores in satisfiability modulo theories,” Journal of Artificial Intelli-
gence Research, vol. 40, pp. 701–728, 2011. [Cited on page 59]

[94] R. Nieuwenhuis and A. Oliveras, “On sat modulo theories and optimiza-
tion problems,” in International conference on theory and applications
of satisfiability testing, pp. 156–169, Springer, 2006. [Cited on page 60]

[95] A. Cimatti, A. Franzén, A. Griggio, R. Sebastiani, and C. Stenico, “Sat-
isfiability modulo the theory of costs: Foundations and applications,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pp. 99–113, Springer, 2010. [Cited on page 60]

[96] Y. Li, A. Albarghouthi, Z. Kincaid, A. Gurfinkel, and M. Chechik, “Sym-
bolic optimization with smt solvers,” ACM SIGPLAN Notices, vol. 49,
no. 1, pp. 607–618, 2014. [Cited on page 60]

[97] N. Bjørner, A.-D. Phan, and L. Fleckenstein, “νz-an optimizing smt
solver,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pp. 194–199, Springer, 2015. [Cited

on page 60]

[98] R. Sebastiani and P. Trentin, “Optimathsat: A tool for optimization
modulo theories,” Journal of Automated Reasoning, vol. 64, no. 3,
pp. 423–460, 2020. [Cited on pages 60 and 98]

[99] C. Bazgan, S. Ruzika, C. Thielen, and D. Vanderpooten, “The power
of the weighted sum scalarization for approximating multiobjective op-
timization problems,” arXiv preprint arXiv:1908.01181, 2019. [Cited on

page 61]

[100] A. Charnes and W. W. Cooper, “Management models and industrial
applications of linear programming,” Management science, vol. 4, no. 1,
pp. 38–91, 1957. [Cited on page 61]

REFERENCES 279

[101] E. B. Baum, “Towards practical ‘neural’computation for combinatorial
optimization problems,” in AIP Conference Proceedings, vol. 151, pp. 53–
58, American Institute of Physics, 1986. [Cited on page 61]

[102] T. Givargis, F. Vahid, and J. Henkel, “System-level exploration
for pareto-optimal configurations in parameterized systems-on-a-chip,”
in IEEE/ACM International Conference on Computer Aided Design.
ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.
01CH37281), pp. 25–30, IEEE, 2001. [Cited on page 61]

[103] K. Neubauer, P. Wanko, T. Schaub, and C. Haubelt, “Exact multi-
objective design space exploration using aspmt,” in 2018 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), pp. 257–
260, IEEE, 2018. [Cited on page 61]

[104] C. Lo and P. Chow, “Hierarchical modelling of generators in design-
space exploration,” in 2020 IEEE 28th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pp. 186–
194, IEEE, 2020. [Cited on page 61]

[105] T. Schlichter, C. Haubelt, and J. Teich, “Improving ea-based design
space exploration by utilizing symbolic feasibility tests,” in Proceedings
of the 7th annual conference on Genetic and evolutionary computation,
pp. 1945–1952, 2005. [Cited on page 62]

[106] P. Traverse, I. Lacaze, and J. Souyris, “A process toward total
dependability-airbus fly-by-wire paradigm.,” in EDCC, p. 1, Springer,
2005. [Cited on page 63]

[107] R. John, “Partitioning in avionics architectures: requirements, mecha-
nisms, and assurance,” NASA Contractor Report, 1999. [Cited on page

63]

[108] P. Sinha, “Architectural design and reliability analysis of a fail-
operational brake-by-wire system from iso 26262 perspectives,” Relia-
bility Engineering & System Safety, vol. 96, no. 10, pp. 1349–1359, 2011.
[Cited on page 63]

[109] J. Wei, J. M. Snider, J. Kim, J. M. Dolan, R. Rajkumar, and B. Litkouhi,
“Towards a viable autonomous driving research platform,” in 2013 IEEE

280 REFERENCES

Intelligent Vehicles Symposium (IV), pp. 763–770, IEEE, 2013. [Cited on

page 64]

[110] M. Buechel, J. Frtunikj, K. Becker, S. Sommer, C. Buckl, M. Armbruster,
A. Marek, A. Zirkler, C. Klein, and A. Knoll, “An automated electric
vehicle prototype showing new trends in automotive architectures,” in
2015 IEEE 18th International Conference on Intelligent Transportation
Systems, pp. 1274–1279, IEEE, 2015. [Cited on page 64]

[111] M. Güdemann and F. Ortmeier, “Model-based multi-objective safety op-
timization,” in International Conference on Computer Safety, Reliability,
and Security, pp. 423–436, Springer, 2011. [Cited on page 64]

[112] S. Lazarova-Molnar, H. R. Shaker, and N. Mohamed, “Reliability of cy-
ber physical systems with focus on building management systems,” in
2016 IEEE 35th International Performance Computing and Communi-
cations Conference (IPCCC), pp. 1–6, IEEE, 2016. [Cited on page 64]

[113] W. Nace and P. Koopman, “A product family approach to graceful degra-
dation,” in IFIP Working Conference on Distributed and Parallel Em-
bedded Systems, pp. 131–140, Springer, 2000. [Cited on page 64]

[114] C. P. Shelton, P. Koopman, and W. Nace, “A framework for scalable
analysis and design of system-wide graceful degradation in distributed
embedded systems,” in 8th IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems (WORDS 2003), 15-17 Jan-
uary 2003, Guadalajara, Mexico, pp. 156–163, IEEE Computer Society,
2003. [Cited on page 64]

[115] C. P. Shelton, P. Koopman, and W. Nace, “A framework for scalable
analysis and design of system-wide graceful degradation in distributed
embedded systems,” in Proceedings of the Eighth International Work-
shop on Object-Oriented Real-Time Dependable Systems, 2003.(WORDS
2003)., pp. 156–163, IEEE, 2003. [Cited on page 65]

[116] C. Shelton and P. Koopman, “Using architectural properties to model
and measure graceful degradation,” in Architecting dependable systems,
pp. 267–289, Springer, 2003. [Cited on page 65]

REFERENCES 281

[117] C. P. Shelton and P. Koopman, “Improving system dependability with
functional alternatives,” in International Conference on Dependable Sys-
tems and Networks, 2004, pp. 295–304, IEEE, 2004. [Cited on page 65]

[118] P. Emberson and I. Bate, “Extending a task allocation algorithm for
graceful degradation of real-time distributed embedded systems,” in 2008
Real-Time Systems Symposium, pp. 270–279, IEEE, 2008. [Cited on page

65]

[119] P. Emberson, Searching for flexible solutions to task allocation problems.
PhD thesis, University of York, 2009. [Cited on page 65]

[120] M. Trapp, R. Adler, M. Förster, and J. Junger, “Runtime adaptation in
safety-critical automotive systems,” Software Engineering, pp. 1–8, 2007.
[Cited on page 65]

[121] M. Glaß, M. Lukasiewycz, C. Haubelt, and J. Teich, “Incorporating
graceful degradation into embedded system design,” in Proceedings of
the Conference on Design, Automation and Test in Europe, pp. 320–323,
European Design and Automation Association, 2009. [Cited on page 66]

[122] D. Penha, G. Weiss, and A. Stante, “Pattern-based approach for de-
signing fail-operational safety-critical embedded systems,” in 2015 IEEE
13th International Conference on Embedded and Ubiquitous Computing,
pp. 52–59, IEEE, 2015. [Cited on page 66]

[123] J. Kim, G. Bhatia, R. Rajkumar, and M. Jochim, “Safer: System-level
architecture for failure evasion in real-time applications,” in 2012 IEEE
33rd Real-Time Systems Symposium, pp. 227–236, IEEE, 2012. [Cited on

page 67]

[124] J. Kim, R. R. Rajkumar, and M. Jochim, “Towards dependable au-
tonomous driving vehicles: a system-level approach,” ACM SIGBED
Review, vol. 10, no. 1, pp. 29–32, 2013. [Cited on page 67]

[125] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and
M. Roveri, “Safety, dependability and performance analysis of extended
aadl models,” The Computer Journal, vol. 54, no. 5, pp. 754–775, 2010.
[Cited on page 67]

282 REFERENCES

[126] K. Becker, Software Deployment Analysis for Mixed Reliability Automo-
tive Systems. PhD thesis, Technische Universität München, 2017. [Cited

on page 67]

[127] A. Hamann, Iterative design space exploration and robustness optimiza-
tion for embedded systems. Cuvillier Verlag, 2008. [Cited on page 68]

[128] L. Grunske, “Identifying good architectural design alternatives with
multi-objective optimization strategies,” in Proceedings of the 28th inter-
national conference on Software engineering, pp. 849–852, ACM, 2006.
[Cited on pages 68, 77, and 78]

[129] M. Mikic-Rakic, S. Malek, N. Beckman, and N. Medvidovic, “A tai-
lorable environment for assessing the quality of deployment architectures
in highly distributed settings,” in International Working Conference on
Component Deployment, pp. 1–17, Springer, 2004. [Cited on page 68]

[130] M. Junker, Specification and Analysis of Availability for Software-
Intensive Systems. PhD thesis, Technische Universität München, 2016.
[Cited on page 69]

[131] M. Broy and K. Stølen, Specification and development of interactive sys-
tems: focus on streams, interfaces, and refinement. Springer Science &
Business Media, 2012. [Cited on page 69]

[132] P. K. Saraswat, P. Pop, and J. Madsen, “Task migration for fault-
tolerance in mixed-criticality embedded systems,” ACM SIGBED Re-
view, vol. 6, no. 3, p. 6, 2009. [Cited on page 69]

[133] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in 2010 16th IEEE Real-Time and Embedded
Technology and Applications Symposium, pp. 13–22, IEEE, 2010. [Cited

on page 69]

[134] S. Voss and B. Schätz, “Deployment and scheduling synthesis for mixed-
critical shared-memory applications,” in 2013 20th IEEE International
Conference and Workshops on Engineering of Computer Based Systems
(ECBS), pp. 100–109, IEEE, 2013. [Cited on page 70]

REFERENCES 283

[135] A. Thekkilakattil, R. Dobrin, and S. Punnekkat, “Mixed criticality
scheduling in fault-tolerant distributed real-time systems,” in 2014 In-
ternational Conference on Embedded Systems (ICES), pp. 92–97, IEEE,
2014. [Cited on page 70]

[136] D. Tămaş-Selicean, P. Pop, and J. Madsen, “Design of mixed-criticality
applications on distributed real-time systems,” Technical University of
Denmark, 2014. [Cited on page 70]

[137] G. Xie, G. Zeng, L. Liu, R. Li, and K. Li, “High performance real-
time scheduling of multiple mixed-criticality functions in heterogeneous
distributed embedded systems,” Journal of Systems Architecture, vol. 70,
pp. 3–14, 2016. [Cited on page 71]

[138] A. Cansado, C. Canal, G. Salaün, and J. Cubo, “A formal framework for
structural reconfiguration of components under behavioural adaptation,”
Electronic Notes in Theoretical Computer Science, vol. 263, pp. 95–110,
2010. [Cited on page 71]

[139] B. Becker, H. Giese, S. Neumann, M. Schenck, and A. Treffer, “Model-
based extension of autosar for architectural online reconfiguration,” in
International Conference on Model Driven Engineering Languages and
Systems, pp. 83–97, Springer, 2009. [Cited on page 71]

[140] P. Oreizy, N. Medvidovic, and R. N. Taylor, “Architecture-based runtime
software evolution,” in Proceedings of the 20th international conference
on Software engineering, pp. 177–186, IEEE, 1998. [Cited on page 72]

[141] N. Medvidovic and R. N. Taylor, “A classification and comparison frame-
work for software architecture description languages,” IEEE Transac-
tions on software engineering, vol. 26, no. 1, pp. 70–93, 2000. [Cited on

page 72]

[142] P. Oreizy, N. Medvidovic, and R. N. Taylor, “Runtime software adap-
tation: framework, approaches, and styles,” in Companion of the 30th
international conference on Software engineering, pp. 899–910, ACM,
2008. [Cited on page 72]

[143] J. S. Bradbury, J. R. Cordy, J. Dingel, and M. Wermelinger, “A survey
of self-management in dynamic software architecture specifications,” in

284 REFERENCES

Proceedings of the 1st ACM SIGSOFT workshop on Self-managed sys-
tems, pp. 28–33, ACM, 2004. [Cited on page 72]

[144] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, “Dynamic software
product lines,” Computer, vol. 41, no. 4, pp. 93–95, 2008. [Cited on page

72]

[145] T. Dinkelaker, R. Mitschke, K. Fetzer, and M. Mezini, “A dynamic soft-
ware product line approach using aspect models at runtime,” in Proceed-
ings of the 1st Workshop on Composition and Variability, pp. 180–220,
CEUR Workshop, 2010. [Cited on page 72]

[146] J. Simmonds and M. C. Bastarrica, “Modeling variability in software
process lines,” Departamento de Ciencias de la Computación. Universi-
dad de Chile, 2011. [Cited on page 72]

[147] N. Loughran, P. Sánchez, A. Garcia, and L. Fuentes, “Language sup-
port for managing variability in architectural models,” in International
Conference on Software Composition, pp. 36–51, Springer, 2008. [Cited

on page 72]

[148] C. Cetina, V. Pelechano, P. Trinidad, and A. R. Cortés, “An architectural
discussion on dspl.,” in SPLC (2), pp. 59–68, Citeseer, 2008. [Cited on

page 72]

[149] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and re-
search challenges,” ACM transactions on autonomous and adaptive sys-
tems (TAAS), vol. 4, no. 2, p. 14, 2009. [Cited on page 72]

[150] G. D. Rodosek, K. Geihs, H. Schmeck, and B. Stiller, “Self-healing sys-
tems: Foundations and challenges.,” Self-Healing and Self-Adaptive Sys-
tems, no. 09201, 2009. [Cited on page 72]

[151] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, no. 1, pp. 41–50, 2003. [Cited on page 72]

[152] G. Mühl, M. Werner, M. A. Jaeger, K. Herrmann, and H. Parzyjegla,
“On the definitions of self-managing and self-organizing systems,” in
Communication in Distributed Systems-15. ITG/GI Symposium, pp. 1–
11, VDE, 2007. [Cited on page 72]

REFERENCES 285

[153] S. Stein, M. Neukirchner, and R. Ernst, “Admission control and self-
configuration in the epoc framework,” in 2011 International Conference
on Embedded Computer Systems: Architectures, Modeling and Simula-
tion, pp. 364–371, IEEE, 2011. [Cited on page 72]

[154] M. Bozzano, A. Cimatti, and C. Mattarei, “Formal reliability analysis of
redundancy architectures,” Formal Aspects of Computing, vol. 31, no. 1,
pp. 59–94, 2019. [Cited on pages 73, 111, 117, 126, 129, 130, 131, 134, 135, 160,

163, and 191]

[155] K. L. McMillan, “The smv language,” Cadence Berkeley Labs, pp. 1–49,
1999. [Cited on pages 73, 112, and 135]

[156] B. Bittner, M. Bozzano, R. Cavada, A. Cimatti, M. Gario, A. Griggio,
C. Mattarei, A. Micheli, and G. Zampedri, “The xsap safety analysis
platform,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pp. 533–539, Springer, 2016. [Cited

on pages 73, 74, 112, and 135]

[157] S. Lee, J.-i. Jung, and I. Lee, “Voting structures for cascaded triple
modular redundant modules,” IEICE Electronics Express, vol. 4, no. 21,
pp. 657–664, 2007. [Cited on page 73]

[158] J.-P. Katoen, M. Khattri, and I. Zapreevt, “A markov reward model
checker,” in Second International Conference on the Quantitative Eval-
uation of Systems (QEST’05), pp. 243–244, IEEE, 2005. [Cited on page

73]

[159] M. Kwiatkowska, G. Norman, and D. Parker, “Prism: Probabilistic
model checking for performance and reliability analysis,” ACM SIG-
METRICS Performance Evaluation Review, vol. 36, no. 4, pp. 40–45,
2009. [Cited on page 73]

[160] K. S. Trivedi, “Sharpe 2002: Symbolic hierarchical automated reliability
and performance evaluator,” in Proceedings International Conference on
Dependable Systems and Networks, p. 544, IEEE, 2002. [Cited on page 73]

[161] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification of
probabilistic real-time systems,” in International conference on computer
aided verification, pp. 585–591, Springer, 2011. [Cited on page 73]

286 REFERENCES

[162] A. David, K. G. Larsen, A. Legay, M. Mikučionis, and D. B. Poulsen,
“Uppaal smc tutorial,” International Journal on Software Tools for Tech-
nology Transfer, vol. 17, no. 4, pp. 397–415, 2015. [Cited on page 73]

[163] T. Lanfang, T. Qingping, and L. Jianli, “Specification and verification
of the triple-modular redundancy fault tolerant system using csp,” in
DEPEND 2011, The Fourth International Conference on Dependability,
pp. 14–17, 2011. [Cited on page 73]

[164] A. Hartmanns, “Modest-a unified language for quantitative models,” in
Proceeding of the 2012 Forum on Specification and Design Languages,
pp. 44–51, IEEE, 2012. [Cited on page 74]

[165] O. Lisagor, T. Kelly, and R. Niu, “Model-based safety assessment: Re-
view of the discipline and its challenges,” in The Proceedings of 2011
9th International Conference on Reliability, Maintainability and Safety,
pp. 625–632, IEEE, 2011. [Cited on page 74]

[166] J. Delange and P. Feiler, “Architecture fault modeling with the aadl
error-model annex,” in 2014 40th EUROMICRO Conference on Software
Engineering and Advanced Applications, pp. 361–368, IEEE, 2014. [Cited

on page 74]

[167] S. Kabir, Y. Papadopoulos, M. Walker, D. Parker, J. I. Aizpurua,
J. Lampe, and E. Rüde, “A model-based extension to hip-hops for dy-
namic fault propagation studies,” in International Symposium on Model-
Based Safety and Assessment, pp. 163–178, Springer, 2017. [Cited on page

74]

[168] A. Arnold, G. Point, A. Griffault, and A. Rauzy, “The altarica formalism
for describing concurrent systems,” Fundamenta Informaticae, vol. 40,
no. 2, 3, pp. 109–124, 1999. [Cited on page 74]

[169] M. Batteux, T. Prosvirnova, and A. Rauzy, “System structure modeling
language (s2ml).” working paper or preprint, Dec. 2015. [Cited on page 74]

[170] P. Nuzzo, N. Bajaj, M. Masin, D. Kirov, R. Passerone, and A. L.
Sangiovanni-Vincentelli, “Optimized selection of reliable and cost-
effective safety-critical system architectures,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 10, pp. 2109–2123, 2019. [Cited on pages 74 and 264]

REFERENCES 287

[171] M. Buyse, R. Delmas, and Y. Hamadi, “Alpacas: A language for
parametric assessment of critical architecture safety,” in 35th European
Conference on Object-Oriented Programming (ECOOP 2021), Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2021. [Cited on page 74]

[172] M. Chaudron, S. Larsson, and I. Crnkovic, “Component-based devel-
opment process and component lifecycle,” Journal of Computing and
Information Technology, vol. 13, no. 4, pp. 321–327, 2005. [Cited on page

76]

[173] A. Sangiovanni-Vincentelli and G. Martin, “Platform-based design and
software design methodology for embedded systems,” IEEE Design &
Test of Computers, vol. 18, no. 6, pp. 23–33, 2001. [Cited on page 76]

[174] G. Ascia, V. Catania, and M. Palesi, “An evolutionary approach for
pareto-optimal configurations in soc platforms,” in SOC Design Method-
ologies, pp. 157–168, Springer, 2002. [Cited on pages 76 and 78]

[175] S. Neema, J. Sztipanovits, G. Karsai, and K. Butts, “Constraint-based
design-space exploration and model synthesis,” in International Work-
shop on Embedded Software, pp. 290–305, Springer, 2003. [Cited on pages

77 and 78]

[176] H. Neema, Z. Lattmann, P. Meijer, J. Klingler, S. Neema, T. Bapty,
J. Sztipanovits, and G. Karsai, “Design space exploration and manipu-
lation for cyber physical systems,” in IFIP First International Workshop
on Design Space Exploration of Cyber-Physical Systems (IDEAL?2014),
Springer-Verlag Berlin Heidelberg, p. 8, 2014. [Cited on pages 77 and 78]

[177] P. Manolios and V. Papavasileiou, “Virtual integration of cyber-physical
systems by verification,” in Proc. AVICPS, p. 65, Citeseer, 2010. [Cited

on pages 77 and 78]

[178] D. E. Fyffe, W. W. Hines, and N. K. Lee, “System reliability alloca-
tion and a computational algorithm,” IEEE Transactions on Reliability,
vol. 17, no. 2, pp. 64–69, 1968. [Cited on pages 78, 79, and 249]

[179] Y. Nakagawa and S. Miyazaki, “Surrogate constraints algorithm for reli-
ability optimization problems with two constraints,” IEEE Transactions
on Reliability, vol. 30, no. 2, pp. 175–180, 1981. [Cited on pages 78, 79,

and 250]

288 REFERENCES

[180] M. Soto, A. Rossi, and M. Sevaux, “Two iterative metaheuristic ap-
proaches to dynamic memory allocation for embedded systems,” in Eu-
ropean Conference on Evolutionary Computation in Combinatorial Op-
timization, pp. 250–261, Springer, 2011. [Cited on page 78]

[181] P. Van Huong and N. N. Binh, “Embedded system architecture design
and optimization at the model level,” International Journal of Computer
and Communication Engineering, vol. 1, no. 4, p. 345, 2012. [Cited on

page 78]

[182] K. Settaluri, A. Haj-Ali, Q. Huang, K. Hakhamaneshi, and B. Nikolic,
“Autockt: Deep reinforcement learning of analog circuit designs,” in 2020
Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 490–495, IEEE, 2020. [Cited on page 78]

[183] P. Terway, K. Hamidouche, and N. K. Jha, “Dispatch: Design space
exploration of cyber-physical systems,” arXiv preprint arXiv:2009.10214,
2020. [Cited on page 78]

[184] D. W. Coit and A. E. Smith, “Solving the redundancy allocation problem
using a combined neural network/genetic algorithm approach,” Comput-
ers & operations research, vol. 23, no. 6, pp. 515–526, 1996. [Cited on pages

80 and 81]

[185] S. Kulturel-Konak, A. E. Smith, and D. W. Coit, “Efficiently solving
the redundancy allocation problem using tabu search,” IIE transactions,
vol. 35, no. 6, pp. 515–526, 2003. [Cited on pages 80, 81, and 250]

[186] Y.-C. Liang and A. E. Smith, “An ant colony optimization algorithm
for the redundancy allocation problem (rap),” IEEE Transactions on
reliability, vol. 53, no. 3, pp. 417–423, 2004. [Cited on pages 80 and 81]

[187] A. Jhumka, S. Klaus, and S. A. Huss, “A dependability-driven system-
level design approach for embedded systems,” in Design, Automation
and Test in Europe, pp. 372–377, IEEE, 2005. [Cited on pages 80 and 81]

[188] M. Glaß, M. Lukasiewycz, T. Streichert, C. Haubelt, and J. Teich, “Inter-
active presentation: Reliability-aware system synthesis,” in Proceedings
of the conference on Design, automation and test in Europe, pp. 409–414,
EDA Consortium, 2007. [Cited on pages 80 and 81]

REFERENCES 289

[189] T. Streichert, M. Glaß, C. Haubelt, and J. Teich, “Design space ex-
ploration of reliable networked embedded systems,” Journal of Systems
Architecture, vol. 53, no. 10, pp. 751–763, 2007. [Cited on pages 80 and 81]

[190] F. Reimann, M. Glaβ, M. Lukasiewycz, J. Keinert, C. Haubelt, and
J. Teich, “Symbolic voter placement for dependability-aware system syn-
thesis,” in Proceedings of the 6th IEEE/ACM/IFIP international confer-
ence on Hardware/Software codesign and system synthesis, pp. 237–242,
ACM, 2008. [Cited on pages 80 and 81]

[191] V. Izosimov, I. Polian, P. Pop, P. Eles, and Z. Peng, “Analysis and opti-
mization of fault-tolerant embedded systems with hardened processors,”
in Proceedings of the Conference on Design, Automation and Test in Eu-
rope, pp. 682–687, European Design and Automation Association, 2009.
[Cited on pages 80 and 81]

[192] I. Meedeniya, A. Aleti, and B. Buhnova, “Redundancy allocation in au-
tomotive systems using multi-objective optimisation,” in Symposium of
Avionics/Automotive Systems Engineering (SAASE09), San Diego, CA,
2009. [Cited on pages 80 and 81]

[193] M. Sheikhalishahi, V. Ebrahimipour, H. Shiri, H. Zaman, and M. Jei-
hoonian, “A hybrid ga–pso approach for reliability optimization in re-
dundancy allocation problem,” The International Journal of Advanced
Manufacturing Technology, vol. 68, no. 1-4, pp. 317–338, 2013. [Cited on

page 81]

[194] K. Delmas, R. Delmas, and C. Pagetti, “Automatic architecture hard-
ening using safety patterns,” in International Conference on Computer
Safety, Reliability, and Security, pp. 283–296, Springer, 2014. [Cited on

page 81]

[195] K. Delmas, R. Delmas, and C. Pagetti, “Smt-based synthesis of fault-
tolerant architectures,” in International Conference on Computer Safety,
Reliability, and Security, pp. 287–302, Springer, 2017. [Cited on page 81]

[196] M. A. Ardakan and M. T. Rezvan, “Multi-objective optimization of
reliability–redundancy allocation problem with cold-standby strategy us-
ing nsga-ii,” Reliability Engineering & System Safety, vol. 172, pp. 225–
238, 2018. [Cited on page 81]

290 REFERENCES

[197] S. Grüner, S. Malakuti, J. Schmitt, T. Terzimehic, M. Wenger, and
H. Elfaham, “Alternatives for flexible deployment architectures in in-
dustrial automation systems,” in 2018 IEEE 23rd International Confer-
ence on Emerging Technologies and Factory Automation (ETFA), vol. 1,
pp. 35–42, IEEE, 2018. [Cited on pages 81 and 87]

[198] T. Terzimehic, S. Voss, and M. Wenger, “Using design space exploration
to calculate deployment configurations of iec 61499-based systems,” in
2018 IEEE 14th International Conference on Automation Science and
Engineering (CASE), pp. 881–886, IEEE, 2018. [Cited on pages 81 and 87]

[199] A. Zaretalab, V. Hajipour, and M. Tavana, “Redundancy allocation
problem with multi-state component systems and reliable supplier se-
lection,” Reliability Engineering & System Safety, vol. 193, p. 106629,
2020. [Cited on page 81]

[200] P. van Stralen and A. D. Pimentel, “A SAFE approach towards early de-
sign space exploration of fault-tolerant multimedia mpsocs,” in Proceed-
ings of the 10th International Conference on Hardware/Software Code-
sign and System Synthesis, CODES+ISSS 2012, part of ESWeek ’12
Eighth Embedded Systems Week, Tampere, Finland, October 7-12, 2012
(A. Jerraya, L. P. Carloni, N. Chang, and F. Fummi, eds.), pp. 393–402,
ACM, 2012. [Cited on page 81]

[201] D. Benavides, P. Trinidad, and A. Ruiz-Cortés, “Automated reasoning on
feature models,” in International Conference on Advanced Information
Systems Engineering, pp. 491–503, Springer, 2005. [Cited on pages 81 and 83]

[202] K. Czarnecki, M. Antkiewicz, C. H. P. Kim, S. Lau, and K. Pietroszek,
“Model-driven software product lines,” in Companion to the 20th annual
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pp. 126–127, 2005. [Cited on page 82]

[203] J. White, D. C. Schmidt, E. Wuchner, and A. Nechypurenko, “Automat-
ing product-line variant selection for mobile devices,” in 11th Interna-
tional Software Product Line Conference (SPLC 2007), pp. 129–140,
IEEE, 2007. [Cited on pages 82 and 83]

REFERENCES 291

[204] C. Seidl, I. Schaefer, and U. Aßmann, “Deltaecore-a model-based delta
language generation framework,” Modellierung 2014, 2014. [Cited on pages

82 and 83]

[205] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella, “Delta-
oriented programming of software product lines,” in International Con-
ference on Software Product Lines, pp. 77–91, Springer, 2010. [Cited on

page 82]

[206] C. Pietsch, T. Kehrer, U. Kelter, D. Reuling, and M. Ohrndorf, “Sipl–a
delta-based modeling framework for software product line engineering,”
in 2015 30th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pp. 852–857, IEEE, 2015. [Cited on pages 82

and 83]

[207] A. Durán, D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés,
“Flame: a formal framework for the automated analysis of software
product lines validated by automated specification testing,” Software &
Systems Modeling, vol. 16, no. 4, pp. 1049–1082, 2017. [Cited on page 83]

[208] R. Schröter, S. Krieter, T. Thüm, F. Benduhn, and G. Saake, “Composi-
tional analyses of highly-configurable systems with feature-model inter-
faces,” Software Engineering 2017, 2017. [Cited on page 83]

[209] F. M. Kifetew, D. Muñante, J. Gorroñogoitia, A. Siena, A. Susi, and
A. Perini, “Grammar based genetic programming for software configu-
ration problem,” in International Symposium on Search Based Software
Engineering, pp. 130–136, Springer, 2017. [Cited on page 83]

[210] F. Schwägerl and B. Westfechtel, “Integrated revision and variation con-
trol for evolving model-driven software product lines,” Software and Sys-
tems Modeling, vol. 18, no. 6, pp. 3373–3420, 2019. [Cited on page 83]

[211] Z.-W. Jiang, H.-C. Chen, T.-C. Chen, and Y.-W. Chang, “Challenges
and solutions in modern vlsi placement,” in 2007 International Sym-
posium on VLSI Design, Automation and Test (VLSI-DAT), pp. 1–5,
IEEE, 2007. [Cited on pages 84 and 86]

292 REFERENCES

[212] R. Saraswat and B. Eames, “Finite domain constraints based delay aware
placement tool for fpoas,” in 2008 International Conference on Reconfig-
urable Computing and FPGAs, pp. 145–150, IEEE, 2008. [Cited on pages

84 and 86]

[213] X. Chen, G. Lin, J. Chen, and W. Zhu, “An adaptive hybrid genetic
algorithm for vlsi standard cell placement problem,” in 2016 3rd Inter-
national Conference on Information Science and Control Engineering
(ICISCE), pp. 163–167, IEEE, 2016. [Cited on pages 84 and 86]

[214] A. Goldie and A. Mirhoseini, “Placement optimization with deep rein-
forcement learning,” in Proceedings of the 2020 International Symposium
on Physical Design, pp. 3–7, 2020. [Cited on page 84]

[215] R. Saraswat, A finite domain constraint approach for placement and rout-
ing of coarse-grained reconfigurable architectures. Utah State University,
2010. [Cited on pages 84 and 86]

[216] J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, and S. Wright,
“Power awareness in network design and routing,” in IEEE INFOCOM
2008-The 27th Conference on Computer Communications, pp. 457–465,
IEEE, 2008. [Cited on pages 84 and 86]

[217] F.-Y. Chang, R.-S. Tsay, W.-K. Mak, and S.-H. Chen, “Mana: A shortest
path maze algorithm under separation and minimum length nanometer
rules,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 32, no. 10, pp. 1557–1568, 2013. [Cited on page

85]

[218] A. B. Kahng, L. Wang, and B. Xu, “Tritonroute: An initial detailed
router for advanced vlsi technologies,” in 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 1–8, IEEE, 2018.
[Cited on page 85]

[219] Y. Zhang and C. Chu, “Regularroute: An efficient detailed router with
regular routing patterns,” in Proceedings of the 2011 international sym-
posium on Physical design, pp. 45–52, 2011. [Cited on page 85]

[220] G. Liu, W. Zhu, S. Xu, Z. Zhuang, Y.-C. Chen, and G. Chen, “Effi-
cient vlsi routing algorithm employing novel discrete pso and multi-stage

REFERENCES 293

transformation,” Journal of Ambient Intelligence and Humanized Com-
puting, pp. 1–16, 2020. [Cited on page 85]

[221] K. Neubauer, P. Wanko, T. Schaub, and C. Haubelt, “Exact multi-
objective design space exploration using aspmt,” in 2018 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), pp. 257–
260, IEEE, 2018. [Cited on page 85]

[222] M.-K. Hsu, Y.-F. Chen, C.-C. Huang, S. Chou, T.-H. Lin, T.-C. Chen,
and Y.-W. Chang, “Ntuplace4h: A novel routability-driven placement
algorithm for hierarchical mixed-size circuit designs,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 33,
no. 12, pp. 1914–1927, 2014. [Cited on page 86]

[223] J. Lu, P. Chen, C.-C. Chang, L. Sha, J. Dennis, H. Huang, C.-C. Teng,
and C.-K. Cheng, “eplace: Electrostatics based placement using nes-
terov’s method,” in 2014 51st ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1–6, IEEE, 2014. [Cited on page 86]

[224] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “Replace: Advancing
solution quality and routability validation in global placement,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 38, no. 9, pp. 1717–1730, 2018. [Cited on page 86]

[225] Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z.
Pan, “Dreamplace: Deep learning toolkit-enabled gpu acceleration for
modern vlsi placement,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2020. [Cited on page 86]

[226] P. B. Kruchten, “The 4+ 1 view model of architecture,” IEEE software,
vol. 12, no. 6, pp. 42–50, 1995. [Cited on page 86]

[227] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and
R. Little, Documenting Software Architectures: Views and Beyond. Pear-
son Education, 2002. [Cited on page 86]

[228] J. Kramer and J. Magee, “Self-managed systems: an architectural chal-
lenge,” in 2007 Future of Software Engineering, pp. 259–268, IEEE Com-
puter Society, 2007. [Cited on page 86]

294 REFERENCES

[229] N. Arshad, D. Heimbigner, and A. L. Wolf, “Deployment and dynamic re-
configuration planning for distributed software systems,” in Proceedings.
15th IEEE International Conference on Tools with Artificial Intelligence,
pp. 39–46, IEEE, 2003. [Cited on page 86]

[230] J. Carlson, J. Feljan, J. Maki-Turja, and M. Sjodin, “Deployment mod-
elling and synthesis in a component model for distributed embedded sys-
tems,” in 2010 36th EUROMICRO Conference on Software Engineering
and Advanced Applications, pp. 74–82, IEEE, 2010. [Cited on page 86]

[231] O. Bushehrian, “Automatic object deployment for software performance
enhancement,” IET software, vol. 5, no. 4, pp. 375–384, 2011. [Cited on

page 86]

[232] J. White, B. Dougherty, C. Thompson, and D. C. Schmidt, “Scatterd:
Spatial deployment optimization with hybrid heuristic/evolutionary al-
gorithms,” ACM Transactions on Autonomous and Adaptive Systems
(TAAS), vol. 6, no. 3, p. 18, 2011. [Cited on page 86]

[233] A. Petricic, “Predictable dynamic deployment of components in embed-
ded systems,” in 2011 33rd International Conference on Software Engi-
neering (ICSE), pp. 1128–1129, IEEE, 2011. [Cited on page 86]

[234] S. Kugele, G. Pucea, R. Popa, L. Dieudonné, and H. Eckardt, “On the
deployment problem of embedded systems,” in 2015 ACM/IEEE Inter-
national Conference on Formal Methods and Models for Codesign (MEM-
OCODE), pp. 158–167, IEEE, 2015. [Cited on page 87]

[235] S. Zverlov, M. Khalil, and M. Chaudhary, “Pareto-efficient deployment
synthesis for safety-critical applications in seamless model-based devel-
opment,” in 8th European Congress on Embedded Real Time Software
and Systems (ERTS 2016), (TOULOUS, France), Jan. 2016. [Cited on

page 87]

[236] E. Ábrahám, F. Corzilius, E. B. Johnsen, G. Kremer, and J. Mauro,
“Zephyrus2: On the fly deployment optimization using smt and cp tech-
nologies,” in International Symposium on Dependable Software Engi-
neering: Theories, Tools, and Applications, pp. 229–245, Springer, 2016.
[Cited on page 87]

REFERENCES 295

[237] H. Javaid and S. Parameswaran, “A design flow for application specific
heterogeneous pipelined multiprocessor systems,” in Proceedings of the
46th Annual Design Automation Conference, pp. 250–253, 2009. [Cited

on page 89]

[238] E. L. de Souza Carvalho, N. L. V. Calazans, and F. G. Moraes, “Dynamic
task mapping for mpsocs,” IEEE Design & Test of Computers, vol. 27,
no. 5, pp. 26–35, 2010. [Cited on page 89]

[239] A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang, “Communication-
aware heuristics for run-time task mapping on noc-based mpsoc plat-
forms,” Journal of Systems Architecture, vol. 56, no. 7, pp. 242–255,
2010. [Cited on page 89]

[240] J. Huang, A. Raabe, C. Buckl, and A. Knoll, “A workflow for runtime
adaptive task allocation on heterogeneous mpsocs,” in 2011 Design, Au-
tomation Test in Europe, pp. 1–6, 2011. [Cited on page 89]

[241] L. Chen, T. Marconi, and T. Mitra, “Online scheduling for multi-core
shared reconfigurable fabric,” 2012 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 582–585, 2012. [Cited on page 89]

[242] C. Bolchini, M. Carminati, A. Miele, A. Das, A. Kumar, and B. Veer-
avalli, “Run-time mapping for reliable many-cores based on energy/per-
formance trade-offs,” in 2013 IEEE International Symposium on De-
fect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS),
pp. 58–64, IEEE, 2013. [Cited on page 89]

[243] A. M. Frisch, B. Hnich, I. Miguel, B. M. Smith, and T. Walsh, “Towards
csp model reformulation at multiple levels of abstraction,” 2002. [Cited

on pages 89 and 90]

[244] A. Weichslgartner, D. Gangadharan, S. Wildermann, M. Glaß, and
J. Teich, “Daarm: Design-time application analysis and run-time map-
ping for predictable execution in many-core systems,” in 2014 Interna-
tional Conference on Hardware/Software Codesign and System Synthesis
(CODES+ ISSS), pp. 1–10, IEEE, 2014. [Cited on pages 89 and 90]

[245] A. Goens, R. Khasanov, J. Castrillon, M. Hähnel, T. Smejkal, and
H. Härtig, “Tetris: a multi-application run-time system for predictable

296 REFERENCES

execution of static mappings,” in Proceedings of the 20th International
Workshop on Software and Compilers for Embedded Systems, pp. 11–20,
2017. [Cited on pages 89 and 90]

[246] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel, “Multiobjective optimiza-
tion and evolutionary algorithms for the application mapping problem
in multiprocessor system-on-chip design,” IEEE Transactions on Evolu-
tionary Computation, vol. 10, no. 3, pp. 358–374, 2006. [Cited on page

90]

[247] P.-E. Hladik, H. Cambazard, A.-M. Déplanche, and N. Jussien, “Solving
a real-time allocation problem with constraint programming,” Journal
of Systems and Software, vol. 81, no. 1, pp. 132–149, 2008. [Cited on page

90]

[248] A. N. Letchford, Q. Ni, and Z. Zhong, “An exact algorithm for a resource
allocation problem in mobile wireless communications,” Computational
Optimization and Applications, vol. 68, no. 2, pp. 193–208, 2017. [Cited

on page 90]

[249] J. Madsen and P. Bjorn-Jorgensen, “Embedded system synthesis un-
der memory constraints,” in Proceedings of the Seventh International
Workshop on Hardware/Software Codesign (CODES’99)(IEEE Cat. No.
99TH8450), pp. 188–192, IEEE, 1999. [Cited on pages 90 and 91]

[250] R. Szymanek and K. Kuchcinski, “Design space exploration in system
level synthesis under memory constraints,” in Proceedings 25th EU-
ROMICRO Conference. Informatics: Theory and Practice for the New
Millennium, vol. 1, pp. 29–36, IEEE, 1999. [Cited on pages 90 and 91]

[251] C. Le Pape et al., “Constraint-based scheduling: A tutorial,” 2005. [Cited

on page 91]

[252] K. Kuchcinski, “Constraints-driven scheduling and resource assignment,”
ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), vol. 8, no. 3, pp. 355–383, 2003. [Cited on page 91]

[253] J. Porter, G. Karsai, and J. Sztipanovits, “Towards a time-triggered
schedule calculation tool to support model-based embedded software de-
sign,” in Proceedings of the seventh ACM international conference on
Embedded software, pp. 167–176, ACM, 2009. [Cited on page 91]

REFERENCES 297

[254] A. Armando and S. E. Ponta, “Model checking of security-sensitive busi-
ness processes,” in International Workshop on Formal Aspects in Security
and Trust, pp. 66–80, Springer, 2009. [Cited on page 92]

[255] D. R. dos Santos and S. Ranise, “A survey on workflow satisfiability,
resiliency, and related problems,” CoRR, abs/1706.07205, 2017. [Cited

on page 92]

[256] W. M. van Der Aalst, A. H. Ter Hofstede, B. Kiepuszewski, and A. P.
Barros, “Workflow patterns,” Distributed and parallel databases, vol. 14,
no. 1, pp. 5–51, 2003. [Cited on page 93]

[257] J. Crampton and G. Gutin, “Constraint expressions and workflow satis-
fiability,” in Proceedings of the 18th ACM symposium on Access control
models and technologies, pp. 73–84, 2013. [Cited on page 93]

[258] J. Holderer, R. Accorsi, and G. Müller, “When four-eyes become too
much: a survey on the interplay of authorization constraints and work-
flow resilience,” in Proceedings of the 30th Annual ACM Symposium on
Applied Computing, pp. 1245–1248, 2015. [Cited on page 93]

[259] Q. Wang and N. Li, “Satisfiability and resiliency in workflow authoriza-
tion systems,” ACM Transactions on Information and System Security
(TISSEC), vol. 13, no. 4, pp. 1–35, 2010. [Cited on page 93]

[260] J. C. Mace, C. Morisset, and A. Van Moorsel, “Quantitative workflow
resiliency,” in European Symposium on Research in Computer Security,
pp. 344–361, Springer, 2014. [Cited on page 93]

[261] J. Crampton, G. Gutin, and D. Karapetyan, “Valued workflow satisfia-
bility problem,” in Proceedings of the 20th ACM Symposium on Access
Control Models and Technologies, pp. 3–13, 2015. [Cited on page 93]

[262] C. Bertolissi, D. R. Dos Santos, and S. Ranise, “Solving multi-objective
workflow satisfiability problems with optimization modulo theories tech-
niques,” in Proceedings of the 23nd ACM on Symposium on Access Con-
trol Models and Technologies, pp. 117–128, 2018. [Cited on page 93]

[263] J. Crampton, G. Gutin, and R. Watrigant, “On the satisfiability of work-
flows with release points,” in Proceedings of the 22nd ACM on Sympo-
sium on Access Control Models and Technologies, pp. 207–217, 2017.
[Cited on page 93]

298 REFERENCES

[264] T. Grimm, D. Lettnin, and M. Hübner, “A survey on formal verification
techniques for safety-critical systems-on-chip,” Electronics, vol. 7, no. 6,
p. 81, 2018. [Cited on pages 94 and 99]

[265] W. McCune, “Otter 3.3 reference manual,” arXiv preprint cs/0310056,
2003. [Cited on page 94]

[266] S. Owre, J. M. Rushby, and N. Shankar, “Pvs: A prototype verification
system,” in International Conference on Automated Deduction, pp. 748–
752, Springer, 1992. [Cited on page 94]

[267] D. Mentré, C. Marché, J.-C. Filliâtre, and M. Asuka, “Discharging proof
obligations from atelier b using multiple automated provers,” in Inter-
national Conference on Abstract State Machines, Alloy, B, VDM, and
Z, pp. 238–251, Springer, 2012. [Cited on page 94]

[268] J.-R. Abrial and J.-R. Abrial, The B-book: assigning programs to mean-
ings. Cambridge University Press, 2005. [Cited on page 94]

[269] F. Wiedijk, The seventeen provers of the world: Foreword by Dana S.
Scott, vol. 3600. Springer, 2006. [Cited on page 94]

[270] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “Nusmv 2: An opensource
tool for symbolic model checking,” in International conference on com-
puter aided verification, pp. 359–364, Springer, 2002. [Cited on pages xii

and 95]

[271] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta, “The nuxmv symbolic model
checker,” in International Conference on Computer Aided Verification,
pp. 334–342, Springer, 2014. [Cited on page 96]

[272] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,”
Formal methods for the design of real-time systems, pp. 200–236, 2004.
[Cited on page 96]

[273] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without bdds,” in International conference on tools and algorithms for
the construction and analysis of systems, pp. 193–207, Springer, 1999.
[Cited on page 96]

REFERENCES 299

[274] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ansi-c pro-
grams,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pp. 168–176, Springer, 2004. [Cited

on page 97]

[275] R. Mukherjee, D. Kroening, and T. Melham, “Hardware verification us-
ing software analyzers,” in 2015 IEEE Computer Society Annual Sym-
posium on VLSI, pp. 7–12, IEEE, 2015. [Cited on page 97]

[276] R. Sebastiani, “Lazy satisfiability modulo theories,” Journal on Satisfi-
ability, Boolean Modeling and Computation, vol. 3, no. 3-4, pp. 141–224,
2007. [Cited on page 97]

[277] R. Nieuwenhuis and A. Oliveras, “On sat modulo theories and optimiza-
tion problems,” in International conference on theory and applications
of satisfiability testing, pp. 156–169, Springer, 2006. [Cited on page 98]

[278] A. Cimatti, A. Franzén, A. Griggio, R. Sebastiani, and C. Stenico, “Sat-
isfiability modulo the theory of costs: Foundations and applications,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pp. 99–113, Springer, 2010. [Cited on page 98]

[279] Y. Li, A. Albarghouthi, Z. Kincaid, A. Gurfinkel, and M. Chechik, “Sym-
bolic optimization with smt solvers,” ACM SIGPLAN Notices, vol. 49,
no. 1, pp. 607–618, 2014. [Cited on page 98]

[280] N. Bjørner, A.-D. Phan, and L. Fleckenstein, “νz-an optimizing smt
solver,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pp. 194–199, Springer, 2015. [Cited

on page 98]

[281] D. Chatterjee and V. Bertacco, “Equipe: Parallel equivalence checking
with gp-gpus,” in 2010 IEEE International Conference on Computer
Design, pp. 486–493, IEEE, 2010. [Cited on page 98]

[282] C. Van Eijk, “Sequential equivalence checking based on structural sim-
ilarities,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 19, no. 7, pp. 814–819, 2000. [Cited on page 98]

[283] C. I. C. Marquez, M. Strum, and W. J. Chau, “Formal equivalence check-
ing between high-level and rtl hardware designs,” in 2013 14th Latin
American Test Workshop-LATW, pp. 1–6, IEEE, 2013. [Cited on page 99]

300 REFERENCES

[284] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN sympo-
sium on Principles of programming languages, pp. 238–252, 1977. [Cited

on page 99]

[285] C. Cadar, D. Dunbar, D. R. Engler, et al., “Klee: unassisted and auto-
matic generation of high-coverage tests for complex systems programs.,”
in OSDI, vol. 8, pp. 209–224, 2008. [Cited on page 99]

[286] P. Godefroid, M. Y. Levin, D. A. Molnar, et al., “Automated whitebox
fuzz testing.,” in NDSS, vol. 8, pp. 151–166, 2008. [Cited on page 99]

[287] D. Kästner, X. Leroy, S. Blazy, B. Schommer, M. Schmidt, and C. Fer-
dinand, “Closing the gap–the formally verified optimizing compiler com-
pcert,” in SSS’17: Safety-critical Systems Symposium 2017, pp. 163–180,
CreateSpace, 2017. [Cited on page 99]

[288] H. Foster, Applied assertion-based verification: An industry perspective.
Now Publishers Inc, 2009. [Cited on page 100]

[289] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal
methods: Practice and experience,” ACM computing surveys (CSUR),
vol. 41, no. 4, pp. 1–36, 2009. [Cited on page 100]

[290] G. Dodig-Crnkovic, “Scientific methods in computer science,” in Proceed-
ings of the Conference for the Promotion of Research in IT at New Uni-
versities and at University Colleges in Sweden, Skövde, Suecia, pp. 126–
130, 2002. [Cited on page 103]

[291] C. R. Kothari, Research methodology: Methods and techniques. New Age
International, 2004. [Cited on page 103]

[292] R. Kumar, Research methodology: A step-by-step guide for beginners.
Sage, 2018. [Cited on page 104]

[293] A. Cimatti, M. Dorigatti, and S. Tonetta, “Ocra: A tool for checking
the refinement of temporal contracts,” in 2013 28th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), pp. 702–
705, IEEE, 2013. [Cited on pages 112 and 135]

REFERENCES 301

[294] M. Gario and A. Micheli, “PySMT: a solver-agnostic library for fast
prototyping of smt-based algorithms,” in SMT workshop, vol. 2015, 2015.
[Cited on pages 113 and 187]

[295] D. Brand, “Verification of large synthesized designs,” in Proceedings of
1993 International Conference on Computer Aided Design (ICCAD),
pp. 534–537, IEEE, 1993. [Cited on page 124]

[296] D. Harris and S. Harris, Digital design and computer architecture. Mor-
gan Kaufmann, 2010. [Cited on page 153]

[297] R. Rudell, “Dynamic variable ordering for ordered binary decision dia-
grams,” in Proceedings of 1993 International Conference on Computer
Aided Design (ICCAD), pp. 42–47, IEEE, 1993. [Cited on pages 177 and 203]

[298] C. Barrett, A. Stump, C. Tinelli, et al., “The smt-lib standard: Version
2.0,” in Proceedings of the 8th international workshop on satisfiability
modulo theories (Edinburgh, England), vol. 13, p. 14, 2010. [Cited on page

187]

[299] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. Van Rossum,
S. Schulz, and R. Sebastiani, “The mathsat 3 system,” in International
Conference on Automated Deduction, pp. 315–321, Springer, 2005. [Cited

on page 187]

[300] F. Somenzi, “Cudd: Cu decision diagram package-release 2.4. 0,” Uni-
versity of Colorado at Boulder, 2012. [Cited on page 188]

[301] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems, pp. 337–340, Springer, 2008. [Cited on page 188]

[302] A. Hagberg and D. Conway, “Networkx: Network analysis with python.”
[Cited on page 188]

[303] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation
of a bdd package,” in 27th ACM/IEEE design automation conference,
pp. 40–45, IEEE, 1990. [Cited on page 189]

[304] A. Rauzy, “Mathematical foundations of minimal cutsets,” IEEE Trans-
actions on Reliability, vol. 50, no. 4, pp. 389–396, 2001. [Cited on page

190]

302 REFERENCES

[305] J. A. Abraham and D. P. Siewiorek, “An algorithm for the accurate reli-
ability evaluation of triple modular redundancy networks,” IEEE Trans-
actions on Computers, vol. 100, no. 7, pp. 682–692, 1974. [Cited on page

191]

[306] B. Bollig and I. Wegener, “Improving the variable ordering of obdds is
np-complete,” IEEE Transactions on computers, vol. 45, no. 9, pp. 993–
1002, 1996. [Cited on page 203]

[307] M. Fujita, Y. Matsunaga, and T. Kakuda, “On variable ordering of bi-
nary decision diagrams for the application of multi-level logic synthe-
sis,” in Proceedings of the European Conference on Design Automation.,
pp. 50–54, IEEE, 1991. [Cited on page 203]

[308] M. Beccuti, A. Bobbio, G. Franceschinis, and R. Terruggia, “A new sym-
bolic approach for network reliability analysis,” in IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN 2012),
pp. 1–12, IEEE, 2012. [Cited on pages xx and 218]

[309] G. Karypis and V. Kumar, “Multilevel algorithms for multi-constraint
graph partitioning,” in SC’98: Proceedings of the 1998 ACM/IEEE Con-
ference on Supercomputing, pp. 28–28, IEEE, 1998. [Cited on page 225]

[310] A. Kloeckner, “Pymetis: A python wrapper for metis.” https://
mathema.tician.de/software/pymetis/, 2007–2020. [Cited on page 235]

[311] D. W. Coit and A. E. Smith, “Reliability optimization of series-parallel
systems using a genetic algorithm,” IEEE Transactions on reliability,
vol. 45, no. 2, pp. 254–260, 1996. [Cited on page 250]

[312] Y.-C. Liang and A. E. Smith, “An ant system approach to redun-
dancy allocation,” in Proceedings of the 1999 Congress on Evolution-
ary Computation-CEC99 (Cat. No. 99TH8406), vol. 2, pp. 1478–1484,
IEEE, 1999. [Cited on page 250]

[313] D. W. Coit and J. C. Liu, “System reliability optimization with k-out-of-
n subsystems,” International Journal of Reliability, Quality and Safety
Engineering, vol. 7, no. 02, pp. 129–142, 2000. [Cited on page 250]

[314] D. W. Coit and A. Konak, “Multiple weighted objectives heuristic for
the redundancy allocation problem,” IEEE transactions on reliability,
vol. 55, no. 3, pp. 551–558, 2006. [Cited on page 250]

https://mathema.tician.de/software/pymetis/
https://mathema.tician.de/software/pymetis/

REFERENCES 303

[315] R. Tavakkoli-Moghaddam, J. Safari, and F. Sassani, “Reliability opti-
mization of series-parallel systems with a choice of redundancy strate-
gies using a genetic algorithm,” Reliability Engineering & System Safety,
vol. 93, no. 4, pp. 550–556, 2008. [Cited on page 250]

[316] A. Chambari, S. H. A. Rahmati, A. A. Najafi, et al., “A bi-objective
model to optimize reliability and cost of system with a choice of redun-
dancy strategies,” Computers & Industrial Engineering, vol. 63, no. 1,
pp. 109–119, 2012. [Cited on page 250]

[317] J. Safari, “Multi-objective reliability optimization of series-parallel sys-
tems with a choice of redundancy strategies,” Reliability Engineering &
System Safety, vol. 108, pp. 10–20, 2012. [Cited on page 250]

[318] M. A. Ardakan and A. Z. Hamadani, “Reliability optimization of series–
parallel systems with mixed redundancy strategy in subsystems,” Reli-
ability Engineering & System Safety, vol. 130, pp. 132–139, 2014. [Cited

on page 250]

[319] M. A. Ardakan, A. Z. Hamadani, and M. Alinaghian, “Optimizing bi-
objective redundancy allocation problem with a mixed redundancy strat-
egy,” ISA transactions, vol. 55, pp. 116–128, 2015. [Cited on page 250]

[320] H. Gholinezhad and A. Z. Hamadani, “A new model for the redundancy
allocation problem with component mixing and mixed redundancy strat-
egy,” Reliability Engineering & System Safety, vol. 164, pp. 66–73, 2017.
[Cited on page 250]

[321] A. E. Jahromi and M. Feizabadi, “Optimization of multi-objective redun-
dancy allocation problem with non-homogeneous components,” Comput-
ers & Industrial Engineering, vol. 108, pp. 111–123, 2017. [Cited on page

250]

[322] H. Kim, “Maximization of system reliability with the consideration
of component sequencing,” Reliability Engineering & System Safety,
vol. 170, pp. 64–72, 2018. [Cited on page 250]

[323] A. Peiravi, M. Karbasian, M. A. Ardakan, and D. W. Coit, “Reliability
optimization of series-parallel systems with k-mixed redundancy strat-
egy,” Reliability Engineering & System Safety, vol. 183, pp. 17–28, 2019.
[Cited on page 250]

304 REFERENCES

[324] P. P. Guilani, M. N. Juybari, M. A. Ardakan, and H. Kim, “Sequence
optimization in reliability problems with a mixed strategy and heteroge-
neous backup scheme,” Reliability Engineering & System Safety, vol. 193,
p. 106660, 2020. [Cited on page 250]

[325] M. Reihaneh, M. A. Ardakan, and M. Eskandarpour, “An exact algo-
rithm for the redundancy allocation problem with heterogeneous com-
ponents under the mixed redundancy strategy,” European Journal of
Operational Research, vol. 297, no. 3, pp. 1112–1125, 2022. [Cited on page

250]

[326] P. Nuzzo, H. Xu, N. Ozay, J. B. Finn, A. L. Sangiovanni-Vincentelli,
R. M. Murray, A. Donzé, and S. A. Seshia, “A contract-based method-
ology for aircraft electric power system design,” IEEE Access, vol. 2,
pp. 1–25, 2013. [Cited on page 264]

[327] N. Bajaj, P. Nuzzo, M. Masin, and A. Sangiovanni-Vincentelli, “Opti-
mized selection of reliable and cost-effective cyber-physical system archi-
tectures,” in 2015 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 561–566, IEEE, 2015. [Cited on page 264]

[328] “Python software foundation. Python language referen, version 3.9.
Available at https://www.python.org/.” [Cited on page 309]

[329] “PySMT, a solver-agnostic library for SMT Formulae manipulation and
solving. Available at https://pysmt.org/.” [Cited on page 309]

[330] “Networkx, a software for complex networks. Available at
https://networkx.org/.” [Cited on pages 309 and 314]

[331] “Pycharm, the Python IDE for Professional Developers. Available at:
https://www.jetbrains.com/pycharm/.” [Cited on page 311]

[332] “Metis, a family of graph and hypergraph partitioning software. Avail-
able at http://glaros.dtc.umn.edu/gkhome/views/metis/.” [Cited on page

314]

Appendix A

Software Dependency Graph

Our software tool is available in the following repository:

https://github.com/mistert0974/MORA.git

In the following, we report the dependency graph, and provide a brief
description of the dependencies of Python modules.

A.1 Software structure

A dependency graph is a data structure formed by a directed graph that de-
scribes the dependency of an entity in the system on the other entities of the
same system. Each node of the graph represent a software module, and it
points to the node (module) on which it depends.
The blue block in Figure A.1 represents the set of components composing
the redundant systems we deal with. You can find the sub-components of
the redundant patterns (like modules and voters), and stage, concretizer and
abstractor needed to build the CSAs of the Miter composition. The orange
block in A.1 represents the library including the templates of all redundant
patterns.
For the experimental evaluation, we built a library of examples and bench-
marks. In each test example file, the basic system architecture is defined, and

305

306 Appendix A. Software Dependency Graph

the library of redundant patterns available for each component is specified.
Then, the optimizer is invoked, choosing one of the three approaches available
for optimization: enumerative, symbolic, or hybrid.
Design objectives are specified in the module named "params.py". The module
"rel_tools.py" is the module where all formulae are built, while "rel_extractor.py"
implements the algorithm described in Section 6.3.7.
The module named "arch_node.py" contains the Class we created to manage
the nodes of the architectures. It includes the methods to define configuration
atoms, fault atoms, the CSA for each pair (Component,Pattern), the linking
constraints, compatibility constraints, and to perform the quantifier elimina-
tion to the entire architecture, retrieve the Boolean formula describing the
configuration, and map the probability to the fault atoms.

A.1. Software structure 307

Figure A.1: Dependency graph of the software tool implement-
ing the proposed method

Appendix B

Installation of Required Tools

In the following, we report a step-by-step guide for the installation of required
software tools and packages. It can help you avoid common pitfalls and errors
that can occur during software installation.

B.1 Software needed

The simulations were run under Ubuntu 20.04 operating system. To use the
tool implementing the method proposed in this work, the following software
tools and packages are needed:

• Python [328]

• PySMT [329]

• Solvers

• Networkx [330]

• Plotly

• Matplotlib

• Pygraphviz

309

310 Appendix B. Installation of Required Tools

• Pandas

• Metis

B.2 Installation Procedure

This section provides a step-by-step installation procedure of our software tool.

B.2.1 Installing Python

Python is an interpreted, object-oriented, high-level programming language.
We chose it because of its high-level built in data structures, combined with
dynamic typing and dynamic binding, make it very attractive for rapid appli-
cation development, as well as for use as a scripting or glue language to connect
existing components together. It has an easy to learn syntax, and supports
modules and packages, which encourages program modularity and code reuse.
And It can be freely distributed. Most versions of Ubuntu (including the 20.04
we used) come with Python pre-installed. Check your version of Python by
entering the following:

1 $ python3 --version

You can then update it by using the following commands (as illustrated in
Figure B.1).

1 $ sudo apt update

Figure B.1: Installing Python

Otherwise, you can install it by using the following command:

B.2. Installation Procedure 311

1 $ sudo apt install python3 .9

B.2.2 Installing Python IDE [OPT]

We suggest that you install an, which provides comprehensive facilities for
software development. We emlpoyed Pycharm [331], but you can use the one
you prefer. You can install it from command line:

1 $ sudo snap install pycharm - community --classic

Or using the graphical user interface provided by Ubuntu Software Center
(as illustrated in Figure B.2).

Figure B.2: Installing Pycharm

B.2.3 Installing pySMT

The package pySMT is a Python API that eases the work with SMT. You can
install it via the package management tool named pip as follows:

1 $ sudo apt install python3 -pip
2 $ pip install PySMT

As indicated in Figure B.3 remember to add the installation folder to the
path variable (see Figure B.4)

B.2.4 Installing Solvers

PySMT works with any SMT-LIB compatible solver, such as MathSAT, Z3,
and CUDD, which can be installed by using the following commands:

312 Appendix B. Installation of Required Tools

Figure B.3: Installing PySMT

Figure B.4: Adding PySMT to Path

1 $ pysmt install --msat
2 $ pysmt install --z3
3 $ pysmt install --bdd

By default, the solvers are downloaded, unpacked and built in your home
directory in the .smt_solvers folder. Compiled libraries and actual solver pack-
ages are installed in the relevant site-packages directory (e.g. virtual environ-
ment’s packages root or local user-site).
When installing MatSAT solver, you may encounter the following error:

../include/mathsat.h:32:10: fatal error: gmp.h: File o directory non esistente

You need to install first the multiprecision arithmetic library named libgmp3-
dev, by using the following commands:

1 $ sudo apt -get update -y
2 $ sudo apt -get install -y libgmp3 -dev

Afterwards, the installation of MatSAT via pySMT is successful.
Furthermore, at the moment of writing, to use MathSAT in Optimization
mode (i.e., OptiMathSAT) via pySMT, we had to install it manually, as we
had to use the Github branch named "optimization" (not merged in the master
yet). Extract the branch to a temporary folder, then from that folder, run the
setup.py using the direct path to the virtualenv python instance:

B.2. Installation Procedure 313

1 $ /home/ antonio / PycharmProjects / DSE_001 /venv/bin/ python3 setup .py install

If you had not created a virtualenv yet, please note that the main purpose
of virtual environments is to manage settings and dependencies of a particular
project regardless of other Python projects. This means that you can create
a project-specific isolated virtual environment. If you use PyCharm (or some
other IDE supporting it), you do not need to install a virtual environment
manually, because PyCharm makes it possible to use its virtualenv tool, as
illustrated in Figure B.5).

Figure B.5: Installing a virtual environment via PyCharm IDE.

Also CUDD Solver created some problems. To be precise, pySMT uses
RepyCUDD, a python wrapper for the CUDD BDD library. This is a fork
of PyCUDD (http://bears.ece.ucsb.edu/pycudd.html). The main purpose of
this fork is to provide pySMT a re-entrant wrapper for CUDD, so that some
features (like ADD and ZDD) not currently used by PySMT could be bro-
ken in RepyCUDD. We encountered some issues when installing CUDD Solver
via pySMT due to the missing installation of Swig, a software development
tool that gives script language like Python the ability to invoke C/C++ li-
braries. Be sure to install Swig before installing the CUDD solver via pySMT.
Instructions to install Swig on Ububtu follow.

1 $ sudo apt -get update -y
2 $ sudo apt -get install -y swig

You can check the solvers installed by using the following command (see
Figure B.6):

314 Appendix B. Installation of Required Tools

Figure B.6: Installed solver for pySMT

B.2.5 Installing other useful packages

Our software tool leverage some other useful packages, that can be easily
installed with pip or directly from Pycharm IDE.

• Networkx [330]: It is a Python package for the management of complex
networks. We used it to model and manipulate the system architecture.

• Plotly: a graphing library for Python

• Matplotlib: a library for creating visualizations in Python

• Pygraphviz: a Python package to create and edit graphs.

• Pandas: a open source tool for data analysis and manipulation, built
on top Python.

• pyMetis: a Python wrapper for the Metis graph partititioning software.

Pleas note that METIS [332] itself is not included with the pyMetis wrap-
per. You need to install it. The wrapper was designed for use with METIS 5
(we used the version 5.1.0), downloadable at the folloeing url:

http://glaros.dtc.umn.edu/gkhome/metis/metis/download.

These are some preliminary operations before installing the 5.0 release of
METIS. You need to need to have GNU make and CMake installed. Install
GNU make by running:

1 $ sudo apt -get install build - essential

B.2. Installation Procedure 315

Figure B.7: Installation of CMake

You can install CMake via the Ubuntu software manager:
Then, edit the file include/metis.h and specify the width (32 or 64 bits) of

the elementary data type used in METIS. This is controled by the IDXTYPE-
WIDTH constant. On a 32 bit architecture you can only specify a width of
32, whereas for a 64 bit architecture you can specify a width of either 32 or 64
bits.
From the Metis directory execute the following commands.

1 $ make config
2 $ make

Furthermore, the shared library is needed, and it is not enabled by default
by the configuration process. Turn it on with the following command:

1 $ make config shared =1

Hence:

1 $ sudo make install

If you cannot get sudo rights with your user, you cannot write to /usr/local/bin.
However, that might not even be necessary, as you can also install programs
somewhere else, and amend your $PATH environment variable, which tells
your shell where it can find executable programs.

In addition, the wrapper uses a few environment variables.

• METIS_DLL: probably, Python will raise the following run-time error:
’Could not load METIS dll: libmetis.so’. That is because Python is
unable to automatically locate the shared library, You can easily fix it
by setting the full path to it in this environment variable:

316 Appendix B. Installation of Required Tools

1 $ export METIS_DLL =/ usr/ local /lib/ libmetis .so

One last note: you can still get an error as follows: ’OSError: libmetis.so:
cannot open shared object file: No such file or directory’. You can fix it
by running:

1 $ ldconfig

Since a shared library can be used by others, this command is used to
created required links and cache and manage them.

• METIS_IDXTY PEWIDTH: see below.

• METIS_REALTY PEWIDTH: the sizes of the idx_t and real_t types
are not easily determinable at run-time, so they can be provided with
these environment variables.

	Front
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	List of Acronyms
	Introduction
	Context
	Problem Statement and Motivation
	Research Questions and Contribution
	Outline

	Background Notions
	Reliability Assurance of Complex Systems
	Basic Definitions
	Basic Concepts
	RAMS Standards
	Common Functions for Modeling Reliability
	Probability Distributions

	Failure Classification
	Failure Modes Analysis
	Concept of Redundancy
	Design Patterns for Reliability
	Hardware Patterns
	Software Patterns
	Hardware and Software Patterns

	Dealing with System Faults
	Dealing with Non-Functional Requirements

	Architecture-based reliability evaluation
	Combinatorial Models
	Reliability Block Diagrams
	Fault Tree Analysis
	Binary Decision Diagram

	State-based Models
	Markov Models
	Petri Net Models

	Simulation-based Approaches

	Formal Methods, Techniques, and Tools
	Computational Models
	Methods
	Modeling Languages
	Architectural Modeling

	Formal Methods for Specification
	Formal Methods for Verification
	Hints of Boolean Algebra
	Logic in a Nutshell
	Proof Tools
	Model Checking

	Formal Methods for Implementation
	How to Choose a Formal Method
	System classification
	System properties
	Summary

	System Optimization
	Single-objective Optimization
	Branch and Bound
	Mathematical Programming
	Local Search

	Multi-objective Optimization
	Linear Programming
	Meta-heuristic Search Algorithms
	Answer Set Programming
	Satisfiability
	Satisfiability Modulo Theories
	Optimization Modulo Theories

	Approaches to Design Space Exploration

	Related Work
	Approaches to the Design and Analysis of Fault-Tolerant Systems
	Design for Graceful Degradation
	Design for Robustness
	Design for Mixed Criticality
	Design for Reconfiguration
	Design for Self-x

	Formal Reliability Analysis of Redundant Architectures
	High Level Synthesis Optimization
	Configuration or System Assembly Problems
	Redundancy Allocation Problems
	Selection Problems
	Placement Problems
	Routing Problems
	Deployment Optimization Problems
	Resource allocation Problems
	Scheduling and Sequencing Problems
	Workflow Satisfiability Problems

	Approaches to Automatic Verification
	Automated Theorem Proving
	Symbolic Model Checking
	Bounded Model Checking
	SMT Model Checking
	OMT Model Checking
	Equivalence Checking
	Static Analysis
	Semiformal Verification
	Conclusion

	Proposed Method
	Research Methodology
	Research Problem
	Existing Limitations
	Problem Formulation

	Overview of the Approach
	Input and Output
	System Model
	Fault Model
	Objectives
	Redundant Patterns
	Design Constraints

	Contributions
	Challenges

	Reliability Assessment of Redundant Architectures
	Assumptions
	Modeling the System Architecture
	Modeling the Miter
	Minimal Cut-sets Computation
	Reliability Assessment
	Improvements and Refinements
	Minimal Cut Sets Computation via Predicate Abstraction
	Reducing the Number of Decision Variables
	Management of Uncertain Cases
	Caching Mechanism

	Work Extensions

	Design Space Exploration of Redundant Architectures
	DSE Features
	Design Space Representation
	Design Space Generation
	Exploration Method
	Evaluation
	Selection
	Refinement

	Constraint Solving Approach
	Formalization of Constraints

	Problem Encoding
	Modeling the System Architecture
	Construction of a Library of Redundant Patterns
	Fault Model
	Modeling the Redundant Architecture
	Generation of All Redundant Configurations.
	Modeling the Miter
	Reliability assessment
	Explicit Representation
	Symbolic Representation
	Semi-symbolic Representation

	Assessment of Other Non-functional Parameters
	Optimization
	Improvements and Refinements
	Minimal Cut-Sets Computation of Symbolic representations
	Choosing Optimal Variable ordering
	Using Binary Encoding to Encode Configuration Variables

	Experimental Evaluation of Exact Method
	Implementation Framework
	Implementation Details
	Running Example
	Explicit Method
	Symbolic Method
	Semi-symbolic Method

	Varying the Number of Objective Functions
	Varying the Number of Redundant Patterns
	Varying the Number of System Components
	Varying the BDD Ordering Strategy

	Benchmarks
	Experimental Setup
	Evaluation Criteria
	Experiments on Linear Architectures
	Experiments on Rectangular Architectures
	Experiments on Complex Architectures

	Results
	Assessment Performance
	Task 1: Abstraction
	Task 2: BDD-based Quantifier Elimination
	Task 3: BDD Traversing

	Optimization Performance

	Test problem
	Applicability and Limitations

	Near-Optimal Approximations
	Simplifying the Exact Method
	Graph Partitioning
	Kernighan–Lin Algorithm
	Multi-level Partitioning

	Partitioning the System Architecture
	Combining Solutions from Sub-architectures
	Pruning and Ranking for Large Problems
	Running Example

	Experimental Evaluation of Approximate Method
	Implementation details
	Benchmarks
	Experimental setup
	Evaluation criteria
	Experiments on complex architectures
	Example system with 8 components
	Example system with 10 components
	Example system with 14 components
	Example system with 24 components
	Example system with 69 components
	Strategy to determine the pruning threshold

	Results
	Test problem
	Applicability and Limitations

	Conclusions and Future Work
	Summary
	Models Assumptions, Limitations, and Applicability
	Exact or Approximate Method?
	Application to real systems
	Remarks
	Future work

	References
	Appendix Software Dependency Graph
	Software structure

	Appendix Installation of Required Tools
	Software needed
	Installation Procedure
	Installing Python
	Installing Python IDE [OPT]
	Installing pySMT
	Installing Solvers
	Installing other useful packages

