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a b s t r a c t 

The neural activity of human brain changes in healthy individuals during aging. The most frequent variation in 

patterns of neural activity are a shift from posterior to anterior areas and a reduced asymmetry between hemi- 

spheres. These patterns are typically observed during task execution and by using functional magnetic resonance 

imaging data. In the present study we investigated whether analogous effects can also be detected during rest and 

by means of source-space time series reconstructed from electroencephalographic recordings. By analyzing oscil- 

latory power distribution across the brain we indeed found a shift from posterior to anterior areas in older adults. 

We additionally examined this shift by evaluating connectivity and its changes with age. The findings indicated 

that inter-area connections among frontal, parietal and temporal areas were strengthened in older individuals. A 

more complex pattern was shown in intra-area connections, where age-related activity was enhanced in parietal 

and temporal areas, and reduced in frontal areas. Finally, the resulting network exhibits a loss of modularity with 

age. Overall, the results extend to resting-state condition the evidence of an age-related shift of brain activity from 

posterior to anterior areas, thus suggesting that this shift is a general feature of the aging brain rather than being 

task-specific. In addition, the connectivity results provide new information on the reorganization of resting-state 

brain activity in aging. 
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. Introduction 

Healthy aging is associated with an average decline of cognitive

erformance ( Fabiani, 2012 ; Hedden and Gabrieli, 2004 ), which in

urn correlates with changes in brain activation patterns ( Eyler et al.,

011 ; Grady, 2012 , Salallonch et al., 2015 ). Significant work has quan-

ified the effects of cognitive healthy aging in terms of neurophys-

ological signals: after seminal studies relying on positron emission

omography (PET) ( Grady et al., 1994 ; Reuter-Lorenz et al., 2000 ;

abeza et al., 1997 ), extensive research has investigated aging effects

n neuronal activity, exploiting functional magnetic resonance imag-

ng (fMRI) ( Cabral et al., 2017 ; Hrybouski et al., 2021 ; Escrichs et al.,

021 ) (see Sugiura (2016) for a recent review) and, less frequently, elec-

roencephalography (EEG) ( Knyazev et al., 2015 ; Fleck et al., 2017 ) and

agnetoencephalography (MEG) ( Tibon et al., 2021 ). 

Often reported in the literature is an increased prefrontal activity

n older adults during task execution ( Festini et al., 2018 ; Turner and

preng, 2012 ; but see Grady, 2012 and Salallonch et al., 2015 ). Several

odels have been proposed to explain the age-related prefrontal over-

ctivation. For example, the hemispheric asymmetry reduction in older

dults (HAROLD) model ( Cabeza, 2002 ) hypothesizes that, when execut-
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ng a given cognitive task, the activation of prefrontal areas is less later-

lized (more bilateral) in older adults with respect to young individuals

 Cabeza, 2002 ; Learmonth et al., 2017 ). Indeed, experimental evidence

rom fMRI and PET studies on older adults showed more homogeneous

ctivity across hemispheres during tasks that involved several differ-

nt high-level cognitive functions, such as episodic memory retrieval,

orking memory, perception and inhibitory control (see Dolcos et al.,

002 for a review). 

The posterior-anterior shift in aging (PASA) model ( Davis et al.,

008 ; Dennis and Cabeza, 2008 ), predicts decreased activation of poste-

ior areas and concurrent increased activation of anterior areas in older

dults compared to young controls. The model suggests that the frontal

ver-engagement occurs in response to an age-related decline in func-

ional integrity of posterior regions ( Davis et al., 2008 ). The PASA ac-

ount is supported by observations in several cognitive domains (e.g.,

isual attention, working memory, episodic memory) thus suggesting

hat the posterior-to-anterior shift is not restricted to a specific cognitive

unction ( Festini et al., 2018 ), and potentially also affects activity at rest.

ndeed, some evidence of a PASA-like effect in resting-state fMRI exists

 McCarthy et al., 2014 ; Ren et al., 2019 ), suggesting that the mecha-

ism underlying the posterior-to-anterior shift can be closely linked not
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nly to functional (i.e., task-related), but also to structural changes in

he aging brain. 

Several studies have provided support to the HAROLD and PASA

odels ( Schneider-Garces et al., 2010 ; Cabeza and Dennis, 2012 ;

nsado et al., 2012 ; Li et al., 2015 ; Tagliabue et al., 2022 ). Nonetheless,

 thorough understanding of the mechanisms underlying higher frontal

ctivations in older adults is lacking ( Eyler et al., 2011 ; Morcom and

ohnson, 2015 ). In particular, it is not clear whether the increase in ac-

ivity in anterior areas is due to increased activity within those areas or

o a higher engagement of those areas in a network, i.e. an increased

onnectivity between regions. In support to the latter hypothesis, an

ncreased connectivity between different functional networks was in-

eed detected in older adults during the execution of different tasks

 Rieck et al., 2021 ; Geerligs et al., 2014 ; Chan et al., 2014 ). 

In light of these issues, the goal of the present study is to investi-

ate whether the age-related changes predicted by PASA and HAROLD

ccounts can be verified by leveraging the use of resting-state electro-

hysiological (EEG) recordings and of connectivity measures. 

Most literature, as well as related theoretical models, focuses on task-

elated changes. Observed changes are, thus, interpreted by consider-

ng the cognitive function engaged by the task and the performance

utcome. Nevertheless, some studies have investigated the effects of

ge on brain activation at rest and found a general age-related de-

reased activity in specific resting-state networks ( Andrews-Hanna et al.,

007 ; Damoiseaux et al., 2008 ; Geerligs et al., 2015 ; Song et al., 2014 ;

alsters et al., 2013 ), as well as less distinct functional separation be-

ween those networks ( Geerligs et al., 2015 ; Song et al., 2014 ). Resting-

tate measurements have the advantage of probing neural activity that is

ndependent of any specific task, and thus allow researchers to test more

eneral assumptions concerning age-induced changes of brain activa-

ion. As the PASA and HAROLD models are supported by observations

overing many cognitive domains, the models should, in principle, re-

ect general effects of aging on brain activity. Therefore, the age-related

nterior shift and/or reduced lateralization of neural activity should be

etected even during a condition of wakeful rest. 

The models mentioned above were developed by relying heav-

ly on fMRI observations. However, the blood-oxygen-level-dependent

BOLD) signal probed by fMRI is an indirect measure of neural ac-

ivity and, because it depends on vascular topography, it might be

ffected by age-related alterations of the cerebral vascular structure,

eading to spurious connectivity assessments ( D’Esposito et al., 2003 ;

illary and Biswal, 2007 ). Additionally, fMRI has a low temporal res-

lution, which does not enable a detailed view of the time course

f brain activity. In contrast, EEG and MEG are direct measures of

eural activity, and have a higher temporal resolution than fMRI. In-

eed, EEG/MEG time series analysis techniques, such as entropy-related

 Shumbayawonda et al., 2017 ; Mcintosh et al., 2014 ) and connectivity

 Bowyer, 2016 ; Crouch et al., 2018 ; Bastos and Schoffelen, 2016 ) mea-

ures can provide a more accurate picture of the dynamics of commu-

ication within brain regions with respect to BOLD signals, which are

imited by the slow temporal fluctuations of the hemodynamic response

 Rossini et al., 2019 ). 

Some EEG and MEG studies have investigated age-related changes

n power and frequency content. For example, a recent MEG study

 Tibon et al., 2021 ) analyzed fast (below 1 second) transient dynam-

cs of resting-state networks and showed that such dynamics depend

n age. In this framework, an age-related decrease in slow-wave power

as been repeatedly found across the whole scalp, both at rest and dur-

ng task execution ( Vlahou et al., 2014 , Cummins and Finnigan, 2007 ,

eirer et al., 2011 ). The analysis of power provides information analo-

ous to the one extracted from fMRI: indeed, as a rough approximation,

MRI activations can be considered proportional to local neural activity

 Heeger and Ress, 2002 ; Logothetis et al., 2001 ), and thus, on aver-

ge, to EEG power. However, the mechanisms underlying power alter-

tion patterns in aging remain unknown ( Tatti et al., 2016 ; Finnigan and

obertson, 2011 ). Specifically, power measures do not allow for a dis-
2 
inction between intra-area versus inter-area changes in neural activity.

unctional connectivity provides exactly this information. 

Several measures are used to estimate connectivity. Here we focus

n two methods: the “Cross-correlation Time scale of Observability ”

CTO) ( Perinelli et al., 2018 ) and mutual information (MI) ( Cover and

homas, 2006 ). The CTO method is based on the evaluation of running-

indow cross-correlations, whose statistical significance is assessed via

urrogate-based estimation, a data-driven method to construct null-

ypothesis distributions ( Schreiber and Schmitz, 2000 ). By virtue of

hese two key elements, this method deals well with non-stationary and

on-linear signals, as in the case of resting-state electrophysiological sig-

als ( Perinelli et al., 2018 ). Moreover, given the algorithm implemented

n the surrogate generation step, CTO is also robust against spurious cor-

elations solely due to the long-range autocorrelation that might char-

cterize the data ( Perinelli et al., 2021 ). The CTO method has been pre-

iously used to identify and characterize brain networks out of MEG

ecordings, showing for example that the time scale of observability of

 link depends, on average, on the logarithm of the physical distance

etween the nodes ( Perinelli et al., 2019 ; Castelluzzo et al., 2021 ). 

Mutual information (MI) is a metric that quantifies statistical de-

endence between two distributions by relying on the information-

heoretical concept of entropy ( Cover and Thomas, 2006 ). Due to

ts generality and its straightforward interpretation as a measure

f connectivity strength, MI has been widely used in neuroscience

 Rossini et al., 2019 ; Quian Quiroga and Panzeri, 2009 ; Timme et al.,

014 ; Jeong et al., 2001 ). It was recently shown that the results of the

TO method and MI in the analysis of connectivity are consistent, and

he two methods can be considered as complementary ( Perinelli et al.,

021 ). Indeed, both methods are non-parametric and yield non-directed

stimates of connectivity that are, on average, proportional. The rela-

ionship between the two, however, breaks down in the limit of strong

ross-correlation, because the CTO method “saturates ” to its maximum

etectable connectivity. Moreover, it was shown that the CTO method is

ore conservative —and thus more robust —than MI in detecting weak

ross-correlations ( Perinelli et al., 2021 ). Consequently, the two meth-

ds were used here to probe two complementary connectivity regimes,

amely the (strong) intra-area connectivity (MI), and the (weaker) inter-

rea connectivity (CTO). 

The assessment of connectivity also allowed us to apply metrics

rom graph theory to further characterize the observed networks. A

ew previous EEG studies ( Knyazev et al., 2015 ; Gaál et al., 2010 ;

angrossi et al., 2021 ) on resting-state connectivity showed that older

dults exhibit a higher amount of random connections, as reflected by

hanges in modularity (a graph-theoretical measure of network organi-

ation, see Sporns and Betzel, 2016 , Newman, 2006 ). Changes in mod-

larity are considered a biomarker of cognitive plasticity and cognitive

erformance ( Gallen and D’Esposito, 2019 ). For instance, higher mod-

larity is often associated with better performance or higher plastic-

ty (following training) in young and older adults ( Arnemann et al.,

015 ; Baniqued et al., 2018 ), while a general decrease in modularity

ith age has been observed ( Knyazev et al., 2015 ; Geerligs et al., 2015 ;

ong et al., 2014 ). 

To investigate whether the age-related changes predicted by PASA

nd HAROLD accounts can be verified by means of EEG and in the ab-

ence of any task, here we analyzed the “Leipzig Study for Mind-Body-

motion Interactions ” (LEMON) public database ( Babayan et al., 2019 ),

hich contains EEG resting-state recordings of both young and older

dults. The use of resting-state recordings allowed us to test models of

eurocognitive aging in a more general framework, independently of

ny specific task. We chose to focus on the PASA and HAROLD models,

s they provide specific indication on how spatial activation patterns

re modulated by age. To evaluate the relative contribution of intra-

nd inter-area neural changes related to aging, and in addition to the

ore traditional measures of power, we focused on connectivity mea-

ures and we further characterized brain networks using a modularity

ndex. While EEG and MEG studies of age-related changes in power and
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requency content are often limited to analysis in sensor-space, here we

econstructed time series of brain activity in source space. This allowed

s to achieve a more accurate assessment of correlations between brain

ctivations ( Van de Steen et al., 2019 ; Brunner et al., 2016 ). 

We expected significant differences in power distributions between

ge groups either along the posterior-anterior direction (i.e. more power

n frontal areas of older adults) or across hemispheres (i.e. reduced

symmetry of power distribution for older adults), corresponding to the

redictions of the PASA and HAROLD models, respectively. In addi-

ion, as stated above, we expected the MI and CTO measures to pro-

ide additional, crucial information on the contribution of intra-area

MI) and inter-area (CTO) connectivity to the resulting (if present) an-

erior overactivation in older adults. Consistently with previous works

 Knyazev et al., 2015 ; Geerligs et al., 2015 ; Song et al., 2014 ), we ex-

ected that changes in network structure highlighted by the connectiv-

ty analysis would also be characterized by a lower modularity, i.e. a

less segregated ” network arrangement ( Gallen and D’Esposito, 2019 ),

n older with respect to young adults. 

The dataset analyzed in the present study contains resting-state

ecordings in two conditions, namely eyes-closed (EC) and eyes-open

EO). Previous EEG resting-state studies showed that brain activity is

verall reduced in EO with respect to EC, although this difference is

ot modulated by age ( Barry and De Blasio, 2017 ; Stacey et al., 2021 ).

herefore, we did not expect differences between the two conditions in

he two age groups. In addition, while the HAROLD and PASA models

ave specific hypotheses on an age-related reorganization of brain activ-

ty, they have been developed and tested on task-evoked activity; there-

ore, they do not allow for differential hypotheses between EO and EC

onditions. Nonetheless, to allow for a more general and thorough inves-

igation, we decided to analyze both conditions (EC/EO), without merg-

ng them together. Because of restrictions due to the methodology (see

ethods), we focused the analyses on the theta, alpha, and beta bands,

ften considered in aging studies ( Puligheddu et al., 2005 ; Stacey et al.,

021 ; Chow et al., 2022 ). Increased alpha band during resting-state

n young adults has been related to reduced functional connectivity

ithin visual and attentional systems, and considered as indicative of

nhanced functional inhibition ( Chang et al., 2013; Scheeringa et al.,

008 ; Tagliazucchi et al., 2012 ). Given the hypothesized HAROLD and

ASA-related modulations of power distribution, a reduction of poste-

ior alpha power in older adults could in turn result in higher connec-

ivity at rest compared to younger individuals. In contrast, significantly

ess is known about the functional role of theta- and beta-band activ-

ty during rest ( Moosmann et al., 2003 ; Laufs et al., 2003 ; Jensen et al.,

005 ; Scheeringa et al., 2008 ). For this reason, we did not make specific

redictions on the functional significance of age-related changes in these

wo frequency bands and their investigation was mainly explorative. 

. Methods 

.1. Dataset and preprocessing 

EEG recordings of 30 young (aged 25–35, 19 males, 11 females) and

0 older adults (aged 60–80, 19 males, 11 females) were selected from

he LEMON public database ( Babayan et al., 2019 ). The data recording

rotocol was approved by the ethics committee at the medical faculty

f the University of Leipzig (reference number 154/13-ff) and was in

ccordance with the Declaration of Helsinki. The raw EEG session con-

ists of a resting-state acquisition of 16 segments of interleaved eyes-

losed (EC) and eyes-open (EO) (8 segments for each condition) be-

ween 60 s and 90 s long. Among them, we selected three EC and three

O segments, corresponding to the segments between the third and the

ighth (both included), to discard any initial transient. The length of

ach segment was trimmed to 60 s by symmetrically removing data

oints from both ends after the preprocessing stages. EEG signals were

ecorded via a 62-channels ActiCAP with active electrodes, with stan-

ard 10–20 placement ( Oostenveld and Praamstra, 2001 ) and sampled
3 
hrough a BrainAmp MR plus amplifier in an electrically shielded and

ound-attenuated room. Raw recordings were bandpass-filtered between

.015 Hz and 1 kHz and sampled at a 2.5 kHz rate. Details on data ac-

uisition protocol are provided in Babayan et al. (2019) . 

Preprocessing of raw EEG data was carried out by means of custom

ATLAB code relying on routines provided within the FieldTrip toolbox

 Oostenveld et al., 2011 ). Resting-state recordings are characterized by

 lower signal-to-noise ratio compared to task-evoked data, also due to

he fact that averaging of multiple trials is impossible. Noise contam-

nation due to muscular activity and saccades, which typically affects

he high-frequency part of the spectrum ( Muthukumaraswamy, 2013 ;

uval-Greenberg et al., 2008 ), might be spuriously identified as of neu-

al origin ( Pope et al., 2009 ). For these reasons, as typically done in

esting-state EEG, we filtered the data with a low-pass filter at 40 Hz

 Michel and Brunet, 2019 ), at the cost of excluding the gamma band

rom our analysis. The exclusion of the delta band, on the other hand,

tems from time scale issues as discussed in Section 2.3 . Besides a 40 Hz

ow-pass filter, recordings were filtered through a 0.1 Hz high-pass fil-

er and a 50 Hz notch filter (2 Hz width). All filters were implemented

s fourth-order Butterworth two-pass filters. The notch filter is required

ecause of the insufficient attenuation of the 50 Hz line noise provided

y the low-pass filter (approximately 0.15, or − 16 dB). Upon filtering,

ata were down-sampled to a 250 Hz sampling rate. Poor quality chan-

els, labeled as such in the original dataset, were interpolated (spherical

pline interpolation of neighboring channels). To remove cardiac, mus-

ular and eye-movement artifacts, an independent component analysis

as carried out by running the “fastica ” algorithm available in FieldTrip:

he temporal features and spatial topology of the resulting components

ere visually examined to reject artifactual ones. Each subject’s record-

ng was bandpass-filtered in three frequency bands ([4 Hz, 8 Hz] (theta

and), [8 Hz, 14 Hz] (alpha band), and [14 Hz, 30 Hz] (beta band), ob-

aining three time series for each subject. These time-series were then

econstructed in source space as described in the following section. 

The choice of the boundaries of the three bands complies with stan-

ard frequency values that are commonly considered in the literature

o define the three bands ( Balsters et al., 2013 ; Scally et al., 2018 ;

oezzi et al., 2019 ). Aging is known to produce a slowing of the EEG

hythms, namely a reduction of the frequency of brain oscillations, al-

hough the functional meaning of each band is assumed to remain the

ame, irrespective of age ( Chiang et al., 2011 ; Scally et al., 2018 ). As far

s the present analysis is concerned, the potential age-related slowing of

hythms is not expected to significantly change our results. Indeed, the

nalysis does not rely on the frequency or amplitude of spectral peaks,

ut rather on time series filtered within the whole band. By virtue of the

ime-domain (rather than frequency-domain) connectivity methods that

ere considered here (see “Power and connectivity analysis ” below), a

hift in rhythm frequency would not significantly alter the connectiv-

ty estimates, provided that the driving frequency of the oscillation is

till contained within the band limits. Nevertheless, to ensure that the

and frequency limits selected here were reliable for both age groups we

stimated the individual theta, alpha and beta peak frequency of each

articipant, and evaluated whether each frequency peak belonged to the

espective band limits as defined here. Details concerning this validation

rocedure, as well as the related results, are reported in the Supplemen-

ary Materials. The results show that all participants’ peak frequencies

ell within the respective band limits (Supplementary Materials, Figure

4). 

.2. Source reconstruction 

Source reconstruction was carried out by exploiting the individual

reprocessed anatomical MRI scans that are available within the LEMON

atabase. For each subject, an individual head model was generated

y segmenting the anatomical MRI to provide scalp, skull and brain

eshes. Thereupon, a source model consisting of current dipoles was

uilt through a nonlinear inverse-warp of a template 10 mm-resolution
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rid (3294 vertices, MNI coordinates system) onto the subject brain

esh. Dipole orientations were set as unconstrained. Upon manual

lignment of sensor positions onto the individual head mesh and, subse-

uently, their projection onto the scalp, a forward model was computed.

he reconstruction of current dipoles was performed via the exact low-

esolution electromagnetic tomography algorithm ( “eLoreta ”) ( Pascual-

arqui et al., 2011 ). 

Of the 3294 vertices included in the source model, we selected 24

odes, following the reference atlas by Glasser et al. (2016) . Within each

f four brain areas (occipital, parietal, temporal, and frontal) three re-

ions were selected: V1, V6A, V4 for occipital; Pfm, PF, STV for parietal;

TGa, TE1a, TA2, for temporal, and 10d, 10pp, p10p for frontal. Each

egion was selected both in the left and in the right hemisphere, thus

ielding a total of 24 regions. The closest (lowest Euclidean distance)

ertex of the source model to the centroid of each region was chosen as

he node representing that region, and the time series of the source cur-

ent dipole amplitude, reconstructed at that node, was extracted. The

hole procedure was repeated for the three frequency bands (theta, al-

ha, beta) and for the two conditions (EC, EO): each band-condition

ombination yielded three time series, corresponding to the three seg-

ents selected from the preprocessed recordings (see above), therefore

iving a total of 18 time series for each subject. These time series in

ource space were used as starting point to extract power density distri-

utions and connectivity patterns. 

.3. Power and connectivity analysis 

.3.1. Area-related power 

To investigate differences in power distribution across the brain be-

ween young and older adults, we extracted the power spectral density

PSD) associated to a given area as follows. For each node —for a given

ubject, condition, and frequency band —we calculated the average PSD

stimated on the three available segments. The sum of the power values

orresponding to the three nodes belonging to a given area were nor-

alized with respect to the total power in all nodes. In this way, any

ultiplicative bias affecting power due to imprecise source reconstruc-

ion was ruled out. 

.3.2. Network connectivity 

To investigate network dynamics underlying differences in power

istribution between young and older adults, we estimated source-space

onnectivity using two different methods, namely the CTO method and

I. While the CTO method is used to evaluate inter-area connectivity,

I is applied to estimate intra-area connectivity. This choice stems from

he observation that the CTO method is better suited in a “weak ” connec-

ivity regime, such as the one characterizing inter-area links, for which

I yields small values that are comparable with the background noise.

n the contrary, MI is more suited in a “strong ” connectivity regime, like

n the case of intra-area connectivity, for which the CTO method satu-

ates. Data supporting this approach of using two different methods for

wo different connectivity regimes, are presented in the Supplementary

aterials. 

.3.3. CTO method 

Fig. 1 schematically shows the main steps of the CTO method (de-

ailed descriptions of the method are provided in Perinelli et al. (2018) ,

erinelli & Ricci (2019) , Perinelli et al. (2021) ), which consist of: 1)

alculation of a cross-correlation diagram; 2) estimation of p-values as-

ociated to each element of the cross-correlation diagram via surrogate

eneration; 3) calculation of the efficiency function; 4) assessment of

he time scale of observability 𝑊 . 

1 Calculation of a cross-correlation diagram. Given two time series, Pear-

son cross-correlation coefficients 𝑟 ( 𝑤, 𝑘 ) are computed over running

windows of width 𝑤 at position 𝑘 along the time series. The window

width 𝑤 is an integer multiple of a “base ” window 𝑤 = 0 . 08s up
0 

4 
to a maximum width 𝑤 max = 10s , yielding a matrix of 125 × 626
elements. The two parameters 𝑤 0 , 𝑤 max are chosen according to

the sampling period and length of the available time series, respec-

tively. Specifically, 𝑤 0 should be at least about one order of mag-

nitude larger than the sampling period (here equal to 0.004 s), to

have enough data points to compute cross-correlation coefficients

( Perinelli et al., 2018 ). On the other hand, 𝑤 max should be smaller

than the length of the time series (here equal to 60 s), but large

enough to cover the time scale of interest. The choice of 𝑤 0 has

consequences on the frequencies that can be reliably analyzed by

the CTO method. Specifically, the frequency components that con-

tribute to a given cross-correlation coefficient are those at frequen-

cies that are integer multiples of 1∕ 𝑤 ( Perinelli et al., 2018 ): while

high-frequency components essentially contribute for all values of

𝑤 lower frequencies require larger windows to be correctly probed.

For instance, all windows having width less than 0.5 s would not in-

clude any component from signals at 2 Hz and below (a significant

part of the delta band), and the corresponding correlation coefficient

would be a biased representation of that frequency band. The effect

is more critical for the edge of the delta band: signals at 1 Hz would

only be probed at 𝑤 larger than 1 s, and signals at 0.1 Hz would not

be probed for any 𝑤 considered here. For this reason, in the present

analysis we decided to exclude the delta band. 

2 Estimation of p-values associated to each element of the cross-correlation

diagram. The significance of each element of the cross-correlation di-

agram is assessed through a surrogate-based significance estimation

( Schreiber and Schmitz, 2000 ; Theiler et al., 1992 ). Surrogate time

series share specific statistical properties with the generating, “orig-

inal ” one, but are otherwise stochastic, and allow for data-driven

estimations of unknown null-hypothesis distributions. For each one

of the two sequences under analysis, 𝑀 = 200 surrogate sequences

were generated via the iterative amplitude-adjusted Fourier trans-

form algorithm ( Schreiber and Schmitz, 1996 ), which preserves the

amplitude distribution and the power spectrum (and, consequently,

the autocorrelation) of the given original sequence but not its time-

correlation. For each pair of surrogate sequences, a surrogate cross-

correlation diagram 𝑟 𝑖 ( 𝑤, 𝑘 ) is computed ( 𝑖 = 1 , 𝑀). Given 𝑤 and 𝑘 ,

the rank of the element 𝑟 ( 𝑤, 𝑘 ) of the “original ” diagram among the

𝑀 elements of the surrogate diagrams sorted in descending order

provides, once divided by 𝑀 , the related p-value. By repeating this

evaluation over all 𝑤 and 𝑘 , a p-value diagram 𝑝 ( 𝑤, 𝑘 ) of 125 × 626
elements is obtained, where each element represents the significance

of the correlation of the original time series at position 𝑘 for a win-

dow of width 𝑤 . 

3 Calculation of the efficiency function. The information contained in

a p-value diagram is then further condensed by computing the ef-

ficiency function 𝜂( 𝑤 ) . Considering a significance threshold for p-

values at 0.05, the efficiency 𝜂( 𝑤 ) is defined, at a given window

width 𝑤 , as the fraction of elements of 𝑝 ( 𝑤, 𝑘 ) larger than 0.05, that is

the elements that detect a significant cross-correlation between the

two original time series. The efficiency 𝜂( 𝑤 ) is bounded between 0

and 1: the larger the efficiency, the higher the probability that, given

a window width 𝑤 , a significant cross-correlation is observed at a

given point along the two corresponding time series. In other words,

𝜂( 𝑤 ) quantifies how efficient is a given window width 𝑤 in detecting

cross-correlation between a pair of time series. In the present work,

before evaluating the efficiency of a given pair of nodes, the three

p-value diagrams derived from the three segments available for each

band and condition (see above) were concatenated to provide a sin-

gle efficiency function that condenses the information from all the

three segments. 

4 Assessment of the time scale of observability 𝑊 from the efficiency func-

tion 𝜂( 𝑤 ) . Given an efficiency threshold 𝜂∗ , 𝑊 is defined as the min-

imum window width 𝑤 , if any, for which 𝜂( 𝑤 ) ⩾ 𝜂∗ . Here, 𝜂∗ was set

to 0.5. A detailed discussion on the role of this parameter is reported

in Perinelli et al. (2021) . The time scale of observability 𝑊 of a link
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Fig. 1. Schematic diagram representing the main steps of the CTO method. (a) Calculation of a cross-correlation diagram out of a pair of time series. (b) Estimation of 

a p-value for each element of the cross-correlation diagram by means of surrogate generation: the M surrogate pairs of time series allow to estimate a null-hypothesis 

distribution of the correlation coefficient r (in gray), so that the original cross-correlation coefficient can be associated to a p-value. (c) Evaluation of the efficiency 

function by thresholding the p-value diagram obtained in (b) and by considering the fraction of above-threshold elements of the diagram at a given window width 

w. (d) Assessment of the time scale of observability W out of the efficiency function as the window width at which efficiency overcomes a threshold 𝜂∗ . 
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between two time series is inversely proportional to the strength of

the link (the larger 𝑊 , the longer the time window necessary to de-

tect a significant correlation for at least a fraction 𝜂∗ of the time axis).

To provide a “more natural ” interpretation of the results of the CTO

method, we linearly remapped the values of 𝑊 into a dimension-

less “connectivity strength coefficient ” 𝑐 by means of the following

expression: 𝑐 = ( 𝑤 max + 𝑤 0 − 𝑊 )∕ 𝑤 max . In this way, the strongest de-

tectable connectivity, namely 𝑊 = 𝑤 0 , corresponds to 𝑐 = 1 ; larger

values of 𝑊 correspond to smaller values of 𝑐, i.e. to weaker links.

Finally, for the sake of consistency, a value 𝑐 = 0 is assigned to those

links for which 𝑊 does not exist (i.e. links for which no connectivity

is detected by the CTO method, as the efficiency never reaches the

threshold 𝜂∗ ). 

.3.4. Mutual information 

MI was calculated by relying on the Kozachenko–Leonenko k -

earest-neighbor entropy estimator ( Kozachenko and Leonenko, 1987 ),

hat provides more accurate results with respect to a standard “plug-

n ” estimator based on histograms ( Perinelli et al., 2021 ; Lombardi and

ant, 2016 ). Given two time series 𝑥 , 𝑦 , their Mutual information (MI)

s computed as 𝑀 𝐼 ( 𝑥, 𝑦 ) = 𝐻( 𝑥 ) + 𝐻( 𝑦 ) − 𝐻( 𝑥, 𝑦 ) , where the marginal

ntropies 𝐻 ( 𝑥 ) , 𝐻 ( 𝑦 ) as well as the joint entropy 𝐻 ( 𝑥, 𝑦 ) are estimated

hrough the Kozachenko–Leonenko method (the implementation used

ere is described in Perinelli et al. (2021) ), where the number of nearest-

eighbors to be considered in the evaluation of entropies was set to 20.

n this case, to yield a single evaluation of MI out of the three available

egments corresponding to a given band and condition, we averaged the

hree related MI values. 

.3.5. Area-related connectivity 

Given a subject, condition, and band, the CTO method and MI

oth provide a single real number, 𝑐 or 𝑀 𝐼 , for each one of the 𝑁 =
4 × 23∕2 = 276 available node pairs (the number of pairs is given by

 × ( 𝑚 − 1 )∕2 , where 𝑚 is the number of nodes). This “fine-grained ” con-

ectivity information is necessary to compute network metrics such as
5 
odularity (see below), but redundant when considering differences be-

ween age groups. For data reduction, we calculated the area-related

onnectivity coefficients 𝐶 AB (inter-area) and 𝑀 𝐼 AA (intra-area) be-

ween areas as 

 AB = 

1 
𝑁 AB 

𝑁 AB ∑

𝑖 ∈A ,𝑗∈B 
𝑐 𝑖𝑗 

r 

 𝐼 AA = 

1 
𝑁 AA 

𝑁 AA ∑

𝑖,𝑗∈A ,𝑖 ≠𝑗 
𝑀 𝐼 𝑖𝑗 

espectively, where 𝑐 𝑖𝑗 is the connectivity coefficient between nodes 𝑖

nd 𝑗, and 𝑁 AB is the number of node pairs between areas A and B

 𝑁 AB = 9 ; in the case of intra-area connectivity, 𝑁 AA = 3 ). In summary,

n area-connectivity coefficient is the average of the connectivity coef-

cients between all combinations of pair of nodes in the two areas or

ithin the same area. 

.4. Modularity 

Modularity is a graph-theoretical measure that quantifies the de-

ree to which a network can be segregated into subnetworks, called

modules ” ( Newman, 2006 ; Gallen and D’Esposito, 2019 ). A high (close

o 1) modularity corresponds to a network made of several, easily-

istinguished groups of nodes (modules) that have many intra-module

nd few inter-module links. On the opposite, a randomly-connected net-

ork has vanishing modularity. For our purpose, modules were defined

s sets of six nodes belonging to the same functional area. Consequently,

our modules were considered, corresponding to the four selected areas

occipital, parietal, temporal, and frontal). 

The computation of modularity requires a network to be defined in

erms of a binary adjacency matrix ( Newman and Girvan, 2004 ). For

ach participant, condition and band we built such matrix according to

 procedure that combines the CTO method and MI into a single defini-

ion of the network. The combined use of CTO and MI was justified by



A. Perinelli, S. Assecondi, C.F. Tagliabue et al. NeuroImage 256 (2022) 119247 

t  

a  

m  

g

 

(  

n  

o  

e  

M  

c  

M  

t  

2  

 

r  

g

𝑄

w  

i  

m

i

2

 

(  

s  

t  

H  

p  

o  

g  

c  

u  

c  

i  

S  

t  

t  

t  

a  

w  

r  

p

3

 

m  

s  

s  

r

3

 

(  

f  

p  

𝜂  

A  

A  

A  

B  

C  

A

 

b  

t  

u  

(  

d  

t  

d  

c  

t  

o  

p  

f

3

3

 

l  

c  

s  

b  

s  

t  

i  

a

 

(  

p  

𝜂  

n  

t  

t  

w  

a  

t  

B  

t  

s  

𝜂  

(  

s  

c  

C  

a

 

c  

y  

t  

(  

y  

(

 

B  

f  

g  

a  

p  

d  

a  

p  

a

he fact that CTO can better detect “weaker ” links as compared to MI

nd, consequently, CTO is suitable to assess inter-area links, while MI is

ore reliable in the case of intra-area links (see previous Section). The

eneration of the adjacency matrix was carried out as follows. 

A 𝑐 threshold ( 𝑐 𝑡 ) is first set. Then, a corresponding MI threshold

 𝑀 𝐼 𝑡 ) is assessed by considering the maximum MI among all pairs of

odes for which 𝑐 is lower than the threshold 𝑐 𝑡 . The 𝑐 𝑡 and 𝑀 𝐼 𝑡 thresh-

lds are then used to binarize the connectivity matrix: an inter-area link

xists if 𝑐 𝑡 , while an intra-area link exists if 𝑀 𝐼 > 𝑀 𝐼 𝑡 . By virtue of the

I threshold evaluation, a pair that would be deemed as “not linked ” ac-

ording to the 𝑐 𝑡 threshold is also deemed “not linked ” according to the

I threshold. This criterion is thus in compliance, on the one hand, with

he fact that CTO is in general more conservative than MI ( Perinelli et al.,

021 ) and that CTO can better detect “weaker ” links as compared to MI.

Given a binary adjacency matrix representing a network, the cor-

esponding modularity (see also Eq. 5 of Newman & Girvan (2004) ) is

iven by 

 = 

𝑁 𝑚 ∑

𝑚 =1 

(
𝑒 𝑚𝑚 − 𝑎 2 

𝑚 

)

here 𝑁 𝑚 is the number of defined modules, 𝑒 𝑖𝑗 is the fraction of links

n the network that connect nodes in area or module 𝑖 with nodes in

odule 𝑗 ( 𝑒 𝑚𝑚 is thus the number of intra-module links), and 𝑎 𝑖 = 

∑
𝑒 𝑖𝑗 

s the fraction of links connecting module 𝑖 . 

.5. Statistical analysis 

Statistical testing was performed via the JASP statistical software

 JASP team, 2021 ) version 0.15. Statistically significant effects were as-

essed by applying a mixed ANOVA with AGE as between-subjects fac-

or (bs) and, depending on the analysis, CONDITION, BAND, AREA and

EMISPHERE as within-subjects factors (ws). Details on each test are

rovided before the corresponding result is described. The compliance

f dependent variables with ANOVA’s assumptions (normality, homo-

eneity of variance) was not always met. Nevertheless, the test is suffi-

iently robust against departure from these assumptions to allow for its

se. In particular, it was shown that for equal sample sizes (as it is the

ase in the present work), the heterogeneity of variances does not signif-

cantly affect the test reliability ( Glass et al., 1972 ; Blanca et al., 2018 ).

imilarly, it was shown that departure from normality does not affect

he results of the test ( Pearson, 1931 ; Glass et al., 1972 ), provided that

he significance level (here set to 0.05) is not very small (e.g. 0.001). In

he case of violation of sphericity, the Greenhous-Geisser correction was

pplied, and the corrected p-value is reported (p GG ). Significant effects

ere followed-up with post-hoc comparisons, using the false discovery

ate (FDR) correction ( Benjamini and Yekutieli, 2001 ): only adjusted

-values (p adj ) are reported. 

. Results 

The following sections report the statistically significant results stem-

ing from the analysis of power and connectivity. Since the focus of the

tudy was on aging, and for the sake of clarity, below we consider only

ignificant age-related effects. Statistical findings not related to age are

eported in the Supplementary Materials. 

.1. Power 

Effects on power were assessed by applying a mixed ANOVA

bs: AGE; ws: CONDITION, BAND, AREA and HEMISPHERE). The

ollowing significant effects emerged: AREA (F (3174) = 405.75,

 GG < 0.001, 𝜂2 
p = 0.88), CONDITION (F (1,58) = 5.50, p = 0.023,

2 
p = 0.09), AGE ∗ AREA (F (3174) = 97.02, p GG < 0.001, 𝜂2 

p = 0.63),

REA 

∗ CONDITION (F (3174) = 125.94, p GG < 0.001, 𝜂2 
p = 0.69),

REA 

∗ BAND (F (6348) = 93.31, p GG < 0.001, 𝜂2 
p = 0.62),

REA 

∗ HEMISPHERE (F(3174) = 3.78, p GG = 0.020, 𝜂2 
p = 0.06),
6 
AND 

∗ HEMISPHERE (F (2116) = 8.99, p GG < 0.001, 𝜂2 
p = 0.13),

ONDITION 

∗ HEMISPHERE (F (1,58) = 6.30, p = 0.015, 𝜂2 
p = 0.10),

REA 

∗ BAND 

∗ CONDITION (F (6348) = 28.68, p GG < 0.001, 𝜂2 
p = 0.33). 

Age-related effects . The AGE ∗ AREA interaction was further evaluated

y comparing age differences within the same area (see Supplemen-

ary Materials – Table S1 for statistical details, and Fig. 2 ). Power val-

es in older adults were higher than in young individuals in frontal

t (174) = 6.09, p adj < 0.001, d = 0.46), parietal (t (174) = 3.21, p adj = 0.002,

 = 0.24) and temporal (t (174) = 7.54, p adj < 0.001, d = 0.57) areas, while

he opposite holds for the occipital area (t (174) = − 16.85, p adj < 0.001,

 = 1.28). Namely, power distribution changed with age: while the oc-

ipital area exhibited higher power in young individuals, the parietal,

emporal and frontal areas, on the contrary, showed higher power in

lder adults. Overall, these age-related changes in power agree with the

redictions of the PASA model: in older adults, we observe a power shift

rom the occipital areas to the more anterior areas. 

Age-unrelated effects. See supplementary materials. 

.2. Connectivity 

.2.1. Inter-area connectivity via CTO 

To study age-related modulation of inter-area connectivity we ana-

yzed each pair of areas separately, with area-related connectivity coeffi-

ients 𝐶 AB (see Section 2.3 ) as dependent variables and AGE as between-

ubjects factor for the ANOVA. In the case of inter-area connectivity

etween different areas belonging to the same hemisphere, the within-

ubjects factors were CONDITION, BAND and HEMISPHERE, while in

he case of inter-area connectivity between homologous areas belong-

ng to opposite hemispheres, within-subjects factors were CONDITION

nd BAND. 

A significant effect of AGE was detected in the frontal-parietal

F (1,58) = 7.82, p = 0.007, 𝜂2 
p = 0.12), frontal-temporal (F (1,58) = 7.53,

 = 0.008, 𝜂2 
p = 0.12) and parietal-temporal (F (1,58) = 5.75, p = 0.020,

2 
p = 0.09) connectivity, as well as in the occipital left-right con-

ectivity (F (1,58) = 7.82, p = 0.007, 𝜂2 
p = 0.12). These effects are

he most interesting for the present investigation and are fur-

her discussed in detail below. A significant CONDITION effect

as found in occipital-parietal (F (1,58) = 35.11, p < 0.001, 𝜂2 
p = 0.38)

nd occipital-temporal (F (1,58) = 21.08, p < 0.001, 𝜂2 
p = 0.27) connec-

ivity. All considered pairs of areas gave a significant main

AND effect (all Fs > 11.3, all ps < 0.001, see Supplementary Ma-

erials – Table S5). The ANOVA on frontal-temporal connectivity

howed a significant BAND 

∗ AGE interaction (F (2116) = 11.34, p < 0.001,
2 

p = 0.16) and a significant BAND 

∗ CONDITION 

∗ AGE interaction

F (2116) = 3.38, p = 0.037, 𝜂2 
p = 0.06). In seven cases out of ten, a

ignificant BAND 

∗ CONDITION interaction emerged. Finally, signifi-

ant BAND 

∗ HEMISPHERE (F (2116) = 8.54, p GG < 0.001, 𝜂2 
p = 0.13) and

ONDITION 

∗ HEMISPHERE (F (1,58) = 4.66, p = 0.035, 𝜂2 
p = 0.07) inter-

ctions were found in the case of occipito-temporal connectivity. 

Age-related effects . As reported above, the main effect of AGE indi-

ated that connectivity in older adults was significantly higher than in

oung individuals in the case of frontal-parietal ( p = 0.007), frontal-

emporal ( p = 0.008) and parietal-temporal ( p = 0.020) connectivity

 Fig. 3 ). In contrast, in the case of occipital left-right connectivity,

oung adults exhibited a higher connectivity with respect to older ones

 p = 0.007; see Fig. 3 ). 

From the analysis of frontal-temporal connectivity, significant

AND 

∗ AGE and AGE ∗ BAND 

∗ CONDITION interactions were found. We

ollowed-up this latter interaction, focusing on differences between age

roups for each level of BAND and CONDITION. As a result, older

dults exhibited higher connectivity in EC condition theta (t (116) = 3.112,

 adj = 0.005, d = 0.29) and alpha band (t (116) = 3.158, p adj = 0.005,

 = 0.29), and in EO condition theta (t (116) = 3.989, p adj < 0.001, d = 0.37)

nd alpha band (t (116) = 3.379, p adj = 0.003, d = 0.31). In other words, the

attern highlighted by the AGE effect for frontal-temporal connectivity

ppears to be driven by the alpha and theta bands. 



A. Perinelli, S. Assecondi, C.F. Tagliabue et al. NeuroImage 256 (2022) 119247 

Fig. 2. Results of the analysis of power distribution among areas. (a) Multiple comparisons of age groups and of different areas. Dots and errorbars correspond 

to averages values and the related standard errors. Significant differences are marked by one ( p < 0.05), two ( p < 0.01) or three asterisks ( p < 0.001). Area 

abbreviations: O = Occipital, P = Parietal, T = Temporal, F = Frontal; L = Left, R = Right. (b) Graphical summary of significant power differences between age groups 

on an approximate brain diagram reporting the 24 nodes (gray dots) considered here. Colored circles represent significant differences between age groups. Circle 

area is proportional to the relative difference in power between the groups; circle color corresponds to the group with largest power. 

Fig. 3. Post-hoc comparisons of the results of inter-area connectivity estimates based on the CTO method as a function of age and area. Dots and error bars 

correspond to averages values and the related standard errors. Significant differences are marked by one ( p < 0.05), two ( p < 0.01) or three asterisks ( p < 0.001). 

Area abbreviations: O = Occipital, P = Parietal, T = Temporal, F = Frontal; L = Left, R = Right. (a) Connectivity between different areas belonging to the same 

hemisphere. (b) Connectivity between homologous areas in opposite hemispheres. 
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To summarize, inter-area connectivity was stronger in older adults

ith respect to young individuals for every pair of areas not including

he occipital area. However, inter-area connectivity was weaker in older

dults with respect to young adults when the left-right occipital pair was

onsidered. 

Age-unrelated effects . See supplementary materials. 

.2.2. Intra-area connectivity via MI 

To investigate intra-area connectivity, the results of MI were

nalyzed by considering the area-related mutual information values
7 
 𝐼 AA (see Section 2.3 ) as dependent variables and by carrying

ut a mixed ANOVA (bs: AGE; ws: CONDITION, BAND, AREA,

EMISPHERE). The test yielded the following significant effects:

GE (F (1,58) = 4.92, p = 0.030, 𝜂2 
p = 0.08), BAND (F (2116) = 41.05,

 < 0.001, 𝜂2 
p = 0.41), CONDITION (F (1,58) = 31.83, p < 0.001, 𝜂2 

p = 0.35),

REA (F (3174) = 320.89, p GG < 0.001, 𝜂2 
p = 0.85), HEMISPHERE

F (1,58) = 4.13, p < 0.001, 𝜂2 
p = 0.69), AGE ∗ AREA (F (3174) = 16.78,

 GG < 0.001, 𝜂2 
p = 0.22), AREA 

∗ HEMISPHERE (F (3174) = 152.23,

 GG < 0.001, 𝜂2 
p = 0.72), BAND 

∗ CONDITION (F (2116) = 19.34, p GG < 0.001,
2 

p = 0.25), AREA 

∗ CONDITION (F (3174) = 38.11, p GG < 0.001, 𝜂2 
p = 0.40),

nd AREA 

∗ BAND 

∗ CONDITION (F (6348) = 9.08, p GG < 0.001, 𝜂2 
p = 0.14). 
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Fig. 4. Post-hoc comparisons of the results of intra-area connectivity estimates 

based on MI as a function of age and involved area. Dots and error bars corre- 

spond to averages values and the related standard errors. Significant differences 

are marked by one ( p < 0.05), two ( p < 0.01) or three asterisks ( p < 0.001). Area 

abbreviations: O = Occipital, P = Parietal, T = Temporal, F = Frontal. 
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Fig. 5. Graphical summary of the significant differences in connectivity be- 

tween young and older adults on an approximate brain diagram reporting the 24 
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Age-related effects . The main effect of AGE shows that older adults

xhibit, overall, a significantly stronger intra-area connectivity with re-

pect to young adults. Follow-up analyses (t-tests) for the significant

GE ∗ AREA interaction indicated that older individuals exhibited a sig-

ificantly stronger intra-area connectivity in the parietal (t (174) = 3.77,

 adj < 0.001, d = 0.29) and temporal (t (174) = 5.28, p adj < 0.001, d = 0.40)

reas ( Fig. 4 ). Conversely, the intra-area connectivity of older indi-

iduals in the frontal area was significantly weaker than the one ob-

erved for young individuals (t (174) = − 2.28, p adj = 0.028, d = 0.17, Fig. 4 ).

o summarize, opposite patterns were observed in young and old in-

ividuals, with the frontal area more strongly connected in young

dults, and temporal/parietal areas more strongly connected in older

dults. 

Age-unrelated effects. See supplementary materials. 

.2.3. Combined CTO/MI results 

In the following, the results provided by the CTO method and MI

re combined to give a complete overview of connectivity changes with

ge. A graphical summary of the differences in connectivity between

ge groups, obtained by combining together the results stemming from

he CTO and MI methods presented above, is shown in Fig. 5: inter-area

onnectivity is evaluated through CTO data ( Fig. 3 (a-b)), while intra-

rea connectivity is evaluated via MI data ( Fig. 4 ). The graph shows sig-

ificant differences by means of lines either connecting different areas

inter-area) or connecting nodes within an area (intra-area). The corre-

ponding line thickness is proportional to the relative difference in con-

ectivity between groups, namely the difference between the averaged

 AB or 𝑀 𝐼 AA coefficients of the two age groups divided by the average

f the two values. Line color identifies the group exhibiting the strongest

onnectivity. The results summarized in Fig. 5 complement the informa-
8 
ion provided by the analysis of power of Fig. 2 . Specifically, on the one

and the larger power within the parietal and temporal areas detected

or older adults ( Fig. 2 , blue circles) appears to be related to stronger

ntra-area connectivity within those two areas ( Fig. 5 , blue lines). On

he other hand, the larger power within the frontal areas ( Fig. 2 , blue

ircles) is not: here the intra-area connectivity is stronger for young in-

ividuals ( Fig. 5 , red lines). Therefore, while the larger parietal and

emporal power in older adults is due to an increase in both intra-area

nd inter-area connectivity, the larger frontal power is mainly due to

n increased inter-area connectivity between the frontal area and the

arietal/temporal areas of older adults. 

.3. Modularity 

Modularity was computed for ten values of the 𝑐 𝑡 threshold (see

ection 2.4 ) from 0 to 0.9 in steps of 0.1, to check for possible effects

ue to the arbitrary choice of the threshold. For each threshold value, an

NOVA (bs: AGE; ws: CONDITION, BAND) was carried out by consid-

ring the modularity 𝑄 as dependent variable. A significant AGE main

ffect was found for all threshold values. In addition, significant BAND

nd CONDITION main effects were also found, as well as a significant

AND 

∗ CONDITION interaction detected for all 𝑐 𝑡 ≥ 0 . 3 . Finally, only for

 𝑡 = 0 . 9 , a significant AGE ∗ BAND 

∗ CONDITION interaction was found.

tatistical details concerning these findings are reported in the Supple-

entary Materials (Tables S12, S13). 

Main AGE effect . As far as the main AGE effect is concerned,

or any value of the threshold, young adults exhibited significantly

igher modularity than older individuals ( Fig. 6 ) highlighting that

he difference between age groups is independent of the thresh-

ld 𝑐 𝑡 . The significant AGE ∗ BAND 

∗ CONDITION interaction detected

nly in the case of 𝑐 𝑡 = 0 . 9 (F (2116) = 4.43, p = 0.014, 𝜂2 
p = 0.07)

hows that young individuals exhibit a higher modularity than older

dults only for theta-EC (t (116) = − 2.64, p adj = 0.017, d = 0.25), theta-

O (t (116) = − 2.94, p adj = 0.008, d = 0.27) and alpha-EO (t (116) = − 2.99,

 adj = 0.007, d = 0.28). This result, however, might also be spurious due

o a too high threshold ( 𝑐 𝑡 = 0 . 9 ) leading to the selection of very few

inks. 
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Fig. 6. Age-group averaged modularity ( Q ) as a function of threshold c t . Dots 

and error bars correspond to averages values and the related standard errors. 
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Age-unrelated effects . See supplementary materials. 

. Discussion 

In the present study, we investigated whether the patterns of EEG

ctivity extracted from resting state support age-related changes pre-

icted by PASA and HAROLD accounts. To evaluate the contribution

f intra- and inter-area neural changes related to aging, we focused on

onnectivity measures, in addition to the more traditional measures of

ower. 

We found that young individuals exhibited higher power (across

ll frequency ranges) in the occipital area as opposed to the relatively

igher power showed by older adults in the parietal, temporal and

rontal areas. This result is consistent with the activations described by

he PASA model ( Davis et al., 2008 ), which predicts a shift of brain

ctivation with age from posterior to (more) anterior areas. Although

he model was formulated by relying on task-based fMRI measures, we

bserved here an analogous pattern of changes in resting-state and by

sing EEG data. The present results are (partially) in line with other

esting-state M/EEG studies in aging. For instance, previous studies have

lso shown increased theta power over occipital areas in younger adults,

hile theta oscillatory activity was less spatially differentiated over an-

erior and posterior sites ( Puligheddu et al., 2005 ) or overall reduced in

osterior electrodes ( Barry and De Blasio, 2017 ) for older individuals.

eduction of alpha band activity in older adults was instead evident in

ccipital areas ( Barry and De Blasio, 2017 ; Babiloni et al., 2006 ) and

ncreased beta was found over frontal areas of older adults ( Barry and

e Blasio, 2017 ). 

Crucially, we integrated the information derived from the power

istribution across the brain by investigating connectivity with CTO

nd MI, two complementary methods that capitalize on the fine tem-

oral resolution of EEG recordings. The results provide new insight on

he mechanisms underlying the observed power shift. Specifically, the

ain finding of CTO was an increase, for older individuals, in inter-

rea connectivity involving the parietal, temporal and frontal areas.

his result could account for the observed age-related power shift in

erms of a more integrated connectivity across the three areas. In ad-

ition to CTO results, MI indicated an increased intra-area connectiv-

ty in the parietal and temporal areas in older adults, in line with the

ge-related increase in power observed in temporal/parietal areas. In

he frontal area, on the other hand, the opposite effect was observed:

hile power increased with age, a decrease of intra-area connectivity

as detected. This observation leads to the conclusion that, while the

ncrease in power exhibited in older adults within temporal and pari-

tal areas is associated both to intra-area and inter-area connectivity,

n the case of the frontal area the increase in power seems mostly due
9 
o inter-area —rather than intra-area —connectivity between the frontal

rea and the temporal/parietal ones. These results resonate, for exam-

le, with the age-related decrease in frontal homotopic connectivity and

he age-related increase in fronto-parietal connectivity observed by pre-

ious studies ( Zangrossi et al., 2021 ) through the analysis of sensor-

pace EEG recordings. The increased fronto-temporal connectivity that

e observed was also found in an fMRI study during a memory encoding

ask ( Oh and Jagust, 2013 ). Another fMRI study, during a working mem-

ry task, reported an increased engagement between frontal and pari-

tal areas ( Mätthaus et al., 2012 ). Despite the present sample of older

dults included only cognitively fit individuals, the overall increase in

onnectivity observed here might also be referred to the framework of

yperconnectivity ( Hillary and Grafman, 2017 ), namely an enhanced

onnectivity between brain regions that was observed in early stages of

ild cognitive impairment while waning in later stages, and that was

uggested to be a mechanism of plasticity ( Bonanni et al., 2021 ). 

Finally, we analyzed how the observed age-related changes in con-

ectivity affect the global topology of the network, quantified in terms

f modularity. Regardless of the threshold used to build the network ad-

acency matrix, we systematically observed a lower modularity in older

dults. This result suggests that older individuals exhibit less segregated

etwork structures, since the different modules (i.e. areas) are more

trongly interconnected. A decreased modularity with age was detected

lso in previous works, both relying on resting-state fMRI ( Geerligs et al.,

015 ; Song et al., 2014 ) and EEG ( Knyazev et al., 2015 ), and is con-

istent with a general shift towards a more random topology —and a

ecreasing segregation —of brain networks with age ( Gaál et al., 2010 ;

angrossi et al., 2021 ). In previous works, higher levels of modularity

i.e., greater network organization) have been related to better cogni-

ive performance, for example correlating with higher gain after cog-

itive training ( Arnemann et al., 2015 ; Baniqued et al., 2018 ). In the

ontext of aging, and in line with a de-differentiation view of the aging

rocess ( Koen and Rugg, 2019 ), some works reported a lower degree of

egregation in older adults ( Song et al., 2014 ; Geerligs et al., 2015 ), thus

uggesting that the overall worse cognitive performance of older adults

ight be due to a less segregated (i.e., less organized) network struc-

ure. While no direct link between modularity and performance can be

nvestigated in the context of resting-state data, our results contribute to

he growing body of evidence concerning reduced modularity in healthy

ging. 

Overall, the present findings of an age-related posterior-anterior ef-

ect are in line with the PASA model ( Davis et al., 2008 ). Hemisphere-

elated modulations were essentially absent, thus ruling out asymmetry-

eduction patterns as predicted by the HAROLD model ( Cabeza, 2002 ).

ndeed, a previous attempt to match the HAROLD model with resting-

tate fMRI observations was also inconclusive ( Li et al., 2009 ). Never-

heless, it should be pointed out that the present investigation was based

n resting-state recordings: it might be the case that asymmetry-related

ffects in aging are mostly evident during task execution ( Mazza and

agano, 2017 ), while they are too small to be detected in a resting-state

ondition. For instance, it was shown that the direction and degree of

ateralization depends on task load during an attention task ( Pérez et al.,

009 ), in line with the idea that attentional processes are lateralized

 Rushworth et al., 2001 ). On the other hand, resting-state networks are

ypically found to be symmetric between hemispheres ( Smith et al.,

009 ; Tyszka et al., 2011 ), although asymmetries were detected, for

nstance, in language areas ( Raemaekers et al., 2018 ) and a few other

reas ( Di et al., 2014 ). 

We analyzed source-space activity in three frequency bands that are

ypically considered in aging studies, namely theta, alpha, and beta

 Puligheddu et al., 2005 ; Stacey et al., 2021 ; Chow et al., 2022 ). Because

he goal of the present work was to investigate the effects of healthy ag-

ng on resting-state EEG activity, we focused our discussion on the sta-

istical effects and interactions that involved the age factor. The band

actor was found to significantly interact with age only in the case of

rontal-temporal connectivity (significant AGE ∗ BAND 

∗ CONDITION in-
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eraction), for which the follow-up analysis revealed that connectivity

ifferences between young and older adults are mostly contributed by

he theta and alpha bands. Similar remarks can be drawn for the role

f condition: no relevant interaction between age and condition was

ound, in line with previous EEG studies ( Barry and De Blasio, 2017 ;

tacey et al., 2021 ). Overall, the lack of a systematic significant interac-

ion between age, band and condition suggests that the effects observed

n the present study were not frequency-specific. 

Our investigation did not concern task-related EEG recordings,

here functional connections are modulated by the specific task at hand

 Di et al., 2014 ). Previous studies showed that resting-state connec-

ivity between two regions correlates with the co-activation strength

f the two regions during tasks ( Toro et al., 2008 ; Di et al., 2014 ).

onsequently, the analysis of rest data —as it was done in the present

ork —allows to assess brain connectivity in a more general way, prob-

ng several functional dynamics states ( Smith et al., 2009 ). Thus, the use

f resting-state recording can provide, with respect to task-based record-

ngs, a complementary perspective on the effects of aging on default

rain activity, highlighting the existence of more general phenomena.

n contrast, the absence of a task does not allow to study the relation-

hip between the observed electrophysiological variables and task per-

ormance. Consequently, it is not possible to relate the changes in power

nd connectivity observed here either to a compensatory or to a de-

ifferentiation mechanism. This limitation also implies that more com-

lex models of neurocognitive aging, such as the compensation-related

tilization of neural circuits hypothesis (CRUNCH) ( Reuter-Lorenz and

appell, 2008 ), which predicts over-activation in older adults at lower

evels of task difficulty, cannot be tested in the context of resting-state

ata. To this purpose, future studies should be directed towards acquir-

ng, for the same participants, both resting-state and task-based record-

ngs, possibly probing different domains of cognition. 

To conclude, in partial agreement with our hypothesis, we showed

hat resting-state EEG presents patterns of age-related changes of brain

ctivity supporting the PASA model, thus providing further evidence

nd extending the domain of validity of the model. On the contrary, we

ound no support of the HAROLD model in resting-state EEG. Further-

ore, we found age-related changes in connectivity associated with the

bserved shift of power. Overall, these changes can be summarized as

 loss of segregation of the network (i.e., a decrease in modularity), as

arietal, temporal and frontal areas become more interconnected with

ach other, while frontal intra-area connectivity is diminished. These

utcomes provide additional insights into the investigation of the mech-

nisms that drive age-related changes in brain activity. 
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