

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

A DECIDABLE EXTENSION OF HENNESSY-MILNER LOGIC WITH
SPATIAL OPERATORS

Radu Mardare and Corrado Priami

January 2006

Technical Report # DIT-06-009

.

certain location, at some locations or at every location. Thus, Spatial logics [3, 2, 8] propose,
in addition to the modal temporal operators, some modal spatial operators such as the parallel
operator φ|ψ (meaning that the current process can be split into a parallel composition Q|R of
a process Q satisfying φ and a process R satisfying ψ), and its adjoint - the guarantee operator
φ . ψ, or location operator1 n[φ] (meaning that the current process is an ambient n[P] and the
process P satisfies φ), etc. A formula in a spatial logic describes a property of a particular part
of the system at a particular time. These spatial modalities have an intensional flavor, the
properties they express being invariant only for simple spatial rearrangements of the system.

As the main reason for introducing spatial logics was to provide appropriate techniques for
specification and model checking concurrent distributed systems, most of the work done in this
field points to decidability problems.

The decidability of Dynamic Spatial Logic has been anticipated in [4]. Still, on the best
of our knowledge, there is no prove in this direction. In this paper we will provide such a
prove underpinning on finite model property. In proving the finite model property for our logic,
we used a new congruence on processes - the structural bisimulation. A conceptually similar
congruence has been proposed in [5], but for static processes only. The structural bisimulation
is interesting in itself, as it provides a bisimulation-like description of the structural congruence.
Informally, it is an approximation of the structural congruence bound by two dimensions: the
height and the weight of a process. The bigger these sizes, the better approximation we obtain.
At the limit we find exactly the structural congruence.

For the logic we propose a complete Hilbert-style axiomatic system, which helps in under-
standing the basic algebraical behavior of the classical process operators. We prove its soundness
and completeness with respect to the process semantics, as usual in spatial logics. Thus, many
properties can be syntactically verified and proved. Moreover we have characteristic formulas
able to identify a process (agent) up to structural congruence (cloned copies).

2 Hennessy-Milner Logic

Hennessy-Milner logic [13], is an extension of the classic propositional logic with some modal
operators indexed by CCS actions. The full syntax is given by the grammar:

φ ::= > | φ1 ∧ φ2 | ¬φ | 〈µ〉φ

The satisfaction relation, P |= φ, is introduced similarly to classical modal logics, by in-
terpreting the graph of labeled transitions of a CCS process P as a Kripke structure. This
means that we associate to the process P a graph having the vertices labeled by the processes
describing transition moments of P and the edges connecting the processes directly related by
the transition relation. Treating such a graph as a Kripke structure, we can introduce the
semantics as for classical modal logics.

P |= > always
P |= φ1 ∧ φ2 iff P |= φ1 and P |= φ2

P |= ¬φ iff P 6|= φ

P |= 〈µ〉φ iff there is a transition P
µ−→ Q and Q |= φ

Observe the similarity of 〈µ〉 operator to the modal diamond operator. On the basis of this
similarity we can propose, by duality, the derived operator [µ] having the following semantics:

P |= [µ]φ iff for any transition P
µ−→ Q (if any) we have Q |= φ

1This operator is characteristic for Ambient Logic [8], a special spatial logic developed for Ambient Calculus
[7].

2

The syntax can be easily generalized from actions of CCS to sets of actions, by replacing
the operators 〈µ〉 and [µ] by the operators 〈A〉 and [A], with A ⊂ A+ a set of CCS actions. The
semantics will be defined following the same intuition:

P |= 〈A〉φ iff ∃µ ∈ A such that P
µ−→ Q and Q |= φ

P |= [A]φ iff ∀µ ∈ A such that P
µ−→ Q (if any) we have Q |= φ

Hennessy-Milner logic have been studied also in relation to temporal operators [16]:

φ ::= > | φ1 ∧ φ2 | ¬φ | 〈µ〉φ | AGφ | EFφ | AFφ | EGφ

The associated semantics combines the semantics of Hennessy-Milner logic with the classic
semantics of temporal logics [12]:

P |= AGφ iff for all runs P
µ1−→ P1

µ2−→ P2
µ3−→ ... and all i ≥ 0, Pi |= φ

P |= EFφ iff for some run P
µ1−→ P1

µ2−→ P2
µ3−→ ... and some i, Pi |= φ

P |= AFφ iff for all runs P
µ1−→ P1

µ2−→ P2
µ3−→ ... for some i ≥ 0, Pi |= φ

P |= EGφ iff for some run P
µ1−→ P1

µ2−→ P2
µ3−→ ... and all i ≥ 0, Pi |= φ

The meanings of the temporal operators are, thus, the standard ones:

P |= AGφ means that all the processes reachable from P satisfy φ;
P |= EFφ means that some processes reachable from P satisfy φ;
P |= AFφ means eventually a process will be reached from P satisfying φ;
P |= EGφ means some runs always satisfy φ.

Further, this logic was extended to other process calculi [9, 11, 14].
What is common to all of these is that they satisfy theorem 2.1 proving their extensional nature.

Theorem 2.1. If P ∼ Q and P |= φ then Q |= φ.

3 On processes

Definition 3.1. Consider the fragment of CCS generated by the next syntax, where A is a
denumerable set of actions and α ∈ A:

P ::= 0 | α.P | P |P

Hereafter this calculus2 is the object of our paper. We will use α, β to range over A and we will
denote by P the class of processes.

We will use this fragment of calculus, further, as semantics for our logic. We propose
some new concepts that will help the future constructs. One of the most important is a new
congruence on processes - the structural bisimulation. This relation will be used, further, to
prove the finite model property for our logics against the process semantics in combination with
the concept of pruning processes.

The structural bisimulation is interesting in itself as it provides a bisimulation-like definition
for structural congruence. Informally, it is an approximation of the structural congruence
bounded by two sizes: the height (the depth of the syntactic tree) and the weight (the maximum

2We can, additionally, consider an involution on A that associate to each action α ∈ A an action α ∈ A,
as usual in CCS, and also to take into consideration the silent action τ . But all these represent just syntactic
sugar, irrelevant from the point of view of the logic we discuss.

3

number of bisimilar subprocesses that can be found in a node of the syntactic tree) of a process.
The bigger these sizes, the better approximation we obtain. At the limit, for sizes big enough
with respect to the sizes of the processes involved, we find exactly the structural congruence.
A conceptually similar congruence was proposed in [5] for analyzing trees of location for the
static ambient calculus.

On the two sizes defined for processes, height and weight, we will introduce an effective
method to construct, given process P , a minimal process Q that has an established size (h,w)
and is structurally bisimilar to P on this size. Because, for a small size, the construction is
supposed to prune the syntactic tree of P , we will call this method pruning, and we refer to Q
as the pruned of P on the size (h, w).

Eventually we will extend the notions of size, structural bisimulation and pruning from
processes to classes of processes. We focus our interest on contexts, defined as being special
classes of processes that contain, in a maximal manner, processes of interest for us (that might
model completely or partially our system together with all its subsystems). The contexts will
be used, in the next chapters, as the sets of processes on which we will define the satisfiability
relation for the logics.

We recall the definition 3.1 as defining the subcalculus of CCS on which we will focus for the
rest of the paper. We will not consider additional features of CCS, such as pairs of names, etc.,
as we want to avoid all the syntactic sugar that is irrelevant from the point of view of the logic.
We might define an involution on A and the silent action τ , but all these can be introduced, in
our logic, as derived operators.

Definition 3.2. We call a process P guarded iff P ≡ α.Q for α ∈ A.
We introduce the notation P k def

= P |...|P︸ ︷︷ ︸
k

, and convey to denote P 0 ≡ 0.

Assumption (Representativeness modulo structural congruence). By definition, ≡ is
a congruence (thence an equivalence relation) over P. Consequently, we convey to identify
processes up to structural congruence, because the structural congruence is the ultimate level of
expressivity we want for our logic. Hereafter in the paper, if it is not explicitly otherwise stated,
we will speak about processes up to structural congruence.

3.1 Size of a process

Further we propose a definition for the size of a process, following a similar idea developed in
[5] for sizes of trees. The intuition is that the process has a height given by the vertical size
of its syntactic tree, and a width equal to the maximum number of bisimilar subprocesses that
can be identified in a node of the syntactic tree.

Definition 3.3 (Size of a process). We define the size (height and width) of a process P ,
denoted by JP K, by:

• J0K def
= (0, 0)

• JP K def
= (h,w) iff

– P ≡ (α1.Q1)k1 |(α2.Q2)k2 |...|(αj .Qj)kj and JQiK = (hi, wi), i ∈ 1..j

– h = 1 + max(h1, ..., hk), w = max(k1, ..., kj , w1, ..., wj)

where we used h for height and w for width. We convey to write (h1, w1) ≤ (h2, w2) for h1 ≤ h2

and w1 ≤ w2 and (h1, w1) < (h2, w2) for h1 < h2 and w1 < w2.

4

Remark 3.1. Observe that, by construction, the size of a process is unique up to structural
congruence. Moreover, if JP K = (h, w) then for any subprocess P ′ of P we have JP ′K ≤ (h,w).

Example 3.1. We show further the size for some processes:

J0K = (0, 0) Jα.0K = (1, 1) Jα.0|β.0K = (1, 1)
Jα.0|α.0K = (1, 2) Jα.α.0K = Jα.β.0K = (2, 1) Jα.(β.0|β.0)K = (2, 2)

Definition 3.4 (Size of a set of processes). Let M ⊂ P. We write JMK = (h,w) iff
(h,w) = max{JP K | P ∈ M}.
As the sets of processes may be infinite, not for all of them this definition works, in the sense
that some sets may have infinite sizes3. For this reason we convey to extend the order, and
when M has infinite size, to still write (h,w) ≤ JMK and (h,w) < JMK for any (h, w).

3.2 Structural bisimulation

In this section we introduce the structural bisimulation, a congruence relation on processes
bounded by size. It analyzes the behavior of a process focusing on a boundary of its syntactic
tree. This relation will be used in the next chapter to prove the finite model property for our
logics.

The intuition behind the structural bisimulation is that P ≈w
h Q (P and Q are structurally

bisimilar on size (h, w)) iff when we consider for both processes their syntactic trees up to the
depth h only (we prune them on the height h) and we ignore the presence of more than w
parallel bisimilar subprocesses in any node of the syntactic trees (we prune the trees on weight
w), we obtain syntactic trees depicting two structurally congruent processes.

The relation between the structural bisimulation and the structural congruence is interesting.
We will see that the structural bisimulation depicts, step by step, the structural congruence
being, in a sense, a bisimulation-like approximation of it on a given size. We will see further
how P ≈w

h Q entails that, if we choose any subprocess of P with the size smaller than (h,w),
then there exists a subprocess of Q structurally congruent with it, and vice versa. Now, if
the size indexing the structural bisimulation is bigger than the size of the processes, then our
relation will describe structurally congruent processes. Moreover, the structural bisimulation is
preserved by transitions with the price of decreasing the size.

Definition 3.5 (Structural bisimulation). Let P, Q be any processes. We define P ≈w
h Q

by:

• P ≈w
0 Q always

• P ≈w
h+1 Q iff for any i ∈ 1..w and any α ∈ A we have

– if P ≡ α.P1|...|α.Pi|P ′ then Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈w
h Qj , for j = 1..i

– if Q ≡ α.Q1|...|α.Qi|Q′ then P ≡ α.P1|...|α.Pi|P ′ with Qj ≈w
h Pj , for j = 1..i

Example 3.2. Consider the processes

R ≡ α.(β.0|β.0|β.0)|α.β.0 and S ≡ α.(β.0|β.0)|α.β.α.0

We can verify the requirements of the definition 3.5 and decide that R ≈2
2 S. But R 6≈2

3 S
because on the depth 2 R has an action α (in figure 1 marked with a dashed arrow) while S
does not have it (because the height of S is only 2). Also R 6≈3

2 S because R contains only
2 (bisimilar) copies of β.0 while S contains 3 (the extra one is marked with a dashed arrow).
Hence, for any weight bigger than 2 this feature will show the two processes as different. But if
we remain on depth 1 we have R ≈3

1 S, as on this deep the two processes have the same number
of bisimilar subprocesses, i.e. any of them can perform α in two ways giving, further, processes
in the relation ≈3

0. Indeed
3Such a situation is in the case of the set M = {0, α.0, α.α.0, ..., α....α.0, ...}.

5

S ≡ R ≡
α.(β.0|β.0|β.0)|α.β.0

²² **TTTTTTTTTTTTTTTTTT

β.0|β.0|β.0

wwooooooooooooo

²² ''OOOOOOO β.0

²²
0 0 0 0

α.(β.0|β.0)|α.β.α.0

²² ((PPPPPPPPPPPP

β.0|β.0

wwooooooooooooo

²²

β.α.0

²²
0 0 α.0

²²Â
Â
Â

0

Figure 1: Syntactic trees

R ≡ αR′|αR′′, where R′ ≡ β.0|β.0|β.0 and R′′ ≡ β.0
S ≡ α.S′|α.S′′, where S′ ≡ β.0|β.0 and S′′ ≡ β.α.0

By definition, R′ ≈3
0 S′ and R′′ ≈3

0 S′′

We focus further on the properties of the relation ≈w
h . We start by proving that structural

bisimulation is a congruence relation.

Theorem 3.1 (Equivalence Relation). The relation ≈w
h on processes is an equivalence re-

lation.

Proof. We verify the reflexivity, symmetry and transitivity directly.
Reflexivity: P ≈w

h P - we prove it by induction on h
the case h = 0: we have P ≈w

0 P from the definition 3.5.
the case h + 1: suppose that P ≡ α.P1|...|α.Pi|P ′ for i ∈ 1..w and some α ∈ A. The inductive
hypotheses gives Pj ≈w

h Pj for each j = 1..i. Further we obtain, by the definition 3.5, that
P ≈w

h P .
Symmetry: if P ≈w

h Q then Q ≈w
h P

Suppose that P ≡ α.P1|...|α.Pi|P ′ for some i ∈ 1..w and α ∈ A then, by the definition 3.5,
exists Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈w

h−1 Qj for j = 1..i and vice versa. Similarly, if we start
from Q ≡ β.R1|...|β.Rk|R′ for k ∈ 1..w and β ∈ A we obtain P ≡ β.S1|...|β.Sk|S′ for some Sj ,
with Rj ≈w

h−1 Sj for j = 1..k and vice versa. Hence Q ≈w
h P .

Transitivity: if P ≈w
h Q and Q ≈w

h R then P ≈w
h R - we prove it by induction on h.

the case h = 0 is trivial, because by the definition 3.5, for any two processes P, R we have
P ≈w

0 R
the case h + 1: suppose that P ≡ α.P1|...|α.Pi|P ′ for some i ∈ 1..w and α ∈ A. Then from
P ≈w

h Q we obtain, by the definition 3.5, that Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈w
h−1 Qj for

j = 1..i and vice versa. Further, because Q ≈w
h R, we obtain that R ≡ α.R1|...|α.Ri|R′ with

Qj ≈w
h−1 Rj for j = 1..i and vice versa.

As Pj ≈w
h−1 Qj and Qj ≈w

h−1 Rj for j = 1..i, we obtain, using the inductive hypothesis that
Pj ≈w

h−1 Rj for j = 1..i.
Hence, for P ≡ α.P1|...|α.Pi|P ′, some i ∈ 1..w and α ∈ A we have that R ≡ α.R1|...|α.Ri|R′

with Qj ≈w
h−1 Rj for j = 1..i and vice versa. This entails P ≈w

h R.

Theorem 3.2. If P ≈w
h Q and Q ≡ R then P ≈w

h R.

6

Proof. Suppose that P ≡ α.P1|...|α.Pi|P ′ for some i ∈ 1..w and α ∈ A. As P ≈w
h Q, we

obtain Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈w
h−1 Qj for j = 1..i and vice versa. But Q ≡ R, so

R ≡ α.Q1|...|α.Qi|Q′ with Pj ≈w
h−1 Qj for j = 1..i and vice versa. Hence P ≈w

h R.

Theorem 3.3 (Antimonotonicity). If P ≈w
h Q and (h′, w′) ≤ (h,w) then P ≈w′

h′ Q.

Proof. We prove it by induction on h.
The case h = 0 is trivial, as (h′, w′) ≤ (0, w) gives h′ = 0 and for any processes P, Q we

have P ≈w
0 Q.

The case h + 1 in the context of the inductive hypothesis:
Suppose that P ≈w

h+1 Q and (h′, w′) ≤ (h + 1, w).
If h′ = 0 we are, again, in a trivial case as for any two processes P, Q we have P ≈w

0 Q.
If h′ = h′′ + 1 then consider any i ∈ 1..w′, and any α ∈ A such that P ≡ α.P1|...|α.Pi|P ′.
Because i ≤ w′ ≤ w, and as P ≈w

h+1 Q, we have Q ≡ α.Q1|...|αi.Qi|Q′ with Pj ≈w
h Qj , for

j = 1..i. A similar argument can de developed if we start the analysis from Q.
But (h′′, w′) ≤ (h,w), so we can use the inductive hypothesis that gives Pj ≈h′′,w′ Qj for
j = 1..i. Hence P ≈w′

h′′+1 Q, that is, P ≈w′
h′ Q q.e.d.

Theorem 3.4 (Congruence). The following holds:

1. if P ≈w
h Q then α.P ≈w

h+1 α.Q

2. if P ≈w
h P ′ and Q ≈w

h Q′ then P |Q ≈w
h P ′|Q′

Proof. 1.: Suppose that P ≈w
h Q. Because α.P is guarded, it cannot be represented as P ≡

α.P ′|P ′′ for P ′′ 6≡ 0. The same about α.Q. But this observation, together with P ≈w
h Q gives,

in the light of definition 3.5, α.P ≈w
h+1 α.Q.

2.: We prove it by induction on h.
If h = 0 then the conclusion is immediate.
For h + 1, suppose that P ≈w

h+1 P ′ and Q ≈w
h+1 Q′; then consider any i = 1..w, α and Rj for

j = 1..i such that

P |Q ≡ α.R1|...|α.Ri|Ri+1

Suppose, without loss of generality, that Rj are ordered in such a way that there exist k ∈ 1..i,
P ′′, Q′′ such that

P ≡ α.R1|...|α.Rk|P ′′
Q ≡ α.Rk+1|...|α.Ri|Q′′

Ri+1 ≡ P ′′|Q′′

Because k ∈ 1..w, from P ≈w
h+1 P ′ we have P ′ ≡ α.P ′1|...|α.P ′k|P0 such that Rj ≈w

h P ′j for
j = 1..k.
Similarly, from Q ≈w

h+1 Q′ we have Q′ ≡ α.Q′
k+1|...|α.Q′

i|Q0 such that Rj ≈w
h Q′j for j =

(k + 1)..i. Hence, we have

P ′|Q′ ≡ α.P ′1|...|α.P ′k|α.Q′
k+1|...|α.Q′

i|P0|Q0

As Rj ≈w
h P ′j for j = 1..k and Rj ≈w

h Q′
j for j = (k + 1)..i, and because a similar argument

starting from P ′|Q′ is possible, we proved that P |Q ≈w
h+1 P ′|Q′.

7

Theorem 3.5 (Inversion). If P ′|P ′′ ≈w1+w2
h Q then exists Q′, Q′′ such that Q ≡ Q′|Q′′ and

P ′ ≈w1
h Q′, P ′′ ≈w2

h Q′′.

Proof. Let w = w1 + w2. We prove the theorem by induction on h:
The case h = 0: is trivial.
The case h + 1: Suppose that P ′|P ′′ ≈w

h+1 Q.
Consider the following definition: a process P is in (h, w)-normal form if whenever P ≡

α1.P1|α2.P2|P3 and P1 ≈w
h P2 then P1 ≡ P2. Note that P ≈w

h+1 α1.P1|α2.P1|P3. This shows
that for any P and any (h, w) we can find a P0 such that P0 is in (h,w)-normal form and
P ≈w

h+1 P0.
Now, we can suppose, without loosing generality, that4:

P ′ ≡ (α1.P1)k′1 |...|(αn.Pn)k′n

P ′′ ≡ (α1.P1)k′′1 |...|(αn.Pn)k′′n

Q ≡ (α1.P1)l1 |...|(αn.Pn)ln

For each i ∈ 1..n we split li = l′i+l′′i in order to obtain a splitting of Q. We define the splitting of
li such that (αi.Pi)k′i ≈h+1,w1 (αi.Pi)l′i and (αi.Pi)k′′i ≈h+1,w2 (αi.Pi)l′′i . We do this as follows:

• if k′i + k′′i < w1 + w2 then P ′|P ′′ ≈w
h+1 Q implies li = k′i + k′′i , so we can choose l′i = k′i

and l′′i = k′′i .

• if k′i + k′′i ≥ w1 + w2 then P ′|P ′′ ≈w
h+1 Q implies li ≥ w1 + w2. We meet the following

subcases:

– k′i ≥ w1 and k′′i ≥ w2. We choose l′i = w1 and l′′i = li−w1 (note that as li ≥ w1 +w2,
we have l′′i ≥ w2).

– k′i < w1, then we must have k′′i ≥ w2. We choose l′i = k′i and l′′i = li−k′i. So l′′i ≥ w2

as li ≥ w1 + w2 and l′i < w1.

– k′′i < w2 is similar with the previous one. We choose l′′i = k′′i and l′i = li − k′′i .

Now for Q′ ≡ (α1.P1)l′1 |...|(αn.Pn)l′n and Q′′ ≡ (α1.P1)l′′1 |...|(αn.Pn)l′′n the theorem is verified
by repeatedly using theorem 3.4.

The next theorems point out the relation between the structural bisimulation and the struc-
tural congruence. We will prove that for a well-chosen boundary, which depends on the processes
involved, the structural bisimulation guarantees the structural congruence. P ≈w

h Q entails that
if we choose any subprocess of P having the size smaller than (h,w), we will find a subprocess
of Q structurally congruent with it, and vice versa. Now, if the size indexing the structural
bisimulation is bigger than the size of the processes, then our relation will describe structurally
congruent processes. We also prove that the structural bisimulation is preserved by transitions
with the price of decreasing the size.

Theorem 3.6. If JP K ≤ (h,w) and JP ′K ≤ (h, w) then P ≈w
h P ′ iff P ≡ P ′.

Proof. P ≡ P ′ implies P ≈w
h P ′, because by reflexivity P ≈w

h P and then we can apply theorem
3.2.
We prove further that P ≈w

h P ′ implies P ≡ P ′. We’ll do it by induction on h.
The case h = 0: JP K ≤ (0, w) and JP ′K ≤ (0, w) means P ≡ 0 and P ′ ≡ 0, hence P ≡ P ′.
The case h + 1: suppose that JP K ≤ (h + 1, w), JP ′K ≤ (h + 1, w) and P ≈w

h+1 P ′. We can
suppose, without loosing generality, that

4Else we can replace P ′, P ′′ with (h + 1, w)-related processes having the same (h, w)-normal forms

8

P ≡ (α1.Q1)k1 |...|(αn.Qn)kn

P ′ ≡ (α1.Q1)l1 |...|(αn.Qn)ln

where for i 6= j, αi.Qi 6≡ αj .Qj . Obviously, as JP K ≤ (h + 1, w) and JP ′K ≤ (h + 1, w) we have
ki ≤ w and li ≤ w.

We show that ki ≤ li. If ki = 0 then, obviously, ki ≤ li. If ki 6= 0 then P ≡ (αi.Qi)ki |Pi and
P ≈w

h+1 P ′ provides that P ′ ≡ αi.Q
′′
1 |...αi.Q

′′
ki
|R with Qi ≈w

h Q′′j for j = 1..ki. By construction,
JQiK ≤ ((h + 1) − 1, w) = (h,w) and JQ′′

j K ≤ ((h + 1) − 1, w) = (h,w). So, we can apply the
inductive hypothesis that provides Qi ≡ Q′′j for j = 1..i. Hence P ′ ≡ (αi.Qi)ki |R that gives
ki ≤ li.

With a symmetrical argument we can prove that li ≤ ki that gives ki = li and, finally,
P ≡ P ′.

Theorem 3.7. If P ≈w
h Q and JP K < (h,w) then P ≡ Q.

Proof. Suppose that JP K = (h′, w′) and P ≡ (α1.P1)k1 |...|(αn.Pn)kn with αi.Pi 6≡ αj .Pj for
i 6= j. Obviously we have ki ≤ w′ < w.

We prove the theorem by induction on h. The first case is h = 1 (because h > h′).
The case h = 1: we have h′ = 0 that gives P ≡ 0. Further 0 ≈w

1 Q gives Q ≡ 0, because else
Q ≡ α.Q′|Q′′ asks for 0 ≡ α.P ′|P ′′ - impossible. Hence P ≡ Q ≡ 0.
The case h+1: as P ≡ (αi.Pi)ki |P+, P ≈w

h Q and ki < w, we obtain that Q ≡ αi.R1|...|αi.Rki |R+

with Pi ≈w
h−1 Rj for any j = 1..ki.

But Pi ≈w
h−1 Rj allows us to use the inductive hypothesis, because JPiK ≤ (h′ − 1, w′) <

(h− 1, w), that gives Pi ≡ Rj for any j = 1..ki. Hence Q ≡ (αi.Pi)ki |R+ and this is sustained
for each i = 1..n. As αi.Pi 6≡ αj .Pj for i 6= j, we derive Q ≡ (α1.P1)k1 |...|(αn.Pn)kn |R.

We prove now that R ≡ 0. Suppose that R ≡ (α.R′)|R′′. Then Q ≡ α.R′|R−, and as
P ≈w

h Q, we obtain that there is an i = 1..n such that α = αi and R′ ≈h−1,w Pi.
Because JPiK ≤ (h′−1, w′) < (h−1, w), we can use the inductive hypothesis and obtain R′ ≡ Pi.
Therefore R ≡ αi.Pi|R′′, that gives further

Q ≡ (α1.P1)k1 |...(αi−1.Pi−1)k(i−1) |(αi.Pi)ki+1|(αi+1.Pi+1)k(i+1) |...|(αn.Pn)kn |R
So, we can consider Q ≡ (αi.Pi)ki+1|Q+. Because P ≈w

h Q and ki + 1 ≤ w′ + 1 ≤ w, we obtain
that P ≡ αi.P

′
1|...|αi.P

′
ki+1|P ′ with P ′j ≈w

h−1 Pi for any j = 1..ki + 1.
But JPiK ≤ (h′ − 1, w′) < (h − 1, w), consequently we can use the inductive hypothesis and
obtain P ′j ≡ Pi for any j = 1..ki + 1.
Hence P ≡ (αi.Pi)ki+1|P ′′ which is impossible because we supposed that P ≡ (α1.P1)k1 |...|(αn.Pn)kn

with αi.Pi 6≡ αj .Pj for i 6= j.
Concluding, R ≡ 0 and Q ≡ (α1.P1)k1 |...|(αn.Pn)kn , i.e. Q ≡ P .

Theorem 3.8. If P ≡ R|P ′, P ≈w
h Q and JRK < (h,w) then

Q ≡ R|Q′.

Proof. Suppose that JRK = (h′, w′) < (h,w). Because P ≡ R|P ′ and P ≈w
h Q, using theorem

3.5, we obtain that exists Q1, Q2 such that Q ≡ Q1|Q2 and R ≈w′+1
h Q1 and P ′ ≈w−(w′+1)

h Q2.
Further, as R ≈w′+1

h Q1 and JRK = (h′, w′) < (h, w′ + 1) we obtain, by using theorem 3.7, that
Q1 ≡ R, hence Q ≡ R|Q2.

Theorem 3.9. Let P ≈w
h Q. If P ≡ α.P ′|P ′′ then Q ≡ α.Q′|Q′′ and P ′|P ′′ ≈w−1

h−1 Q′|Q′′

9

Proof. As P ≈w
h Q and P ≡ α.P ′|P ′′, we obtain that, indeed, Q ≡ α.Q′|Q′′ with P ′ ≈w

h−1 Q′.
We will prove that P ′|P ′′ ≈w−1

h−1 Q′|Q′′. Consider any i = 1..w − 1 and β ∈ A such that:

P ′|P ′′ ≡ β.P1|...|β.Pi|P ? (3.1)

We can suppose, without loos of generality that for some k ≤ i we have

P ′ ≡ β.P1|...|β.Pk|P+

P ′′ ≡ β.Pk+1|...|β.Pi|P−
P ? ≡ P+|P−

Because P ′ ≈w
h−1 Q′ and k ≤ i ≤ w−1, we obtain that Q′ ≡ β.Q1|...|β.Qk|Q+ with Pj ≈w

h−2 Qj

for j = 1..k. Further we distinguish two cases:

• if α 6= β then we have

P ≡ β.Pk+1|...|β.Pi|(P−|α.P ′)

and because P ≈w
h Q, we obtain

Q ≡ β.Rk+1|...|β.Ri|R? with Rj ≈w
h−1 Pj for j = k + 1..i

But Q ≡ α.Q′|Q′′ and because α 6= β, we obtain Q′′ ≡ β.Rk+1|...|β.Ri|R+ that gives us
in the end

Q′|Q′′ ≡ β.Q1|...|β.Qk|β.Rk+1|...|β.Ri|(R+|Q+)

with Pj ≈w
h−2 Qj for j = 1..k (hence Pj ≈w−1

h−2 Qj) and Pj ≈w
h−1 Rj for j = k +1..i (hence

Pj ≈w−1
h−2 Rj).

• if α = β then we have

P ≡ α.Pk+1|...|α.Pi|α.P ′|P−

and as P ≈w
h Q and i ≤ w − 1, we obtain

Q ≡ α.Rk+1|...|α.Ri|α.R′|R?

with Rj ≈w
h−1 Pj for j = k + 1..i and R′ ≈w

h−1 P ′. Because P ′ ≈w
h−1 Q′ and ≈w

h is an
equivalence relation, we can suppose that R′ ≡ Q′ (Indeed, if α.Q′ is a subprocess of
R? then we can just substitute R′ with Q′; if α.Q′ ≡ α.Rs, then Q′ ≈w

h−1 Ps and as
Q′ ≈w

h−1 P ′ and P ′ ≈w
h−1 R′ we derive R′ ≈w

h−1 Ps and Q′ ≈w
h−1 P ′, so we can consider

this correspondence). So

Q ≡ α.Rk+1|...|α.Ri|α.Q′|R?

that gives

Q′′ ≡ α.Rk+1|...|α.Ri|R?

which entails further

Q′|Q′′ ≡ α.Q1|...|α.Qk|α.Rk+1|...|α.Ri|(R?|Q+)

10

with Pj ≈w
h−2 Qj for j = 1..k (hence Pj ≈w−1

h−2 Qj) and Pj ≈w
h−1 Rj for j = k +1..i (hence

Pj ≈w−1
h−2 Rj).

All these prove that P ′|P ′′ ≈w−1
h−1 Q′|Q′′ (as we can develop a symmetric argument starting in

(3.1) with Q|Q′).

Theorem 3.10 (Behavioral simulation). Let P ≈w
h Q. If P

α−→ P ′ then exists a transition

Q
α−→ Q′ such that P ′ ≈w−1

h−1 Q′.

Proof. If P
α−→ P ′ then P ≡ α.R′|R′′ and P ′ ≡ R′|R′′. But P ≈w

h Q gives, using theorem
3.9 that Q ≡ α.S′|S′′ and R′|R′′ ≈w−1

h−1 S′|S′′. And because Q
α−→ S′|S′′, we can take Q′ ≡

S′|S′′.

3.3 Bound pruning processes

In this subsection we prove the bound pruning theorem, stating that for a given process P and a
given size (h,w), we can always find a process Q having the size at most equal with (h, w) such
that P ≈w

h Q. Moreover, in the proof of the theorem we will present a method for constructing
such a process from P , by pruning its syntactic tree to the given size.

Theorem 3.11 (Bound pruning theorem). For any process P ∈ P and any (h,w) exists a
process Q ∈ P with P ≈w

h Q and JQK ≤ (h,w).

Proof. We describe the construction5 of Q by induction on h.
For h = 0: we just take Q ≡ 0, because P ≈w

0 Q and J0K = (0, 0).
For h + 1: suppose that P ≡ α1.P1|...|αn.Pn.

Let P ′i be the result of pruning Pi by (h,w) (we use the inductive step of construction) and
P ′ ≡ α1.P

′
1|...|αn.P ′n. As for any i = 1..n we have Pi ≈w

h P ′i (by the inductive hypothesis), we
obtain, using theorem 3.4, that αi.Pi ≈w

h+1 αi.P
′
i and further P ≈w

h+1 P ′.
Consider the canonical representation of P ′ ≡ (β1.Q1)k1 |...|(βm.Qm)km .
Let li = min(ki, w) for i = 1..m. Then we define Q ≡ (β1.Q1)l1 |...|(βm.Qm)lm . Obviously
Q ≈w

h+1 P ′ and as P ≈w
h+1 P ′, we obtain P ≈w

h+1 Q. By construction, JQK ≤ (h + 1, w).

Definition 3.6 (Bound pruning processes). For a process P and for a tuple (h, w) we
denote by P(h,w) the process obtained by pruning P to the size (h,w) by the method described
in the proof of theorem 3.11.

Example 3.3. Consider the process P ≡ α.(β.(γ.0|γ.0|γ.0) | β.γ.0) | α.β.γ.0.
Observe that JP K = (3, 3), hence P(3,3) ≡ P . For constructing P(3,2) we have to prune the
syntactic tree of P such that to not exist, in any node, more than two bisimilar branches.
Hence P(3,2) = α.(β.(γ.0|γ.0) | β.γ.0) | α.β.γ.0
If we want to prune P on the size (3, 1), we have to prune its syntactic tree such that, in any
node, there are no bisimilar branches. The result is P(3,1) = α.β.γ.0.
For pruning P on the size (2, 2), we have to prune all the nodes on depth 2 and in the new
tree we have to let, in any node, a maximum of two bisimilar branches. As a result of these
modifications, we obtain P(2,2) = α.(β.0|β.0) | α.β.0. Going further we obtain the smaller
processes P(0,0) = 0, P(1,1) = α.0, P(1,2) = α.0|α.0, P(2,1) = α.β.0.

Corollary 3.12. If P ≡ Q then P(h,w) ≡ Q(h,w).

5This construction is not necessarily unique.

11

Proof. Because a process is unique up to structural congruence, the result can be derived
trivially, following the construction in the proof of theorem 3.11.

Corollary 3.13. JP K ≤ (h,w) iff P(h,w) ≡ P .

Proof. (⇒) If JP K ≤ (h,w), then, by construction, JP(h,w)K ≤ (h,w) and P ≈w
h P(h,w), we can

use theorem 3.6 and obtain P(h,w) ≡ P .
(⇐) Suppose that P(h,w) ≡ P . Suppose, in addition that JP K > (h, w). By construction,

JP(h,w)K ≤ (h,w), hence JP(h,w)K ≤ (h,w) < JP K, i.e. JP(h,w)K 6= JP K. But this is impossible,
because the size of a process is unique up to structural congruence, see remark 3.1.

3.4 Substitutions

For the future constructs is also useful to introduce the substitutions of actions in a process.

Definition 3.7 (The set of actions of a process). We define Act(P) ⊂ A, inductively by:

1. Act(0)
def
= ∅ 2. Act(α.P)

def
= {α}∪Act(P) 3. Act(P |Q)

def
= Act(P)∪Act(Q)

For a set M ⊂ P of processes we define Act(M)
def
=

⋃
P∈M Act(P).

We will define further the set of all processes having a size smaller than a given tuple (h,w)
and the actions in a set A ⊂ A, and we will prove that for the fragment of CCS we considered
they are finitely many (modulo ≡).

Definition 3.8. Let A ⊂ A. We define

PA
(h,w)

def
= {P ∈ P | Act(P) ⊂ A, JP K ≤ (h,w)}

Theorem 3.14. If A ⊂ A is finite, then PA
(h,w) is finite6.

Proof. We will prove more, that if we denote by n = (w + 1)card(A), then

card(PA
(h,w)) =





1 if h = 0

nnn...n

︸ ︷︷ ︸
h

if h 6= 0

We prove this by induction on h.
The case h = 0: we have JQK = (0, w) iff Q ≡ 0, so PA

(0,w) = {0} and card(PA
(0,w)) = 1.

The case h = 1: let Q ∈ P(1,w). Then

Q ≡ (α1.Q1)k1 |...|(αs.Qs)ks with Qi ∈ PA
(0,w) and αi.Qi 6≡ αj .Qj for i 6= j.

But Qi ∈ PA
(0,w) means Qi ≡ 0, hence

Q ≡ (α1.0)k1 |...|(αs.0)ks

Since JQK ≤ (1, w) we obtain that ki ≤ w. The number of guarded processes α.0 with α ∈ A is
card(A) and since ki ∈ 0..w, the number of processes in PA

(1,w) is (w + 1)card(A) = n1.
The case h + 1: let Q ∈ PA

(h+1,w). Then

Q ≡ (α1.Q1)k1 |...|(αs.Qs)ks with Qi ∈ PA
(h,w) and αi.Qi 6≡ αj .Qj for i 6= j.

6We count the processes up to structural congruence.

12

Since JQK ≤ (h + 1, w) we obtain that ki ≤ w. The number of guarded processes α.R with
α ∈ A and R ∈ PA

(h,w) is card(A)× card(PA
(h,w)) and since ki ∈ 0..w, the number of processes

in PA
(h+1,w) is (w + 1)card(A)×card(PA

(h,w)) = ((w + 1)card(A))card(PA
(h,w)) = ncard(PA

(h,w)). But the

inductive hypothesis gives card(PA
(h,w)) = nnn...n

︸ ︷︷ ︸
h

, so card(PA
(h+1,w)) = nnn...n

︸ ︷︷ ︸
h+1

.

Definition 3.9 (Action substitution). We call action substitution any function σ : A −→ A.
We extend it further, syntactically, from actions to processes, σ : P −→ P, by

σ(P) =





0 if P ≡ 0
σ(Q)|σ(R) if P ≡ Q|R
σ(γ).σ(R) if P ≡ γ.R

We extend σ for sets of processes M ⊂ P by σ(M)
def
= {σ(P) | P ∈ M}.

For short, we will denote, sometimes, σ(P) by P σ and σ(M) by Mσ.

Remark 3.2. Observe that P ≡ Q entails Act(P) = Act(Q) and P σ ≡ Qσ.

Definition 3.10. Let σ be a substitution. We define the subject of σ, sub(σ) and the object of
σ, obj(σ), by:

sub(σ)
def
= {α ∈ A | σ(α) 6= α}

obj(σ)
def
= {β ∈ A | β 6= α, σ(α) = β}

Theorem 3.15. If sub(σ) ∩Act(P) = ∅ then σ(P) ≡ P .

Proof. We prove it by induction on P .
The case P ≡ 0: by definition, σ(0) ≡ 0.
The case P ≡ α.Q: σ(P) ≡ σ(α).σ(Q). But α ∈ Act(P), and because Act(P) ∩ sub(σ) = ∅,
we obtain α 6∈ sub(σ), hence σ(α) = α. But then σ(P) ≡ α.σ(Q). Further Act(Q) ⊂ Act(P),
i.e. Act(Q) ∩ sub(σ) = ∅ and we can apply the inductive hypothesis that provides σ(Q) ≡ Q,
so σ(P) ≡ α.Q, q.e.d.
The case P ≡ Q|R: σ(P) ≡ σ(Q)|σ(R). But Act(Q), Act(R) ⊂ Act(P), hence Act(Q) ∩
sub(σ) = Act(R) ∩ sub(σ) = ∅. Hence we can apply the inductive hypothesis that provides
σ(Q) ≡ Q and σ(R) ≡ R, thus σ(P) ≡ Q|R ≡ P .

Theorem 3.16. If obj(σ) ∩Act(P) = ∅ then σ(Q) ≡ P implies Q ≡ P .

Proof. We prove it by induction on P .
If P ≡ 0: if Q 6≡ 0 then Q ≡ α.Q′|Q′′, thus σ(Q) ≡ σ(α).σ(Q′)|σ(Q′′) 6≡ 0. Impossible.
If P 6≡ 0: Suppose that

P ≡ α1.P1|...|αn.Pn

and
Q ≡ β1.Q1|...|βm.Qm

Then σ(Q) ≡ σ(β1).σ(Q1)|...|σ(βm).σ(Qm) and

α1.P1|...|αn.Pn ≡ σ(β1).σ(Q1)|...|σ(βm).σ(Qm)

But then m = n and for each i = 1..n there exists j = 1..n such that αi.Pi ≡ σ(βj).σ(Qj),
thus αi = σ(βj). But from obj(σ) ∩ Act(P) = ∅ we derive σ(βj) = βj = αi. Further, from
αi.Pi ≡ σ(βj).σ(Qj) we infer Pi ≡ σ(Qj), and since Act(Pi) ⊂ Act(P), we can use the inductive
hypothesis and derive Pi ≡ Qj . Thus P ≡ Q.

13

Theorem 3.17. If σ(P) ≡ Q|R then there exist processes Q′, R′ such that P ≡ Q′|R′, with
σ(Q′) ≡ Q and σ(R′) ≡ R.

Proof. Suppose that P ≡ α1.P1|...|αn.Pn. Then

σ(P) ≡ σ(α1).σ(P1)|...|σ(αn).σ(Pn) ≡ Q|R

We can suppose, without loosing generality, that

Q ≡ σ(α1).σ(P1)|...|σ(αi).σ(Pi)

R ≡ σ(αi+1).σ(Pi+1)|...|σ(αn).σ(Pn)

Then we can define Q′ ≡ α1.P1|...|αi.Pi and R′ ≡ αi+1.Pi+1|...|αn.Pn.

Theorem 3.18. If P 6≡ R|Q and obj(σ) ∩Act(R) = ∅, then σ(P) 6≡ R|S.

Proof. Suppose that σ(P) ≡ R|S for some S. Then, by the theorem 3.17, there exists R′, S′

such that P ≡ S′|R′ and σ(R′) ≡ R, σ(S′) ≡ S. But because obj(σ) ∩ Act(R) = ∅ and
σ(R′) ≡ R, we derive, applying the theorem 3.16, that R′ ≡ R, hence P ≡ R|S′. But this
contradicts the hypothesis of the theorem. So, there is no S such that σ(P) ≡ R|S.

4 Contexts

In this section we introduce the contexts, sets of processes that will be used to evaluate formulas
of our logics. The intuition is that a context M is a (possibly infinite) set of processes that
contains, in a maximal manner, any process representing a possible state of our system or of
a subsystem of our system. Hence if a process belongs to a context then any process obtained
by pruning its syntactic tree, in any way7, should belong to the context, as it might represent
a subsystem. For the same reason, the context should be also closed to transitions.

It is useful in this point to define some operations on sets of processes.

Definition 4.1. For any sets of processes M, N ⊂ P and any α ∈ A we define:
α.M

def
= {α.P | P ∈ M} M |N def

= {P |Q | P ∈ M, Q ∈ N}
As we speak about processes up to structural congruence, the parallel operator on sets of
processes will be commutative, associative and will have {0} as null.

We associate further to each process P the set π(P) of all processes obtained by pruning,
in the most general way, the syntactic tree of P .

Definition 4.2. For P ∈ P we define8 π(P) ⊂ P inductively by:

1. π(0)
def
= {0} 2. π(α.P)

def
= {0} ∪ α.π(P) 3. π(P |Q)

def
= π(P)|π(Q)

We extend the definition of π to sets of processes M ⊂ P by π(M)
def
=

⋃
P∈M π(P).

Theorem 4.1. The next assertions hold:

1. P ∈ π(P) 2. 0 ∈ π(P) 3. P ∈ π(P |Q) 4. P(h,w) ∈ π(P)

Proof. 1. We prove it by induction on P

7We do not refer here on bound pruning only, but on any possible pruning of the syntactic tree.
8We consider also π(P) defined up to structural congruence.

14

• if P ≡ 0 then π(P) = {0} 3 0 ≡ P

• if P ≡ α.Q then π(P) = {0} ∪ α.π(Q). But the inductive hypothesis gives Q ∈ π(Q),
hence α.Q ∈ α.π(Q) ⊂ π(P).

• if P ≡ Q|R then π(P) = π(Q)|π(R). The inductive hypothesis provide Q ∈ π(Q) and
R ∈ π(R), hence P ≡ Q|R ∈ π(Q)|π(R) = π(P).

2. We prove it by induction on P .

• if P ≡ 0 we have, by definition, π(P) = {0} 3 0

• if P ≡ α.Q then π(P) = {0} ∪ α.π(Q) 3 0.

• if P ≡ Q|R then π(P) = π(Q)|π(R). The inductive hypothesis provide 0 ∈ π(Q) and
0 ∈ π(R), hence 0 ≡ 0|0 ∈ π(Q)|π(R) = π(P).

3. We have π(P |Q) = π(P)|π(Q). But P ∈ π(P) and 0 ∈ π(Q), hence P ≡ P |0 ∈ π(P)|π(Q) =
π(P |Q).
4. We prove the theorem by induction on the structure of P .

• if P ≡ 0: we have P(h,w) ≡ 0 ∈ {0} = π(P) for any (h,w).

• if P ≡ α.Q: we distinguish two more cases:
if w = 0 then P(h,0) ≡ 0 ∈ π(P)
if w 6= 0 then (α.Q)(h,w) ≡ α.Q(h−1,w) by the construction of the adjusted processes. If
we apply the inductive hypothesis we obtain that Q(h−1,w) ∈ π(Q), hence (α.Q)(h,w) ∈
α.π(Q) ⊂ π(P).

• if P ≡ (α.Q)k: we have P(h,w) ≡ (α.Q(h−1,w))l where l = min(k, w), by the construc-
tion of the adjusted processes. The inductive hypothesis gives Q(h−1,w) ∈ π(Q), hence
α.Q(h−1,w) ∈ α.π(Q) ⊂ π(α.Q). But because 0 ∈ π(α.Q) and

P(h,w) ≡ α.Q(h−1,w)|...|α.Q(h−1,w)︸ ︷︷ ︸
l

| 0|...|0︸ ︷︷ ︸
k−l

we obtain
P(h,w) ∈ π(α.Q)|...|π(α.Q)︸ ︷︷ ︸

k

= π(P)

• if P ≡ (α1.P1)k1 |...|(αn.Pn)kn with n ≥ 2: we split it in two subprocesses Q ≡ (α1.P1)k1 |...|(αi.Pi)ki

and R ≡ (αi+1.Pi+1)ki+1 |...|(αn.Pn)kn . By the way we split the process P we will
have P(h,w) ≡ Q(h,w)|R(h,w) and using the inductive hypothesis on Q and R we derive
P(h,w) ≡ Q(h,w)|R(h,w) ∈ π(Q)|π(R) = π(P).

Theorem 4.2. 1. Act(π(P)) ⊆ Act(P) 2. If P −→ Q then Act(Q) ⊆ Act(P).

Proof. 1. We prove it by induction on P .
if P ≡ 0 then Act(π(P)) = Act(∅) = ∅ ⊆ Act(P).
if P ≡ α.Q then Act(π(P)) = Act({0} ∪ α.π(Q)) = Act(α.π(Q)) = {α} ∪ Act(π(Q)). By
inductive hypothesis, Act(π(Q)) ⊆ Act(Q), hence Act(π(P)) ⊆ {α} ∪Act(Q) = Act(P).
if P ≡ Q|R then Act(π(P)) = Act(π(Q)|π(R)) = Act(π(Q)) ∪ Act(π(R)). Using the induc-
tive hypothesis, Act(π(Q)) ⊆ Act(Q) and Act(π(R)) ⊆ Act(R), hence Act(π(P)) ⊆ Act(Q) ∪
Act(R) = Act(Q|R) = Act(P).
2. If P −→ Q then P ≡ α.Q1|Q2 and Q ≡ Q1|Q2. Then Act(Q) = Act(Q1) ∪ Act(Q2) ⊆
{α} ∪Act(Q1) ∪Act(Q2) = Act(P).

15

Theorem 4.3. π(π(P)) = π(P).

Proof. We prove it by induction on P .
The case P ≡ 0: π(π(0)) = π({0}) = π(0)
The case P ≡ α.Q: π(π(α.Q)) = π({0} ∪ α.π(Q)) = π(0) ∪ π(α.π(Q)) = {0} ∪ α.π(π(Q)).
Now we can use the inductive hypothesis and we obtain π(π(Q)) = π(Q). Hence π(π(α.Q)) =
{0} ∪ α.π(Q) = π(α.Q) = π(P).
The case P ≡ Q|R: π(π(P)) = π(π(Q|R)) = π(π(Q)|π(R)) = π(π(Q))|π(π(R)). Now we
ca apply the inductive hypothesis on Q and R and obtain π(π(P)) = π(Q)|π(R) = π(Q|R) =
π(P).

Theorem 4.4. If Q ∈ π(P) then π(Q) ⊂ π(P).

Proof. Q ∈ π(P) implies π(Q) ⊂ π(π(P)), and applying the theorem 4.3, we obtain π(Q) ⊂
π(P).

Theorem 4.5. If σ is a substitution, then π(σ(P)) = σ(π(P)).

Proof. We prove it by induction on P .
The case P ≡ 0: π(σ(P)) = π(0) = {0} = σ({0}) = σ(π(P)).
The case P ≡ α.Q: π(σ(P)) = π(σ(α).σ(Q)) = {0} ∪ σ(α).π(σ(Q)). But the inductive
hypothesis gives π(σ(Q)) = σ(π(Q)), hence

π(σ(P)) = {0} ∪ σ(α).σ(π(Q))

from the other side, σ(π(P)) = σ({0} ∪ α.π(Q)) = {0} ∪ σ(α).σ(π(Q)).
The case P ≡ Q|R: π(σ(Q|R)) = π(σ(Q)|σ(R)) = π(sigma(Q))|π(σ(R)). But the in-
ductive hypothesis gives π(σ(Q)) = σ(π(Q)) and π(σ(R)) = σ(π(R)). Hence π(σ(P)) =
σ(π(Q))|σ(π(R)) = σ(π(Q)|π(R)) = σ(π(P)).

These being proved, we can propose the definition of context:

Definition 4.3 (Context). A context is a nonempty set M⊆ P of processes such that

• if P ∈M and P −→ P ′ then P ′ ∈M
• if P ∈M then π(P) ⊂M

Theorem 4.6. If M is a context and σ a substitution, then Mσ is a context.

Proof. Let P ∈ Mσ. Then it exists a process Q ∈ M such that σ(Q) ≡ P . Then π(P) =
π(σ(Q)), and using theorem 4.5 we derive π(P) = σ(π(Q)). But Q ∈ M implies π(Q) ⊂ M,
thus σ(π(Q)) ⊂Mσ. Then π(P) ⊂Mσ.
Let P ∈Mσ and P −→ P ′. Then it exists Q ∈M such that σ(Q) ≡ P . Suppose that

Q ≡ α1.Q1|...|αk.Qk

then
P ≡ σ(Q) ≡ σ(α1).σ(Q1)|...|σ(αk).σ(Qk)

But then P −→ P ′ gives that it exists i = 1..k such that

P ′ ≡ σ(α1).σ(Q1)|...|σ(αi−1).σ(Qi−1) | σ(Qi) | σ(αi+1).σ(Qi+1)|...|σ(αk).σ(Qk)

16

and if we define
Q′ ≡ α1.Q1|...|αi−1.Qi−1 | Qi | αi+1.Qi+1|...|αk.Qk

we obtain Q −→ Q′ (i.e. Q′ ∈M) and σ(Q′) ≡ P ′. Hence P ′ ∈Mσ.

Observe that, due to the closure clauses in definition 4.3, we can consider the possibility
to define systems of generators for a context, as a class of processes that, using the rules in
definition 4.3 can generate the full context.

Definition 4.4 (System of generators for a context). We say that the set M ⊂ P is
a system of generators for the context M if M is the smallest context that contains M . We
denote this by M = M.

Theorem 4.7. If M ∈ P is a finite set of processes, then M is a finite context.

Proof. Trivial.

4.1 Structural bisimulation on contexts

We extend the definitions of structural bisimulation from processes to contexts. This will allow
us to prove the context pruning theorem, a result similar to the bound pruning theorem proved
for processes.

Definition 4.5 (Structural bisimulation over contexts). Let M,N be two contexts. We
write M≈w

h N iff
1. for any P ∈M there is a Q ∈ N with P ≈w

h Q
2. for any Q ∈ N there is a P ∈M with P ≈w

h Q
We convey to write (M, P) ≈w

h (N , Q) for the case when P ∈ M, Q ∈ N , P ≈w
h Q and

M≈w
h N .

Theorem 4.8 (Antimonotonicity over contexts). If M ≈w
h N and (h′, w′) ≤ (h,w) then

M≈w′
h′ N .

Proof. For any process P ∈ M there exists a process Q ∈ N such that P ≈w
h Q and using

theorem 3.3 we obtain P ≈w′
h′ Q. And the same if we start from a process Q ∈ N . These proves

that M≈w′
h′ N .

4.2 Pruning contexts

As for processes, we can define the pruning of a context M as the context generated by the set
of pruned processes of M, taken as system of generators.

Definition 4.6 (Pruning contexts). For any context M and any (h,w) we define

M(h,w)
def
= {P(h,w) | P ∈M}

Theorem 4.9. For any context M, and any size (h,w) we have M(h,w) ≈h
w M.

Proof. Denote by
M = {P(h,w) | P ∈M}

Let P ∈M. Then it exists a process Q ∈M(h,w), more exactly Q ≡ P(h,w) such that P ≈h
w Q.

Let Q ∈M(h,w). Since M is the smallest context containing M , and because, by construction,
M ⊆ M we derive that M ⊆ M. Hence, for any process Q ∈ M there is a process P ∈ M,
more exactly P ≡ Q such that P ≈h

w Q (since P ≡ Q implies P ≈h
w Q).

17

Theorem 4.10. For any context M and any size (h,w) we have Act(M(h,w)) ⊆ Act(M).

Proof. As P(h,w) ∈ π(P) for any process P ∈ M and any (h, w), by theorem 4.1, we obtain,
by applying theorem 4.2, Act(P(h,w)) ⊆ Act(M), hence Act({P(h,w) | P ∈ M}) ⊆ Act(M).
Further applying again theorem 4.2, we trivially derive the desired result.

Definition 4.7. Let A ⊂ A. We denote by MA
(h,w) the set of all contexts generated by systems

with the size at most (h,w) and the actions in A:

MA
(h,w)

def
= {M ⊂ P | Act(M) ⊆ A, JMK ≤ (h, w)}

Theorem 4.11. If A ⊂ A is a finite set of actions, then the following hold:

1. If M∈ MA
(h,w) then M is a finite context.

2. MA
(h,w) is finite.

Proof. 1.: If M ∈ MA
(h,w) then M = M , JMK ≤ (h,w) and Act(M) ⊂ A. Thus M ⊂ PA

(h,w).
But PA

(h,w) is finite, by theorem 3.14. Thus, by theorem 4.7, M = M is a finite context.
2.: As PA

(h,w) is finite by theorem 3.14, the set of its subsets is finite, and as all the elements
of MA

(h,w) are generated by subsets of PA
(h,w), we obtain that MA

(h,w) is finite.

Theorem 4.12 (Pruning theorem). Let M be a context. Then for any (h,w) there is a

context N ∈ M
Act(M)
(h,w) such that M≈w

h N .

Proof. The context N = M(h,w) fulfills the requirements of the theorem, by construction.
Indeed, it is a context, and it is generated by the set N = {P(h,w) | P ∈ M}. Moreover
JNK ≤ (h,w) and, by theorem 4.10, Act(M(h,w)) ⊆ Act(M). Hence N ∈ M

Act(M)
(h,w) .

4.3 Dynamic Spatial Logic

In this chapter we introduce the Dynamic Spatial Logic, LDS , as an extension of Hennessy-
Milner logic with the parallel operator. For it we extend the process semantics of Hennessy-
Milner logic with the definition of satisfiability for the parallel operator, as usual in spatial
logics. The satisfiability relation will evaluate a formula to a process in a context.

Although a similar logic has been considered before in the literature [4], the results presented
here are all new.

LDS will distinguish processes up to structural congruence level, as the other spatial logics.
On the level of formulas, after introducing the notion of size of a formula, we will prove that
each formula describes a process not up to structural congruence, but up to the structural
bisimulation indexed by its size. Hence two processes that are structurally bisimilar on the
size of the formula, cannot be distinguished. As a consequence, choosing the right size, we can
define characteristic formulas for our processes. To the best of our knowledge, a similar result
has not been proved for spatial logics before.

For our logic, we propose a Hilbert-style axiomatic system and we prove it to be sound
and complete with respect to process semantics. This allows us to use the syntax to derive
properties of the semantics. Combining these features with the finite model property, which we
will prove for the system against the process semantics, we find that, for LDS , the problems of
satisfiability, validity and model checking are decidable.

The decidability has been anticipated before [4], but to our knowledge it has not been
proved. Also new is the Hilbert-style approach to spatial logics.

18

4.4 Syntax of Dynamic Spatial Logic

Definition 4.8 (Language of LDS). We define the language of Dynamic Spatial Logic, as
the formulas collected in the set FDS introduced by:

φ := 0 | > | ¬φ | φ ∧ φ | φ|φ | 〈α〉φ
where α ∈ A.

Definition 4.9 (Derived operators). In addition we introduce some derived operators:

1. ⊥ def
= ¬>

2. φ ∨ ψ
def
= ¬((¬φ) ∧ (¬ψ))

3. φ → ψ
def
= (¬φ) ∨ ψ

4. [α]φ
def
= ¬(〈α〉(¬φ))

5.
∧

φ∈M φ
def
= (...((φ1 ∧ φ2) ∧ φ3)...φk) for any finite set M = {φ1, φ2, ..., φk} of formulas.

6.
∨

φ∈M φ
def
= (...((φ1 ∨ φ2) ∨ φ3)...φk) for any finite set M = {φ1, φ2, ..., φk} of formulas.

7. |φ∈Mφ
def
= (...((φ1|φ2)|φ3)...|φk) for any finite set M = {φ1, φ2, ..., φk} of formulas.

8. 1
def
= ¬((¬0) | (¬0)).

9. 〈!α〉ψ def
= (〈α〉ψ) ∧ 1

Anticipating the semantics, we will outline here the intuition that motivates the choice of
the formulas. Mainly it is similar to that of Hennessy-Milner and spatial logics.

The formula 0 is meant to characterize any process structurally congruent with 0 (and only
these) in any context, expressing “there is no activity here”. It should not be confused with
“false”.9

> will be satisfied by any process in any context.
The reason for introducing the parallel operator φ|ψ is that we want to be able to express, as

in other spatial logics, the situation in which our system is composed by two parallel subsystems,
one satisfying φ and the other satisfying ψ.

The dynamic-like operator 〈α〉φ is meant to be used, as in Hennessy-Milner logic, to speak
about the transitions of our system. It expresses “the system may perform the action α thus
meeting a state described by φ”.

⊥ will be used to express the inconsistent behavior of the system. For this reason no process,
in any context, will satisfy ⊥.

The dynamic-like operator [α]φ, the dual operator of 〈α〉φ, expresses the situation where
either the system cannot perform α, or if the system can perform α then any future state that
can be reached by performing α can be described by φ.

The formula 1 is meant to describe the situation in which the system cannot be decomposed
into two non-trivial subsystems. 1 can describe also the trivial system 0.

The formula 〈!α〉ψ expresses a process guarded by α, which, after consuming α, will satisfy
ψ.

To relax the syntax of our logic, we propose a convention regarding the precedence of the
operators.

9We insist on this aspect as some syntaxes of classical logic use 0 for denoting false. This is not our intention.
We use ⊥ to denote false.

19

Assumption. We convey that the precedence order of the operators in the syntax of LDS is

¬ , 〈α〉 , | , ∧ , ∨, →

where ¬ have precedence over all other operators.

Example 4.1. Consider the formula

θ = (¬(〈α〉φ))|(ψ ∧ (¬ρ))

then, using the previous assumption, it can be written as

θ = ¬〈α〉φ | (ψ ∧ ¬ρ)

4.5 Process Semantics

Hereafter we introduce the process semantics of LDS . A formula will be evaluated to processes
in a given context. We will prove later that for LDS the context itself is not relevant. This logic
is not expressive enough to describe contextual situations. But the future extensions of LDS

with epistemic operators are sensitive to the context, meaning that the same process will satisfy
different formulas in different contexts. For uniformity of presentation, we chose to introduce
the semantics by contexts.

Definition 4.10 (Models and satisfaction). A model of LDS is a context M for which we
define the satisfaction relation, for P ∈M, as follows:

• M, P |= > always

• M, P |= 0 iff P ≡ 0

• M, P |= ¬φ iff M, P 2 φ

• M, P |= φ ∧ ψ iff M, P |= φ and M, P |= ψ

• M, P |= φ|ψ iff P ≡ Q|R and M, Q |= φ, M, R |= ψ

• M, P |= 〈α〉φ iff there exists a transition P
α−→ P ′ and M, P ′ |= φ

Then the semantics of the derived operators will be:

• M, P 6|= ⊥ always

• M, P |= φ ∨ ψ iff M, P |= φ or M, P |= ψ

• M, P |= [α]φ iff

– either there is no transition P
α−→ P ′

– or for any P ′ ∈M such that P
α−→ P ′ we have M, P ′ |= φ

• M, P |= 1 iff P ≡ 0 or P ≡ α.Q (P is guarded)

In the end of this section we recall some classic definitions.

20

Definition 4.11. We call a formula φ ∈ FDS satisfiable if there exists a context M and a
process P ∈M such that M, P |= φ.
We call a formula φ ∈ FDS validity if for any context M and any process P ∈ M we have
M, P |= φ. In such a situation we write |= φ.
Given a contextM, we denote byM |= φ the situation when for any P ∈M we haveM, P |= φ.

Remark 4.1. φ is satisfiable iff ¬φ is not a validity, and vice versa, φ is a validity iff ¬φ is not
satisfiable.

4.6 Finite model property and decidability

In this section we will prove the finite model property for LDS , i.e. we will prove that for any
satisfiable formula φ there exists a process P in a context M, belonging to a finite class of such
couples, such that M, P |= φ. Put more concretely, given a formula φ, we can construct a finite
class Cφ of couples (M, P) (where M is a context and P ∈ M), depending on φ, such that if
φ is satisfiable then one of these couples must satisfy it as well.

This makes it possible to verify, in a finite way, the satisfiability of a formula. Indeed,
as Cφ is finite, for deciding if φ is satisfiable, it is sufficient to verify if M, P |= φ for each
(M, P) ∈ Cφ.

The intuition that leads us in the construction of Cφ is that in the relation M, P |= φ what
matters is the structure of the process P on a size (h,w) that depends on φ. Deeper φ is not
“sensitive”. In other words, we can derive from the structure of φ a size (h,w) such that if
M, P |= φ then any process Q ≈h

w P , in any context N 3 Q has the property N , Q |= φ.
Similarly the satisfiability relation does not perceive information involving other actions but
those that appear in the syntax of the logical formula. Hence if σ is a substitution that
replaces an action α by β and both α, β did not appear in the syntax of φ, then M, P |= φ iff
Mσ, P σ |= φ.

Further we will prove that these intuitions are correct, and we will identify Cφ.

We start by introducing the size of a formula of our logic in a way similar to the size defined
for processes.

Definition 4.12 (Size of a formula). We define the sizes of a formula, LφM (height and
width), inductively on FDS , by:

L0M def
= (1, 1)

L>M def
= (0, 0)

L¬φM def
= LφM

Lφ ∧ ψM def
= (max(h1, h2),max(w1, w2)) if LφM = (h1, w1), LψM = (h2, w2)

Lφ|ψM = (max(h1, h2), w1 + w2) where LφM = (h1, w1) and LψM = (h2, w2)
L〈α〉φM = (1 + h, 1 + w) where LφM = (h,w)

Definition 4.13 (Extending the structural bisimulation). We write (M, P) ≈w
h (N , Q)

for the case when P ∈M, Q ∈ N , P ≈w
h Q and M≈w

h N .

Lemma 4.13. If LφM = (h,w), M, P |= φ and P ≈w
h Q then for any context M′ with Q ∈M′,

we have M′, Q |= φ.

21

Proof. We prove it by induction on the structure of φ.

• The case φ = 0: gives LφM = (1, 1) and M, P |= 0 implies P ≡ 0. As P ≈1
1 Q, we should

have Q ≡ 0, because else Q ≡ α.Q′|Q′′ asks for P ≡ α.P ′|P ′′ for some P ′, P ′′, but this is
impossible because P ≡ 0. So Q ≡ 0 and for any M′ we have, indeed, M′, Q |= 0.

• The case φ = >: is a trivial case because M′, Q |= > always.

• The case φ = φ1 ∧ φ2: denote by (hi, wi) = LφiM for i = 1, 2. We have LφM =
(max(h1, h2),max(w1, w2)).
M, P |= φ is equivalent with M, P |= φ1 and M, P |= φ2.
As P ≈max(w1,w2)

max(h1,h2)
Q we obtain, by using theorem 3.3, that P ≈w1

h1
Q and P ≈w2

h2
Q.

For M, P |= φ1 and P ≈w1
h1

Q we can apply the inductive hypothesis and obtain that for
any context M′ 3 Q we have M′, Q |= φ1.
Similarly, M, P |= φ2 and P ≈w2

h2
Q gives that for any context M′ 3 Q we have

M′, Q |= φ2.
Hence for any context M′ 3 Q we have M′, Q |= φ.

• The case φ = ¬φ′: we have LφM = Lφ′M = (h,w), M, P |= ¬φ′ and P ≈w
h Q.

If for some context M′ 3 Q we have M′, Q 6|= ¬φ′, then
M′, Q |= ¬¬φ′, hence M′, Q |= φ′.
But M′, Q |= φ′ and P ≈w

h Q give, by using the inductive hypothesis, that for any context
M′′ 3 P we have M′′, P |= φ′. So, we have also M, P |= φ′ and as M, P |= ¬φ′ we obtain
M, P |= ⊥ - impossible.
Hence for any context M′ 3 Q we have M′, Q |= φ.

• The case φ = φ1|φ2: suppose that LφiM = (hi, wi) for i = 1, 2. Then

LφM = (max(h1, h2), w1 + w2).
Now M, P |= φ1|φ2 implies P ≡ P1|P2, with M, P1 |= φ1 and
M, P2 |= φ2.
Because P ≈w1+w2

max(h1,h2)
Q, using theorem 3.5, we obtain Q ≡ Q1|Q2 with Pi ≈wi

max(h1,h2)
Qi

for i = 1, 2. Further, using theorem 3.3 we obtain Pi ≈wi

hi
Qi.

Now M, Pi |= φi and Pi ≈wi

hi
Qi give, by the inductive hypothesis, that for any context

M′′ 3 Q1 we have M′′, Q1 |= φ1 and for any context M′′′ 3 Q2 we have M′′′, Q2 |= φ2.
Then, for any context M′ 3 Q ≡ Q1|Q2 we have M′, Qi |= φi (as a context that contains
Q1|Q2 contains also Q1 and Q2).
Hence M′, Q |= φ.

• The case φ = 〈α〉φ′: suppose that Lφ′M = (h,w). We have L〈α〉φ′M = (1 + h, 1 + w).
M, P |= 〈α〉φ′ means that P

α−→ P ′ and M, P ′ |= φ′.
But because P ≈1+w

1+h Q, using theorem 3.10, we obtain that Q
α−→ Q′ and P ′ ≈w

h Q′.
Now from M, P ′ |= φ′ and P ′ ≈w

h Q′, we obtain, by using the inductive hypothesis, that
for any context M′′ 3 Q′ we have M′′, Q′ |= φ′. As Q

α−→ Q′ and because any context
that contains Q contains Q′ as well, we obtain further that for any context M′ 3 Q we
have M′, Q′ |= φ′, hence M, Q |= φ.

Hence, lemma 4.13 proved that if a process in a context satisfies a formula then any other
process structurally bisimilar to our process on the size of the formula satisfies the formula in
any context.

Theorem 4.14. If M, P |= φ then MLφM, PLφM |= φ.

22

Proof. Let M, P |= φ and (h,w) = LφM. Then, by pruning theorem, 3.11, exists the process
P(h,w) with P ≈w

h P(h,w). Then, using lemma 4.13, we obtain that for any context M′ such
that P(h,w) ∈M′ we have
M′, P(h,w) |= φ. But P(h,w) ∈M(h,w). Hence M(h,w), P(h,w) |= φ.

Definition 4.14 (The set of actions of a formula). We define the set of actions of a formula
φ, act(φ) ⊂ A, inductively by:

1. act(0)
def
= ∅ 3. act(φ∧ψ) = act(φ|ψ)

def
= act(φ)∪act(ψ) 5. act(KRφ)

def
= Act(R)∪act(φ)

2. act(>)
def
= ∅ 4. act(¬φ) = act(φ) 6. act(〈α〉φ)

def
= {α} ∪ act(φ)

The next result states that a formula φ does not reflect properties that involves more then
the actions in its syntax. Thus if M, P |= φ then any substitution σ having the elements of
act(φ) as fix points preserves the satisfaction relation, i.e. Mσ, P σ |= φ.

Theorem 4.15. If M, P |= φ and σ is a substitution with act(σ)
⋂

act(φ) = ∅ then Mσ, P σ |=
φ.

Proof. We prove, simultaneously, by induction on φ, that

1. if M, P |= φ then σ(M), σ(P) |= φ

2. if M, P 6|= φ then σ(M), σ(P) 6|= φ

The case φ = 0:

1. M, P |= 0 iff P ≡ 0. Then σ(P) ≡ 0 and σ(M), σ(0) |= 0 q.e.d.

2. M, P 6|= 0 iff P 6≡ 0, iff σ(P) 6≡ 0. Hence σ(M), σ(P) 6|= 0.

The case φ = >:

1. M, P |= > implies σ(M), σ(P) |= >, because this is happening for any context and
process.

2. M, P 6|= > is an impossible case.

The case φ = ψ1 ∧ ψ2:

1. M, P |= ψ1∧ψ2 implies that M, P |= ψ1 and M, P |= ψ2. Because act(σ)∩act(φ) = ∅ we
derive that act(σ)∩act(ψ1) = ∅ and act(σ)∩act(ψ2) = ∅. Further, applying the inductive
hypothesis, we obtain Mσ, P σ |= ψ1 and Mσ, P σ |= ψ2 that implies Mσ, P σ |= ψ1 ∧ ψ2.

2. M, P 6|= ψ1 ∧ ψ2 implies that M, P 6|= ψ1 or M, P 6|= ψ2. But, as argued before,
act(σ)∩act(ψ1) = ∅ and act(σ)∩act(ψ2) = ∅, hence we can apply the inductive hypothesis
that entails Mσ, P σ 6|= ψ1 or Mσ, P σ 6|= ψ2. Thus Mσ, P σ 6|= ψ1 ∧ ψ2.

The case φ = ¬ψ:

1. M, P |= ¬ψ is equivalent with M, P 6|= ψ and because act(σ)∩act(φ) = ∅ guarantees that
act(σ)∩act(ψ) = ∅, we ca apply the inductive hypothesis and we obtain σ(M), σ(P) 6|= ψ
which is equivalent with σ(M), σ(P) |= ¬ψ.

2. M, P 6|= ¬ψ is equivalent withM, P |= ψ and applying the inductive hypothesis, σ(M), σ(P) |=
ψ, i.e. σ(M), σ(P) 6|= ¬ψ.

The case φ = ψ1|ψ2:

23

1. M, P |= ψ1|ψ2 implies that P ≡ Q|R, M, Q |= ψ1 and M, R |= ψ2. As act(σ)∩act(φ) = ∅
we have act(σ) ∩ act(ψ1) = ∅ and act(σ) ∩ act(ψ2) = ∅. Then we can apply the inductive
hypothesis and obtain σ(M), σ(Q) |= ψ1 and σ(M), σ(R) |= ψ2. But σ(P) ≡ σ(Q)|σ(R),
hence σ(M), σ(P) |= φ.

2. M, P 6|= ψ1|ψ2 implies that for any decomposition P ≡ Q|R we have either M, Q 6|= ψ1 or
M, R 6|= ψ2. But, as before, from act(σ)∩act(φ) = ∅ guarantees that act(σ)∩act(ψ1) = ∅
and act(σ)∩act(ψ2) = ∅. Hence, we can apply the inductive hypothesis and consequently,
for any decomposition P ≡ Q|R we have either σ(M), σ(Q) 6|= ψ1 or σ(M), σ(R) 6|= ψ2.
Consider any arbitrary decomposition σ(P) ≡ P ′|P ′′. By theorem 3.17, there exists P ≡
Q|R such that σ(Q) ≡ P ′ and σ(R) ≡ P ′′. Thus either σ(M), P ′ 6|= ψ1 or σ(M), P ′′ 6|= ψ2.
Hence σ(M), σ(P) 6|= ψ1|ψ2.

The case φ = 〈γ〉ψ:

1. M, P |= 〈γ〉ψ means that there is a transition P
γ−→ Q and M, Q |= ψ. Because

act(σ)∩act(〈γ〉ψ) = ∅ implies act(σ)∩act(ψ) = ∅. We can apply the inductive hypothesis
and derive σ(M), σ(Q) |= ψ. As P

γ−→ Q we have P ≡ γ.P ′|P ′′ and Q ≡ P ′|P ′′. This
mean that σ(P) ≡ σ(γ).σ(P ′)|σ(P ′′). Now act(σ)∩ act(〈γ〉ψ) = ∅ ensures that σ(γ) = γ.
So σ(P) ≡ γ.σ(P ′)|σ(P ′′) and σ(Q) ≡ σ(P ′)|σ(P ′′). Hence σ(P)

γ−→ σ(Q). Now because
σ(M), σ(Q) |= ψ, we derive σ(M), σ(P) |= 〈γ〉ψ.

2. M, P 6|= 〈γ〉ψ implies one of two cases: either there is no transition of P by γ, or there is
such a transition and for any transition P

γ−→ Q we have M, Q 6|= ψ.
If there is no transition of P by γ then P ≡ α1.P1|...|αk.Pk with αi 6= γ for each i 6= 1..k.
Because σ(P) ≡ σ(α1).σ(P1)|...|σ(αk).σ(Pk), and because γ 6= αi, and γ 6∈ act(σ), we can
state that γ 6= σ(αi), hence σ(P) cannot perform a transition by γ. Thus σ(M), σ(P) 6|=
〈γ〉ψ.
If there are transitions of P by γ, and for any such a transition P

γ−→ Q we have
M, Q 6|= ψ: then, because from act(σ)∩ act(〈γ〉ψ) = ∅ we can derive act(σ)∩ act(ψ) = ∅,
the inductive hypothesis can be applied and we obtain σ(M), σ(Q) 6|= ψ. But because
γ 6∈ act(σ) we obtain σ(γ) = γ and σ(P)

γ−→ σ(Q). Hence σ(M), σ(P) 6|= 〈γ〉ψ.

We suppose to have defined on A a lexicographical order ¿. So, for a finite set A ⊂ A we
can identify a maximal element that is unique. Hence the successor of this element is unique as
well. We convey to denote by A+ the set obtained by adding to A the successor of its maximal
element.

Theorem 4.16 (Finite model property).

If M, P |= φ then ∃N ∈ M
act(φ)+
LφM and Q ∈ N such that N , Q |= φ

Proof. Consider the substitution σ that maps all the actions α ∈ A \ act(φ) in the successor of
the maximum element of act(φ) (it exists as act(φ) is finite). Obviously act(σ) ∩ act(φ) = ∅,
hence, using theorem 4.15 we obtain Mσ, P σ |= φ. Further we take N = Mσ

(h,w) ∈ M
act(φ)+

(h,w)

and Q = P σ
(h,w) ∈Mact(φ)+

(h,w) , and theorem 4.13 proves the finite model property.

Because act(φ) is finite implying act(φ)+ finite, we apply theorem 4.11 ensuring that M
act(φ)+
LφM

is finite and any context M∈ M
act(φ)+
LφM is finite as well. Thus we obtain the finite model prop-

erty for our logic.
The fact that our logic has the finite model property against the process semantics entails:

24

• Satisfiability checking is decidable, meaning that a finite procedure exists such that, taking
the formula φ as input, decides, in a finite manner, if there exists a process satisfying it in
a context; indeed, this procedure may construct Cφ in the manner presented before and
then browsing it to find such a model - the searching is finite because Cφ is finite.

• Validity checking is decidable, because φ is valid iff ¬φ is not satisfiable; but the satisfia-
bility of ¬φ can be decided by following the finite-time procedure shown before.

• Model checking is decidable because, given a process P in a context M and a formula φ
then M, P |= φ is equivalent with MLφM, PLφM |= φ that requires a finite verification.

Theorem 4.17 (Decidability of LDS). For LDS against process semantics, satisfiability,
validity and model checking are decidable.

4.7 Axioms of LDS

In this section we propose a Hilbert-style axiomatic system for the Dynamic Spatial Logic, LDS .
The system will be constructed in top of the classical propositional logic. Hence all the axioms
and rules of propositional logic are available. In addition we will have a class of spatial axioms
and rules that describe, mainly, the behavior of the parallel operator, and a class of dynamic
axioms and rules regarding the behavior of the dynamic operators in relation with the parallel
one. In the next sections we will prove that the system is sound and complete with respect to
process semantics.

We begin by defining, inductively on processes, a special class of formulas that characterize
a process up to structural congruence.

Definition 4.15 (Characteristic formulas). We define a class of formulas (cP)P∈P, indexed
by (≡-equivalence classes of) processes, as follows:

1. c0
def
= 0

2. cP |Q
def
= cP |cQ

3. cα.P
def
= 〈!α〉cP

Spatial axioms

Axiom D 1. ` >|⊥ → ⊥

Axiom D 2. ` φ|0 ↔ φ

Axiom D 3. ` φ|ψ → ψ|φ

Axiom D 4. ` (φ|ψ)|ρ → φ|(ψ|ρ)

Axiom D 5. ` φ|(ψ ∨ ρ) → (φ|ψ) ∨ (φ|ρ)

Axiom D 6. ` (cP ∧ φ|ψ) → ∨
P≡Q|R(cQ ∧ φ)|(cR ∧ ψ)

25

Spatial rules

Rule DR 1. If ` φ → ψ then ` φ|ρ → ψ|ρ

Dynamic axioms

Axiom D 7. ` 〈α〉φ|ψ → 〈α〉(φ|ψ)

Axiom D 8. ` [α](φ → ψ) → ([α]φ → [a]ψ)

Axiom D 9. ` 0 → [α]⊥

Axiom D 10. If β 6= αi for i = 1..n then ` 〈!α1〉>|...|〈!αn〉> → [β]⊥

Axiom D 11. ` 〈!α〉φ → [α]φ

Dynamic rules

Rule DR 2. If ` φ then ` [α]φ

Rule DR 3. If ` φ → [α]φ′ and ` ψ → [α]ψ′ then ` φ|ψ → [α](φ′|ψ ∨ φ|ψ′).

Rule DR 4. If ` ∨
Q∈P

act(φ)+
LφM

cQ → φ then ` φ.

Axiom D1 states the propagation of the inconsistency from a subsystem to the upper system.
Axioms D2, D3 and D4 depict the structure of abelian monoid projected by the parallel

operator on the class of processes.
Concerning axiom D6, observe that the disjunction involved has a finite number of terms,

as we considered the processes up to structural congruence level. The theorem states that if
system has a property expressed by parallel composition of specifications, then it must have
two parallel complementary subsystems, each of them satisfying one of the specifications.

Rule DR1 states a monotony property for the parallel operator.
The first dynamic axiom, axiom D7, presents a domain extrusion property for the dynamic

operator. It expresses the fact that if an active subsystem of a bigger system performs the
action α, then the bigger system performs it as a whole.

Axiom D8 is just the (K)-axiom for the dynamic operator.
Axiom D9 states that an inactive system cannot perform any action.
Given a complex process that can be exhaustively decomposed in n parallel subprocesses,

each of them being able to perform one action only, αi, for i = 1..n, axiom D10 ensures us that
the entire system, as a whole, cannot perform another action β 6= αi for i = 1..n.

Recalling that the operator 〈!α〉 describes processes guarded by α, axiom D11 states that a
system described by a guarded process can perform one and only one action, the guarding one.

Rule DR2 is the classic necessity rule used for the dynamic operator.
Rule DR3 is, in a sense, a counterpart of axiom D7 establishing the action of the operator

[α] in relation to the parallel operator.
Rule DR4 comes as a consequence of the finite model property and provides a rule that

characterizes, in a finite manner, the validity of a formula. Observe that the disjunction in the
first part of the rule has a finite number of terms as P

act(φ)+
LφM is finite (modulo ≡).

26

5 Soundness of LDS with respect to process semantics

In this section we will prove that our intuition behind the axioms and rules is correct and that,
indeed, these describe real behaviors of processes. We will do this by proving the soundness
theorem. Such a theorem states that our axioms and rules are correct descriptions of the seman-
tics, i.e. of the algebra of processes and, in consequence, everything that can be proved using
our axiomatic system will be true about processes in the given interpretation (via satisfiability
relation).

Theorem 5.1 (Process-Soundness). The system LDS is a sound system with respect to the
process semantics.

Proof. The proof derives, as a consequence, from the soundness of all the axioms and rules of
the system. These are proved further, in this section.

5.1 Soundness of the spatial axioms and rules

We start with proving the soundness of the spatial axioms and rules.

Lemma 5.2 (Soundness of axiom D1). |= >|⊥ → ⊥

Proof. Suppose that it exists a context M and a process P ∈M such that M, P |= >|⊥. Then
P ≡ Q|R with M, Q |= > and M, R |= ⊥; i.e. M, R 6|= >. But this is not possible. Hence,
there is no context M and process P ∈M such that M, P |= >|⊥, i.e. for any context M and
any process P ∈M we have M, P |= ¬(>|⊥), i.e. M, P |= >|⊥ → ⊥.

Lemma 5.3 (Soundness of axiom D2). |= φ|0 ↔ φ.

Proof. M, P |= φ|0 iff P ≡ Q|R, M, Q |= φ and M, R |= 0. Then R ≡ 0, so P ≡ Q, hence
M, P |= φ.
If M, P |= φ, because M, 0 |= 0 and P ≡ P |0 ∈M we obtain that M, P |= φ|0.

Lemma 5.4 (Soundness of axiom D3). |= φ|ψ → ψ|φ.

Proof. M, P |= φ|ψ means that P ≡ Q|R, M, Q |= φ and M, R |= ψ. But P ≡ R|Q ∈ M,
hence M, P |= ψ|φ.

Lemma 5.5 (Soundness of axiom D4). |= (φ|ψ)|ρ → φ|(ψ|ρ).

Proof. M, P |= (φ|ψ)|ρ implies that P ≡ Q|R, M, Q |= φ|ψ and M, R |= ρ. Then Q ≡ S|V
with M, S |= φ and M, V |= ψ. But P ≡ (S|V)|R ≡ S|(V |R), where M, S |= φ and M, V |R |=
ψ|ρ. Hence M, P |= φ|(ψ|ρ).

Lemma 5.6 (Soundness of axiom D5).

|= φ|(ψ ∨ ρ) → (φ|ψ) ∨ (φ|ρ)

27

Proof. M, P |= φ|(ψ ∨ ρ) means that P ≡ Q|R, M, P |= φ and M, R |= ψ ∨ ρ, i.e. M, R |= ψ
or M, R |= ρ. Hence M, P |= φ|ψ or M, P |= φ|ρ. So M, P |= (φ|ψ) ∨ (φ|ρ).

On this point we have enough information to prove two expected results: first that cP is,
indeed, satisfied by the process P and second, that the formula cP is satisfied by the whole
≡-equivalence class of P . These results will be useful in proving the rest of the soundness
lemmas.

Theorem 5.7. If P ∈M, then M, P |= cP .

Proof. We prove it by induction on the structure of the process P .
The case P ≡ 0: M, 0 |= c0, because 0 ∈M, c0 = 0 and M, 0 |= 0.
The case P ≡ Q|R: we have Q,R ∈ M and cP = cQ|cR. By the inductive hypothesis
M, Q |= cQ and M, R |= cR, so M, Q|R |= cQ|cR. Hence M, P |= cP .
The case P ≡ α.Q: we have P

α−→ Q, hence Q ∈ M. Moreover, cP = 〈α〉cQ ∧ 1. By the
inductive hypothesis M, Q |= cQ. Because P

α−→ Q, we obtain M, P |= 〈α〉cQ, and because
P ≡ α.Q is a guarded process, we have also M, P |= 1. Hence M, P |= cP .

Theorem 5.8. M, P |= cQ iff P ≡ Q.

Proof. (⇐) We prove it by verifying that M, P |= cQ for any P, Q involved in the equivalence
rules.

• if P = R|S and Q = S|R, we have M, R|S |= cR|cS and using the soundness of axiom
D3, we obtain M, R|S |= cS |cR, i.e. M, P |= cQ

• if P = (R|S)|U and Q = R|(S|U) we have M, P |= (cR|cS)|cU . Using the soundness of
axiom D4, we obtain M, P |= cQ. Similarly M, Q |= cP , using the soundness of axioms
D3 and D4.

• if P = Q|0 then M, P |= cQ|0, i.e., by using the soundness of axiom D2, M, P |= cQ.
Similarly reverse, form M, Q |= cQ we derive, by using the soundness of axiom D2,
M, Q |= cQ|0, i.e. M, Q |= cP .

• if P = P ′|R and Q = Q′|R with P ′ ≡ Q′ and M, P ′ |= cQ′ , because M, R |= cR, we
obtain that M, P |= cQ′ |cR, i.e. M, P |= cQ.

• if P = α.P ′ and Q = α.Q′ with P ′ ≡ Q′ and M, P ′ |= cQ′ , as P
α−→ P ′, then M, P |=

〈α〉cQ′ . But M, P |= 1, because P is a guarded process, hence M, P |= 〈α〉cQ′ ∧ 1, i.e.
M, P |= cQ.

(⇒) We prove the implication in this sense by induction on the structure of Q.

• if Q ≡ 0, then M, P |= c0, means M, P |= 0. Hence P ≡ 0.

• if Q ≡ R|S then M, P |= cQ is equivalent with M, P |= cR|cS . So P ≡ U |V , M, U |= cR

and M, V |= cS . By the inductive hypothesis we obtain that U ≡ R and V ≡ S. Hence
P ≡ Q.

• if Q ≡ α.R, then M, P |= cQ is equivalent with M, P |= 〈α〉cR ∧ 1. So P
α−→ P ′ with

M, P ′ |= cR. By the inductive hypothesis, P ′ ≡ R. And because M, P |= 1 we obtain
that P ≡ α.R, i.e. P ≡ Q.

28

Lemma 5.9 (Soundness of axiom D6).

|= (cP ∧ φ|ψ) →
∨

P≡Q|R
(cQ ∧ φ)|(cR ∧ ψ)

Proof. Suppose that M, S |= cP ∧ φ|ψ. Then S ≡ P (by theorem 5.8) and S ≡ S1|S2 with
M, S1 |= φ and M, S2 |= ψ.
But M, S1 |= cS1 and M, S2 |= cS2 , by theorem 5.7.
Hence M, S1 |= φ ∧ cS1 and M, S2 |= ψ ∧ cS2 .
And because P ≡ S ≡ S1|S2, we obtainM, P |= (φ∧cS1)|(ψ∧cS2), henceM, P |= ∨

P≡Q|R(cQ∧
φ)|(cR ∧ ψ), q.e.d.

Lemma 5.10 (Soundness of rule DR1).

If |= φ → ψ then |= φ|ρ → ψ|ρ

Proof. If M, P |= φ|ρ then P ≡ Q|R, M, Q |= φ and M, R |= ρ. But from the hypothesis,
M, Q |= φ → ψ, hence M, Q |= ψ. Then M, P |= ψ|ρ, so |= φ|ρ → ψ|ρ.

5.2 Soundness of the dynamic axioms and rules

We prove now the soundness for the class of dynamic axioms and rules.

Lemma 5.11 (Soundness of axiom D7). |= 〈α〉φ|ψ → 〈α〉(φ|ψ).

Proof. If M, P |= 〈α〉φ|ψ, then P ≡ R|S, M, R |= 〈α〉φ and M, S |= ψ. So ∃R α−→ R′ and
M, R′ |= φ. So ∃P ≡ R|S α−→ P ′ ≡ R′|S and M, P ′ |= φ|ψ. Hence M, P |= 〈α〉(φ|ψ).

Lemma 5.12 (Soundness of axiom D8).

|= [α](φ → ψ) → ([α]φ → [α]ψ)

Proof. Let M, P |= [α](φ → ψ) and M, P |= [α]φ. If there is no P ′ such that P
α−→ P ′, then

M, P |= [α]ψ. Suppose that exists such P ′. Then for any such P ′ we have M, P ′ |= φ → ψ
and M, P ′ |= φ. Hence M, P ′ |= ψ, i.e. M, P |= [α]ψ.

Lemma 5.13 (Soundness of axiom D9). |= 0 → [α]⊥

Proof. If M, P |= 0 then P ≡ 0 and there is no transition 0 α−→ P ′, hence M, P 6|= 〈α〉>, i.e.
M, P |= [α]⊥.

29

Lemma 5.14 (Soundness of axiom D10).

If β 6= αi for i = 1..n, then |= 〈!α1〉>|...|〈!αn〉> → [β]⊥
Proof. Suppose that M, P |= 〈!α1〉>|...|〈!αn〉>. Then necessarily P ≡ α1.P1|...|αn.Pn. But if
αi 6= β for i = 1..n, there is no transition

α1.P1|...|αn.Pn
β−→ P ′

hence M, P 6|= 〈β〉>, i.e. M, P |= [β]⊥.

Lemma 5.15 (Soundness of axiom D11). |= 〈!α〉φ → [α]φ

Proof. Suppose that M, P |= 〈!α〉φ, then M, P |= 1 and M, P |= 〈α〉φ. Then necessarily
P ≡ α.P ′ and M, P ′ |= φ. But there is only one reduction that P can do, P

α−→ P ′. So, for
any reduction P

α−→ P ′′ (because there is only one), we have M, P ′′ |= φ, i.e. M, P |= [α]φ

Lemma 5.16 (Soundness of rule DR2). If |= φ then |= [α]φ.

Proof. Let M be a context and P ∈ M a process. If there is no P ′ such that P
α−→ P ′, then

M, P |= [α]φ. Suppose that exists such P ′ (obviously P ′ ∈M). Then for any such P ′ we have
M, P ′ |= φ, due to the hypothesis |= φ. Hence M, P |= [α]φ.

Lemma 5.17 (Soundness of rule DR3).

If |= φ → [α]φ′ and |= ψ → [α]ψ′ then |= φ|ψ → [α](φ′|ψ ∨ φ|ψ′)
Proof. Suppose that M, P |= φ|ψ, then P ≡ Q|R, M, Q |= φ and M, R |= ψ. Because
|= φ → [α]φ′ and |= ψ → [α]ψ′, we derive M, Q |= [α]φ′ and M, R |= [α]ψ′. We analyze some
cases:

• if P cannot perform a transition by α, then M, P |= [α]⊥, and using the soundness of
axiom D8 and rule DR2 we derive

|= [α]⊥ → [α](φ′|ψ ∨ φ|ψ′)
hence, we obtain in the end M, P |= [α](φ′|ψ ∨ φ|ψ′).

• if Q
α−→ Q′ and R cannot perform a transition by α, then Q|R α−→ Q′|R and the

transitions of P ≡ Q|R by α have always this form.
But M, Q |= [α]φ′, so for any such Q′ we have M, Q′ |= φ′, thus M, Q′|R |= φ′|ψ, i.e.
M, Q′|R |= (φ′|ψ ∨ φ|ψ′).
Hence for any transition P

α−→ P ′ we have M, P ′ |= (φ′|ψ∨φ|ψ′). In conclusion, M, P |=
[α](φ′|ψ ∨ φ|ψ′).

• if Q cannot perform a transition by α and R
α−→ R′, similarly as in the previous case, we

can derive M, P |= [α](φ′|ψ ∨ φ|ψ′).
• if Q

α−→ Q′ and R
α−→ R′ then P

α−→ P ′ has either the form Q|R α−→ Q′|R or Q|R α−→
Q|R′. But M, Q′|R |= φ′|ψ, hence M, Q′|R |= (φ′|ψ ∨ φ|ψ′) and M, Q|R′ |= φ|ψ′, hence
M, Q|R′ |= (φ′|ψ∨φ|ψ′). Thus, for any transition P

α−→ P ′ we haveM, P ′ |= (φ′|ψ∨φ|ψ′),
i.e. M, P |= [α](φ′|ψ ∨ φ|ψ′).

30

So, in any case M, P |= [α](φ′|ψ ∨ φ|ψ′), that concludes the proof.

Lemma 5.18 (Soundness of rule DR4).

If |=
∨

Q∈P
act(φ)+
LφM

cQ → φ then |= φ

Proof. Suppose that |= ∨
Q∈P

act(φ)+
LφM

cQ → φ but exists a model M and a process P ∈ M
with M, P 6|= φ. Then M, P |= ¬φ. Further, using the finite model property, theorem
4.16, we obtain that Mact(¬φ)+

L¬φM , P
act(¬φ)+
L¬φM |= ¬φ. But LφM = L¬φM and act(φ) = act(¬φ),

so Mact(φ)+
LφM , P

act(φ)+
LφM |= ¬φ.

Further, because |= ∨
Q∈P

act(φ)+
LφM

cQ → φ, we have

Mact(φ)+
LφM , P

act(φ)+
LφM |=

∨

Q∈P
act(φ)+
LφM

cQ → φ

But Mact(φ)+
LφM , P

act(φ)+
LφM |= c

P
act(φ)+
LφM

and we obtain

Mact(φ)+
LφM , P

act(φ)+
LφM |=

∨

Q∈P
act(φ)+
LφM

cQ

Further Mact(φ)+
LφM , P

act(φ)+
LφM |= φ, so Mact(φ)+

LφM , P
act(φ)+
LφM |= ⊥ - impossible!

Hence for any model M and any process P ∈M we have M, P |= φ. But this means |= φ.

6 Theorems of LDS

A mathematician is a device
for turning coffee into theorems.

Paul Erdos

We proved, in the previous section, that our axiomatic system is sound with respect to the
process semantics, hence any provable result is a sound result, i.e. it says something true about
processes. In this section we will prove some interesting theorems in LDS and eventually we
will interpret the nontrivial ones in the process semantics.

6.1 Spatial results

We start with the results that can be proved on the basis of the spatial theorems and rules only.
They reflect the behavior of the parallel operator in relation to the operators of the classical
logic.

Theorem 6.1. ` >|> ↔ >

31

Proof. Obviously ` >|> → >. As ` 0 → >, using rule DR1, we obtain ` >|0 → >|>. Further
axiom D2 gives us ` > → >|>.

Theorem 6.2. If ` φ then ` θ|ρ → φ|ρ

Proof. Because ` φ implies ` θ → φ, using rule DR1 we obtain the result.

Theorem 6.3. ` φ|ψ ↔ ψ|φ

Proof. We use axiom D3 in both directions.

Theorem 6.4. ` (φ|ψ)|ρ ↔ φ|(ψ|ρ)

Proof. We use axiom D4 and theorem 6.3.

Theorem 6.5. ` φ|(ψ ∨ ρ) ↔ (φ|ψ) ∨ (φ|ρ)

Proof. ` ψ → ψ∨ρ so, using rule DR1, ` φ|ψ → φ|(ψ∨ρ). Similarly, ` φ|ρ → φ|(ψ∨ρ). Hence
` (φ|ψ) ∨ (φ|ρ) → φ|(ψ ∨ ρ). The other direction is stated by axiom D5.

Theorem 6.6. ` φ|(ψ ∧ ρ) → (φ|ψ) ∧ (φ|ρ)

Proof. Because ` ψ ∧ ρ → ψ, by applying rule DR1, we have ` φ|(ψ ∧ ρ) → φ|ψ. Similarly
` φ|(ψ ∧ ρ) → φ|ρ.

The next result proves a strong version of monotonicity of the parallel composition.

Theorem 6.7. If ` φ → ρ and ` ψ → θ then ` φ|ψ → ρ|θ.

Proof. If ` φ → ρ then rule DR1 gives us ` φ|ψ → ρ|ψ. If ` ψ → θ, then the same rule gives
` ρ|ψ → ρ|θ. Hence ` φ|ψ → ρ|θ.

The next result speaks about the negative parallel decomposition of a specification. It states
that, given two specifications, φ and ψ, if considering any parallel decomposition of our system
(process) P ≡ Q|R, we obtain that either Q doesn’t satisfy φ or R doesn’t satisfy ψ, then our
system P does not satisfy the parallel composition of the two specifications, φ|ψ.

Theorem 6.8. If for any decomposition P ≡ Q|R we have ` cQ → ¬φ or ` cR → ¬ψ then
` cP → ¬(φ|ψ).

32

Proof. ` cQ → ¬φ is equivalent with ` cQ ∧ φ → ⊥ and because ` cR ∧ ψ → >, we obtain, by
theorem 6.7 ` (cQ ∧ φ)|(cR ∧ ψ) → ⊥|>. And using axiom D1, we derive

` (cQ ∧ φ)|(cR ∧ ψ) → ⊥
Similarly, from ` cR → ¬ψ we can derive

` (cQ ∧ φ)|(cR ∧ ψ) → ⊥
Hence, the hypothesis of the theorem says that for any decomposition P ≡ Q|R we have
` (cQ ∧ φ)|(cR ∧ ψ) → ⊥, i.e.

`
∨

P≡Q|R
(cQ ∧ φ)|(cR ∧ ψ) → ⊥

But axiom D6 gives
` (cP ∧ φ|ψ) →

∨

P≡Q|R
(cQ ∧ φ)|(cR ∧ ψ)

hence
` (cP ∧ φ|ψ) → ⊥, i.e. ` cP → ¬(φ|ψ).

Remark 6.1. Related to the same topic of the relation between negation and the parallel oper-
ator, observe that the negation is not distributive with respect to parallel. This is the reason
why, in the previous theorem, we had to ask in the premises that the condition ` cQ → ¬φ or
` cR → ¬ψ be fulfilled by all the possible decompositions of P . If only a decomposition P ≡ Q|R
exists such that ` cQ → ¬φ or ` cR → ¬ψ, this is not enough to derive M, P |= ¬(φ|ψ). Indeed
suppose that M, Q |= φ but M, Q 6|= ψ and M, R |= ψ but M, R 6|= φ. Then from M, Q |= φ
and M, R |= ψ we derive M, P |= φ|ψ. It is not the case that, from the additional information
M, Q 6|= ψ and M, R 6|= φ, M, P |= ¬(φ|ψ) to be derived. All we can derive from the unused
information is that M, P |= ¬φ|¬ψ, which does not contradict M, P |= φ|ψ.

6.2 Dynamic results

Now we focus of the theorems that derive from the class of dynamic axioms and rules. Remark
the modal behaviors of the epistemic operators.

The next result states the monotonicity of the diamond operator.

Theorem 6.9 (Monotonicity). If ` φ → ψ then ` 〈α〉φ → 〈α〉ψ.

Proof. ` φ → ψ implies ` ¬ψ → ¬φ. Using rule DR2 we obtain
` [α](¬ψ → ¬φ) and axiom D8 gives ` [α]¬ψ → [α]¬φ. This is equivalent with ` ¬〈α〉ψ →
¬〈α〉φ, i.e. ` 〈α〉φ → 〈α〉ψ.

Theorem 6.10. If ` φ → ψ then ` [α]¬ψ → [α]¬φ.

Proof. If ` φ → ψ then, by theorem 6.9, ` 〈α〉φ → 〈α〉ψ, hence
` ¬〈α〉ψ → ¬〈α〉φ, that gives ` [α]¬ψ → [α]¬φ.

33

The next theorems confirm the intuition that the formulas cP , in their interrelations, mimic
the transitions of the processes (the dynamic operators mimic the transition labeled by the
action it has as index).

Theorem 6.11. If P cannot do any transition by α then ` cP → [α]⊥.

Proof. We prove it by induction on the structure of P .
The case P ≡ 0: axiom D9 implies ` 0 → [α]⊥ which proves this case, because c0 = 0.
The case P ≡ α1.P1|...|αn.Pn: as P cannot perform α we have α 6= αi for i = 1..n. We have
cP = (〈α1〉cP1 ∧ 1)|...|(〈αn〉cPn

∧ 1). From ` cPi
→ > we derive, using theorem 6.9, ` (〈αi〉cPi

∧
1) → (〈αi〉>∧1). Further, we apply theorem 6.7 and obtain ` cP → (〈α1〉>∧1)|...|(〈αn〉>∧1).
Axiom D10 gives that for α 6= αi, ` (〈α1〉>∧1)|...|(〈αn〉>∧1) → [α]⊥. Hence ` cP → [α]⊥.

Theorem 6.12. ` cP → [α]
∨{cQ | P

α−→ Q}

Proof. We prove it by induction on P .
The case P 6≡ α.P ′|P ′′ for some P ′, P ′′: then P cannot preform a transition by α, hence,

by theorem 6.11, ` cP → [α]⊥. But
` ¬∨{cQ | P

α−→ Q} → >, and using theorem 6.10, we derive

` [α]⊥ → [α]
∨
{cQ | P

α−→ Q}

Combining this with ` cP → [α]⊥, we derive

` cP → [α]
∨
{cQ | P

α−→ Q}

The case P ≡ α.P ′: then {cQ | P
α−→ Q} = {cP ′} and cP = 〈α〉cP ′ ∧ 1. Applying axiom

D11 we obtain ` cP → [α]cP ′ . Hence

` cP → [α]
∨
{cQ | P

α−→ Q}

The case P ≡ α.P ′|P ′′ with P ′′ 6≡ 0: we apply the inductive hypothesis to α.P ′ and P ′′

respectively, and we obtain

` cα.P ′ → [α]
∨
{cQ′ | α.P ′ α−→ Q′}

and
` cP ′′ → [α]

∨
{cQ′′ | P ′′ α−→ Q′′}

We apply rule DR3 and obtain

` cP → [α](cα.P ′ |
∨
{cQ′′ | P ′′ α−→ Q′′} ∨

∨
{cQ′ | α.P ′ α−→ Q′}|cP ′′)

Using theorem 6.5, we obtain this result equivalent with

` cP → [α]
∨
{cQ | P

α−→ Q}

Theorem 6.13. If ` ∨{cQ | P
α−→ Q} → φ then ` cP → [α]φ

34

Proof. If ` ∨{cQ | P
α−→ Q} → φ then rule DR2 gives

` [α](
∨
{cQ | P

α−→ Q} → φ)

and further axiom D8 gives ` [α]
∨{cQ | P

α−→ Q} → [α]φ. But theorem 6.12 gives ` cP →
[α]

∨{cQ | P
α−→ Q}, hence ` cP → [α]φ.

7 Characteristic formulas

In this section we will focus on the class (cP)P∈P of formulas and we will prove that, indeed,
they characterize, up to structural congruence, their indexes (processes). Hence they provide
univocal syntactical descriptions for the ≡-equivalence classes of processes. We will use this
peculiarity of our syntax, in the next section, for proving the completeness of our system with
respect to process semantics.

We begin by restating some relevant results, proved before, in order to offer to the reader a
full picture of the problem.

Theorem 7.1. M, P |= cP .

Proof. It has been proved as theorem 5.7.

Theorem 7.2. M, P |= cQ iff P ≡ Q.

Proof. It has been proved as theorem 5.8.

The next theorems show that cP could provide a syntactic characterization of the process P ,
stating that the conjunction of two such formulas, cP and cQ, is inconsistent if the indexes are
not structurally congruent, and respectively that two structurally congruent indexes generate
logical equivalent formulas.

Theorem 7.3. If P 6≡ Q then ` cP → ¬cQ.

Proof. We prove it by induction on P .

• the case P ≡ 0: as P 6≡ Q we obtain that Q ≡ α.R|S. So cQ = 〈α〉cR∧1|cS that implies,
using theorem 6.6, ` cQ → 〈α〉cR|cS , and applying axiom D7, ` cQ → 〈α〉(cR|cS).
But ` cR|cS → > and applying theorem 6.9, we obtain
` 〈α〉(cR|cS) → 〈α〉>.
Hence, ` cQ → 〈α〉>. Then ` ¬〈α〉> → ¬cQ.
Axiom D9 gives ` 0 → ¬〈α〉> hence, in the end, ` 0 → ¬cQ, i.e. ` cP → ¬cQ.

• the case P ≡ P ′|P ′′: we have cP = cP ′ |cP ′′ . Because P 6≡ Q, we obtain that for any
decomposition Q ≡ Q′|Q′′ we have either P ′ 6≡ Q′ or P ′′ 6≡ Q′′. Using the inductive
hypothesis, we derive that either ` cQ′ → ¬cP ′ or ` cQ′′ → ¬cP ′′ . Because this is
happening for any decomposition of Q, we can apply theorem 6.8 and we obtain
` cQ → ¬(cP ′ |cP ′′), i.e. ` cQ → ¬cP . Hence ` cP → ¬cQ.

35

• the case P ≡ α.P ′: cP = 1 ∧ 〈α〉cP ′ , so ` cP → 1 ∧ 〈α〉>.
But axiom D10 gives ` 〈α〉> ∧ 1 → ¬〈β〉> for any β 6= α.
Hence, for any β 6= α we have ` cP → ¬〈β〉>.

– if Q ≡ 0 we already proved that ` cQ → ¬cP (because P 6≡ 0), so ` cP → ¬cQ

– if Q ≡ β.Q′|Q′′ for some β 6= α, then ` cQ → 〈β〉>, hence ` ¬〈β〉> → ¬cQ. But we
proved that ` cP → ¬〈β〉>. Hence ` cP → ¬cQ.

– if Q ≡ α.Q1|...|α.Qk for k > 1, then ` cQ → ¬0|¬0 (as ` 0 → ¬cα.Q1 and ` 0 →
¬cα.Q2|...|α.Qk

). Then ` cQ → ¬1, i.e.
` 1 → ¬cQ. But ` cP → 1. Hence ` cP → ¬cQ.

– if Q ≡ αQ′: then P 6≡ Q gives P ′ 6≡ Q′. For this case we can use the inductive
hypothesis and we obtain ` cQ′ → ¬cP ′ . Further, applying theorem 6.10, we obtain
` [α]cP ′ → [α]¬c′Q, i.e.
` [α]cP ′ → ¬〈α〉cQ′ that gives, because cQ = 1 ∧ 〈α〉cQ′ ,
` [α]cP ′ → ¬cQ.
Now, using axiom D11, ` 1 ∧ 〈α〉cP ′ → [α]cP ′ , so ` cP → [α]cP ′ , and, combining it
with the previous result, we derive ` cP → ¬cQ.

Theorem 7.4. If P ≡ Q then ` cP ↔ cQ.

Proof. We prove it verifying the congruence rules:

• if P = R|S and Q = S|R then ` cR|cS ↔ cS |cR from theorem 6.3, i.e. ` cP ↔ cQ

• if P = (R|S)|U and Q = R|(S|U) then theorem 6.4 we have
` (cR|cS)|cU ↔ cR|(cS |cU), i.e. ` cP ↔ cQ

• if P = Q|0 then axiom D2 gives ` cQ|0 ↔ cQ, i.e. ` cP ↔ cQ.

• if P = P ′|R and Q = Q′|R with P ′ ≡ Q′ and ` cP ′ ↔ cQ′ then rule DR1 gives ` cP ′ |cR ↔
cQ′ |cR. Hence ` cP ↔ cQ.

• if P = α.P ′ and Q = α.Q′ with P ′ ≡ Q′ and ` cP ′ ↔ cQ′ then theorem 6.9 gives
` 〈α〉cP ′ ↔ 〈α〉cQ′ , so ` (〈α〉cP ′ ∧ 1) ↔ (〈α〉cQ′ ∧ 1). Hence ` cP ↔ cQ.

We will use, now, the characteristic formula to obtain a syntactic characterization of the
satisfiability relation. The intuition is that, as far as a process P in a context can be charac-
terized by the formula cP , it is expected that M, P |= φ and ` cP → φ are equivalent. The
last relation, if provable (hence sound), states that if a process satisfies cP then it also satisfies
φ. But a process satisfies cP only if it belongs to the ≡-equivalence class of P . But M, P |= φ
states exactly the same thing!

In the next lemma we will prove that this intuition is correct.

Lemma 7.5 (Syntactic characterization of satisfiability).

If M is a context and P ∈M, then M, P |= φ iff ` cP → φ

Proof. (=⇒) We prove it by induction on the syntactical structure of φ.

36

• The case φ = 0: M, P |= 0 implies P ≡ 0. But c0 = 0 and ` 0 → 0, hence ` cP → φ.

• The case φ = >: we have always M, P |= >, and always ` cP → >.

• The case φ = φ1 ∧ φ2: M, P |= φ iff M, P |= φ1 and M, P |= φ2.
Using the inductive hypothesis, we obtain ` cP → φ1 and ` cP → φ2.
Hence ` cP → (φ1 ∧ φ2), i.e. ` cP → φ.

• The case φ = φ1|φ2: M, P |= φ iff P ≡ Q|R, M, Q |= φ1 and M, R |= φ2.
Using the inductive hypothesis, ` cQ → φ1 and ` cR → φ2.
Hence, using theorem 6.7 ` (cQ|cR) → (φ1|φ2), i.e. ` cP → φ.

• The case φ = 〈α〉ψ: M, P |= 〈α〉ψ means that exists P ′ ∈ M such that P
α−→ P ′ and

M, P ′ |= ψ. Then the inductive hypothesis gives ` cP ′ → ψ.

But P
α−→ P ′ means that P ≡ α.R|S and P ′ ≡ R|S, so

cP = (〈α〉cR ∧ 1)|cS and cP ′ = cR|cS .
Then ` cP ′ → ψ is equivalent with ` cR|cS → ψ. Further, using theorem 6.9, we obtain
` 〈α〉(cR|cS) → 〈α〉ψ.
As cP = (〈α〉cR ∧ 1)|cS theorem 6.6 gives ` cP → (〈α〉cR|cS) ∧ (1|cS), hence ` cP →
〈α〉cR|cS .
Further, axiom D7 gives ` 〈α〉cR|cS → 〈α〉(cR|cS).
Hence we proved that ` cP → 〈α〉cR|cS , that ` 〈α〉cR|cS → 〈α〉(cR|cS) and that `
〈α〉(cR|cS) → 〈α〉ψ. Hence ` cP → 〈α〉ψ q.e.d.

• The case φ = ¬ψ: we argue by induction on the syntactical structure of ψ.

– the subcase ψ = 0: M, P |= ¬0 means that P 6≡ 0, and using theorem 7.3,
` cP → ¬c0, i.e. ` cP → ¬0, q.e.d.

– the subcase ψ = >: is an impossible one as we cannot haveM, P |= ¬>, equivalent
with M, P 6|= >.

– the subcase ψ = ψ1∧ψ2: M, P |= ¬(ψ1∧ψ2) is equivalent withM, P |= ¬ψ1∨¬ψ2,
i.e. M, P |= ¬ψ1 or M, P |= ¬ψ2.
By the inductive hypothesis, ` cP → ¬ψ1 or ` cP → ¬ψ2, where from we obtain
` cP → ¬ψ1 ∨ ¬ψ2, i.e. ` cP → ¬(ψ1 ∧ ψ2), q.e.d.

– the subcase ψ = ¬ψ1: M, P |= ¬ψ is equivalent with
M, P |= ¬¬ψ1, i.e. M, P |= ψ1 where we can use the inductive hypothesis ` cP → ψ1

equivalent with ` cP → φ.
– the subcase ψ = ψ1|ψ2: M, P |= ¬(ψ1|ψ2) means that for any parallel decomposi-

tion of P ≡ Q|R, M, Q 6|= ψ1 (i.e.
M, Q |= ¬ψ1) or M, R 6|= ψ2 (i.e. M, R |= ¬ψ2).
These implies, using the inductive hypothesis, that for any decomposition P ≡ Q|R,
` cQ → ¬ψ1 or ` cR → ¬ψ2.
Further, applying theorem 6.8, we obtain ` cP → ¬(ψ1|ψ2), q.e.d.

– the subcase ψ = 〈α〉ψ1: M, P |= ¬〈α〉ψ1 is equivalent with M, P |= [α]¬ψ1.
If P cannot perform α, then, by theorem 6.11 ` cP → [α]⊥ that implies further
` cP → [α]¬ψ1 (because ` ψ1 → >).
If P can perform α, then M, P |= [α]¬ψ1 implies that for any Q ∈M with P

α−→ Q,
M, Q |= ¬ψ1.
Using the inductive hypothesis we obtain that for any Q ∈ M such that P

α−→ Q
we have ` cQ → ¬ψ1, i.e.
` ∨{cQ | P

α−→ Q} → ¬ψ1.
Now, using theorem 6.13, we obtain ` cP → [α]¬ψ1 q.e.d.

37

(⇐=) Let ` cP → φ and M a context that contains P .
Suppose that M, P 6|= φ. Then M, P |= ¬φ. Using the reversed implication we obtain ` cP →
¬φ, hence ` cP → ⊥.
But M, P |= cP which, using the soundness, gives M, P |= ⊥ impossible!
Hence M, P |= φ.

The next corollary ensures us that LDS is not sensitive to contexts. This is an expected
result that can be corroborated by the fact that, in [4], it was proved that in spatial logics
with dynamic operators the guarantee operator (dual of parallel) cannot be derived from the
other operators. Now our next theorem explains why: because the dynamic spatial logic is not
sensitive to contexts, while the guarantee operator is.

Corollary 7.6. If M,M′ are contexts, M, P |= φ and P ∈M′, then M′, P |= φ.

Proof. If M, P |= φ then by lemma 7.5 we obtain ` cP → φ. As P ∈M′ and ` cP → φ we can
apply the same lemma once again and obtain M′, P |= φ q.e.d.

Corollary 7.7. If ` cP → cQ then P ≡ Q.

Proof. If ` cP → cQ then, by lemma 7.5, M, P |= cQ, for any context M 3 P , hence, by
theorem 5.8 P ≡ Q.

8 Completeness of LDS against process semantics

In this section we will prove that our axiomatic system proposed for LDS is a complete axiomatic
system for process semantics. This means that everything that can be derived in semantics can
be also proved, as a theorem, in our system. In this way we show that the axioms of our
system are comprehensive enough to fully describe what can happen in the process calculus we
considered.

This result, in relation to the soundness result proved in section 5 reveals a duality between
our axiomatic system and the fragment of CCS we consider as semantics: everything that can
be derived in semantics can be proved in the syntax, and everything that can be proved in the
syntax can be derived in semantics.

Definition 8.1 (Provability and consistency). We say that a formula φ ∈ FDS is provable
in LDS (or LDS-provable for short), if φ can be derived, as a theorem, using the axioms and
the rules of LDS . We denote this by ` φ.
We say that a formula φ ∈ FDS is consistent in LDS (or LDS-consistent for short) if ¬φ is not
LDS-provable.

In the next lemma we will prove that the consistency is the syntactic counterpart of satisfi-
ability. This will be eventually used to prove the completeness.

Lemma 8.1. If φ is LDS-consistent then exists a context M and a process P ∈ M such that
M, P |= φ.

38

Proof. Suppose that φ is LDS-consistent, but for any context M and any process P ∈ M we
do not have M, P |= φ, i.e. M, P 6|= φ.
Then for any process P ∈ P and any context M3 P we have M, P |= ¬φ.
Further lemma 7.5 gives ` cP → ¬φ, for any P ∈ P. Thus we also have ` cP → ¬φ for any
P ∈ P

act(¬φ)+
L¬φM , i.e.

` ∨
P∈P

act(¬φ)+
L¬φM

cP → ¬φ.

Further, using rule DR4, we obtain ` ¬φ. This contradicts with the hypothesis of LDS-
consistency of φ.

In consequence, there exists a context M and a process P ∈M such that M, P |= φ.

Theorem 8.2 (Completeness). The LDS system is complete with respect to process seman-
tics.

Proof. Suppose that φ is a valid formula with respect to process semantics, but φ is not provable
in the system LDS . Then neither is ¬¬φ, so, by definition, ¬φ is LDS-consistent. It follows
from lemma 8.1 that ¬φ is satisfiable with respect to our semantics, contradicting the validity
of φ.
Hence, if φ is valid, then it is LDS-provable.

Acknowledgements. We thank to Alexandru Baltag for contributing with valuable comments,
since the beginning, on the construction of this logic. Thanks also to Luca Cardelli for comments
and related discussions. The name structural bisimulation was suggested to us by Gordon
Plotkin.

References

[1] J. A. Bergstra. Handbook of Process Algebra. Elsevier Science Inc., New York, NY, USA,
2001.

[2] Luis Caires and Luca Cardelli. A spatial logic for concurrency (part ii). In Proceedings of
CONCUR’2002, Lecture Notes in Computer Science, Springer-Verlag, vol:2421, 2002.

[3] Luis Caires and Luca Cardelli. A spatial logic for concurrency (part i). Information and
Computation, Vol: 186/2:194–235, November 2003.

[4] Luis Caires and Etienne Lozes. Elimination of quantifiers and decidability in spatial logics
for concurrency. In Proceedings of CONCUR’2004, Lecture Notes in Computer Science,
Springer-Verlag, vol:3170, 2004.

[5] Cristiano Calcagno, Luca Cardelli, and Andrew D. Gordon. Deciding validity in a spatial
logic for trees. In Proceedings of the ACM Workshop on Types in Language Design and
Implementation, pages 62–73, 2003.

[6] Luca Cardelli. Bioware languages. In: Andrew Herbert, Karen Sprck Jones (Eds.): Com-
puter Systems: Theory, Technology, and Applications - A Tribute to Roger Needham,
Monographs in Computer Science. Springer, ISBN 0-387-20170-X.:59–65., 2004.

39

[7] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Foundations of Software
Science and Computation Structures: First International Conference, FOSSACS ’98.
Springer-Verlag, Berlin Germany, 1998.

[8] Luca Cardelli and Andrew D. Gordon. Ambient logic. To appear in Mathematical Struc-
tures in Computer Science, 2003.

[9] M. Dam. Proof systems for π-calculus. In de Queiroz, editor, Logic for Concurrency and
Synchronisation, Studies in Logic and Computation. Oxford University Press. To appear.

[10] M. Dam. Relevance logic and concurrent composition. In Proceedings of Third Annual
Symposium on Logic in Computer Science, Edinburgh, Scotland, July 1988. IEEE Com-
puter Society., pages 178–185.

[11] M. Dam. Model checking mobile processes. Information and Computation, vol:129(1):35–
51, 1996.

[12] E. A. Emerson. Temporal and Modal Logic. Handbook of Theoretical Computer Science,
volume B: Formal Models and Sematics. 1990.

[13] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. JACM,
vol: 32(1):137–161, 1985.

[14] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. Theoretical
Computer Science, vol:114:149–171, 1993.

[15] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report FN-
19, DAIMI, Department of Computer Science, University of Aarhus, Aarhus, Denmark,
43, September 1981.

[16] Colin Stirling. Modal and temporal properties of processes. Springer-Verlag New York, Inc.,
New York, NY, USA, 2001.

40

