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Summary

Mechanical models have been invented, designed and realized to exper-
imentally confirm unexpected behaviours theoretically predicted in elas-
ticity:

- instabilities and bifurcations occurring in structures under ‘tensile
dead load’ and the influence of the constraint’s curvature;

- the presence of an ‘Eshelby-like’ or ‘configurational’ force in struc-
tures with movable constraints.

Furthermore, ‘classical’ features in elasticity have been substantied by
testing small-scale models and observing:

- linearity in the mechanical response of a truss-structure, confirming
the usual assumption of linear elasticity when small displacements
are considered;

- stress singular fields near stiff quadrilateral inclusions embedded in
a ‘soft’ elastic plate, validating the model of rigid inclusion.

All the experiments have been performed at the Laboratory for Physi-
cal Modeling of Structures and Photoelasticity of the Department of Civil,
Environmental and Mechanical Engineering of the University of Trento.
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Effects of the constraintŠs curvature on structural instability: tensile
buckling and multiple bifurcations. Proceedings of the Royal Society
A, 2012, 468, 2191-2209;

3. Bigoni, D., Misseroni, D., Noselli, G., and Zaccaria, D.
Surprising instabilities of simple elastic structures. Chapter in the
book: Nonlinear Physical Systems - Spectral Analysis, Stability and
Bifurcations - BIRS Workshop , 2013, in press;

4. Bigoni, D., Bosi, F., Dal Corso, F., and Misseroni, D.
Eshelby-like forces acting on elastic structures: theoretical and ex-
perimental proof. Mechanics of Materials, 2013, accepted;

5. Bigoni, D., Bosi, F., Dal Corso, F., and Misseroni, D.
Instability of a penetrating blade. 2013, submitted;

6. Bigoni, D., Dal Corso, F., Misseroni, D., and Tommasini, M.
A teaching model for truss structures. European Journal of Physics,
2012, 33, 1179-1186.

7. Misseroni, D., Dal Corso, F., Shahzad, S., Bigoni, D.
Stress concentration near stiff inclusions: validation of rigid inclusion
model and boundary layers by means of photoelasticity.
http://arxiv.org/abs/1309.1091, 2013.

ix





Contents

Summary v

Acknowledgements vii

Published papers ix

Contents xi

Introduction 1

1 Structures buckling under tensile dead load 7

1.1 A simple one d.o.f. structure which buckles for tensile dead
loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Vibrations, buckling and the elastica . . . . . . . . . . . . . 13

1.2.1 The vibrations and critical loads . . . . . . . . . . . 13

1.2.2 The elastica . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Experiments on the Elastica . . . . . . . . . . . . . . . . . . 24

2 Effects of the constraint’s curvature on structural instabil-
ity: tensile buckling and multiple bifurcations 29

2.1 Effect of the constraint’s curvature on a one-degree-of-freedom
elastic structure . . . . . . . . . . . . . . . . . . . . . . . . . 33

xi



Contents

2.1.1 The design of the postcritical behaviour . . . . . . . 36

2.1.2 Experiments on one-degree-of-freedom elastic sys-
tems: multiple buckling and neutral postcritical re-
sponse . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 The buckling and postcritical behaviour of an elastic rod
with a circular constraint on one end . . . . . . . . . . . . . 42

2.2.1 The critical loads . . . . . . . . . . . . . . . . . . . . 43

2.2.2 The elastica . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.3 Experiments on the elastica . . . . . . . . . . . . . . 50

2.A Details on the experiments . . . . . . . . . . . . . . . . . . 53

3 Eshelby-like forces acting on elastic structures: theoretical
and experimental proof 55

3.1 Eshelby-like force produced by a sliding sleeve . . . . . . . . 58

3.1.1 Asymptotic approach . . . . . . . . . . . . . . . . . 60

3.1.2 Variational approach . . . . . . . . . . . . . . . . . . 61

3.1.3 The Eshelby-like force expressed as a function of the
tran-sversal load . . . . . . . . . . . . . . . . . . . . 62

3.2 The experimental evidence of configurational force . . . . . 64

3.2.1 Eshelbian force provided by a roller device . . . . . . 65

3.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . 67

4 Instability of a penetrating blade 69

4.1 More than one critical load for each instability mode and
finite number of critical loads for continuous elastic systems 74

4.2 From the total potential energy to the equilibrium equations 79

4.2.1 The elastica . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Stability of configurations . . . . . . . . . . . . . . . . . . . 85

4.3.1 Stability of trivial configurations . . . . . . . . . . . 86

4.3.2 Stability of non-trivial configurations . . . . . . . . . 87

4.4 Theory vs. experiments . . . . . . . . . . . . . . . . . . . . 88

4.A Prototype 0 and further details on the experimental setup 93

5 A teaching model for truss structures 95

5.1 The design and performance of the truss model . . . . . . . 96

xii



Contents

6 Stress concentration near stiff inclusions: validation of
rigid inclusion model and boundary layers by means of
photoelasticity 105
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Theoretical linear elastic fields near rigid polygonal inclusions106

6.2.1 Asymptotic fields near the corner of a rigid wedge . 108
6.2.2 Full-field solution for a matrix containing a polygo-

nal rigid inclusion . . . . . . . . . . . . . . . . . . . 110
6.3 Photoelastic elastic fields near rigid polygonal inclusions . . 114

7 Conclusion 121

Bibliography 123

xiii





Introduction

Validation of a theoretical model through experiments is a fundamen-
tal step for the mechanical description of materials and structures. In
this thesis unexpected features (tensile buckling load, Chapter 1- 2, and
Eshelby-like force, Chapter 3- 4) of simple mechanical elastic systems are
derived and confirmed by experimental tests on small-scale models, and
experimental evidence of ‘classical’ features in elasticity (linear elastic as-
sumption for truss structures, Chapter 5, and singular stress near stiff
polygonal inclusions, Chapter 6) is presented.

In Chapter 1 it is shown both theoretically and experimentally that it
is possible to design structures that exhibit bifurcations and instabilities
under tensile dead load without any compressed elements, see Fig. 1. This
behavior is possible in elementary structures with a single degree of free-
dom and in more complex mechanical systems, as related to the presence
of a structural junction, called ‘slider’, allowing only relative transver-
sal displacement between the connected elements. In continuous systems,
where the slider connects two elastic thin rods, bifurcations occur both in
tension and compression.

In Chapter 2 it is shown that bifurcation of an elastic structure cru-
cially depends on the curvature of the constraints against which the ends
of the structure are prescribed to move, see Fig. 2. These simple struc-
tures exhibit interesting features: tensile buckling, designed postcritical
behaviour and multiple bifurcations, determining for instance two bifurca-
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Loading device

HingeSlider

Metal strip providing
rotational stiffness k

Hinge
l

Fig. 1: A scheme (on the left) and a real model (on the right) of a single-degree-
of-freedom elastic structure exhibiting bifurcation for tensile dead loading. The rods
of length l are rigid and jointed together through a slider, a device allowing only for
relative sliding between the two connected pieces). A rotational elastic spring of stiffness
k, attached at the hinge on the left, provides the elastic stiffness to the system.

tion loads (one tensile and one compressive) in a single-degree-of-freedom
elastic system.

��4/l

l

k

Ft

��4/l
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Fig. 2: A scheme (on the left) and a real model (on the right) of a one-degree-of-freedom
structure (with a rotational elastic spring at its left end) evidencing compressive or
tensile buckling as a function of the curvature of the constraint (a circular profile with
constant curvature, χ = ±4/l) on which the hinge on the right of the structure is
constrained to slide.

In Chapter 3 it is shown that in an elastic structure as sketched in
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Fig. 3, where a (smooth and bilateral) constraint leaves the elastic rod the
possibility of sliding thus releasing energy, an ‘Eshelby-like’ or ‘configura-
tional’ force is generated. This unexpected force (generated by a special
movable constraint) is derived analytically and experimentally measured
on a model structure that we have designed, realized and tested.

Fig. 3: Structural scheme of the elastic system employed to disclose a Eshelby-like force.
The elastic rod of total length l̄ is subject to a dead vertical load P on its right end,
is constrained with an inclined sliding sleeve and has a axial dead force S applied at
its left end. The presence of the Eshelby-like force M2/(2B) influences the force S at
equilibrium, which results different from P cosα.

Chapter 4 is devoted to the stability of an elastic rod penetrating into
a sliding sleeve ending with a linear elastic spring. This simple elastic
system, sketched Fig. 4, shows several unexpected behaviours including a
finite number of buckling loads for a system with infinite degrees of free-
dom (leading to a non-standard Sturm-Liouville problem), more than one
bifurcation loads associated to each bifurcation mode, a restabilization of
the straight configuration after the second bifurcation load associated to
the first instability mode and the presence of an Eshelby-like (or configu-
rational) force, deeply influencing stability.

A classroom demonstration model for a Warren truss structure (see
Fig. 5) is shown in Chapter 5. Our aim is to develop a teaching model
to facilitate understanding of the mechanics of truss structures, in which
struts are subject to purely axial load and deformation. The demonstra-
tion model has been proved to exemplify the way a truss structure is
designed and deforms, and have been used during undergraduate class to
experimentally assess the validity of structural modeling via linear elastic-

3
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Fig. 4: The penetrating blade is an elastic rod whose free length l is a function of the
applied axial load P. The blade has a free end subject to the dead load P, while at the
other edge the blade slides into a frictionless sleeve and is restrained by an axial linear
spring.

ity.

Fig. 5: View of the (unloaded) spatial Warren truss model, with details (an internal
node on the left, two external nodes on the right: a roller and a hinge).

Finally, photoelastic investigations of the stress state near stiff quadri-
lateral inclusions embedded in a ‘soft’ elastic plate are provided in Chap-
ter 6. These experiments confirm the theoretical singular stress field up to
a distance so close to the inclusion edges that fringes become unreadable
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(even with the aid of an optical microscope), as shown in Fig. 6.

31.5x

Fig. 6: Photoelastic fringes revealing the stress field near stiff (made up of polycarbon-
ate, Young modulus 2350 MPa) rectangular (large edge lx =20 mm, edges aspect ratios
1, 1/2, 1/4) and rhombohedral (large axis lx =30 mm, axis aspect ratios 2/15, 4/15,
9/15) inclusions embedded in an elastic matrix (a two-component epoxy resin, Young
modulus 22 MPa, approximatively 100 times less stiff than the inclusions) and loaded
with uniaxial tensile stress σ∞

xx =0.28 MPa, compared to the elastic solution for rigid
inclusions (in plane stress, with Poisson’s ratio equal to 0.49).

All the experiments have been performed at the Laboratory for Phys-
ical Modeling of Structures and Photoelasticity of the Department of Me-
chanical and Structural Engineering of the University of Trento.
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1

Structures buckling under tensile
dead load

After the systematic experiments by Musschenbroek and their rationaliza-

tion by Euler, for the first time it is shown that it is possible to design

structures (i.e. mechanical systems whose elements are governed by the

equations of the elastica) exhibiting bifurcations and instabilities (‘buck-

ling’) under tensile load of constant direction and point of application

(‘dead’). It is shown both theoretically and experimentally that the be-

haviour is possible in elementary structures with a single degree of free-

dom and in more complex mechanical systems, as related to the presence

of a structural junction, called ‘slider’, allowing only relative transver-

sal displacement between the connected elements. In continuous systems

where the slider connects two elastic thin rods, bifurcations occur both in

tension and compression and are governed by the equation of the elastica,

employed here for tensile loading, so that the deformed rods take the form

of the capillary curve in a liquid, which is in fact governed by the equa-

tion of the elastica under tension. Since axial load in structural elements

deeply influences dynamics, our results may provide application to inno-

vative actuators for mechanical wave control, moreover, they open a new

perspective in the understanding of failure within structural elements.

Buckling of a straight elastic column subject to compressive end thrust
occurs at a critical load for which the straight configuration of the column
becomes unstable and simultaneously ceases to be the unique solution of
the elastic problem (so that instability and bifurcation are concomitant
phenomena). Buckling is known from ancient times: it has been exper-
imentally investigated in a systematic way by Pieter van Musschenbrok
(1692-1761) and mathematically solved by Leonhard Euler (1707-1783),
who derived the differential equation governing the behaviour of a thin
elastic rod suffering a large bending, the so-called ‘elastica’ (see Love,

7



1927).

Elastic rod in tension Water meniscus in air

F 10 cm

30�

1 mm

70�

30�
PC

Air

Theory

Fig. 1.1: Analogy between an elastic rod buckled under tensile force (left) and a water
meniscus in a capillary channel (right, superimposed to the solution of the elastica,
marked in red): the deflection of the rod and the surface of the liquid have the same
shape, see Section 1.3.

Through centuries, engineers have experimented and calculated com-
plex structures, such as frames, plates and cylinders, manifesting insta-
bilities and bifurcations of various forms (Timoshenko and Gere, 1961),
so that certain instabilities have been found involving tensile loads. For
instance, there are examples classified by Ziegler (1977) as ‘buckling by
tension’ where a tensile loading is applied to a system in which a com-
pressed member is always present, so that they do not represent true
bifurcations under tensile loads. Other examples given by Gajewski and
Palej (1974) are all related to the complex live (as opposed to ‘dead’) load-
ing system, for instance, loading through a vessel filled with a liquid, so
that Zyczkowski (1991) points out that ‘With Eulerian behaviour of load-
ing (materially fixed point of application, direction fixed in space), the
bar cannot lose stability at all [...].’ Note finally that necking of a circular
bar represents a bifurcation of a material element under tension, not of a
structure.

It can be concluded that until now structures made up of line elements
(each governed by the equation of the elastica) exhibiting bifurcation and
instability under tensile load of fixed direction and point of application (in
other words ‘dead’) have never been found, so that the word ‘buckling’ is
commonly associated to compressive loads.

In the present chapter we show that:

• simple structures can be designed evidencing bifurcation (buckling)

8



1. Structures buckling under tensile dead load

and instability under tensile dead loading;

• the deformed shapes of these structures can be calculated using the
equation of the elastica, but under tension, so that the deflection of
the rod is identical to the shape of a capillary curve in a liquid, which
is governed by the same equation, see Fig. 1.1 and Sections 1.2.2
and 1.3;

• experiments show that elastic structures buckling under tension can
be realized in practice and that they closely follow theory predictions,
Sections 1.1 and 1.3.

The above findings are complemented by a series of minor new re-
sults for which our system behaves differently from other systems made
up of elastic rods, but with the usual end conditions. First, our system
evidences load decrease with increase of axial displacement (the so-called
‘softening’), second, the bifurcated paths involving relative displacement
at the slider terminate at an unloaded limit configuration, for both tension
and compression.

We will see that the above results follow from a novel use of a junction
between mechanical parts, namely, a slider or, in other words, a connec-
tion allowing only relative sliding (transverse displacement) between the
connected pieces and therefore constraining the relative rotation and axial
displacement to remain null.

Vibrations of structures are deeply influenced by axial load, so that
the speed of flexural waves vanishes at bifurcation (Bigoni et al. 2008;
Gei et al. 2009), a feature also evidenced by the dynamical analysis pre-
sented in Section 1.2.1, so that, since bifurcation is shown to occur in our
structures both in tension and compression, these can be used as two-
way actuators for mechanical waves, where the axial force controls the
speed of the waves traversing the structure. Therefore, the mechanical
systems invented here can immediately be generalized and employed to
design complex mechanical systems exhibiting bifurcations in tension and
compression, to be used, for instance, as systems with specially designed
vibrational properties (a movie providing a simple illustration of the con-
cepts exposed in this work, together with a view of experimental results,
available at http://ssmg.unitn.it).

9



1.1. A simple one d.o.f. structure which buckles for tensile dead loading

1.1 A simple one d.o.f. structure which buckles for tensile dead
loading

The best way to understand how a structure can bifurcate under ten-
sile dead loading is to consider the elementary single-degree-of-freedom
structure shown in Fig. 1.2, where two rigid rods are connected through
a ‘slider’ (a device which imposes the same rotation angle and axial dis-
placement to the two connected pieces, but null shear transmission, leaving
only the possibility of relative sliding). Bifurcation load and equilibrium

1.0

2
F
/
k

l

0.8

0.6

0.4

0.2

0 10 30 60 90

�	 �[ ]

� �
0

0, perfect system

k
F

�

k

�

l l

trivial solution

Fcr

�	� �
0

10

�	� �
0

1

Fig. 1.2: Bifurcation of a single-degree-of-freedom elastic system under tensile dead
loading (the rods of length l are rigid and jointed through a slider, a device allowing
only for relative sliding between the two connected pieces). A rotational elastic spring
of stiffness k, attached at the hinge on the left, provides the elastic stiffness. Note that
the bifurcation is ‘purely geometrical’ and is related to the presence of the constraint at
the middle of the beam which transmits rotation, but not shear (left). The bifurcation
diagram, showing bifurcation and softening in tension is reported on the right. The
rotation angle φ0 = {1◦, 10◦} denotes an initial imperfection, in terms of an initial
inclination of the two rods with respect to the horizontal direction.

paths of this single-degree-of-freedom structure can be calculated by con-
sidering the bifurcation mode illustrated in Fig. 1.2 and defined by the
rotation angle φ. The elongation of the system and the potential energy
are respectively

Δ = 2l

(
1

cosφ
− 1

)
(1.1)

and

W (φ) =
1

2
kφ2 − 2Fl

(
1

cosφ
− 1

)
, (1.2)

10



1. Structures buckling under tensile dead load

so that solutions of the equilibrium problem are

F =
k φ cos2 φ

2l sinφ
, (1.3)

for φ �= 0, plus the trivial solution (φ = 0, ∀F ). Analysis of the second-
order derivative of the strain energy reveals that the trivial solution is
stable up to the critical load

Fcr =
k

2l
, (1.4)

while the nontrivial path, evidencing softening, is unstable.

F

The buckled model under tensile load
Loading device

HingeSlider

Metal strip providing
rotational stiffness k

Hinge

Fig. 1.3: A model of the single-degree-of-freedom elastic structure shown in Fig. 1.2 on
the left (in which a metal strip reproduces the rotational spring and the load is given
through hanging a load) displaying bifurcation for tensile dead loading (left: undeformed
configuration; right: buckled configuration).

For an imperfect system, characterized by an initial inclination of the
rods φ0, we obtain

W (φ, φ0) =
1

2
k (φ− φ0)

2 − 2Fl

(
1

cosφ
− 1

cosφ0

)
(1.5)

and

F =
k (φ− φ0) cos

2 φ

2l sinφ
, (1.6)

so that the force–rotation relation is obtained, which is reported dashed
in Fig. 1.2 for φ0 = 1◦ and φ0 = 10◦.

The simple structure presented in Fig. 1.2, showing possibility of a
bifurcation under dead load in tension and displaying an overall softening
behaviour, can be realized in practice, as shown by the wooden model

11



1.1. A simple one d.o.f. structure which buckles for tensile dead loading

reported in Fig. 1.3.
A further example of a structure buckling in tension is the single-

single-degree-of-freedom system shown in Fig. 1.4, where two rigid rods
are connected through a roller constrained to slide orthogonally to the left
rod.

F
ll

k

F
/kl

1.0

0.8

0.6

0.4

0.2

0 15 30 60 90
�	[ ]°

k

F
�

0�

trivial solution

�0=0 , perfect system°

�0=10°

�0=1°

Figure 1.4: Bifurcation of a single-degree-of-freedom elastic system under tensile dead
loading (the rods of length l are rigid and connected through a roller constrained to
smoothly slide along the line orthogonal to the rigid rod on the left). A rotational elastic
spring of stiffness k, attached at the hinge on the left, provides the elastic stiffness. The
bifurcation diagram, showing bifurcation and softening in tension is reported on the
right, where the angle φ0 = {1◦, 10◦} denotes an initial imperfection.

For this structure, bifurcation load and equilibrium paths can be cal-
culated by considering the bifurcation mode illustrated in Fig. 1.4 and
defined by the rotation angle φ. The elongation of the system and the
total potential energy are respectively

Δ = l

(
1

cosφ
− 1

)
, W (φ) =

1

2
k φ2 − Fl

(
1

cosφ
− 1

)
, (1.7)

so that the force at equilibrium satisfies

F =
k φ cos2 φ

l sinφ
. (1.8)

Analysis of the second-order derivative of the strain energy reveals that
the trivial solution is stable up to the critical load Fcr = k/l , while the
nontrivial path, evidencing softening, is unstable. For an imperfect system,

12



1. Structures buckling under tensile dead load

characterized by an initial inclination of the rods φ0, we obtain

W (φ, φ0) =
1

2
k (φ− φ0)

2−Fl

(
1

cosφ
− 1

cosφ0

)
, F =

k (φ− φ0) cos
2 φ

l sinφ
,

(1.9)
so that the force–rotation relation reported dashed in Fig. 1.4 for φ0 = 1◦

and φ0 = 10◦ is obtained.

1.2 Vibrations, buckling and the elastica for a structure subject
to tensile (and compressive) dead loading

In order to generalize the single-degree-of-freedom system model into
an elastic structure, we consider two inextensible elastic rods clamped at
one end and joined through a slider, identical to that used to join the two
rigid bars employed for the single-degree-of-freedom system (see the inset
of Fig. 1.5). The two bars have bending stiffness B, length l− (on the left)
and l+ (on the right) and are subject to a load F which may be tensile
(F > 0) or compressive (F < 0).

1.2.1 The vibrations and critical loads

The differential equation governing the dynamics of an elastic rod sub-
ject to an axial force F (assumed positive if tensile) is

∂4v(z, t)

∂z4
− F

B

∂2v(z, t)

∂z2
+

ρ

B

∂2v(z, t)

∂t2
= 0, (1.10)

where ρ is the unit-length mass density of the rod and v the transversal
displacement, so that time-harmonic motion is based on the separate-
variable representation

v(z, t) = ṽ(z) e−iωt, (1.11)

in which ω is the circular frequency, t is the time and i =
√−1 is the

imaginary unit.

A substitution of Eq. (1.11) into Eq. (1.10) yields the equation govern-

13



1.2. Vibrations, buckling and the elastica

ing time-harmonic oscillations

d4ṽ(z)

dz4
− α2 sign(F )

d2ṽ(z)

dz2
− βṽ(z) = 0, (1.12)

where the function ‘sign’ (defined as sign(α) = |α|/α ∀α ∈ Re and sign(0) =
0) has been used and

α2 =
|F |
B

, β = ω2 ρ

B
. (1.13)

The general solution of Eq. (1.12) is

ṽ(z) = C1 cosh(λ1z) + C2 sinh(λ1z) + C3 cos(λ2z) + C4 sin(λ2z), (1.14)

where

λ1,2 =

√√
α4 + 4β ± α2 sign(F )

2
. (1.15)

Eq. (1.14) holds both for the rod on the left (transversal displacement
denoted with ‘−’) and on the right (transversal displacement denoted with
‘+’) shown in the inset of Fig. 1.5, so that the boundary conditions at the
clamps impose

ṽ−(0) =
dṽ−

dz

∣∣∣∣
z=0

= 0, ṽ+(l+) =
dṽ+

dz

∣∣∣∣
z=l+

= 0, (1.16)

while at the slider we have the two conditions

d3ṽ−

dz3

∣∣∣∣
z=l−

=
d3ṽ+

dz3

∣∣∣∣
z=0

= 0, (1.17)

expressing the vanishing of the shear force. The imposition of the six
conditions (1.16)–(1.17) provides the constants C±

2,3,4 as functions of the

constants C±
1 , so that the continuity of the rotation at the slider

dṽ−

dz

∣∣∣∣
z=l−

=
dṽ+

dz

∣∣∣∣
z=0

(1.18)

14



1. Structures buckling under tensile dead load

and the equilibrium of the slider

d2ṽ−

dz2

∣∣∣∣
z=l−

− α2 sign(F ) ṽ−(l−) =
d2ṽ+

dz2

∣∣∣∣
z=0

− α2 sign(F ) ṽ+(0), (1.19)

yields finally a linear homogeneous system (with unknowns C−
1 and C+

1 ),
whose determinant has to be set equal to zero, to obtain the frequency
equation, function of α2, ω and sign(F ). The circular frequency ω (nor-
malized through multiplication by

√
ρl4/B) versus the axial force (normal-

ized through multiplication by 4l2/(Bπ2)) is reported in Fig. 1.5, where
the first four branches are shown for a system of two rods of equal length.
In this figure the gray zones represent situations that cannot be achieved,

4 F /( B)l
2 2
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Fig. 1.5: Dimensionless circular frequency ω for the structure shown in the inset (in the
particular case of rods of equal length, l) as a function of the dimensionless applied load
F . Note that solutions in the gray region cannot be achieved, since the rods cannot
remain straight for axial forces external to the bifurcation range of loads (shown as a
white zone).

in the sense that the axial force falls outside the interval where the straight
configuration of the system is feasible (in other words, for axial loads ex-
ternal to the interval of first bifurcations in tension and compression the
straight configuration cannot be maintained).
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1.2. Vibrations, buckling and the elastica

The branches shown in Fig. 1.5 intersect the horizontal axis in corre-
spondence to the bifurcation loads of the system, namely, 4Fcrl

2/(π2B) =
−16,−15.19,−4,−3.17,+0.58, so that there is one critical load in tension
(the corresponding branch is labeled ‘1st slider mode’ in Fig. 1.5), and in-
finitely many bifurcation loads in compression, the first three are reported
in Fig. 1.5 (bifurcations corresponding to the label ‘global mode’ do not
involve relative displacement across the slider).

Beside the possibility of bifurcation in tension, an interesting and novel
effect related to the presence of the slider is that a tensile (compressive)
axial force yields a decrease (increase) of the frequency of the system, while
an opposite effect is achieved when ‘global modes’ are activated.

Quasi-static solutions of the system and related bifurcations can be
obtained in the limit ω → 0 of the frequency equation, which yields⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

tanh
(
α l−

)
cosh

(
α l+

)
+

+ sinh
(
α l+

) [
1− (l+ + l−)α tanh

(
α l−

)]
= 0, forF > 0,

tan
(
α l−

)
cos

(
α l+

)
+

+ sin
(
α l+

) [
1 + (l+ + l−)α tan

(
α l−

)]
= 0, forF < 0.

(1.20)

In the particular case of rods of equal length l, Eqs. (1.20) simplify to⎧⎨⎩sinh (α l) [1− α l tanh (α l)] = 0, forF > 0,

sin (α l) [1 + α l tan (α l)] = 0, forF < 0.
(1.21)

Eqs. (1.21) show clearly that there is only one bifurcation load in ten-
sion (branch labeled ‘1st slider mode’ in Fig. 1.5), but there are ∞2 bi-
furcation loads in compression (the first three branches are reported in
Fig. 1.5). In compression, the bifurcation condition sin (α l) = 0, provid-
ing ∞1 solutions, yields the critical loads of a doubly clamped beam of
length 2l and defines what we have labeled ‘global modes’ in Fig. 1.5. Bi-
furcation loads, normalized through multiplication by (l+ + l−)2/(π2B),
are reported in Fig. 1.6 as functions of the ratio l+/l− between the lengths
of the two rods.

Note that the graph is plotted in a semi-logarithmic scale, which en-
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1. Structures buckling under tensile dead load

forces symmetry about the vertical axis. In the graph, the first two buck-
ling loads in compression are reported: the first corresponds to a mode
involving sliding, while the second does not involve any sliding (and when
l+ = l− corresponds to the first mode of a doubly clamped rod of length
2l). Used as an optimization parameter, l+ = l− corresponds to the lower
bifurcation load in tension (+0.58), near five times smaller (in absolute
value) that the buckling load in compression (−3.17).
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Fig. 1.6: Dimensionless critical loads Fcr as a function of the ratio between the lengths
of the rods, l+/ l−. The dimensionless axial forces for bifurcation in tension and those
corresponding to the first two modes in compression are reported.

1.2.2 The elastica

The determination of the non-trivial configurations at large deflections
of the mechanical system requires a careful use of Euler’s elastica. It is
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1.2. Vibrations, buckling and the elastica

instrumental to employ the reference systems shown in Fig. 1.7 and impose
one kinematic compatibility condition and three equilibrium conditions.
These are as follows.

• The kinematic compatibility condition can be directly obtained from
Fig. 1.7 noting that the jump in displacement across the slider (mea-
sured orthogonally to the line of the elastica), Δs, can be related to
the angle of rotation of the slider Φs, a condition that assuming the
local reference systems shown in Fig. 1.7 becomes[

x−1 (l
−) + x+1 (l

+)
]
tanΦs + x−2 (l

−) + x+2 (l
+) + Δs = 0, (1.22)

where x1(s) and x2(s) are the coordinates of the elastica and the
index − (+) denotes that the quantities are referred to the rod on
the left (on the right). Note that Φs is assumed positive when an-
ticlockwise and Δs is not restricted in sign (negative in the case of
Fig. 1.7).

• Since the slider can only transmit a moment and a force R orthogonal
to it, equilibrium requires that (see the inset in Fig. 1.7)

R =
F

cosΦs
, (1.23)

where F is the axial force providing the load to the rod, assumed
positive (negative) when tensile (compressive), so that since Φs ∈
[−π/2, π/2], R is positive (negative) for tensile (compressive) load.
Note that with the above definitions we have

θ+(0) = θ−(0) = 0, θ+(l+) = θ−(l−) = −Φs. (1.24)

• Equilibrium of the slider requires that

κ−s + κ+s =
R

B
Δs, (1.25)

where B is the bending stiffness of the rod and κ±s is the curvature
on the left (−) or on the right (+) of the slider. Note that B is
always positive, but R, κ±s and Δs can take any sign.
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1. Structures buckling under tensile dead load

slider

F

B

B

R

Rslider

Fig. 1.7: Sketch of the problem of the elastica under tensile axial load F . Note the
reference systems employed in the analysis and note that the moments on the slider
have been reported positive and the curvature results to be negative.

• For both rods (left and right) rotational equilibrium of the element
of rod singled out at curvilinear coordinate s requires

d 2θ

ds 2
− R

B
sin θ = 0, (1.26)

where θ is the rotation of the normal at each point of the elastica,
assumed positive when anticlockwise, with added the superscript −
(+) to denote the rod on the left (on the right).

Eq. (1.26) is usually (see for instance Love, 1927, his Eq. (8) at Sect. 262)
written with a sign ‘+’ replacing the sign ‘−’ and R is assumed positive
when compressive; the same equation describes the motion of a simple
pendulum (see for instance Temme, 1996). The ‘+’ sign originates from
the fact that the elastica has been analyzed until now only for deforma-
tions originating from compressive loads. However, an equation with the
‘−’ sign and with R/B replaced by the ratio between unit weight den-
sity and surface tension of a fluid –thus equal to Eq. (1.26)– determines
the shape of the capillary curve of a liquid (Lamb, 1928), which therefore
results to be identical to the deflection of a rod under tensile load.
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1.2. Vibrations, buckling and the elastica

In the following we derive equations holding along both rods ‘+’ and
‘−’, so that these indices will be dropped for simplicity. Multiplication of
Eq. (1.26) by d θ/ds and integration from 0 to s yields(

d θ

d s

)2

= −2 α̃2 sign(R) cos θ + 2 α̃2

(
2

k2
− 1

)
, (1.27)

where, using the Heaviside step function H, we have

α̃2 =
|R|
B

and k2 =

(
κ2s
4 α̃2

+H(R)

)−1

. (1.28)

Eq. (1.27) can be re-written as(
d θ

d s

)2

=
4 α̃2

k2

[
1− k2 sin2

(
θ

2
+

π

2
H(R)

)]
, (1.29)

so that the change of variable u = sα̃/k yields

d θ

d u
= ±2

√
1− k2 sin2

(
θ

2
+

π

2
H(R)

)
. (1.30)

The analysis will be restricted for simplicity to the case ‘+’ in the following.
At u = 0 it is θ = 0, so that Eq. (1.30) gives the solution

θ = 2am [u+KH(R), k]− πH(R) (1.31)

and
d θ

d s
=

2

k
α̃ dn [u+KH(R), k] , (1.32)

where am and dn are respectively the Jacobi elliptic functions amplitude
and delta-amplitude andK is the complete elliptic integral of the first kind
(Byrd and Friedman, 1971). Since in the local reference system we have
dx1/ds = cos θ and dx2/ds = sin θ, an integration gives the coordinates
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1. Structures buckling under tensile dead load

x1 and x2 of the elastica expressed in terms of u,⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1 =

(
2− k2

)
u− 2E [am [u, k] , k] + 2k2sn [u, k] cd [u, k]

k α̃

x2 =
2
√
1− k2 (1− dn [u, k])

k α̃ dn [u, k]

(1.33)

for tensile axial loads (R > 0), while for compressive axial loads (R < 0)⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1 =

(
k2 − 2

)
u+ 2E [am [u, k] , k]

k α̃

x2 =
2 (1− dn [u, k])

k α̃

(1.34)

in which the constants of integration are chosen so that x1 and x2 vanish at
s = 0. In Eqs. (1.33)–(1.34) sn and cn are respectively the Jacobi elliptic
functions sine-amplitude and cosine-amplitude/delta-amplitude and E is
the incomplete elliptic integral of the second kind (Byrd and Friedman,
1971).

Eqs. (1.34) differ from Eqs. (16) reported by Love (1927, his Section
263) only in a translation of the coordinate x2, while Eqs. (1.33), holding
for tensile axial force, are new.

Finally, with reference to Fig. 1.7, we note that the horizontal displace-
ment Δc of the right clamp can be written in the form

Δc =
x−1 (l

−) + x+1 (l
+)

cosΦs
− (

l+ + l−
)
. (1.35)

To find the axial load F as a function of the slider rotation Φs, or as a
function of the end displacement Δc, we have now to proceed as follows:

• values for κ−s and κ+s are fixed (as a function of the selected mode,
for instance, κ−s = κ+s , to analyze the bifurcation mode in tension);

• k can be expressed using Eq. (1.28)2 as a function of α̃;

• the equations for the coordinates of the elastica, Eq. (1.33) for tensile
load, or Eq. (1.34) for compressive load, and Eq. (1.31), evaluated
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1.2. Vibrations, buckling and the elastica
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Fig. 1.8: Bifurcation of the structure sketched in Fig. 1.7 under tensile load. Dimen-
sionless axial load F versus slider rotation (versus dimensionless end displacement) is
shown on the left (on the right).

at l− and l+, become functions of only α̃;

• Eqs. (1.24) and (1.25) provide Φs and Δs, so that Eq. (1.22) becomes
a nonlinear equation in the variable α̃, which can be numerically
solved (we have used the function FindRoot of MathematicaR© 6.0);

• when α̃ is known, R and F can be obtained from Eqs. (1.28)1 and
(1.23);

• finally, Φs and Δc are calculated using Eqs. (1.24)2 and (1.35).

Results are shown in Fig. 1.8 for tensile loads and in Fig. 1.9 for com-
pressive loads, in terms of dimensionless axial load 4Fl2/(Bπ2) versus
slider rotation Φs (on the left) and dimensionless end displacement Δc/(2l)
(on the right).

Note that, while there is only one bifurcation in tension, there are in-
finite bifurcations in compression, so that we have limited results to the
initial three modes in compression. Two of these modes involve slider ro-
tation (labeled ‘slider mode’), while an intermediate mode (labeled ‘global
mode’) does not.
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1. Structures buckling under tensile dead load
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Fig. 1.9: Bifurcation of the structure sketched in Fig. 1.7 under compressive load. Di-
mensionless axial load F versus slider rotation (versus dimensionless end displacement)
is shown on the left (on the right).

The load/displacement curve shown in Fig. 1.8 on the left is plotted
until extremely large displacements, namely, Δc = 20l (a detail at mod-
erate displacement is reported in the inset). It displays a descending, in
other words softening and unstable, postcritical behaviour, which contrasts
with the usual postcritical of the elastica under various end conditions, in
which the load rises with displacement. In compression, the post-critical
behaviour evidences another novel behaviour, so that the first and the
second slider modes present an initial part where the load/displacement
rises, followed by a softening behaviour. Finally, it is important to note
that the curves load versus Φs in Figs. 1.8 and 1.9, both for tension and
compression intersect each other at null loading at the extreme rotation
Φs = 90◦, which means that two unloaded configurations (in addition to
the initial configuration) exist. These peculiarities, never observed before
in simple elastic structures, are all related to the presence of the slider.

Deformed elastic lines are reported in Fig. 1.10, both for tension and
compression, the latter corresponding to the first three slider modes (the
global mode is not reported since it corresponds to the first mode of a
doubly-clamped rod).
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1.3. Experiments on the Elastica
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Fig. 1.10: Deflections (the scale of the axes is 2l) of the structure shown in Fig. 1.7
(with rods of equal length) at a slider rotation of 30◦ in tension (upper part, on the
left) and compression (first 3 slider modes are reported, whereas the global mode has
not been reported).

1.3 Experiments on the Elastica

The structure sketched in Fig. 1.7 has been realized with two carbon
steel AISI 1095 strips (250mm× 25mm× 1mm; Young modulus 200GPa)
and the slider with two linear bearings (type Easy Rail SN22-80-500-610,
purchased from RollonR©), commonly used in machine design applications,
see Fig. 1.11. The slider is certified by the producer to have a low friction
coefficient, equal to 0.01. Tensile force on the structure has been pro-
vided by imposing displacement with a load frame ELE Tritest 50 (ELE
International Ltd), the load measured with a load cell Gefran OC-K2D-
C3 (Gefran Spa), and the displacement with a potentiometric transducer
Gefran PY-2-F-100 (Gefran Spa). Data have been acquired with system
NI CompactDAQ, interfaced with Labview 8.5.1 (National Instruments).
Photos have been taken with a Nikon D200 digital camera, equipped with
a AF-S micro Nikkor lens (105mm 1:2.8G ED) and movies with a Sony
Handycam HDR-XR550. Tensile and compressive tests have been run at
a velocity of 2.5mm/s.

Photos taken at different slider rotations (and thus load levels) are
shown in Fig. 1.12 for tension (Φs = 0◦, 10◦, 20◦, 30◦) and in Fig. 1.13
for compression (Φs = 0◦, 5◦, 10◦, 20◦). A comparison between theo-
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1. Structures buckling under tensile dead load
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Fig. 1.11: Load versus end displacement for the model representing the structure
sketched in Fig. 1.7 recorded during tensile (positive F ) and compressive (negative
F ) tests. The red curves are the theoretical predictions (the dashed line is obtained
keeping into account the effective values of the lengths of the rods, 10% smaller than
the values measured from the clamps to the middle of the slider). The values ‘5◦’, ‘10◦’,
‘20◦’ and ‘30◦’ denote the inclination of the slider in degrees reached during the test. A
photo of the experimental setup during the postcritical behaviour in tension is reported
on the right.

retical predictions and experiments is reported in the lower parts of the
figures where photos are superimposed to the line of the elastica, shown
in red and plotted using Eq. (1.33) for tensile load and Eq. (1.34) for
compression. These experiments show clearly the existence of the bi-
furcation in tension and provide an excellent comparison with theoretical
results obtained through integration of the elastica both in tension and
in compression. A further quantitative comparison between theoretical
results and experiments is provided in Fig. 1.11, where the axial load in
the structure (positive for tension and negative for compression) is plotted
versus the end displacement Δc. The experimental result is compared to
theoretical results (marked red) expressed by Eq. (1.35), used in the way
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1.3. Experiments on the Elastica

Fig. 1.12: Photos of the model representing the structure sketched in Fig. 1.7 and
loaded in tension at different values of slider rotation Φs = 0◦, 10◦, (upper part) 20◦,
30◦ (center). The elastica calculated with Eq. (1.33) is superimposed on the photos at
20◦, 30◦ in the lower part. The side of the grid marked on the paper is 10mm.

Fig. 1.13: Photos of the model representing the structure sketched in Fig. 1.7 and loaded
in compression at different values of slider rotation Φs = 0◦, 5◦, (upper part) 10◦, 20◦

(center). The elastica calculated with Eq. (1.33) is superimposed on the photos at 10◦,
20◦ in the lower part. The side of the grid marked on the paper is 10mm.

detailed at the end of Section 1.2.2.

The theoretical result marked in red with continuous curve has been
calculated assuming an initial length of the rods (25 cm) measured from
the end of the clamps to the middle of the slider. However, the slider and
the junctions to the metal strips are 58mm thick, so that the system is
stiffer in reality. Therefore, we have plotted dashed the theoretical results
obtained employing an ‘effective’ initial length of the rods reduced of 10%
(so that the effective length of the system has been taken equal to 45 cm).
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1. Structures buckling under tensile dead load

The experimental curve evidences oscillations of ±1N for tensile loads
and ±5 N for compressive loads. These oscillations are due to friction
within the slider, so that it is obvious that the oscillations are higher in
compression than in tension, since in the former case the load is higher.
Except for these oscillations, the friction (which is very low) has been
found not to influence the tests.

The fact that experimentally the bifurcations initiate before the the-
oretical values are attained represents the well-known effect of imperfec-
tions, so that we may conclude that the agreement between theory and
experiments is excellent.

To provide experimental evidence to the fact that the elastica in ten-
sion corresponds to the shape of the free surface of a liquid in a capillary
channel, we note that a meniscus in a capillary channel satisfies (by sym-
metry) a null-rotation condition at the centre of the channel, so that it
corresponds to a clamped edge of a rod. If the tangent to the meniscus at
the contact with the channel wall is taken to correspond to the rotation
of the non-clamped edge of the rod and the width of the channel is calcu-
lated employing the elastica, the elastic deflection of the rod scales with
the free surface of the liquid. Therefore, we have performed an experiment
in which we have taken a photo (with a Nikon SMZ800 stereo-zoom micro-
scope equipped with Nikon Plan Apo 0.5x objective and a Nikon DD-FI1
high definition color camera head) of a water meniscus in a polycarbonate
channel. We have proceeded as follows. First, we have observed that the
contact angle between a water surface in air and polycarbonate (at a tem-
perature of 20◦C) is 70◦. Second, we have taken a photo of the meniscus
formed in a polycarbonate ‘V-shaped’ channel with walls inclined at 10◦

with the vertical, so that the angle between the horizontal direction and
the free surface results to be 30◦ and the distance between the walls results
6mm. This photo has been compared with a photo taken (with a Nikon
D200 digital camera, and shown in Fig. 1.12 on the right) during buckling
in tension when the elastic rods form the same angle of 30◦. The result is
shown in Fig. 1.1, together with the theoretical solution shown red.
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2

Effects of the constraint’s
curvature on structural

instability: tensile buckling and
multiple bifurcations

Bifurcation of an elastic structure crucially depends on the curvature of

the constraints against which the ends of the structure are prescribed to

move, an effect which deserves more attention than it has received so far.

In fact, it is shown theoretically and experimentally verified that an ap-

propriate curvature of the constraint over which the end of a structure

has to slide strongly affects buckling loads and can induce: (i.) ten-

sile buckling; (ii.) decreasing- (softening), increasing- (hardening), or

constant-load (null stiffness) postcritical behaviour; (iii.) multiple bifur-

cations, determining for instance two bifurcation loads (one tensile and

one compressive) in a single-degree-of-freedom elastic system. It is shown

how to design a constraint profile to obtain a desired postcritical behaviour

and we provide the solution for the elastica constrained to slide along a

circle on one end, representing the first example of an inflexional elas-

tica developed from a buckling in tension is provided. These results have

important practical implications in the design of compliant mechanisms

and may find applications in devices operating in quasi-static or dynamic

conditions, even at the nanoscale.

We begin with a simple example, by considering a one-degree-of-freedom
elastic structure made up of a rigid rod connected with a rotational linear
elastic spring on its left end and with a roller constrained to move on a
circle (of radius Rc, centred on the rod’s axis) on the right (Fig. 2.1).
The structure is subject to a horizontal force, so that when this load
is compressive and the circle degenerates to a line (null curvature), the
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Fig. 2.1: A one-degree-of-freedom structure (with a rotational elastic spring at its left
end) evidencing compressive or tensile buckling as a function of the curvature of the
constraint (a circular profile with constant curvature, χ̂ = ±4) on which the hinge on
the right of the structure has to slide.

structure buckles at the compressive force F = −k/l. Our interest is to
analyze the case when the curvature of the constraint is not null, revealing
that this curvature strongly affects the critical load, which results to be a
tensile force1 in the negative curvature case (Ft = k/(3l), for χ̂ = l/Rc =
−4) and a compressive load for positive curvature (Fc = −k/(5l), for
χ̂ = l/Rc = 4).

The example shows that the curvature of the constraint at the end of
a structure deeply affects its critical load2, but also the shape of the curve
defining the constraint influences the postcritical behaviour, which dis-
plays a rising-load (hardening) behaviour in the case of null curvature and
a decreasing-load (softening) behaviour for circular profiles (for instance,
when χ̂ = ±4, as in the structure shown in Fig. 2.1). Moreover, the
postcritical behaviour connected to the tensile (compressive) bifurcation
evidences force reversal, since the tensile (compressive) force needed to
buckle the structure decreases until it vanishes and becomes compressive

1Tensile buckling of an elastic structure governed by the elastica, in which all ele-
ments are strictly subject to tension, is reported in Chapter 1.

2The fact that the curvature influences the critical load was observed in different
terms already by Timoshenko and Gere (1936), who analyzed the case of the so-called
‘load through a fixed point’. However, they did not generalize the problem enough
to discover that: tensile buckling, multiple bifurcations and inflexional tensile elastica
during the postcritical behaviour can be obtained, which is the topic attacked in the
present chapter.
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2. Effects of the constraint’s curvature on structural instability: tensile
buckling and multiple bifurcations

(tensile), during continued displacement of the structure end.

Once the lesson on the curvature and the shape of the constraint is
clear, it becomes easy to play with these structural elements and discover
several new effects. Some of these are listed in the following.

• A constraint profile can be designed to provide a ‘hardening’, ‘soften-
ing’ or even a ‘neutral’ (in which the displacement grows at constant
load) postcritical behaviour. More in general, a formula will be given
to determine the shape of the profile to obtain a desired postcriti-
cal behaviour, including situations in which the stability of the path
changes during postcritical deformation.

• A negative and a positive curvature can be combined in an ‘S-shaped
constraint’ (see the inset of Fig. 2.2) to yield a one-degree-of-freedom
structure with two buckling loads: one tensile and one compressive.
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In the case of the ‘S-shaped constraint’, imperfections suppress bi-
furcations and the stability of the equilibrium path strongly depends on
the sign of the imperfection. For tensile forces, if the imperfection has a
positive sign (φ0 > 0), the equilibrium path of the system becomes un-
stable after a peak in the load is reached, while if the sign is negative
(φ0 < 0), the structure remains in a metastable equilibrium configuration
which asymptotically approaches an unstable configuration (Fig. 2.2).

Finally, we can appreciate the role played by the curvature of a con-
straint in the more interesting case of a structural element governed by
the elastica, a research aspect passed unnoticed until now, but interesting
for the applications in compliant mechanisms. We show that considera-
tion of this curvature provides a generalization of the findings reported
in Chapter 1, so that their ‘slider’ can be seen as a special case of the
curved constraint introduced here and the elastica developing after a ten-
sile buckling is of inflexional type, while that investigated in Chapter 1
is non-inflexional. We fully develop the theory of the elastica constrained
to slide with a rotational spring along a circle on one of its ends and we
experimentally confirm the theoretical findings with experiments designed
and realized by us.

This chapter is organized as follows. We begin presenting a generaliza-
tion of the one-degree-of-freedom structure shown in Fig. 2.1, to highlight:
(i.) the effects of the curvature of the constraint, (ii.) the multiplicity of bi-
furcation loads, (iii.) the behaviour of the imperfect system, and (iv.) the
possibility of designing a constraint profile to obtain a given postcritical be-
haviour. Later we analyze a continuous system, made up of an inextensible
beam governed by the Euler elastica and we solve the critical loads and the
nonlinear postcritical large-deformation behaviour, through explicit inte-
gration of the elastica. We systematically complement theoretical results
with experiments confirming all our findings for discrete and continuous
elastic systems. A movie providing a simple illustration of the concepts
exposed here, together with a view of experimental results, is available in
the electronic supplementary material, see also http://ssmg.unitn.it/.
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2. Effects of the constraint’s curvature on structural instability: tensile
buckling and multiple bifurcations

2.1 Effect of the constraint’s curvature on a one-degree-of-freedom
elastic structure

Bifurcation load and equilibrium paths of the one-degree-of-freedom
structure illustrated in Fig. 2.3 (where the constraint is assumed smooth
and described in the x1–x2 reference system as x2 = l f(ψ), with ψ =
x1/l ∈ [0, 1] and f ′(0) = 0) can be calculated by considering a deformed
mode defined by the rotation angle φ. Assuming a possible imperfection
in terms of an initial inclination φ0, the elongation of the system and the
potential energy are respectively

δ = l [cosφ− cosφ0 − f(sinφ) + f(sinφ0)] (2.1)

and

W (φ) =
1

2
k(φ− φ0)

2 − Fl [cosφ− cosφ0 − f(sinφ) + f(sinφ0)] , (2.2)

so that solutions of the equilibrium problem are governed by

F = − k (φ− φ0)

l[sinφ+ cosφ f ′(sinφ)]
, (2.3)

where f ′ = ∂f/∂ψ, so that the critical load for the perfect system, φ0 = 0,

l

�

x1

x2

k
Ft

x =l f( )2 �

�

Fig. 2.3: A one-degree-of-freedom structure with an hinge constrained to slide along a
generic smooth profile at the right end and a rotational linear-elastic spring at the left
end.
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2.1. Effect of the constraint’s curvature on a one-degree-of-freedom
elastic structure

is

Fcr = − k

l[1 + f ′′(0)]
, (2.4)

where, since f ′(0) = 0, f ′′(0) = χ̂(0) is the signed curvature at φ = 0.
Stability can be judged on the basis of the sign of the second derivative of
the potential energy

∂2W (φ)

∂φ2
= k + Fl

(
cosφ− f ′ sinφ+ f ′′ cos2 φ

)
, (2.5)

showing that the trivial configuration of the perfect system is always un-
stable beyond the critical load.

In the case when the profile of the constraint is a circle3 of dimen-
sionless radius 1/|χ̂| = 1/l|χ| as in Fig. 2.1, the non-trivial equilibrium
configurations are given by

F = − k (φ− φ0)
√

1− χ̂2 sin2 φ

l sinφ(χ̂ cosφ+
√

1− χ̂2 sin2 φ)
, (2.6)

and result to be stable when

1− χ̂2 sin2 φ− (φ− φ0)(cotφ− χ̂ sinφ

√
1− χ̂2 sin2 φ) > 0. (2.7)

Eqs. (2.6) and (2.7) have been used to solve the special case of Fig. 2.1
(χ̂ = ±4), with an ‘S-shaped’ constraint (so that χ̂ is discontinuous at
φ = 0), to obtain the results plotted in Fig. 2.2.

The considered structure (see Fig. 2.3) can be easily generalized by
including an additional elastic spring on the hinge sliding along the profile,
as shown in Fig. 2.4.

In this structure, the constraint is assumed smooth and described in
the x1–x2 reference system as x2 = l f(ψ), with ψ = x1/l ∈ [0, 1] and
f ′(0) = 0.

Bifurcation loads can be calculated by considering a deformed mode
defined by the rotation angle φ, assumed positive when clockwise. The

3Note that in the case of a circle the dimensionless signed curvature is χ̂ = ±l/Rc,
with l being the length of the rigid bar and Rc the radius of the circle.
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2. Effects of the constraint’s curvature on structural instability: tensile
buckling and multiple bifurcations
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Figure 2.4: A one-degree-of-freedom structure with a linear-elastic hinge
constrained to slide along a generic profile at the right end and a rotational
linear-elastic spring at the left end.

potential energy of the system is

W (φ) =
1

2
k1φ

2 +
1

2
k2β(φ)

2 − F l [cosφ− f(sinφ)] , (2.8)

so that the axial force at equilibrium reads

F = − k1φ+ k2 β(φ)β
′(φ)

l[sinφ+ cosφ f ′(sinφ)]
. (2.9)

When the profile of the constraint is circular, with radius Rc and di-
mensionless signed curvature χ̂ = f ′′/[1 + (f ′)2]3/2 = ±l/Rc as shown in
the inset of Figs. 2.5 and 2.6, the axial load at equilibrium satisfies

F =− k1φ
√

1− χ̂2 sin2 φ

l sinφ(χ̂ cosφ+
√

1− χ̂2 sin2 φ)
+

− k2
[
φ+ sin−1(χ̂ sinφ)− πH(χ̂ φ)

]
l sinφ

,

(2.10)

where H denotes the Heaviside step function.
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2.1. Effect of the constraint’s curvature on a one-degree-of-freedom
elastic structure

Since β(φ) = − tan−1[f ′(sinφ)]− φ, the critical load of the system is

Fcr = −k1 + k2 [1 + f ′′(0)]2

l[1 + f ′′(0)]
(2.11)

where f ′′(0) = χ̂(0) is the signed curvature at φ = 0.

For an imperfect system, characterized by an initial inclination of the
rod φ0, the potential energy becomes

W (φ) =
1

2
k1(φ− φ0)

2 +
1

2
k2 [β(φ)− β(φ0)]

2 +

− F l [cosφ− f(sinφ)− cosφ0 + f(sinφ0)] ,

(2.12)

so that the axial force at equilibrium is

F = −k1(φ− φ0) + k2 [β(φ)− β(φ0)] β
′(φ)

l[sinφ+ cosφ f ′(sinφ)]
, (2.13)

which for a circular profile becomes

F =− k1(φ− φ0)
√
1− χ̂2 sin2 φ

l sinφ(χ̂ cosφ+
√

1− χ̂2 sin2 φ)
+

− k2
[
φ− φ0 + sin−1(χ̂ sinφ) + sign(χ̂ φ) sin−1(χ̂ sinφ0)− πH(χ̂ φ)

]
l sinφ

.

(2.14)

Eq. (2.14) has been used for χ̂ = ±4, with an ‘S-shaped’ constraint (so
that χ̂ is discontinuous at φ = 0), to obtain the results plotted in Figs. 2.5
and 2.6.

2.1.1 The design of the postcritical behaviour

It is important to emphasize that the shape of the profile on which
one end of the structure has to slide can be designed to obtain ‘desired
postcritical behaviours’. Let us assume that we want to obtain a certain
force-displacement F/δ postcritical behaviour for the structure sketched
in Fig. 2.3. Since

δ = l
[√

1− ψ2 − f(ψ)
]
, (2.15)
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2. Effects of the constraint’s curvature on structural instability: tensile
buckling and multiple bifurcations
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Figure 2.5: The force versus end-displacement behaviour of a single-
degree-of-freedom structure, with an ‘S-shaped’ constraint, χ̂ = ±4, and
k2/k1 = 0.01, evidencing two buckling loads, one compressive and one
tensile. Note the four points where the force vanishes.

to assume a certain F/δ relation is equivalent to assume a given depen-
dence of F on ψ; therefore we introduce the dimensionless function

β(ψ) =
l

k
F (δ(ψ)). (2.16)

Employing Eq. (2.3) we obtain the condition

f(ψ) =
√

1− ψ2 −
∫ ψ

0

arcsin γ

β(γ)
√

1− γ2
dγ , (2.17)

satisfying f(0) = 1 and f ′(0) = 0.

Three different profiles designed to obtain particular force F versus
rotation φ postcritical behaviours (a sinusoidal, a circular and a constant)
are sketched in Fig. 2.7. An interesting case is that of the neutral (or
constant) postcritical behaviour, in which the rotation φ (and therefore
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2.1. Effect of the constraint’s curvature on a one-degree-of-freedom
elastic structure
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Figure 2.6: The force versus end-displacement behaviour of a single-
degree-of-freedom structure, with an ‘S-shaped’ constraint, χ̂ = ±4, and
k2/k1 = 0.5, evidencing two buckling loads, one compressive and one ten-
sile. Note that at points labelled ‘2’ and ‘5’ the external force does not
vanish.

also the displacement) can grow at constant load4, which can be obtained
employing the constraint profile expressed as

f(ψ) =
√

1− ψ2 − 1

2β

(
arcsinψ

)2
where β =

Fcrl

k
. (2.18)

2.1.2 Experiments on one-degree-of-freedom elastic systems:
multiple buckling and neutral postcritical response

The behaviours obtained employing the simple one-degree-of-freedom
structures are not a mathematical curiosity, but can be realized in prac-

4A neutral postcritical behaviour has been found also by Gáspár (1984) employing
a structural model completely different from that considered by us.
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2. Effects of the constraint’s curvature on structural instability: tensile
buckling and multiple bifurcations
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Fig. 2.7: Designed profiles (on the right) to obtain a given force-rotation postcritical
response (on the left). The postcritical responses, given in terms of dimensionless force
versus rotation of the structure are: sinusoidal, circular and constant (or ‘neutral’).

tice. In particular, we have realized the ‘S-shaped’ circular constraint
shown in the inset of Fig. 2.2 and the profile illustrated in Fig. 2.7 (on the
right, labelled ‘constant’), the latter to show a ‘neutral’ or, in other words,
‘constant-force’, response. The experimental apparatuses are shown in
Fig. 2.8 and in Fig. 2.9 (the former relative to the ‘S-shaped’ semi-circular
profile, the latter to the profile providing the neutral post-critical re-
sponse), where the grooves have been laser cut (by HTR Laser & Water
cut, BZ, Italy) in a 2 mm thick plate of AISI 304 steel and the roller has
been realized with a (17 mm diameter) steel cylinder mounted with two
roller bearings (SKF-61801-2Z). The rigid bar 600 mm × 50 mm × 20 mm
have been machined from an aluminium bar and lightened with longitudi-
nal grooves (see Appendix A), so that its final mass is 820 gr. The hinge
with rotational spring has been realized with three identical rotational
springs, which have been designed using equations (32) of Brown (1981)
and realized in (4 mm diameter) music wire ASTM A228, see Appendix
A for further details.

Load/displacement curves are reported in Fig. 2.10 for the ‘S-shaped’
circular profile and in Fig. 2.11 for the profile giving the neutral response,
as obtained from experiments, and directly compared with the theoretical
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2.1. Effect of the constraint’s curvature on a one-degree-of-freedom
elastic structure

Fig. 2.8: Experimental set-up for the ‘S-shaped’ structure with a groove corresponding
to two circles. Two photos taken during elongation (shortening) are reported on the
left (on the right).

predictions. We note a nice agreement, with buckling detected prior
to the attainment of the theoretical value, in agreement with the known
effect of imperfections. Friction at the roller/profile contact has induced
some irrelevant load oscillation, minimized by hand-polishing the edges of
the groove and using Areo Lubricant AS 100 (from Rivolta s.p.a, Milano,
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2. Effects of the constraint’s curvature on structural instability: tensile
buckling and multiple bifurcations

Fig. 2.9: Experimental set-up for the structure providing the neutral postcritical re-
sponse. Two photos taken during elongation (shortening) are reported on the left (on
the right).

Italy). We may finally comment that the experiments confirm the possibil-
ity of practically realizing mechanical systems behaving as the theoretical
modelling predicts.
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2.2. The buckling and postcritical behaviour of an elastic rod with a
circular constraint on one end
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Fig. 2.10: Load/displacement experimental results versus theoretical prediction (dashed
line) for a one-degree-of-freedom elastic structure having a rotational spring at one end,
and a roller constrained to slide on an ‘S-shaped’, circular profile as shown in Fig. 2.8,
together with the experimental set-up.

2.2 The buckling and postcritical behaviour of an elastic rod
with a circular constraint on one end

We consider an inextensible elastic rod (of bending stiffness B and
length l), with a movable clamp at one end, and having a rotational elastic
spring (of stiffness k) on the other, which can slide on a circle centred on
the axis of the rod, see the inset of Fig. 2.12. The rod is subject to an
axial load F which may be tensile (F > 0) or compressive (F < 0).
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2. Effects of the constraint’s curvature on structural instability: tensile
buckling and multiple bifurcations
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cal behaviour. The structure has a rotational spring at one end, and a roller constrained
to slide on the profile shown in Fig. 2.9, together with the experimental set-up.

2.2.1 The critical loads

The differential equilibrium equation of an elastic rod subject to an
axial force F , linearized near the rectilinear configuration, is

d4v(z)

dz4
− α2 sgn(F )

d2v(z)

dz2
= 0, (2.19)

where v is the transversal displacement, ‘sgn’ is defined as sgn(α) = |α|/α
∀α ∈ Re− {0}, sgn(0) = 0, and

α2 =
|F |
B

. (2.20)
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2.2. The buckling and postcritical behaviour of an elastic rod with a
circular constraint on one end

The general solution of Eq. (2.19) is

v(z) =
C1

α2
cosh(

√
sgn(F )α z)+

C2

α2

√
sgn(F ) sinh(

√
sgn(F )α z)+C3 z+C4,

(2.21)
and the boundary conditions 5 (the third involving the rotational spring
stiffness k) are:

v(0) =
dv

dz

∣∣∣∣
z=0

= 0,

−sgn(F )

α2

d3v

dz3

∣∣∣∣
z=l

= φ+
dv

dz

∣∣∣∣
z=l

,

−B

k

d2v

dz2

∣∣∣∣
z=l

= φ+
dv

dz

∣∣∣∣
z=l

,

(2.22)

plus the kinematic compatibility condition defining φ

φ = χ̂/lv(l), (2.23)

involving the signed, dimensionless curvature χ̂ = ±l/Rc of the circle.
Imposing conditions (2.22)–(2.23), the solution (2.21) provides the con-

dition for the critical loads( 1

|χ̂| + sgn(χ̂)
)
α l sgn(F ) cosh(

√
sgn(F )α l)− sgn(χ̂)

√
sgn(F ) sinh(

√
sgn(F )α l)+

+
k

Bα

[( 1

|χ̂| + sgn(χ̂)
)
α l
√
sgn(F ) sinh(

√
sgn(F )α l)+

+ sgn(χ̂)
(
1− cosh(

√
sgn(F )α l)

)]
= 0,

(2.24)

corresponding in the two limits k → 0 and k → ∞ to a pinned and clamped
constraint on the right end, respectively.

Buckling loads (made dimensionless through multiplication by l2/(π2B)) are
reported in Fig. 2.12 and in Figures 2.13 and 2.14, as functions of the signed
radius of curvature χ̂ of the constraint.

Results reported in the Figs. 2.13 and 2.14 (where the negative signs denote

5first: null displacement and rotation at the clamped end; second: shear force on the
beam at the rotational spring; third: moment on the beam at the rotational spring
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2.2. The buckling and postcritical behaviour of an elastic rod with a
circular constraint on one end
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(clamped on one end and guided along a circle on the other end) as a function of the
signed dimensionless curvature χ̂ of the circle. A negative sign denotes a compressive
load.

compressive loads) are given in terms of effective length factor ξ defined as

Fcr =
π2B

(ξl)2
. (2.25)

We note from Figs. 2.12–2.14 that for certain curvatures of the constraint
there is one buckling load in tension, while there are always infinite bifurcations
in compression (so that we can comment that the bifurcation problem remains a
Sturm-Liouville problem). The results reveal the strong effect of the constraint
curvature, so that for instance for χ̂ = −1/0.2 (for χ̂ = −1/0.8) there is a buckling
load in tension much smaller (much higher) than that in compression, taken in
absolute value. Moreover, for χ̂ = −1/1.25, but also for all positive curvatures
χ̂ > 0, there is no tensile bifurcation.

2.2.2 The elastica

The shape of the constraint has a strong effect on the postcritical behaviour,
as will be shown below with reference to the case of the circular profile. This effect
can be exploited for the design of compliant mechanisms, so that the solution of
this problem is not only of academic interest. Therefore, we derive the solution
for an elastic rod clamped to the left and constrained on the right to slide with a
rotational spring (of stiffness kr) on a ‘S–shaped’ bi-circular profile, as sketched
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in Fig. 2.15, where the local reference system to be used in the analysis is also
indicated.
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Fig. 2.15: The elastic line problem for a rod clamped at the left end and constrained
to slide with a rotational spring (of stiffness kr) on a circle at the right end. Note the
reference system employed in the analysis.

The elastic line problem is governed by the following equations.

i.) A condition of kinematic compatibility can be obtained by observing from
Fig. 2.15 that the coordinates of the elastica evaluated at s = l, namely,
x1(l) and x2(l), are related to the angle of rotation of the local reference
system φ and to the radius Rc of the constraint via

[x1(l)∓Rc] tanφ− x2(l) = 0, (2.26)

where φ is assumed positive if anticlockwise; note that in Eq. (2.26) the sign
‘−’ (‘+’) holds for the case of the rotational spring lying on the left (right)
half–circle.

ii.) The curved constraint transmits to the rod a moment and a force pointing
the centre of the circle, in other words, parallel to x1 and assumed positive
when opposite to the direction of the x1–axis, so that for 0 ≤ φ < π/2
(π/2 < φ ≤ π) it corresponds to a positive tensile (negative compressive)
dead force F applied to the structure defined by

F = R cosφ. (2.27)
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iii.) Through introduction of the curvilinear coordinate s, the fully nonlinear
equation of the elastica governing deflections of the rod is

d2θ

ds2
− R

B
sin θ = 0, (2.28)

where θ is the rotation angle (assumed positive if clockwise) of the normal at
each point of the elastica, so that with the symbols introduced in Fig. 2.15
we find the condition

θ(l) = φ. (2.29)

Integration of Eq. (2.28) from 0 to s, after multiplication by dθ/ds, leads to(
dθ

ds

)2

= 2 α̃2

[
2

k2
− 1− sgn(R) cos θ

]
, (2.30)

where

α̃2 =
|R|
B

, k2 =
4α̃2

[θ(0) kr/B]
2
+ 2α̃2 [sgn(R) cos θ(0) + 1]

, (2.31)

in which the term θ(0) kr corresponds to the moment evaluated at s = 0. The
introduction of the change of variable

β = [θ −H(R)π]/2, (2.32)

where H denotes the Heaviside step function, allows to re-write Eq. (2.30) as(
dβ

ds

)2

=
α̃2

k2
(
1− k2 sin2 β

)
, (2.33)

so that a second change of variable u = sα̃/k yields

dβ

du
= ±

√
1− k2 sin2 β. (2.34)

Restricting the treatment to the case ‘+’, which corresponds to θ(0) ≥ 0, and
since β = β(0) at u = 0, Eq. (2.34) provides the following solution for β

β = am [u+ F [β(0), k] , k] , (2.35)

where am and F are the Jacobi elliptic function amplitude and the incomplete
elliptic integral of the first kind of modulus k, respectively (Byrd and Friedman,
1971). Keeping into account that dx1/ds = cos θ and dx2/ds = sin θ, an integra-
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tion provides the two coordinates x1 and x2 of the elastica expressed in terms of
u as⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1 = sgn(R)
2

kα̃
{(1− k2/2)u+ E [β(0), k]− E [am [u+ F [β(0), k] , k] , k]},

x2 = sgn(R)
2

kα̃
{dn [u+ F [β(0), k] , k]− dn [F [β(0), k] , k]},

(2.36)
in which the constants of integration are chosen so that x1 and x2 vanish at s = 0.
In Eqs. (2.36) dn is the Jacobi elliptic function delta-amplitude of modulus k,
while E is the incomplete elliptic integral of the second kind (Byrd and Friedman,
1971). Eqs. (2.36) generalize the expressions derived in Chapter 1 [equations
(1.30) and (1.31)], which are recovered when θ(0) = 0.

The horizontal displacement δ of the clamp on the left of the structure (as-
sumed positive for a lengthening of the system) is given in the form

δ =
x2

sinφ
− l ∓Rc, (2.37)

where, as for Eq. (2.26), the sign ‘−’ (‘+’) holds for the case of the rotational
spring lying on the left (right) half–circle.

The axial load F can be obtained as a function of the rotation φ, or as a
function of the end displacement δ, through the following steps.

i.) A value for θ(0) is fixed, so that k can be expressed using Eqs. (2.31) as a
function of R;

ii.) the expressions (2.36) for the coordinates of the elastica and Eq. (2.35),
evaluated at s = l, become functions of R only;

iii.) Eq. (2.29) provides φ, so that Eq. (2.26) becomes a nonlinear equation in
the variable R, which can be numerically solved (we have used the function
FindRoot of MathematicaR© 6.0);

iv.) once R is known, F , φ and δ can be respectively obtained from Eqs. (2.27),
(2.29) and (2.37).

The postcritical behaviour (corresponding to the first modes branching from
both tensile and compressive critical loads) of the structure is reported in Fig. 2.16
in terms of dimensionless axial load 4Fl2/(Bπ2) versus dimensionless displace-
ment δ/Rc, for the particular case of a roller sliding on the profile, kr = 0.

We note that the elastica obtained in this case is inflexional and therefore
different from that reported in Chapter 1, moreover, the postcritical behaviour

49



2.2. The buckling and postcritical behaviour of an elastic rod with a
circular constraint on one end

-2 -1 0 1 2

-0.10

-0.05

0.00

0.05

0.10

�/Rc

F
/(

B
)

l2
2

�

1

2

34

5

6
1

2

3
45

6

lengthening, >0�shortening, <0�

te
ns

io
n

co
m

pr
es

sio
n

0.15

F
l,B

�

bifurcation

bifurcation

Rc

Fig. 2.16: The postcritical behaviour of the structure sketched in the inset (with a roller
sliding on the ‘S-shaped’ profile) corresponding to the first mode under tensile and
compressive loads. Dimensionless axial load F versus dimensionless end displacement.

is always unstable, evidencing decrease of the load with increasing edge displace-
ment (‘softening’). Special features of the postcritical behaviour (already present
in the one-degree-of-freedom system) are (i.) that there is a transition from a
tensile (a compressive) to a compressive (to a tensile) elastica when the constraint
reaches the points denoted with ‘2’ and ‘5’ in the graph, and that (ii.) the post-
critical branches emanating from the critical loads are the same, but horizontally
shifted.

2.2.3 Experiments on the elastica

We have tested the behaviour of an elastic rod by employing the same ex-
perimental set-up used for testing the one-degree-of-freedom structures in Sect.
2.1.2, but with the rigid system replaced by elastic rods realized with two 250
mm × 25 mm × 4 mm C72 carbon-steel strips (Young modulus 200 GPa, mass
968 gr), see Appendix A for details. The experimental set-up with photos taken
during the tests is shown in Fig. 2.17. These experiments represent the practical
realization of a designed compliant mechanism.

Experimental results are reported in Fig. 2.18 in terms of theoretical (dashed
line) versus experimental force/end-displacement data. Moreover, the photos
reported in Fig. 2.19, which are details of the photos shown in Fig. 2.17 on the
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Fig. 2.17: Deformed shapes of the elastica during a test of a beam sliding on an ‘S-
shaped’, circular profile. Two photos taken during elongation (shortening) are reported
on the left (on the right). Note that the system represents a compliant mechanism of
designed response.

left and on the right, are compared with the theoretical shape of the elastica
[shown with a white dashed line and obtained from Eqs. (2.36)] at two different
end angles (45◦ and 90◦ for tension and compression).

From the figures, we can observe the following facts.

• The experiments definitely substantiate theoretical findings.
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Fig. 2.18: Load/displacement experimental results versus theoretical prediction (dashed
line) for a beam sliding on an ‘S-shaped’, circular profile (see the inset).

• The comparison between the deformed beam during a test and the pre-
dictions of the elastica, shown in Fig. 2.19, reveals a very tight agreement
between theory and experiments.

As for the one-degree-of-freedom systems, we can again conclude that the ex-
periments confirm the possibility of practically realizing elastic systems behaving
in strict agreement with theoretical predictions.

52
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Fig. 2.19: Deformed shapes of the elastica (compared with the theoretical predictions
reported with a white dashed line) during the test shown in Fig. 2.17 of a beam with a
roller sliding on an ‘S-shaped’, circular profile.

Details on the experiments

A Midi 10 (10 KN maximum force, from Messphysik Materials Testing) elec-
tromechanical testing machine has been employed to impose displacements (ve-
locity 0.2 mm/s) at the ends of the structures. Loads and displacements have
been measured with the loading cell and the displacement transducer mounted
on the Midi 10 machine, and, independently, with a MT 1041 (0.5 kN maxi-
mum load) load cell (from Mettler-Toledo) and a potentiometric displacement
transducer Gefran LTM-900-S IP65.

The rotational springs employed for the one-degree-of-freedom systems have
been designed to provide a stiffness equal to 211.5 Nm by employing equations
(32) of Brown (1981). After machining, the springs have been tested and found
to correspond to a stiffness equal to 169.5 Nm, the value which has been used to
compare experiments with theoretical results.

An IEPE accelerometer (PCB Piezotronics Inc., model 333B50) has been
attached at one end of the structure to precisely detect the instant of buckling.
This has been observed in all tests to correspond to an acceleration peak ranging
between 0.15 and 0.2 g, while before buckling and during postcritical behaviour
the acceleration did not exceed the value 0.003 g.

Data from the load cell MT 1041, the displacement transducer Gefran LTM-
900-S IP65, and the accelerometer PCB 333B50 have been acquired with a system
NI CompactDAQ, interfaced with Labview 8.5.1 (National Instruments), while
acquisition of the data from the Midi 10 has been obtained from a Doli EDC 222
controller.

Temperature near the testing machine has been monitored with a thermocou-
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ple connected to a Xplorer GLX Pasco and has been found to lie around 22◦C,
without sensible oscillations during tests.

Photos have been taken with a Nikon D200 digital camera, equipped with
AF Nikkor (18-35mm 1:3.5-4.5 D) lens (Nikon Corporation) and movies have
been recorded during the tests with a Sony handycam (model HDR-XR550VE).
The testing set-up is shown in Fig. 2.20. Additional material is available at
http://ssmg.unitn.it/.

Load Frame

Accelerometer

Displacement transducer

Stiffners

Load cell

Load Frame

Accelerometer

Displacement transducer

Stiffners

Load cell

Fig. 2.20: The experimental set-up for the buckling tests, seen from the back.
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3

Eshelby-like forces acting on
elastic structures: theoretical and

experimental proof

The Eshelbian (or configurational) force is the main concept of a cele-
brated theoretical framework associated with the motion of dislocations
and, more in general, defects in solids. In a similar vein, in an elastic
structure where a (smooth and bilateral) constraint can move and release
energy, a force driving the configuration is generated, which therefore is
called by analogy ‘Eshelby-like’ or ‘configurational’. This force (generated
by a specific movable constraint) is derived both via variational calculus
and, independently, through an asymptotic approach. Its action on the
elastic structure is counterintuitive, but is fully substantiated and exper-
imentally measured on a model structure that has been designed, realized
and tested. These findings open a totally new perspective in the mechan-
ics of deformable mechanisms, with possible broad applications, even at
the nanoscale.

Configurational (or: ‘material’, ‘driving’, ‘non-Newtonian’) forces have been in-
troduced by Eshelby (1951; 1956; 1970; 1975) to describe the fact that massless
(for instance: voids, microcracks, vacancies, or dislocations) or heavy (for in-
stance inclusions) defects may move within a solid body as a result of mechanical
or thermal loading. The Eshelbian force is defined as the negative gradient of the
total potential energy V of a body with respect to the parameter κ determining
the configuration of the defect, namely, −∂V(κ)/∂κ.

Examples are the crack-extension force of fracture mechanics, the Peach–
Koehler force of dislocations, or the material force developing on a phase bound-
ary in a solid under loading. Nowadays configurational forces are the cornerstone
of a well-developed theory (see for instance the monographs by Gurtin, 2000,
Kienzler and Herrmann, 2000, Maugin, 1993, 2011, and the journal special issues
by Dascalu et al., 2010, and Bigoni and Deseri, 2011).

Let us consider an elastic structure in equilibrium upon load and assume
that a (frictionless and bilateral) constraint can move –a feature which may be
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considered as a ‘defect’– in a way to allow the system to reconfigure through a
release of elastic energy, then a force is generated, similar to an Eshelbian or
configurational1 one.

To reveal this force in an indisputable way, and directly measure it, the simple
elastic structure sketched in Fig. 3.1 has been designed, which inflection length
can change through sliding along a sleeve and therefore discloses (in two different
and independent ways, namely, using variational and asymptotic approaches) the
presence of an Eshelby-like force. The structure has been subsequently realized
and instrumented (see Fig. 3.2, reporting a series of photos demonstrating the ac-
tion of the Eshelby-like force), so that the configurational force has been measured
at equilibrium and it is shown to perfectly match the theoretical predictions.

Figure 3.1: Structural scheme of the elastic system employed to disclose a Eshelby-
like force. The elastic rod of total length l̄ is subject to a dead vertical load P on its
right end, is constrained with a sliding sleeve inclined at an angle α (with respect to
the vertical) and has a axial dead force S applied at its left end. The presence of the
Eshelby-like force M2/(2B) influences the force S at equilibrium, which results different
from P cosα.

In this example configurational forces are non-zero, but small for small de-
flections2 and become progressively important when displacements grow. Their
effects are counterintuitive and unexpected, so that for instance, the structure
shown in Fig. 4.6, which can (wrongly!) be thought to be unable to provide any
axial action, is instead subject to an axial Eshelby-like force transmitted by the
sliding sleeve. In particular, at the end of the sliding sleeve, the axial force S at

1‘Configurational force’ is not to be confused with the follower forces analyzed for
instance by Bigoni and Noselli, (2011).

2The fact that these forces are small for small displacement does not mean that
they are always negligible, since their action is in a particular direction, which may be
‘unexpected’. For instance, in the case of null axial dead load, S = 0, and sliding sleeve
orthogonal to the vertical dead load P , α = π/2 (Fig. 4.28), the Eshelby-like force is
the only axial action, so that equilibrium becomes impossible.
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motion

motion

10 N

50 N

90 N

Figure 3.2: The practical realization of the elastic structure shown in Fig. 3.1 reveals
an axial Eshelby-like force, so that, while at low vertical force (10 N) the elastic rod
tends, as expected, to slip inside the sliding sleeve (upper photo), at 50 N the equilibrium
is surprisingly possible (note that the tangent at the loaded end of the elastic rod is
horizontal, see the photo in the centre) and at 90 N the elastic rod is expelled from the
sliding sleeve (lower photo), even if the system is inclined at 15◦ with respect to the
horizontal (α = 75◦).

equilibrium with a load P (inclined of α with respect to the rod’s axis) is not
simply equal to −P cosα, as when the sliding sleeve is replaced by a movable
clamp, but will be determined (Section 3.1.3) to be a function of the rotation of
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3.1. Eshelby-like force produced by a sliding sleeve

the rod at its end, θl̄, as

S = −P cos (α+ θl̄) = −P cosα+ 2P

(
sin2

θl̄ + α

2
− sin2

α

2

)
︸ ︷︷ ︸

Eshelby−likeforce

, (3.1)

which for for small deflections (sin θl̄ ≈ θl̄) becomes

S = −P cosα+ P
3 vl̄

2(l̄ − lin)
sinα︸ ︷︷ ︸

Eshelby−likeforce

, (3.2)

where vl̄ is the transversal displacement at the loaded end of the rod of length
l̄ − lin (external to the sliding sleeve). Eqs (3.1) and (3.2) show that there is
an ‘unexpected’ term (null if the elastic rod is constrained by a movable clamp
instead of a sliding sleeve), defined as the ‘Eshelby-like force’. Although there is a
little abuse of notation3, this definition is motivated by the fact that the Eshelby-
like force is null, would the total potential energy of the system be independent
of a configurational parameter.

The findings presented in this article demonstrate that movable constraints
applied to elastic structures can generate configurational forces and that these
become dominant when deformations are sufficiently large. Configurational forces
can be employed in the design of new deformable systems with challenging char-
acteristics, which may find applications even at the micro- and nano-scale, for
instance, to control growth of a structural element.

3.1 Eshelby-like force produced by a sliding sleeve

An inextensible elastic rod (straight in its unloaded configuration, with bend-
ing stiffness B and total length l̄) has one end constrained with a sliding sleeve,
is subject to an edge axial (dead) force S, and has the other end subject to a
dead transversal load P (inclined at an angle α, see Fig. 3.1). Introducing the
curvilinear coordinate s ∈ [0, l̄], the length lin of the segment of the rod internal
to a (frictionless, perfectly smooth and bilateral) sliding sleeve, and the rotation
θ(s) of the rod’s axis, it follows that θ(s) = 0 for s ∈ [0, lin]. Denoting by a prime
the derivative with respect to s, the bending moment along the elastic rod is
M(s) = Bθ′(s), so that at the loaded edge of the rod, we have the zero-moment
boundary condition θ′(l̄) = 0.

3The introduction of the nomenclature ‘Eshelby-like force’ allows to distinguish terms
generated by the possibility of configurational changes of the system, while ‘Eshelby
forces’ must always vanish at equilibrium.
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The total potential energy of the system is

V(θ(s), lin) = B

l̄∫
lin

[
θ
′
(s)
]2

2
ds− P

⎡⎣l̄ − cosα

l̄∫
lin

cos θ(s)ds

+sinα

l̄∫
lin

sin θ(s)ds

⎤⎦− S lin,

(3.3)

which at equilibrium becomes

V(θeq(s, leq), leq) = B

l̄∫
leq

[
θ
′
eq (s, leq)

]2
2

ds− P

⎡⎢⎣l̄ − cosα

l̄∫
leq

cos θeq(s, leq)ds

+sinα

l̄∫
leq

sin θeq(s, leq)ds

⎤⎥⎦− S leq,

(3.4)
where leq is the length of the elastic rod inside the sliding sleeve and θeq the
rotation of the rod’s axis at the equilibrium configuration.

The Eshelbian force related to the sliding in the sleeve can be calculated by
taking the derivative with respect to leq of the total potential energy at equilib-
rium, eqn (3.4). In particular, keeping into account integration by parts

θ′eq
∂θ′eq
∂leq

=

(
θ′eq

∂θeq
∂leq

)′
− θ′′eq

∂θeq
∂leq

, (3.5)

the equilibrium of the elastica

Bθ′′eq(s) + P [cosα sin θeq(s) + sinα cos θeq(s)] = 0, s ∈ [leq, l̄] (3.6)

and the boundary condition θ′eq(l̄) = 0, we arrive at the following expression for
the Eshelby force

−∂V(leq)
∂leq

= B
[θ′eq(leq)]

2

2
+Bθ′eq(leq)

∂θeq
∂leq

∣∣∣∣
s=leq

+ P cosα+ S. (3.7)

The fact that θeq is a function of s− leq and of the angle of rotation of the beam
at the loaded end θl̄ (function itself of leq), but is always zero at s = leq for all
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θl̄, yields
∂θeq
∂leq

∣∣∣∣
s=leq

= −θ′eq(leq), (3.8)

so that the vanishing of the derivative with respect to leq of the total potential
energy, eqn (3.7), represents the axial equilibrium

M2

2B︸︷︷︸
Eshelby−likeforce

= S + P cosα, (3.9)

where M = Bθ′eq(leq) is the reaction moment, equal to Pe, where e is the load
eccentricity (to the sliding sleeve).

Although the Eshelby force must vanish at equilibrium, the contribution
M2/(2B) is a ‘counterintuitive term’ which depends on the configurational pa-
rameter leq (and would be absent if the elastic rod would be constrained with a
movable clamp instead than a sliding sleeve) and is for this reason indicated as
the ‘Eshelby-like force’. This term has wrongly been neglected by a number of
authors who have considered sliding sleeve constraints, while a term M2/(2B)
correctly enters in calculations referred in a different context, namely, adhesion
mechanics, in which it is equated to an ‘adhesion energy’ (Majidi, 2007; Majidi
et al. 2012).

Since equilibrium is only possible when eqn (3.9) is satisfied, the presence
of the Eshelby-like force (parallel to the direction of sliding) explains the reason
why the equilibrium is possible for the configuration shown in the central photo
in Fig. 3.2 and why the rod is ‘expelled’ from the sliding sleeve in the lower
photo.

In the next sections the existence of the Eshelby-like force (3.9) will be demon-
strated via two different and independent approaches (an asymptotic method and
a variational technique).

3.1.1 Asymptotic approach

The Eshelbian force (3.9) can be obtained via an asymptotic approach. This
has been found in a forgotten article published in Russian by Balabukh et al.
(1970). The main idea is to consider an imperfect sliding sleeve (Fig. 3.3) having a
small gap Δ (the distance between the two rigid, frictionless and parallel surfaces
realizing the sliding device), so that the perfect sliding sleeve case is recovered
when the gap is null, Δ = 0. Within this space, the elastic rod is deflected, so that
ϑ(Δ) denotes the angle at its right contact point, where the forces H, V , M are
applied. The length of the rod detached from the two surfaces representing the
imperfect sliding sleeve is denoted with a(Δ). The frictionless contact generates
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the reaction forces R and Q, in equilibrium with the axial dead force S at the
other end. For small Δ, the equilibrium is given by

Q =
M

a(Δ)
, R = V +

M

a(Δ)
, S =

(
V +

M

a(Δ)

)
ϑ(Δ)−H. (3.10)

On application of the virtual work for a linear elastic inextensible rod yields the
geometric quantities a(Δ) and ϑ(Δ)

a(Δ) =

√
6BΔ

M
, ϑ(Δ) =

1

2

√
6MΔ

B
, (3.11)

so that forces Q, R and S can be written as

Q = M

√
M

6BΔ
, R = V +M

√
M

6BΔ
, S =

M2

2B
+

V

2

√
6MΔ

B
−H. (3.12)

In the limit of perfect (zero-thickness) sliding sleeve, Δ → 0, the horizontal
component of the reaction R does not vanish, but becomes the Eshelbian force
(3.9)

lim
Δ→0

R(Δ)ϑ(Δ) =
M2

2B
. (3.13)

Figure 3.3: Deformed configuration of an elastic rod within an imperfect sliding sleeve
made up of two smooth, rigid and frictionless planes placed at a distance Δ. Applied
and reaction forces provide in the limit Δ → 0 the Eshelby-like force.

3.1.2 Variational approach

The total potential energy (3.3) has a movable boundary lin, so that it is
expedient (Courant and Hilbert, 1953, see also Majidi et al. 2012) to introduce
a small parameter ε and take variations (subscript ‘var’) of an equilibrium con-
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figuration (subscript ‘eq’) in the form

θ(s, ε) = θeq(s) + εθvar(s), lin(ε) = leq + εlvar , (3.14)

with the boundary conditions

θeq(leq) = 0, θ(leq + εlvar) = 0, θ
′
eq(l̄) = 0. (3.15)

A Taylor series expansion of θ(lin) for small ε yields

θ(leq + εlvar, ε) = θeq(leq) + ε
(
θvar(leq) + θ

′
eq(leq)lvar

)
+ ε2

2 lvar

(
2θ

′
var(leq) + θ

′′
eq(leq)lvar

)
+O (

ε3
)
,

(3.16)

so that the boundary conditions (3.15) lead to the following compatibility equa-
tions

θvar(leq) + θ
′
eq(leq)lvar = 0, 2θ

′
var(leq) + θ

′′
eq(leq)lvar = 0. (3.17)

Taking into account the Leibniz rule of differentiation and the boundary (3.15)
and compatibility (3.17) conditions, through integration by parts, the first vari-
ation of the functional V is

δεV = −
l̄∫

leq

[
Bθ

′′
eq(s) + P (cosα sin θeq(s) + sinα cos θeq(s))

]
θvar(s)ds

+

[
B
θ
′
eq(leq)

2

2
− P cosα− S

]
lvar,

(3.18)
so that the equilibrium equations (3.6) and (3.9) are obtained, the latter of
which, representing the so-called ‘transversality condition’ of Courant and Hilbert
(1953), provides the Eshelby-like force.

3.1.3 The Eshelby-like force expressed as a function of the tran-
sversal load

The equilibrium configuration of the elastic rod satisfies the elastica equation
(3.6) (see Love, 1927, and Bigoni, 2012) and, through a change of variables, the
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rotation field (for the first mode of deformation) can be obtained as

θeq(s) = 2 arcsin

[
η sn

(
(s− leq)

√
P

B
+K(m, η), η

)]
− α, (3.19)

where sn is the Jacobi sine amplitude function, K (m, η) the incomplete elliptic
integral of the first kind and

η = sin
θl̄ + α

2
, m = arcsin

[
sin(α/2)

η

]
, (3.20)

with θl̄ = θeq(l̄) representing the rotation measured at the free end of the rod,
related to the applied vertical load through

P =
B

(l̄ − leq)2
[K (η)−K (m, η)]

2
. (3.21)

The Eshelby-like force (3.9) can be expressed as

M2

2B
= 2P

(
η2 − sin2

α

2

)
, (3.22)

so that the axial force S at the end of the sliding sleeve, which will be measured
through a load cell in the experiments, is given by eqn (3.1). It can be noted from
eqn. (3.1) that the measured load S is (in modulus) bounded by P and that S
tends to P only in the ‘membrane limit’, when B tends to zero and θl̄ + α to π.

The following three different cases may arise, explaining the experiments
shown in Fig. 3.2.

• the elastic rod within the sliding sleeve is in compression, or ‘pushed in’, if
θl̄ + α < π/2;

• the elastic rod within the sliding sleeve is unloaded if θl̄ + α = π/2;

• the elastic rod within the sliding sleeve is in tension, or ‘pulled out’, if
θl̄ + α > π/2.

The case of null axial force, S = 0, occurs when M2/(2B) is equal to the axial
component of the dead load, P cosα, and corresponds to deformed configurations
which have the tangent at the free end orthogonal to the direction of the dead
load P , as in Fig. 3.2 (center).

Finally, it can be noted that the Eshelby-like force M2/(2B) is greater than
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3.2. The experimental evidence of configurational force

the applied load P when

cosα− 2 cos2
(
θl̄ + α

2

)
> 0. (3.23)

Regions in the θl̄−α plane where the axial force S is positive/negative and where
M2/(2B) > P are shown in Fig. (3.4). From the figure it can be concluded that
M2/(2B) > P is possible only for positive axial load, S > 0, and high deflections
of the rod (at least for rotation at the free end θl̄ greater than π/3 and depending
on α).

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Figure 3.4: Regions in the plane θl̄ − α where S > 0, S < 0 and M2/(2B) > P .

3.2 The experimental evidence of configurational force

The structure shown in Fig. 3.1 has been realized using for the elastic rod two
C62 carbon-steel strips (25 mm × 2 mm cross section), one 585 mm in length and
the other 800 mm. For these rods the bending stiffness B has been determined
with flexure experiments to be equal to 2.70 Nm2.

The sliding sleeve is 384 mm in length and has been realized with 32 pairs
of rollers (made up of 10 mm diameter and 15 mm length teflon cylinders, each
containing two roller bearings). The tolerance between the metal strip and the
rollers is calibrated with four micrometrical screws.
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3. Eshelby-like forces acting on elastic structures: theoretical and
experimental proof

The axial force S has been measured using a MT1041 load cell (R.C. 300N),
while dead loading, measured through a Leane XFTC301 (R.C. 500N) loading
cell, has been provided with a simple hydraulic device in which water is poured at
constant rate of 10 gr/s into a container. Data have been acquired with a NI Com-
pactDAQ system, interfaced with Labview 8.5.1 (National Instruments). The
whole apparatus has been mounted on an optical table (1HT-NM from Standa)
to prevent spurious vibrations, which have been checked to remain negligible
(accelerations have been found inferior to 2× 10−3 g) with four IEPE accelerom-
eter (PCB Piezotronics Inc., model 333B50) attached at different positions. The
tests have been performed in a controlled temperature (20±0.2 ◦C) and humidity
(48±0.5%) room. The testing set-up is shown in Fig. 3.5. Additional material
can be found at http://ssmg.unitn.it/.

1 Optical table

2 Accelerometer

3 Load cell

4 Sliding sleeve 6 Water container

5 Elastic rod

6

3

2

23 2

2
4

1

44

5

Figure 3.5: The test setup for the measure of the axial Eshelby-like force transmitted
by a sliding sleeve, a realization of the scheme reported in Fig. 3.6.

3.2.1 Eshelbian force provided by a roller device

Rollers have been employed in the practical realization of the sliding sleeve,
so that the question may arise how this set-up is tight to our idealization and
can effectively measure the Eshelby-like force. To quantify the effects introduced
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3.2. The experimental evidence of configurational force

by the rollers, an asymptotic approach similar to that presented in Section 3.1.1
is developed here by considering the statically determined system given by two
rollers with finite radius r and which centers are distant ΔH +2r and ΔV +2r in
the axial and transversal directions, so that the model of a perfect sliding sleeve
is achieved in the limit of null value for these three parameters (r, ΔH and ΔV ),
Fig. 3.6.

Figure 3.6: The scheme of the sliding sleeve constraint realized through two pairs of
rollers.

In the limit ΔV /ΔH → 0, the roller reactions X and Y are obtained from
rotational and translational (in the transversal direction) equilibrium as

X = M

cos ξ [ΔH + r (2 + sinψ + sin ξ)]
,

Y = 1
cosψ

[
V + M

ΔH + r (2 + sinψ + sin ξ)

]
,

(3.24)

where ξ and ψ are the rotations of the rod at the contact points with the rollers,
so that the translational (in the axial direction) equilibrium leads to

S = V tanψ − M (tan ξ − tanψ)

ΔH + r (2 + sinψ + sin ξ)
−H. (3.25)

Restricting attention to small deflections between the rollers, the angles ξ and ψ
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3. Eshelby-like forces acting on elastic structures: theoretical and
experimental proof

can be obtained through integration of the elastica as

ξ = −M(ΔH + 2r)2 (2B +Mr) + 6B (−2B +Mr)ΔV

2B(ΔH + 2r) (6B +Mr)
,

ψ =
M(ΔH + 2r)2 (4B +Mr) + 6B (2B +Mr)ΔV

2B(ΔH + 2r) (6B +Mr)
.

(3.26)

In the limit of ΔV /r → 0, eqn (3.26) simplifies to

ξ = −M(ΔH + 2r)(Mr + 4B)

2B(Mr + 6B)
, ψ = −ξ, (3.27)

and the translational equilibrium, eqn. (3.25), reads

M

6B +Mr

[
6M(3B +Mr)

6B +Mr
+

V (ΔH + 2r)(4B +Mr)

2B

]
︸ ︷︷ ︸

Eshelby−likeforce

= S +H, (3.28)

an equation which introduces the concept of Eshelby-like force provided by a
roller device, and reducing in the limits r → 0 and ΔH → 0 to the value of the
Eshelby-like force (3.9) arising from a sliding sleeve.

It can be noted that the lowest value of the configurational force realized by
the roller device occurs in the limit of the sliding sleeve.

3.2.2 Experiments

Results of experiments are reported in Fig. 3.7 and compared with the the-
oretical predictions obtained with the ‘perfect model’ of sliding sleeve, eqn (3.9),
and with the ‘roller-version’ of it, eqn (3.28), the latter used with parameters
tailored on the experimental set up (r = 5 mm, ΔH = 1 mm).

First of all, we can note that the theoretical values are close to each other,
which is a proof that the rollers have a negligible effect on the determination of the
Eshelby-like force. Moreover, we see that there is an excellent agreement between
the theoretical predictions and the experimental results, which is an indisputable
proof that Eshelby-like forces acting on elastic structures are a reality.
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Figure 3.7: Comparison between experimental results (red curve) and the theoretical
predictions. These have been reported for a perfect sliding sleeve (dashed curve) and
for a sliding sleeve realized with rollers mimicking the experimental conditions (solid
curve). Two rods have been used of external lengths 261 mm (left) and 424 mm (right)
for different inclinations (90◦, 60◦ and 30◦).
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4

Instability of a penetrating blade

Application of a dead compressive load at the free end of an elastic rod
(the ‘blade’) induces its penetration into a sliding sleeve ending with a
linear elastic spring. Bifurcation and stability analysis of this simple
elastic system shows a variety of unexpected behaviours: (i.) an increase
of buckling load at decreasing of elastic stiffness; (ii.) a finite number
of buckling loads for a system with infinite degrees of freedom (leading
to a non-standard Sturm-Liouville problem); (iii.) more than one bifur-
cation loads associated to each bifurcation mode; (iv.) a restabilization
of the straight configuration after the second bifurcation load associated
to the first instability mode; (v.) the presence of an Eshelby-like (or
configurational) force, deeply influencing stability. Only the first of these
behaviours was previously known, the second and third ones disprove com-
mon beliefs, the fourth highlights a sort of ‘island of instability’, and the
last one shows surprising phenomena and effects on stability.

Despite the common belief that structural instability is a fully mature field of
mechanics, it has recently been shown that it is still possible to discover new and
‘unexpected’ phenomena in the critical and postcritical behaviour of simple struc-
tures, such as tensile buckling (Zaccaria et al., 2011), buckling inducing shrinking
of a structure (Shim et al., 2012), multiple bifurcations in single degree of freedom
structures (see Chapter 2), frictional flutter instability (Bigoni and Noselli, 2011),
and that buckling can be exploited to facilitate adhesion (Chan et al., 2008), or
to create flexible electronics (Rogers et al., 2010), or to switch a phononic band
gap (Bertoldi and Boyce, 2008), or to induce a pattern transformation (Li et al.,
2012).

The aim of the present article is to explore the critical and postcritical be-
haviour of a simple elastic structure, displaying several unexpected effects, some
of which were previously known but received only marginal attention (Feodosyev,
1977; Tarnai, 1980), while others were simply unknown. The importance of the
mechanical features highlighted and discovered in the present article lies in the
fact that they disprove common believes (for instance, engineers believe that crit-
ical loads always increase with the stiffness of a structure, and mathematicians
that a bifurcation problem of an elastic rod is always a Sturm-Liouville prob-
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lem), correct errors in several published works (where the so-called ‘Eshelby-like
force’ is wrongly omitted in the calculations), provide a new understanding of
the adhesion energy between a structure and a substrate (Majidi, 2007; Majidi
et al., 2012), and open the way to unconventional mechanical applications, as
for instance to continuous self-restabilizing systems (a simple example of this
behaviour, restricted to a system with two degrees of freedom, is reported by
Potier-Ferry, 1987). The considered mechanical problem is the following.

A blade (an elastic planar rod) is forced to penetrate into an elastic mov-
able clamp (a frictionless sliding sleeve with a final linear spring) through the
application of a dead compressive load at the other edge, Fig. 4.1.

Figure 4.1: The penetrating blade is an elastic planar rod whose free length l is a
function of the amount of the applied axial load P . The blade with constant bending
stiffness B has a free end subject to the dead load P , while at the other edge the blade
slides into a frictionless sleeve and is restrained by an axial linear spring of stiffness k.
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Figure 4.2: Left: the design scheme employed to realize the structure shown in Fig.
4.1 and right: its practical realization (prototype 1). Note that the sliding sleeve is
borne by a transparent plexiglass support (represented grey on the left). Details of the
experimental setup are given in Sect. 4.4.

This system is shown to exhibit several surprising and counterintuitive me-
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4. Instability of a penetrating blade

chanical behaviours, theoretically predicted by elastic analysis and experimentally
confirmed through a physical model (Fig. 4.2, for details of the experimental
setup see Sect. 4.4). These are as follows.

• (i.) The buckling load of the system is governed by the relative spring/bending
stiffness, so that an increase of elastic stiffness of the spring yields a de-
crease in the buckling load. Moreover, if the stiffness of the spring is low
enough compared to the rod’s bending stiffness (‘highly compliant’ sys-
tem), there will be no buckling, but only a straight penetration into the
sliding sleeve. In these conditions an increase in the elastic stiffness of the
spring may induce buckling, see Fig. 4.3 showing that for infinite stiffness
(lower part) of the spring the blade buckles, while for highly compliant
spring (lower part) the blade does not.

Previously, this effect was theoretically noticed by Feodosyev (1977) and
on a simpler structure by Tarnai (1980).

• (ii.) Buckling of an elastic rod (with ordinary boundary conditions, e.g.
doubly pinned) is governed by a Sturm-Liouville problem (Broman, 1970),
admitting an infinite number of bifurcation loads. This is commonly associ-
ated to the fact that the system ‘has infinite degrees of freedom’. Although
the system shown in Fig. 1 is continuous, the moving boundary introduced
by the sliding sleeve leads to a non-standard Sturm-Liouville problem, so
that a finite number of buckling loads is found.

• (iii.) Usually, a compressed elastic rod (with ordinary boundary conditions,
e.g. doubly pinned) evidences one bifurcation load of the fundamental equi-
librium path associated to each bifurcation mode (secondary bifurcations
emanating from the postcritical path, as for instance in the case of the
doubly-pinned rod, see Bigoni, 2012, Section 1.13.1, are not considered
now). The structure shown in Fig. 4.1 displays two (actually three, but
one of these will be shown to be physically not accessible) bifurcation loads
for the straight configuration associated to each bifurcation mode, a situa-
tion occurring also in the simpler system analyzed by Bigoni (2012, Section
1.13.4).

• (iv.) In usual structural systems, stability of the fundamental path is lost
after buckling and is never ‘later’ recovered. Differently, the straight con-
figuration of the structure, stable at small load (Fig. 4.4, upper part on
the right), returns to be stable (Fig. 4.4, lower part on the right) at load
sufficiently higher than that corresponding to buckling (more precisely,
higher than the load corresponding to a second bifurcation of the funda-
mental path). This situation occurs also in the simpler systems analyzed
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4. Instability of a penetrating blade

by Bigoni (2012, Section 1.13.4) and Potier-Ferry (1987).1

q
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Figure 4.4: The straight configuration for the blade (elastic planar rod) is stable at
small load (upper part, right), becomes unstable at higher load (lower part, left) and,
for further increase, it eventually returns stable (lower part, right). The structural
model has been realized following the scheme reported in Fig. 4.2. The length of the
blade inside the sliding sleeve at equilibrium is leq, while q1 is the dimensionless relative
stiffness defined by eq. (4.7).

• (v.) In Chapter 3 we have shown that a sliding sleeve constraining the edge
of an elastic rod may induce Eshelby-like (or ‘configurational’2) forces in

1For monotonically increasing loading the structure buckles and does not ‘sponta-
neously’ return in the straight configuration. Therefore, the system has to be set in this
configuration to observe its stability beyond the second buckling load.

A system that spontaneously self-restabilizes has been shown by Potier-Ferry, 1987.
2These forces have been named by Bigoni et al. (2013) from Eshelby since they can
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4.1. More than one critical load for each instability mode and finite
number of critical loads for continuous elastic systems

structures, generated by the fact that the rod, freely sliding at one edge,
can change its length and therefore release elastic energy. The presence of
an Eshelby-like (or configurational) force produced by the sliding sleeve in
the structure shown in Fig. 4.1 strongly affects the post-critical behaviour
and its stability. The effects of this force can be counterintuitive, so that
the springs in the structure shown in Fig. 4.5 at low load (upper part on the
right, P = 20N) are subject to an higher elongation than that occurring
when a higher load P is applied (lower parts on the left, P = 30N , and on
the right, P = 40N).

The existence of this Eshelby-like force (erroneously ignored by a number
of authors in previous articles) becomes even more evident in the photo
shown in Fig. 4.6, because in the absence of this vertical force the equilib-
rium would be impossible (note that this configuration for the structure is
unstable, as will be proven in Sect. 4).

All the above five features are demonstrated in this article, both theoretically
and experimentally. In particular, points (i.)–(iii.) are analyzed through a stan-
dard bifurcation analysis and integration of the planar elastica. Points (iv.) and
(v.) are investigated by using a variational formulation, which allows to confirm
the existence of an Eshelby-like force (through consideration of the first variation)
and to address stability (through consideration of the second variation).

4.1 More than one critical load for each instability mode and
finite number of critical loads for continuous elastic systems

Let us consider an inextensible elastic beam with constitutive behaviour de-
fined by the Euler-Bernoulli equation

M(s) = B
dθ(s)

ds
, (4.1)

where B is the constant bending stiffness, θ(s) is the angle of inclination of
the tangent to the elastica at the curvilinear coordinate s. The Euler formula
provides the n-th critical load (associated to the n-th instability mode) for an
elastic clamped-free planar rod of length l as

Pcr,n =
(2n− 1)2π2B

4l2
, n ∈ N

+. (4.2)

be understood as the derivative of the total potential energy of the system with respect
to the configurational parameter characterizing the system, in strict analogy with the
concept of Eshelbian force (Eshelby, 1956). ‘Configurational force’ has here a different
meaning than the ‘follower’ force considered by Bigoni and Noselli (2011).
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Figure 4.5: An Eshelby-like force is generated when the blade (elastic planar rod)
buckles, so that the length of the rod inserted into the sliding sleeve (leq) decreases
when the applied compressive load P is increased. As a consequence, the length of the
rod inside the sliding sleeve can become even smaller than in the unloaded configuration
(i.e. leq < 0, lower part, right) with the increasing of the compressive load. This
counterintuitive effect is due to the presence of an vertical upward Eshelby-like force
generated by the sliding sleeve which is greater than the vertical downward load P . The
structural model has been realized following the scheme reported in Fig. 4.2. The length
of the blade inside the sliding sleeve at equilibrium is leq, while q1 is the dimensionless
relative stiffness defined by eq. (4.7).

Eq. (4.2) shows that the n-th critical load Pcr is unique whenever the beam
length l is fixed, but this uniqueness may be lost when the length becomes a
function of the applied axial load, l = l(P ).

If, as shown in Fig. 4.1, a sliding sleeve with an axial spring replaces the
clamp, so that the elastic planar rod (or ‘blade’) can penetrate into the constraint
of an amount leq (the index ‘eq’ indicates a value at equilibrium), l(P ) is given
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4.1. More than one critical load for each instability mode and finite
number of critical loads for continuous elastic systems

Figure 4.6: The vertical and upward Eshelby-like force (equal and opposite to the
applied downward load) generated by the sliding sleeve makes the equilibrium config-
uration possible, even if unstable. Note that the tangent to the end of the blade is
horizontal, as will be theoretically rationalized in Sect. 4.2.

by
l(P ) = l − leq(P ), (4.3)

where l is the outer length of the blade at null axial load P , l(P = 0) = l̄. In the
particular case of a linear spring with stiffness k and considering the blade in the
straight configuration the equilibrium equation in the axial direction is given by

P = kleq, (4.4)

(an equation that does not hold when the curvature at the point s = leq is
different from zero, θ′eq(leq) �= 0, Sect. 4.2) so that the length of the outer part

of the blade is l(P ) = l − P/k and the Euler formula (4.2) becomes

Pcr,n =
(2n− 1)2π2B

4

(
l − Pcr,n

k

)2 , n ∈ N
+. (4.5)

The solution for the critical load Pcr,n from eq. (4.5) leads to the following cubic
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4. Instability of a penetrating blade

equation

p3cr,n − 2p2cr,n + pcr,n − 4

27qn
= 0, n ∈ N

+, (4.6)

where pcr,n and qn are respectively the dimensionless n-th critical load and di-
mensionless relative stiffness (spring stiffness multiplied by the bar length and
divided by a critical load) of the elastic system, the latter given as

qn =
16kl̄3

27(2n− 1)2π2B
, n ∈ N

+, (4.7)

and the former is the ‘n-th’ and critical ‘cr’ value of the dimensionless load

p =
P

kl̄
. (4.8)

Note that the dimensionless relative stiffness is positive, qn > 0, defined in a way
that for n = 1 there is no buckling for q1 < 1, and that the dimensionless n-th
critical load pcr,n has to satisfy the following inequality3

pcr,n ≤ 1, n ∈ N
+, (4.9)

corresponding to l(P ) ≥ 0, in other words, to the constraint that the blade cannot
buckle after complete penetration into the sliding sleeve.

The solution of the cubic equation (4.6) yields the following conclusions:

i) since all the coefficients of the cubic equation (4.6) are real, the following
infinite sequence always exists of real roots

pCcr,n =
1

3

⎡⎣2 + 3

√
qn

2− qn + 2
√

1− qn
+

3

√
2− qn + 2

√
1− qn

qn

⎤⎦ > 1,

n ∈ N
+,
(4.10)

all violating the constraint (4.9) and thus representing meaningless solutions
from mechanical point of view;

ii) in the case when for a given m ∈ N
+ the inequality

qm+1 < 1 < qm, or equivalently (2m− 1)
2
< q1 < (2m+ 1)

2
,

(4.11)

3This restriction holds only for the calculation of the critical loads. Indeed, as it will
be shown in Sect. 4.2, equilibrium configurations with p ≥ 1 are possible for non-trivial
deformation paths.
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4.1. More than one critical load for each instability mode and finite
number of critical loads for continuous elastic systems

is satisfied, in addition to the sequence of real roots (4.10) other 2m real
roots exist for the cubic equation (4.6),

pAcr,n

pBcr,n

⎫⎬⎭ =
1

3

[
2− 1± i

√
3

2
3

√
qn

2− qn + 2
√
1− qn

−

−1∓ i
√
3

2

3

√
2− qn + 2

√
1− qn

qn

]
, n ≤ m n,m ∈ N

+,

(4.12)
satisfying the following property

0 < pAcr,n ≤ pAcr,m ≤ pBcr,m ≤ pBcr,n < 1, n ≤ m n,m ∈ N
+ (4.13)

so that 2m critical loads are obtained, which correspond to 2 critical loads
for the same n-th instability mode;

iii) in the particular case when, for a given m ∈ N
+, qm = 1 (or, equivalently,

q1 = [2m − 1]2), the two real roots associated to the m-th mode (4.12) are
coincident,

pAcr,m = pBcr,m =
1

3
, m ∈ N

+, (4.14)

so that 2m− 1 critical loads are obtained, though 2m postcritical paths still
exist.

Dimensionless critical loads, calculated with eq. (4.12), are reported as func-
tions of the dimensionless relative stiffness parameter q1 in Fig. 4.7 for the first
three modes (n = 1, 2, 3), together with the experimental data observed on
Prototype 1. As it will be shown in the following, the dimensionless load pAcr,1
corresponds to the lower buckling load and to the loss of stability of the straight
configuration, while the dimensionless load pBcr,1 corresponds to the upper bifur-
cation load and to the restabilization of the straight configuration. Note that
there is no bifurcation for q1 < 1 (Fig. 4.3, upper part), but for q1 > 1 there are
always two bifurcation loads (the lower called ‘buckling’ and the higher ‘restabi-
lization’) associated to the first mode (n=1). A second bifurcation mode emerges
at q1 = 9, so that four critical loads exists for 9 < q1 < 25, two associated with
the first mode and two with the second. A third bifurcation mode emerges at
q1 = 25. Moreover, while pAcr,1 corresponds to a critical buckling load for which
there is a spontaneous departure from the straight configuration of the blade,
pBcr,1 denotes a load from which the straight configuration returns to be stable,
but cannot be spontaneously reached by the blade from its buckled configuration.
Finally, we may observe the following.

i) Considering constant geometrical and material properties of the rod, the
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4. Instability of a penetrating blade

Figure 4.7: Dimensionless bifurcation loads pcr,n (buckling load pAcr,n and restabi-
lization load pBcr,n) as a function of the dimensionless relative stiffness q1 of the elastic
system. Note that if the stiffness ratio q1 decreases, then the n-th buckling load increases
while the n-th restabilization load decreases, and the number of bifurcation modes can
even reduce to zero in the case of ‘highly compliant systems’ (q1 < 1), where bifurca-
tion does not occur. Experimental data (white dots) observed on Prototype 1 are also
reported.

reduction of spring stiffness k leads to an increase of the buckling load pAcr,1
(according to Tarnai, 1980) and a reduction of the restabilization load pBcr,1;

ii) differently from the usual behaviour of continuous elastic systems, the struc-
ture sketched in Fig. 4.1 has a countable (finite) number (which depends on
the elastic properties of the system) of pairs (two for each mode) of critical
loads.

4.2 From the total potential energy to the equilibrium equa-
tions

An inextensible elastic planar rod (straight in its unloaded configuration, with
bending stiffness B and total length l̄) has one end constrained with a sliding
sleeve and a coaxial spring of stiffness k, while at the other edge is subject to
an axial (dead compressive) force P , see Fig. 4.1. Introducing the curvilinear
coordinate s ∈ [0, l̄] and the rotation field θ(s) of the planar rod’s axis, the axial
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4.2. From the total potential energy to the equilibrium equations

and transversal displacement fields can be written as

u1(s) =

∫
cos θ(s)ds, u2(s) =

∫
sin θ(s)ds. (4.15)

With reference to the structural system reported in Fig. 4.1, the sliding sleeve
introduces the condition of null rotation for a portion of the rod,

θ(s) = 0, s ∈ [0, lin], (4.16)

where lin is the length of the rod inside the (frictionless, perfectly smooth and
bilateral) sliding sleeve, while on the other end of the rod (s = l̄) the boundary
condition is

θ
′ (
l̄
)
= 0. (4.17)

The total potential energy is

V(θ, lin) =
l̄∫

lin

B

[
θ
′
(s)
]2

2
ds+

1

2
k (lin)

2 − P

⎡⎣l̄ − l̄∫
lin

cos θ(s)ds

⎤⎦ . (4.18)

Since the total potential energy (4.18) is written for a system with a moving
boundary lin, it is expedient (Courant and Hilbert, 1953, see also Majidi et al.
2012) to introduce a small parameter ε and to take variations (subscript ‘var’)
of an equilibrium configuration (subscript ‘eq’) in the form

θ(s, ε) = θeq(s) + εθvar(s), lin(ε) = leq + εlvar, (4.19)

with the boundary conditions at the sliding sleeve (s = lin)

θeq(leq) = 0, θ(leq + εlvar) = 0, (4.20)

and the boundary conditions at the other end (s = l̄)

θ
′
eq

(
l̄
)
= 0, θ

′
var

(
l̄
)
= 0. (4.21)

A Taylor series expansion of θ(lin) for small ε yields

θ(leq + εlvar, ε) = θeq(leq) + ε
[
θvar(leq) + θ

′
eq(leq)lvar

]
+ ε2

2 lvar

[
2θ

′
var(leq) + θ

′′
eq(leq)lvar

]
+O (

ε3
)
,

(4.22)

so that the boundary conditions (4.20) lead to the following compatibility equa-
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4. Instability of a penetrating blade

tions

θvar(leq) + θ
′
eq(leq)lvar = 0, 2θ

′
var(leq) + θ

′′
eq(leq)lvar = 0. (4.23)

Taking into account the Leibniz rule of differentiation and the boundary con-
ditions (4.20) and (4.21), together with compatibility equations (4.23), through
integration by parts, the first variation of the functional V is obtained as

δεV = −
l̄∫

leq

[
Bθ

′′
eq + P sin θeq(s)

]
θvar(s)ds+

[
kleq − P +

B

2
θ
′
eq(leq)

2

]
lvar,

(4.24)

from which, by imposing vanishing for any admissible variation θvar(s) and lvar,
the elastica is obtained

Bθ
′′
eq(s) + P sin θeq(s) = 0, (4.25)

as well as the axial equilibrium condition

P = kleq +
B

2

[
θ
′
eq(leq)

]2
︸ ︷︷ ︸

Eshelby−likeForce

, (4.26)

revealing the presence of an Eshelby-like force (Bigoni et al., 2013) generated by
the sliding sleeve (see also the asymptotic derivation by Balabukh et al., 1970)
and representing the so-called ‘transversality condition’ of Courant and Hilbert
(1953). Note that, eq. (4.26) reduces to the ‘trivial’ axial equilibrium equation,
eq (4.4), only in the case of null curvature at the sliding sleeve, θ

′
eq(leq) = 0.

It can be noted from the axial equilibrium equation (4.26) that, the surprising
(and never noticed before) equilibrium configuration shown in Fig. 4.6 is possible
in the absence of the spring (k = 0), when the elastica is such that the curvature
at the sliding sleeve satisfies

P =
B

2

[
θ
′
eq(leq)

]2
, (4.27)

corresponding to the fact the dead load P and the Eshelby-like force

(B
[
θ
′
eq(leq)

]2
/2) are equal and opposite.
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4.2. From the total potential energy to the equilibrium equations

4.2.1 The elastica

The rotation field at equilibrium θeq(s) is the solution of the following non-
linear second–order differential equation with moving boundary condition⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2θeq(s)

ds2
+ λ2 sin θeq(s) = 0, s ∈ (leq, l)

θeq (leq) = 0,

dθeq(s)

ds

∣∣∣∣
s=l̄

= 0,

λ2 =
k

B
leq +

1

2

[
θ
′
eq(leq)

]2
,

(4.28)

where the normalized axial load λ2 = P/B has been introduced.

The problem has the trivial solution (denoted with (0))

θ(0)eq (s) = 0, l(0)eq =
P

k
, (4.29)

while non-trivial solutions can be obtained through the following procedure. Mul-
tiplication of equation (4.28)1 by dθeq/ds and integration in the variable s yields[

dθeq(s)

ds

]2
− 2λ2 cos θeq(s) = constant, (4.30)

so that, setting θeq(l) = θl and using the boundary condition (4.28)3, it follows
(only the solution with the ‘+’ sign has been considered)

dθeq(s)

ds
= λ

√
2(cos θeq(s)− cos θl). (4.31)

It is now a standard expedient to operate the following change of variables

η = sin
θl
2
, η sinφ(s) = sin

θeq(s)

2
, (4.32)
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4. Instability of a penetrating blade

leading to the following differential problem equivalent to the system (4.28)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dφ(s)

ds
= λ

√
1− η2 sin2 φ(s),

φ (leq) = hπ,

φ(l̄) =
2j + 1

2
π,

h, j ∈ Z

leq = λ2B

k
(1− 2η2).

(4.33)

Integration of the differential problem (4.33) leads to non-trivial η, related
to the rotation of the loaded end θl through eq. (4.32), as a function of the load
parameter λ,

(2n− 1)K(η) = λ

[
l̄ − λ2B

k
(1− 2η2)

]
, n ∈ N

+, (4.34)

where n corresponds to the number of the instability mode and K(η) is the
complete elliptic integral of the first kind,

K(η) =

π
2∫

0

dφ√
1− η2 sin2 φ

. (4.35)

Using the dimensionless parameters pn and qn, eqs. (4.7) and (4.8), the
solution (4.34) can be rewritten in the following form

(1− 2η2)2p3n − 2(1− 2η2)p2n + pn − 4

27qn

[
2K(η)

π

]2
= 0, n ∈ N

+, (4.36)

which is a cubic equation providing in general three ‘deformation paths’ (An;Bn; Cn)
corresponding to the n-th mode, namely, three dimensionless loads (pAn ; p

B
n ; p

C
n)

for each mode as functions of the rotation at the loaded end θl, through inversion
of relation (4.32)1, and the relative dimensionless stiffness qn

pAn = pAn (θl, qn), pBn = pBn(θl, qn), pCn = pCn(θl, qn), n ∈ N
+. (4.37)

Note that in the limit of undeformed configuration (implying a null angle at the
loaded end θl → 0, so that η → 0, K(η → 0) → π/2), the cubic equation (4.36)
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4.2. From the total potential energy to the equilibrium equations

corresponds to that obtained within the small displacement theory, eq. (4.6),
and again yields the critical dimensionless loads (pAcr,n; p

B
cr,n; p

C
cr,n), given by eqs.

(4.10) and (4.12).

For a given value of the applied load, the rotation at the loaded end (related
to the three ‘deformation paths’) can be computed from eq. (4.36) and then,
through inversion of relation (4.32)1, the corresponding rotation field can be
obtained

θeq(s) = 2 arcsin
[
η sn

(
λ (s− leq) , η

)]
, (4.38)

from which the axial and transversal displacements are obtained by integration,
eq. (4.15), as

u1(s) = −s+
2

λ
E
[
am

(
λ (s− leq) , η

)
, η
]− leq,

u2(s) =
2η

λ

[
1− cn

(
λ (s− leq) , η

)]
,

(4.39)

which can be evaluated at the loaded end, thus yielding

u1

(
l̄
)
=

2

λ
[E (η)−K (η)]− leq, u2(l̄) =

2η

λ
. (4.40)

In eq. (6.1) the functions am, cn and sn denote the Jacobi amplitude, Jacobi
cosine amplitude and Jacobi sine amplitude functions,

cn (x, η) = cos [am (x, η)] , sn (x, η) = sin [am (x, η)] , (4.41)

while E(x, η) is the incomplete elliptic integral of the second kind of modulus η,
defined as

E(x, η) =

x∫
o

√
1− η2 sin2 t dt. (4.42)

Finally, in the case when the stiffness of the axial spring vanishes (k = 0,
Fig. 4.6), eq. (4.27) represents the only possible equilibrium configuration of the
system. This equation can be rewritten, by introducing a change of variables in
eq. (4.32), as

1− 2 sin2
(
θl̄
2

)
= 0. (4.43)

Eq. (4.43) reveals that the only equilibrium configuration for the system without
spring occurs when the end tangent to the rod is orthogonal to the sliding sleeve,
θl = π/2, representing a purely geometrical condition, visibly satisfied in Fig. 4.6.
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4. Instability of a penetrating blade

4.3 Stability of configurations

In order to evaluate the stability of the equilibrium configurations for the
penetrating blade, the second variation of the functional V, eq. (4.18), has to
be calculated. Considering the boundary conditions (4.20) and the perturbations
in the rotation field θvar(s) and in the length lvar satisfying the compatibility
equations (4.23), the second variation evaluated at an inflexed equilibrium con-
figuration can be written as

δ2εV =
1

2

⎧⎪⎨⎪⎩kl2var +B

l̄∫
leq

[
θ
′
var(s)

]2
ds− P

l̄∫
leq

[θvar(s)]
2
cos θeq(s)ds

⎫⎪⎬⎪⎭ . (4.44)

The stability or instability of an equilibrium configuration is then related to the
sign of the second variation δ2εV, evaluated for that equilibrium configuration,
namely,

δ2εV =

{
> 0 stable equilibrium configuration,

< 0 unstable equilibrium configuration,
(4.45)

for any admissible perturbations θvar(s) and lvar satisfying the compatibility eqs.
(4.23).

Considering the auxiliary function Γ(s), solution of the following boundary
value problem (the Riccati equation plus a boundary condition, see van Brunt,
2005) ⎧⎪⎨⎪⎩

∂Γ(s)

∂s
− P cos θeq(s)− Γ(s)2

B
= 0,

Γ(l̄) = 0,

(4.46)

the compatibility eqs. (4.23) and the following identity

l̄∫
leq

d

ds

[
θ2var(s)Γ(s)

]
ds− [

θ2var(s)Γ(s)
]l̄
leq

= 0, (4.47)

the second variation, eq. (4.44), can be rewritten as

δ2εV =
1

2

⎧⎪⎨⎪⎩B

l̄∫
leq

[
θ
′
var(s) +

Γ(s)

B
θvar(s)

]2
ds+ l2var

[[
θ
′
eq(leq)

]2
Γ(leq) + k

]⎫⎪⎬⎪⎭ .

(4.48)
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4.3. Stability of configurations

To judge the stability of the equilibrium configurations, the two conditions
obtained by Majidi et al. (2012) are exploited here. In particular (note that the
existence of a bounded Γ(s) on the interval

[
leq, l̄

]
implies that the integral in

(4.48) is non-negative)

• Necessary condition (N) for the equilibrium configuration defined by
{θeq(s), leq} to be stable (so that it minimizes the functional V) is that the
auxiliary function Γ(s), solution of to the boundary-value problem (4.46),
cannot become unbounded in the interval

[
leq, l̄

]
and satisfies the following

inequality

Δ =
[
θ
′
eq(leq)

]2
Γ(leq) + k ≥ 0. (4.49)

• Sufficient condition (S) for the trivial equilibrium configuration
{θeq(s) = 0, leq = P/k} , to be stable is that the auxiliary function Γ(s),
solution of the boundary-value problem (4.46), is bounded.

In order to obtain the auxiliary function Γ(s), it is instrumental to consider
the Jacobi transformation

Γ(s) = −B
Λ

′
(s)

Λ(s)
, (4.50)

leading to the following Jacobi boundary value problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
Λ

′′
(s) + λ2 cos θeq(s) Λ(s) = 0,

Λ(l̄) = 1,

Λ
′
(l̄) = 0.

(4.51)

Once the function Γ(s) and the auxiliary function Λ(s) are obtained for a spe-
cific equilibrium configuration by solving the differential eqs. (4.46) and (4.51),
the stability of that equilibrium configuration can be judged through the neces-
sary (N) and sufficient (S) conditions.

4.3.1 Stability of trivial configurations

In the case when the equilibrium configuration is straight, identifying the triv-
ial solution {θeq(s) = 0; leq = P/k}, the Jacobi boundary value problem (4.51)
simplifies to ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Λ
′′
(s) + λ2 Λ(s) = 0,

Λ(l̄) = 1,

Λ
′
(l̄) = 0,

(4.52)
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which, through the Jacobi transformation (4.50), leads to the following solution
for the auxiliary function Γ (s)

Γ (s) =
√
PB tan

(√
P

B

(
l̄ − s

))
. (4.53)

The auxiliary function Γ (s), eq. (4.53), is bounded for s ∈ [leq = P/k, l̄
]
if and

only if

P

B

(
l̄ − P

k

)2

<
π2

4
, (4.54)

which can be rewritten in the dimensionless form

p (1− p)
2
<

4

27q1
, (4.55)

an equation reducing to eq. (4.6) when ‘<’ is replaced by ‘=’. Considering now
the necessary (N) and sufficient (S) conditions, the trivial straight configuration
is:

• for q1 < 1: stable (‘highly compliant’ systems, see eq. (4.7));

• for q1 > 1:

– stable if P < PA
cr,1,

– unstable if PA
cr,1 < P < PB

cr,1 ,

– stable if PB
cr,1 < P < kl̄.

4.3.2 Stability of non-trivial configurations

In the case of non-trivial equilibrium configurations, θeq(s) �= 0, the function
Λ(s), solution of the Jacobi problem (4.52), can be obtained only through numer-
ical integration. Numerical investigations performed varying the dimensionless
relative stiffness q1 and the applied load P show which non-trivial configuration is
unstable, through application of the necessary condition (N). In particular, a con-
figuration is unstable either (N1) when the function Λ(ŝ) = 0 with ŝ ∈ [

leq, l̄
)
,

namely, the auxiliary function Γ(s), is bounded, or (N2) when Δ < 0, see eq.
(4.49).

It is concluded that unstable equilibrium configurations are:

• all the investigated non-trivial equilibrium configurations of the paths An,
Bn, and Cn with n ≥ 2, due to condition (N1);

• all the non-trivial equilibrium configurations of the path B1, due to condi-
tion (N2);
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• all the non-trivial equilibrium configurations of the path A1, due to condi-
tion (N2), when q1 < 1;

• the non-trivial equilibrium configurations associated to a negative slope in
the θl̄−P plane (snap-through instability) of the path A1, due to condition
(N2), and occurring only when 1 < q1 < qST ≈ 1.6875.

All other non-trivial equilibrium configurations not listed above satisfy the
necessary condition (N) and therefore could be stable, although this cannot be
proven and remains an open problem. However, although stability for these
cases cannot –for the moment– be rigorously decided, the stability of the non-
trivial equilibrium configurations A1 has been experimentally confirmed (see the
experimental results presented in the next Section).

Finally, it is straightforward to judge the stability of the system in the case
when the axial spring is absent (k = 0, Fig. 4.6) and conclude that, although the
auxiliary function Γ(s) is always bounded, all the possible equilibrium configura-
tions are unstable due to condition (N2).

4.4 Theory vs. experiments

The buckling loads of the structure sketched in Fig. 4.1 are given by Eq.
(4.12). Moreover, for a given value of the applied load P , λ is known from its
definition (λ2 = P/B), so that Eq. (4.34) allows the calculation of the corre-
sponding η and thus leq is known from Eq. (4.33)4. Finally, Eqs. (6.1) give the
components of the elastica and, in particular, Eqs. (4.40) permit the evaluation
of the displacement components of the blade’s end point. Instability (stability)
of the configurations has been determined using condition N (condition S) ob-
tained in Sect. 4.3. As we have already mentioned in that Section, the stability
of the ascending branches of the first-mode of postcritical behaviour (where the
necessary condition for stability is verified) has been only conjectured on the basis
of our experimental results, while stability and instability of all the rest of the
trivial and bifurcated paths has been rigorously proven.

Restricting the attention for the moment only to the first bifurcation mode
of the structure shown in Fig. 4.1, the dimensionless load p = P/(kl̄) is plotted
as a function of the dimensionless displacement components {u1(l̄)/l̄, u2(l̄)/l̄,
θl̄} in Fig. 4.8, for different values of the dimensionless stiffness q1, taken equal
to 0.7, 1.1, and 2. Note that solid (dashed) lines represent stable (unstable)
configurations.

The following observations can be drawn.

• The upper part of Fig. 4.8 is relative to q1 = 0.7. In this case, no bifurca-
tion occurs and the blade rigidly penetrates into the sliding sleeve. Note
that alternative (and unstable) equilibrium configurations exist in addition
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4. Instability of a penetrating blade

Figure 4.8: First-mode of bifurcation: deformation paths of the structure sketched in
the inset, expressed as the (dimensionless) applied load versus (dimensionless) displace-
ment components and rotation of the blade loaded edge.

to the trivial straight configuration, but (with the exception of the figure
on the left, which can give a false impression of bifurcation) they do not
cross (and even ‘touch’) the trivial path, so that these non-trivial unstable
configurations cannot spontaneously be reached by the system.

• Both the central and the lower parts of Fig. 4.8 show two bifurcation loads
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associated to the first bifurcation mode and show the restabilization of the
straight configuration after the second buckling load.

• The central part of Fig. 4.8, referred to q1 = 1.1, shows an example of
a descending path of the lower equilibrium branch, associated to a snap-
through of the system. On the other hand, the lower part of Fig. 4.8,
referred to q1 = 2, shows that the lower equilibrium branch has always a
positive slope (so that snap-through does not occur).

• Comparing the central and the lower parts of Fig. 4.8 we may observe that
an increase in the stiffness of the system decreases the buckling load and
increases the restabilization load.

• The fact that a vertical Eshelby-like force is generated and ‘expels’ the blade
from the sliding sleeve after buckling is not directly visible in Fig. 4.8. The
visualization of this effect requires plotting P as a function of leq, which is
done in Fig. 4.10 where comparison with experiments is presented.

An example of bifurcation paths involving the first, the second and the third
mode is reported in Fig. 4.9, where the load P (made dimensionless through
division by kl̄) is plotted as a function of the rotation of the loaded end of the
blade, θl̄. In the three parts of Fig. 4.9, referring (from left to right) to q1

Figure 4.9: Force vs. blade’s edge rotation of the structure sketched in the inset,
evidencing the first, second and third mode of bifurcation. The threshold marked as
‘complete penetration’ corresponds to the complete penetration of the blade into the
sliding sleeve. In the example on the left there is no bifurcation, while in the central
part of the figure only the first mode is involved. In the right part of the figure, the
first, second and third mode of bifurcation may occur before the ‘complete penetration’
is attained.

equal to 0.5, 2, and 9, a line denoted as ‘complete penetration’ is reported at the
value of parameter p = P/(kl̄) = 1, corresponding to the complete penetration
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of the blade into the sliding sleeve. Therefore, curves reported beyond that
limit are mathematically corrected, but meaningless from mechanical point of
view. A situation where the postcritical paths do not intersect the vertical axis
(corresponding to stable equilibrium only for the trivial straight configuration),
and thus bifurcation does not occur, is reported in the left part of the figure,
q1 = 0.5. Here, first- and second-mode non-trivial unstable configurations exist
below the ‘complete penetration’ limit but these cannot be reached during loading
of the system. Bifurcation is possible in the central, q1 = 2, and right, q1 = 9,
parts of the figure. While only first mode bifurcations occur in the former case,
in the latter case first, second and third modes bifurcations are possible. In
general, all modes superior to the first have been always found unstable in all
cases analyzed (not only in those reported in this article).

An essential part in the present study is to show that all the found mechanical
behaviours can be realized in practice. To this purpose, we have designed, realized
and tested model structures to verify the theoretical findings. We have already
anticipated with Figs. 4.3–4.6 that the theory has been fully confirmed, so that
our intention is now to provide quantitative support.

Two prototypes (called ‘Prototype 0’, see Appendix A and Fig. 4.11, and
‘Prototype 1’, Fig. 4.2, right) of the structure sketched in Fig. 4.1 have been
realized, according to the design scheme shown in Fig. 4.2 (left). Both prototypes
have fully confirmed the theory, although Prototype 0 only in a qualitative way,
so that Prototype 1 has been later manufactured to obtain quantitative results.

The linear elastic spring represented in Fig. 4.1 has been realized by hanging
a highly-stiff horizontal bar (to which the elastic blade is clamped) with two
metal springs. The horizontal bar can only rigidly translate as constrained by
two linear bushings (LHFRD12, Misumi Europe).

Five blades have been employed (lengths: 600 mm, 530 mm, 510 mm, 430
mm, and 360 mm) with the ‘stiff’ springs and four blades (lengths: 600 mm,
530 mm, 510 mm and 430 mm) with the ‘compliant’ one, all realized with C62
carbon-steel strips (25 mm × 2 mm cross section) in the experiments. For these
blades the bending stiffness B has been determined with flexure experiments to
be equal to 2.70 Nm2. The same sliding sleeve employed by Bigoni et al. (2013)
has been used, which is 296 mm in length and has been realized with 27 pairs
of rollers (made up of 10 mm diameter and 15 mm length teflon cylinders, each
containing two roller bearings). The tolerance between the metal strip and the
rollers has been set to be 0.2 mm. Two pairs of carbon steel (EN 10270-1 SH)
springs (the so-called ‘stiff’: D19130, 1.6 mm wire diameter and 12.5 mm mean
coil diameter, k=600 N/m; and the so-called ‘compliant’: D19100 1.25 mm wire
diameter and 8 mm mean coil diameter, k=540 N/m, purchased from D.I.M.)
have been used. The dead load at the end of the blade has been imposed by
filling (at a constant rate of 10 g/s) two containers with water and has been
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4.4. Theory vs. experiments

measured with two miniaturized Leane XFTC301 (R.C. 500N) load cells. The
penetration length leq has been obtained by measuring the displacement of the
lower edge of the blade through a magnetic noncontact displacement transducer
GC-MK5 (from Gemac).

Experimental results (solid lines) are reported in Fig. 4.10 and compared
with theoretical predictions (dashed lines). Results are expressed in terms of
applied load P (measured in N) as a function of the amount of blade internal
to the sliding sleeve, leq (measured in cm). Results reported on the left refer to

Figure 4.10: Comparison of theoretical and experimental results obtained with the
set-up shown in Fig. 4.2.

‘compliant’ spring, k = 540N/m, while results reported on the right to the ‘stiff’
one, k = 600N/m. Four blades of different length have been used in the former
case, five in the latter. For both spring stiffnesses, the blades with shortest length
show a pure translation without buckling, while buckling has been observed for
all the other lengths. A snap-through behaviour was theoretically predicted for
l̄ = 51 cm of the ‘compliant’ spring case and for l̄ = 43 cm of the ‘stiff’ spring
case. In the former case (l̄ = 51 cm), the descending postcritical path is so short
and weakly inclined that it becomes hardly visible in the graph and therefore the
snap-through has not been experimentally observed. On the other hand, in the
latter case (l̄ = 43 cm) the snap-through has been so violent that the experiment
has been immediately interrupted and subsequent data have not been measured.

A very nice agreement between theory and experiments (fully confirming the
presence of the Eshelby-like force) can be noted from Fig. 4.10, with departures
from the straight configuration observed to occur slightly before the theoretical
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4. Instability of a penetrating blade

loads for buckling, which is nothing but the usual effect of the imperfections (see
for instance Bigoni et al. 2012). Experiments clearly show that the blade is
ejected from the sliding sleeve (which corresponds to a decrease in leq) during the
postcritical behaviour of the structure and that the measured values of the force
perfectly agree with those found by Bigoni et al. (2013).

Finally, the theoretical and experimental shapes of the elastica are so tightly
close to each other that result superimposed in the the photos shown in Figs. 4.4,
4.5 and 4.6. Therefore, the calculated elastica curves have been omitted from the
figures to preserve the view of the experiment.

Movies of the experiments can be found in the additional material at
http://ssmg.unitn.it/.

Prototype 0 and further details on the experimental setup

The Prototype 0 (Fig. 4.11) has been realized to provide a qualitative exper-
imental validation of the features displayed by the mechanical system shown in
Fig. 4.1.

spring spring

H
=

c
m

1
0
2

B= cm80

P= N0

l = mm
eq

0

P= N16

l = + mm
eq

22

P= N18

l = + mm
eq

4

Figure 4.11: The unloaded configuration (left) and two deformed configurations (cen-
ter and right) of Prototype 0. At high load (right) the base of the structure has an
upward rigid translation when compared with the configuration at low load (left), a
clear indication of the presence of the Eshelby-like force.

Two blades have been employed (with lengths 250 mm and 200 mm), both
realized with a C62 carbon-steel strip (25 mm × 1 mm cross section). The
sliding sleeve, 31 mm in length, has been realized with three pairs of rollers (15
mm diameter teflon cylinders, each containing two roller bearings). Three pairs
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4.4. Theory vs. experiments

of carbon steel (EN 10270-1 SH) springs (D19060, 0.8 mm wire diameter and
5 mm mean coil diameter; D19130, 1.6 mm wire diameter and 12.5 mm mean
coil diameter; D19100, 1.25 mm wire diameter and 8 mm mean coil diameter all
purchased from D.I.M.) have been used. The two linear bushings (LHFRD12)
used to maintain horizontal the bar to which the blade is clamped have been
purchased from Misumi Europe. Load has been controlled by manually imposing
given weights.

For both Prototypes 0 and 1, all the experimental tests have been performed
in a controlled temperature (20±0.2◦C) and humidity (48±0.5%) room and data
have been acquired with a NI CompactDAQ system, interfaced with Labview
8.5.1 (National Instruments). Furthermore, photos have been taken with a Sony
NEX 5N digital camera, equipped with 3.5-5.6/18-55 lens (optical steady shot
from Sony Corporation) and movies have been recorded during the tests with a
Sony handycam (model HDR-XR550VE).

Additional material can be found at http://ssmg.unitn.it/.
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5

A teaching model for truss
structures

A classroom demonstration model has been designed, machined and suc-
cessfully tested in different learning environments to facilitate under-
standing of the mechanics of truss structures, in which struts are sub-
ject to purely axial load and deformation. Gaining confidence with these
structures is crucial for the development of lattice models, recurring in
many fields of physics and engineering.

The way in which a truss structure can be conceived to have all elements subject
to pure axial force is complex and the way it deforms under loading is definitely
not intuitive, even for undergraduate students of mathematics, physics, and en-
gineering. Truss structures are optimal, ubiquitous and so important from many
perspectives that deserve a special attention. Indeed truss structures are used in
many traditional (e.g. bridges, electricity pylons, cranes, airplanes, cars, motor-
cycles) and innovative (e.g. nanotrusses [60]) technologies and are crucial for the
understanding of several biological structures (e.g. vertebrate skeletons [20] and
protein materials [12]) and conceptual models in physics (e.g. crystal lattices).
Our aim is to develop a teaching model to enhance the student’s ability of vi-
sualizing the deformation of such lattice structures, which is the primary key to
‘catch the concept’1.

Models of elastic truss structures have been previously developed for both
stimulate student’s interest and form an experimental outlook during undergrad-
uate teaching [14, 37, 39, 57]. However, the models developed by Pippard [57]

1Cross and Morgan [16] wrote: ‘The ability of a designer of continuous structures is
measured chiefly by his ability to visualize the deformation of the structure under load.
If he cannot form a rough picture of these deformations when he begins the analysis
he will probably analyse the structure in some very awkward and difficult way; if he
cannot picture these deformations after he has made the analysis, he doesn’t know what
he is talking about. The more or less gentle reader may find the constant repetition
of this theme monotonous, but it is the deliberate conclusion of the authors that the
most important aspect of the subject is the simple picture of structural deformation.’
We completely agree with this statement, which becomes even more evident nowadays
that numerical simulations often obscure physical intuition.
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5.1. The design and performance of the truss model

are simple three-element planar systems, while Hilson [39] provides only qualita-
tive experiments, and Godden [37] focusses on buckling of compressed elements.
Moreover, in the models proposed by Charlton [14] the struts are ‘Z-shaped’
members deforming under flexure (see his figure 17), not directly evidencing elon-
gation or shortening, so that the mechanical behaviour results complex enough
that cannot be followed by an untrained audience. Therefore, we have developed
spring-strut elements, capable of sustaining large deformation (Fig. 5.1), and
connected these elements in various structural forms (Warren truss –an ensemble
of bars disposed in an alternately inverted equilateral triangle geometry– is only
reported here for brevity) through bolt junctions (Fig. 5.2).

The first prototype (not reported here for brevity) that we have developed was
planar and, though light, simple and very accurate in reproducing deformation,
was hiding the problem of the necessity of braces to avoid out-of-plane instability.
Therefore, we have developed the fully spatial model shown in Fig. 5.2, which
can effectively demonstrate the importance of cross bracing, see also the elec-
tronic supporting material at http://ssmg.unitn.it/video/truss.mp4. This model
is addressed to the simplest geometry, namely a Warren structure often employed
in bridges (so that it can be used to explain the mechanics of a truss structure),
though it is fully representative of the behaviour of elastic lattice models.

The two teaching models have been regularly employed during ten years of
undergraduate classes of strength of materials (at the University of Trento) and
have been used for: (i.) two university orientation courses organized by the
‘Scuola Normale Superiore’ of Pisa, (ii.) public demonstrations (for instance, at
the so-called ‘researchers’ night’ 2010 and 2011) and even (iii.) presentations given
at elementary school. These models have been proved to exemplify the way a truss
structure is designed and deforms and have been used during undergraduate class
to experimentally assess the validity of structural modelling via linear elasticity.

5.1 The design and performance of the truss model

We have started designing and realizing a simple pin-jointed2 Warren planar
truss structure (namely, one wall of the structure considered in the following
–Fig. 5.2– and not reported here for brevity), in which the straight members
have been realized with spring-strut elements. The model has been used: (i.)
qualitatively to show the ‘global’ behaviour of the structure and to explain the
way in which all elements are primarily subject to axial tension or compression
and (ii.) quantitatively (during undergraduate class), by calculating the ratio
between two or more rod’s elongation (or node displacements) and measuring

2The term ‘pin-jointed’ means that the connection between elements leaves the rel-
ative rotation unconstrained.
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5. A teaching model for truss structures

this ratio on the model.
Classroom presentations of the model have revealed that, though excellent for

the above-listed purposes, it was somehow hidden to the student the out-of-plane
instability of the structure and the consequent need of a cross bracing. Therefore,
we have designed the spring snubber shown in Fig. 5.1 (where a movable pointer
allows the measure of the elongation/shortening of the element) and combined in
a sort of ‘Warren truss bridge’, externally constrained with a hinge and a roller,
as shown in Fig. 5.2. The snubbers have been machined from aluminum 2117

Figure 5.1: The spring snubber element used for the truss structure shown in Fig.
5.2. Note the movable pointer to measure elongation/shortening.

tubes and the springs have been designed using the well-known formula for helical
springs of round wire [see eqn (5.3) of [71]] and produced with (2 mm diameter)
music wire ASTM A228. The external hinge and roller have been realized with
eight roller bearings (SKF-618/5) and the whole structure has been mounted on
an AISI 304 stainless steel frame.

During an undergraduate class, the developed models can be used to provide
confirmatory experiments. In particular, they can be loaded with dead loads
and the elongation or shortening of the bars can be measured on the structure
by visual inspection employing the pointers. Two load systems (one symmet-
ric and the other unsymmetric) are shown in Figs. 5.3 and 5.4. In addition
to the elongation of the bars, displacement of the nodes can be measured with a
mechanical comparator. The measurements of the bar elongations can be normal-
ized through division by one reference elongation and therefore compared with
the predicted ratios between the forces inside the bars, which can be calculated
on the blackboard and do not require any stiffness measurement. The model al-
lows a nice comparison between theoretical predictions and experimental values,
which is crucial to stimulate interest of the students and facilitate understanding
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5.1. The design and performance of the truss model

Figure 5.2: View of the (unloaded) spatial Warren truss model, with details (an
internal node on the left, two external nodes on the right: a roller and a hinge).

of the capabilities and limits of the mechanical modelling, as highlighted, among
others, by Pippard [57].

Measurements of vertical displacements at the central node of the upper
chord, labelled 4, and the two central nodes of the lower chord, labelled 3 (left)
and 5 (right) for different loadings are reported in Tabs. 5.1 (symmetric loading
as in Fig. 5.3) and 5.1 (unsymmetric loading as in Fig. 5.4), as taken by five
different students (labelled ‘St’ in the tables).

Ratios of mean value of the measured (by five students) vertical displace-
ments (presented with the standard deviation as error bar) are compared to the
corresponding theoretical values in Fig. 5.5 for symmetric (upper part) and un-
symmetric (lower part) loadings. Mean values of the ratios of bars’ elongation
are reported in Fig. 5.6 for unsymmetric loading.

The experimental values reported in Tabs. 5.1–5.1 and in Figs. 5.5–5.6 show
a good agreement with the predictions from linear elastic theory and this agree-
ment becomes tighter at higher loads, where friction at the nodal hinges plays
a minor role. Therefore, the developed teaching model does not only provide a
qualitative explanation of the mechanics of truss structures, but also a quantita-
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5. A teaching model for truss structures

Figure 5.3: Frontal (lower part, on the left), lateral (lower part, on the right) and top
(upper part, on the left) view for the symmetric load combination. A comparison be-
tween theoretical predictions and experimental data is also included in terms of applied
load F versus mean value of measured nodal vertical displacements v (upper part on
the right).

tive experimental in-class proof of the validity of the theoretical predictions.
Finally, the truss model can also be effectively employed to explain the im-

portance of cross bracing. Indeed these braces can be easily removed, so that
loading of the unbraced model reveals an unstable out-of-plane movement, as
illustrated in Fig. 5.7.
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5.1. The design and performance of the truss model

Figure 5.4: As for Fig. 5.3, except that the load is unsymmetric.
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Table 5.1: Measures on the teaching model loaded symmetrically (Fig. 5.3) taken by

different students
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0

8
.0
0

9
.3
5

8
.6
0

8
.2
1

0
.7
2

8
.0
1

Table 5.2: Measures on the teaching model loaded unsymmetrically (Fig. 5.4) taken

by different students
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5. A teaching model for truss structures

Figure 5.5: Ratios of mean values of the measured vertical displacement (dots) to-
gether with relative standard deviation (error bar) and theoretical value (dashed line)
for different values of loading for symmetric (upper part) and unsymmetric (lower part)
conditions.
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5.1. The design and performance of the truss model

Figure 5.6: Ratios of mean values of elongation bars (dots) together with relative
standard deviation (error bar) and theoretical value (dashed line) for different values of
loading for unsymmetric condition.

Figure 5.7: The effect of cross bracing: top view of the structure with (upper part)
and without (lower part) bracing. A huge out-of-plane movement occurs (and is visible)
when bracing is removed.
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6

Stress concentration near stiff
inclusions: validation of rigid
inclusion model and boundary

layers by means of photoelasticity

Photoelasticity is employed to investigate the stress state near stiff rect-
angular and rhombohedral inclusions embedded in a ‘soft’ elastic plate.
Results show that the singular stress field predicted by the linear elastic
solution for the rigid inclusion model can be generated in reality, with
great accuracy, within a material. In particular, experiments: (i.) agree
with the fact that the singularity is lower for obtuse than for acute inclu-
sion angles; (ii.) show that the singularity is stronger in Mode II than
in Mode I (differently from a notch); (iii.) validate the model of rigid
quadrilateral inclusion; (iv.) for thin inclusions, show the presence of
boundary layers deeply influencing the stress field, so that the limit case
of rigid line inclusion is obtained in strong dependence on the inclusion’s
shape. The introduced experimental methodology opens the possibility of
enhancing the design of thin reinforcement and of analyzing complex sit-
uations involving interaction between inclusions and defects.

6.1 Introduction

Experimental stress analysis near a crack or a void has been the subject of
an intense research effort (see for instance Lim and Ravi-Chandar, 2007; 2009;
Schubnel et al. 2011; Templeton et al. 2009), but the stress field near a rigid
inclusion embedded in an elastic matrix, a fundamental problem in the design of
composites, has surprisingly been left almost unexplored (Theocaris, 1975; Reedy
and Guess, 2001) and has never been investigated via photoelasticity1.

1Gdoutus (1982) reports plots of the fields that would result from photoelastic in-
vestigation of cusp inclusions, but does not report any experiment. Noselli et al. (2011)
(see also Bigoni, 2012; Dal Corso et al. 2008) have only treated the case of a thin
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6.2. Theoretical linear elastic fields near rigid polygonal inclusions

Though the analytical determination of elastic fields around inclusions is a
problem in principle solvable with existing methodologies (Movchan and Movchan,
1995; Muskhelishvili, 1953; Savin, 1961), detailed treatments are not available and
the existing solutions (Chang and Conway, 1968; Evan-Iwanowski, 1956) lack me-
chanical interpretation, in the sense that it is not known if these predict stress
fields observable in reality2.

Moreover, from experimental point of view, questions arise whether the bond-
ing between inclusion and matrix can be realized and can resist loading without
detachment (which would introduce a crack) and if self-stresses can be reduced
to negligible values. In this chapter we (i.) re-derive asymptotic and full-field
solutions for rectangular and rhombohedral rigid inclusions (Section 6.2) and (ii.)
compare these with photoelastic experiments (Section 6.3).

Photoelastic fringes obtained with a white circular polariscope are shown
in Fig. 6.1 and indicate that the linear elastic solutions provide an excellent
description of the elastic fields generated by inclusions up to a distance so close
to the edges of the inclusions that fringes result unreadable (even with the aid
of an optical microscope). By comparison of the photos shown in Fig. 6.1 with
Fig. 1 of Noselli et al. (2010), it can be noted that the stress fields correctly
tend to those relative to a rigid line inclusion (stiffener) when the aspect ratio of
the inclusions grows, and that the stress fields very close to a thin inhomogeneity
are substantially affected by boundary layers depending on the (rectangular or
rhombohedral) shape.

6.2 Theoretical linear elastic fields near rigid polygonal inclu-
sions

The stress/strain fields in a linear isotropic elastic matrix containing a rigid
polygonal inclusion are obtained analytically through both an asymptotic ap-
proach and a full-field determination. Considering plane stress or strain condi-
tions, the displacement components in the x− y plane are

ux = ux(x, y), uy = uy(x, y), (6.1)

corresponding to the following in-plane deformations εαβ (α, β=x, y)

εxx = ux,x, εyy = uy,y, εxy =
ux,y + uy,x

2
, (6.2)

line-inclusion.
2The experimental methodology introduced here for rigid inclusions can be of interest

for the experimental investigation of the interaction between inclusions and defects, such
as for instance cracks, for which analytical solutions are already available (for cracks,
see Piccolroaz et al. 2012 a; b; Valentini et al. 1999).
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6. Stress concentration near stiff inclusions: validation of rigid inclusion
model and boundary layers by means of photoelasticity

31.5x

Figure 6.1: Photoelastic fringes revealing the stress field near stiff (made up of poly-
carbonate, Young modulus 2350 MPa) rectangular (large edge lx =20 mm, edges aspect
ratios 1, 1/2, 1/4) and rhombohedral (large axis lx =30 mm, axis aspect ratios 2/15,
4/15, 9/15) inclusions embedded in an elastic matrix (a two-component epoxy resin,
Young modulus 22 MPa, approximatively 100 times less stiff than the inclusions) and
loaded with uniaxial tensile stress σ∞

xx =0.28 MPa, compared to the elastic solution for
rigid inclusions (in plane stress, with Poisson’s ratio equal to 0.49).

which, for linear elastic isotropic behaviour, are related to the in the in-plane
stress components σαβ (α, β=x, y) via

εxx =
(κ+ 1)σxx + (κ− 3)σyy

8μ
, εyy =

(κ+ 1)σyy + (κ− 3)σxx
8μ

, εxy =
σxy
2μ

,

(6.3)
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6.2. Theoretical linear elastic fields near rigid polygonal inclusions

where μ represents the shear modulus and κ ≥ 1 is equal to 3−4ν for plane strain
or (3 − ν)/(1 + ν) for plane stress, where ν ∈ (−1, 1/2) is the Poisson’s ratio.
Finally, in the absence of body forces, the in-plane stresses satisfy the equilibrium
equation (where repeated indices are summed)

σαβ,β = 0. (6.4)

6.2.1 Asymptotic fields near the corner of a rigid wedge

Near the corner of a rigid wedge the mechanical fields may be approximated
by their asymptotic expansions. With reference to the polar coordinates r, ϑ
centered at the wedge corner and such that the elastic matrix occupies the region
ϑ ∈ [−α, α] (while the semi-infinite rigid wedge lies in the remaining part of plane,
Fig. 6.2), the Airy function F (r, ϑ), automatically satisfying the equilibrium
equation (6.4), is defined as

σrr =
1

r

(
F,r +

F,ϑϑ
r

)
, σϑϑ = F,rr, σrϑ = −

(
F,ϑ
r

)
,r

. (6.5)

The following power-law form of the Airy function satisfies the kinematic com-
patibility conditions [Barber, 1993, his eqn (11.35)]

F (r, ϑ) = rγ+2 [A1 cos(γ + 2)ϑ+A2 sin(γ + 2)ϑ+A3 cos γϑ+A4 sin γϑ] , (6.6)

and provides the in-plane stress components as

σrr = −(γ + 1)rγ [A1(γ + 2) cos(γ + 2)ϑ+A2(γ + 2) sin(γ + 2)ϑ

+A3(γ − 2) cos γϑ+A4(γ − 2) sin γϑ],

σϑϑ = (γ + 2)(γ + 1)rγ [A1 cos(γ + 2)ϑ+A2 sin(γ + 2)ϑ

+A3 cos γϑ+A4 sin γϑ],

σrϑ = (γ + 1)rγ [A1(γ + 2) sin(γ + 2)ϑ−A2(γ + 2) cos(γ + 2)ϑ

+A3γ sin γϑ−A4γ cos γϑ],

(6.7)

where A1, A2 and A3, A4 are unknown constants defining the symmetric (Mode I)
and antisymmetric (Mode II) contributions, respectively, while γ represents the
unknown power of r for the stress and strain asymptotic fields, {σαβ , εαβ} ∼ rγ ,
with γ ≥ −1/2.
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6. Stress concentration near stiff inclusions: validation of rigid inclusion
model and boundary layers by means of photoelasticity

Imposing the boundary displacement conditions ur(r,±α) = uϑ(r,±α) =
0 leads to two decoupled homogeneous systems, one for each Mode symmetry
condition, so that non-trivial asymptotic fields are obtained when determinant of
coefficient matrix is null, namely (Seweryn and Molski, 1996)

(γ + 1) sin(2α)− κ sin(2α(γ + 1)) = 0, Mode I;

(γ + 1) sin(2α) + κ sin(2α(γ + 1)) = 0, Mode II.
(6.8)

Note that, in the limit κ = 1 (incompressible material under plane strain condi-
tions), equations (6.8) are the same as those obtained for a notch, except that the
loading Modes are switched. Furthermore, according to the so-called ‘Dundurs
correspondence’ (Dundurs, 1989), when κ = −1 eqns (6.8) coincide with those
corresponding to a notch.

The smallest negative value of the power γ ≥ −1/2 for each loading Mode,
satisfying eqn (6.8)1 and (6.8)2, represents the leading order term of the asymp-
totic expansion. These two values (one for Mode I and another for Mode II) are
reported in Fig. 6.2 (left), for different values of κ, as functions of the semi-angle
α and compared with the respective values for a void wedge, Fig. 6.2 (right).
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Figure 6.2: The higher singularity power γ for a rigid wedge (left, angle α is the
semi-angle in the matrix enclosing the wedge) and for a notch (right, angle α is the
semi-angle in the matrix enclosing the notch) under Mode I and Mode II loading and
different values of κ.

For the rigid wedge, similarly to the notch problem:

• the singularity appears only when α > π/2 and increases with the increase
of α;

• a square root singularity (σαβ ∼ 1/
√
r) appears for both mode I and II

when α approaches π (corresponding to the rigid line inclusion model, see
Noselli et al. 2010);

109



6.2. Theoretical linear elastic fields near rigid polygonal inclusions

while, differently from the notch problem:

• the singularity depends on the Poisson’s ratio ν through the parameter κ;

• the singularity under Mode II condition is stronger than that under Mode
I; in particular, a weak singularity is developed under Mode I when, for
plane strain deformation, a quasi-incompressible material (ν close to 1/2)
contains a rigid wedge with α ∈ [ 12 ,

3
4 ]π.

Since the intensity of singularity near a corner is strongly affected by the value
of the angle α, it follows that the stress field close to a rectangular inclusion is
substantially different to that close to a rhombohedral one. Therefore, strongly
different boundary layers arise when a rectangular or a rhombohedral inclusion
approaches the limit of line inclusion.

6.2.2 Full-field solution for a matrix containing a polygonal
rigid inclusion

Solutions in 2D isotropic elasticity can be obtained using the method of com-
plex potentials (Muskhelishvili, 1953), where the generic point (x, y) is referred
to the complex variable z = x + i y (where i is the imaginary unit) and the me-
chanical fields are given in terms of complex potentials ϕ(z) and ψ(z) which can
be computed from the boundary conditions.

In the case of non-circular inclusions, it is instrumental to introduce the
complex variable ζ, related to the physical plane through z = ω(ζ) with the
conformal mapping function ω (such that the inclusion boundary becomes a unit

circle in the ζ-plane, ζ = eiθ), so that the stress and displacement components
are given as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx + σyy = 4Re

[
ϕ′(ζ)
ω′(ζ)

]
,

σyy − σxx + 2 iσxy = 2

[
ψ′(ζ)
ω′(ζ)

+
ω(ζ)

ω′(ζ)3
[ϕ′′(ζ)ω′(ζ)− ϕ′(ζ)ω′′(ζ)]

]
,

2μ(ux + iuy) = κϕ(ζ)− ω(ζ)

ω′(ζ)
ϕ′(ζ)− ψ(ζ).

(6.9)

The complex potentials are the sum of the unperturbed (homogeneous) solution
and the perturbed (introduced by the inclusion) solution, so that, considering
boundary conditions at infinity of constant stress at infinity with the only non-
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6. Stress concentration near stiff inclusions: validation of rigid inclusion
model and boundary layers by means of photoelasticity

null component σ∞
xx, we may write

ϕ(ζ) =
σ∞
xx

4
ω(ζ) + ϕ(p)(ζ), ψ(ζ) = −σ∞

xx

2
ω(ζ) + ψ(p)(ζ), (6.10)

where the perturbed potentials ϕ(p)(ζ) and ψ(p)(ζ) can be obtained by imposing
the conditions on the inclusion boundary, which are defined on a unit circle and
for a rigid inclusion3 are

κϕ(p)(ζ)− ω(ζ)

ω′(ζ)
ϕ(p)′(ζ)− ψ(p)(ζ) =

σ∞
xx

2

(
1− κ

2
ω(ζ)− ω(ζ)

)
,

for ζ = eiθ, θ ∈ [0, 2π].

(6.11)

In the case of n-polygonal shape inclusions the conformal mapping which maps
the interior of the unit disk onto the region exterior to the inclusion is given by
the Schwarz-Christoffel integral

ω(ζ) = Reiα0

∫ ζ

1

n∏
j=1

(
1− s

kj

)1−αj ds

s2
+ k0, (6.12)

where R, k0, and α0 are constants representing scaling, translation, and rotation
of the inclusion, while kj and αj (j=1,..., n) are the pre-images of the j-th vertex
in the ζ plane and the fraction of π of the j-th interior angle, respectively. In
the following the translation and rotation parameters for the inclusion are taken
null, k0 = α0 = 0.

Assuming that the perturbed potentials are holomorphic inside the unit circle
in the ζ-plane, ϕ(p)(ζ) can be expressed through Laurent series

ϕ(p)(ζ) = Rσ∞
xx

∞∑
j=1

ajζ
j , (6.13)

where aj (j=1,2,3,...) are unknown complex constants. Furthermore, since the
integral expression in eqn (6.12) cannot be computed as closed form for generic
polygon, it is expedient to represent the conformal mapping as

ω(ζ) = R

⎛⎝1

ζ
+

∞∑
j=1

djζ
j

⎞⎠ , (6.14)

where dj (j=1,2,3,...) are complex constants.

3Eqn (6.11) holds when rigid-body displacements are excluded.
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6.2. Theoretical linear elastic fields near rigid polygonal inclusions

In order to obtain an approximation for the solution, the series expansions
for ω(ζ) and ϕ(p)(ζ) are truncated at the M -th term. Through Cauchy integral
theorem, integration over the inclusion boundary of eqn (6.11) yields a linear
system for the M unknown complex constants aj , functions of the M constants
dj , obtained through series expansion of eqn. (6.12). Once the expression for
ϕ(p)(ζ) is obtained, the integral over the inclusion boundary of the conjugate
version of the boundary condition (6.11) is used to approximate ψ(p)(ζ), resulting
as

ψ(p)(ζ) =

M+2∑
j=1

bjζ
j−1

M+2∑
j=1

cjζ
j−1

Rσ∞
xx ζ. (6.15)

Rectangle In this case the angle fractions are αj = 1/2 (j=1,..., 4) while the
pre-images are

k1 = eηπi, k2 = e−ηπi, k3 = e(1+η)πi, k4 = e(1−η)πi, (6.16)

where η (likewise R) is a parameter function of the rectangle aspect ratio ly/lx,
with the inclusion edges lx and ly. Parameters η and R are given in Tab. 6.2.2
for the aspect ratios considered here.

ly/lx 1 1/2 1/4

η 0.2500 0.2003 0.1548
R/lx 0.5902 0.4374 0.3539

Table 6.1: Parameters η and R for the considered aspect ratios ly/lx of rectangular
rigid inclusions.

The conformal mapping function and perturbed potentials obtained in the
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6. Stress concentration near stiff inclusions: validation of rigid inclusion
model and boundary layers by means of photoelasticity

case of rectangle with ly/lx = 1/4 are reported for M=15:

ω(ζ) =
(1
ζ
+ 0.5633ζ − 0.1138ζ3 − 0.0385ζ5 − 0.0071ζ7 + 0.0042ζ9+

+0.0052ζ11 + 0.0022ζ13 − 0.0006ζ15
)
R,

ϕ(p)(ζ) =
(− 0.2420− 0.0264ζ2 − 0.0071ζ4 + 0.0003ζ6 + 0.0020ζ8+

+0.0012ζ10 + 0.0002ζ12 − 0.0001ζ14
)
Rσ∞

xx ζ,

ψ(p)(ζ) =
(− 2.4454− 54.9115ζ2 + 6.4081ζ4 + 5.5545ζ6 + 3.4073ζ8+

+0.6051ζ10 − 1.3007ζ12 − 1.0545ζ14 + 0.2727ζ16
)
Rσ∞

xx ζ/
(
109.8986−

−61.9012ζ2 + 37.5162ζ4 + 21.1312ζ6 + 5.4989ζ8 − 4.1163ζ10−
−6.2272ζ12 − 3.1597ζ14 + ζ16

)
.

(6.17)

Rhombus In this case the pre-images are

k1 = 1, k2 = i, k3 = −1, k4 = −i, (6.18)

while the angle fractions are

α1 = α3 =
2

π
arctan (ly/lx), α2 = α4 = 1− α1. (6.19)

The scaling parameter R is reported in Tab. 6.2.2 for the rhombus aspect ratios
ly/lx considered here, where lx and ly are the inclusion axis.

ly/lx 9/15 4/15 2/15

R/lx 0.3389 0.2841 0.2659

Table 6.2: Parameter R for the considered aspect ratios ly/lx of rhombohedral rigid
inclusions.

The conformal mapping function and perturbed potentials obtained in the
case of rhombus with ly/lx = 2/15 are reported for M=15:
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6.3. Photoelastic elastic fields near rigid polygonal inclusions

ω(ζ) =
(1
ζ
+ 0.8312ζ + 0.0515ζ3 − 0.0086ζ5 + 0.0068ζ7 − 0.0028ζ9+

+0.0025ζ11 − 0.0013ζ13 + 0.0013ζ15
)
R,

ϕ(p)(ζ) =
(− 0.1628 + 0.0071ζ2 + 0.0001ζ4 + 0.0009ζ6 + 0.0001ζ8+

+0.0003ζ10 + 0.0001ζ12 + 0.0002ζ14
)
Rσ∞

xx ζ,

ψ(p)(ζ) =
(
8.1122 + 28.1115ζ2 + 1.8150ζ4 − 0.6928ζ6 + 0.4105ζ8−
−0.4451ζ10 + 0.1665ζ12 − 0.3417ζ14 + 0.2727ζ16

)
Rσ∞

xx ζ/
(− 53.0727+

+44.1156ζ2 + 8.2012ζ4 − 2.2724ζ6 + 2.5225ζ8 − 1.3283ζ10+

+1.4453ζ12 − 0.9307ζ14 + ζ16
)
.

(6.20)

6.3 Photoelastic elastic fields near rigid polygonal inclusions

Photoelastic experiments with linear and circular polariscope (with quarter-
wave retarders for 560nm) at white and monochromatic light4 have been per-
formed on twelve two-component resin (Translux D180 from Axon; mixing ratio
by weight: hardener 95, resin 100, accelerator 1.5; the elastic modulus of the re-
sulting matrix has been measured by us to be 22 MPa, while the Poisson’s ratio
has been indirectly estimated equal to 0.49) samples containing stiff inclusions,
obtained with a solid polycarbonate 3 mm thick sheet (clear 2099 Makrolon UV)
from Bayer with elastic modulus equal to 2350 MPa, approximatively 100 times
stiffer than the matrix.

Samples have been prepared by pouring the resin (after deaeration, obtained
through a 30 minutes exposition at a pressure of -1 bar) into a teflon mold (340
mm × 120 mm × 10 mm) to obtain 3±0.05 mm thick samples. The resin has
been kept for 36 hours at constant temperature of 29 ◦C and humidity of 48%.
After mold extraction, samples have been cut to be 320mm × 110mm × 3mm,
containing rectangular inclusions with wedges 20 mm × {20; 10; 5}mm and rhom-
bohedral inclusions with axis 30 mm × {18; 8; 4} mm.

4The polariscope (dark field arrangement and equipped with a white and sodium
vapor lightbox at λ = 589.3nm, purchased from Tiedemann & Betz) has been designed
by us and manufactured at the University of Trento, see http://ssmg.unitn.it/ for a
detailed description of the apparatus.
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Photos have been taken with a Nikon D200 digital camera, equipped with
a AF-S micro Nikkor (105 mm, 1:2.8G ED) lens and with a AF-S micro Nikkor

(70Ű180 mm, 1:4.5Ű5.6 D) lens for details. Monitoring with a thermocouple
connected to a Xplorer GLX Pasco c©, temperature near the samples during ex-
periments has been found to lie around 22.5◦ C, without sensible oscillations.
Near-tip fringes have been captured with a Nikon SMZ800 stereozoom microscope
equipped with Nikon Plan Apo 0.5x objective and a Nikon DS-Fi1 high-definition
color camera head.

The uniaxial stress experiments have been performed at controlled vertical
load applied in discrete steps, increasing from 0 to a maximum load of 90 N,
except for thin rectangular and rhombohedral inclusions, where the maximum
load has been 70 N and 78 N, respectively (loads have been reduced for thin
inclusions to prevent failure at the vertex tips). In all cases an additional load
of 3.4N has been applied, corresponding to the grasp weight, so that maximum
nominal far-field stress of 0.28 MPa has been applied (0.22 MPa and 0.25 MPa
for the thin inclusions).

Data have been acquired after 5 minutes from the load application time in
order to damp down the largest amount of viscous deformation, noticed as a
settlement of the fringes, which follows displacement stabilization. Releasing
the applied load after the maximum amount, all the samples at rest showed no
perceivably residual stresses in the whole specimen.

Comparison between analytical solutions and experiments is possible through
matching of the isochromatic fringe order N , which (in linear photoelasticity)5 is
given by (Frocht, 1965)

N =
t

fσ
Δσ, (6.21)

where t is the sample thickness, Δσ = σI − σII is the in-plane principal stress
difference, and fσ is the material fringe constant, measured by us to be equal
to 0.203 N/mm (using the so-called ‘Tardy compensation procedure’, see Dally
and Riley, 1965). These comparisons are reported in Figs. 6.3 and 6.4, where
the full-field solution obtained in Section 6.2.2 has been used under plane stress
assumption and ν = 0.49. This assumption is consistent with the reduced thick-
ness of the employed samples, much thinner than the thickness of the samples
employed by Noselli et al. (2010), who have compared photoelastic experiments
considering plane strain.

The results show an excellent agreement between theoretical predictions and
photoelastic measures, with some discrepancies near the contact with the in-

5Differently from Noselli et al. (2010), a constant value for the fringe material
parameter fσ has been considered here since non constant values were found not to
introduce significant improvements.
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6.3. Photoelastic elastic fields near rigid polygonal inclusions

clusions where, the plane stress assumption becomes questionable due to the
out-of-plane constraint imposed by the contact with the rigid phase. Moreover,
some microscopical view (at 31.5×) near the vertices of inclusion, shown in the
insets of Figs. 6.3 and 6.4, reveals that the stress fields are in good agreement
even close to the corners, where a strong stress magnification is evidenced near
acute corners, while no singularity is observed near obtuse corners.

The near-corner stress magnifications and comparisons with the full field
solution (evaluated with M =15) are provided in Fig. 6.5, where the in-plane
stress difference (divided by the far field stress) is plotted along the major axis
of the thin and thick rhombohedral inclusions (Fig. 6.5, upper and central parts,
respectively) and along a line tangent to the corner (and inclined at an angle
π/6) of the rectangular thin inclusion. In particular, magnification factors of 5.3
(upper part, α = 23π/24), 3.8 (central part, α = 5π/6), and 2.7 (lower part,
α = 3π/4) have been measured.

It is interesting to note that according to the theoretical prediction (Section
6.2.1, Fig. 6.2), the singularity is stronger for acute than for obtuse inclusion’s
angles and that the stress fields tend to those corresponding to a zero-thickness
rigid inclusion (a ‘stiffener’, see Noselli et al. 2010), when the rectangular (Fig.
6.3) and the rhombohedral (Fig. 6.4) inclusions become narrow (from the upper
part to the lower part of the figures).

According to results shown in Fig. 6.2, we observe from Figs. 6.3, 6.4, and
6.5 the following.

• For Mode I loading the stress concentration becomes weak for angles α
within [π/2, 3π/4], see Fig. 6.4 (compare the fields near the two different
vertices).

• For Mode II loading the stress concentration is much stronger than for
Mode I. Stress concentrations generated for mixed-mode at an angle α =
3π/4 are visible in Fig. 6.3 near the corners of rectangular inclusions.
These concentrations are visibly stronger than those near the wider corner
in Fig. 6.4 (upper part), which is subject to Mode I;

• The stress fields evidence boundary layers close to the inhomogeneity, see
lower part of Figs. 6.3 and 6.4: These boundary layers are crucial in
defining detachment mechanisms and failure modes. Therefore, the shape
of a thin inclusion has an evident impact in limiting the working stress of a
mechanical piece in which it is embedded. This conclusion has implications
in the design of material with thin and stiff reinforcements, which can be
enhanced through an optimization of the inclusion shape.
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6.3. Photoelastic elastic fields near rigid polygonal inclusions
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6. Stress concentration near stiff inclusions: validation of rigid inclusion
model and boundary layers by means of photoelasticity
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7

Conclusion

New phenomena opening important perspectives in the design of structures
have been shown and experimental evidence of ‘classical’ features in elasticity has
been provided. Our results can be summarized as follows:

• We have theoretically proven and fully experimentally confirmed that elas-
tic structures can be designed and practically realized in which bifurcation
can occur with tensile dead loading (Chapter 1). In these structures no
parts subject to compression are present. This finding is directly linked to
the presence of a junction allowing only for relative sliding between two
parts of the mechanical system. These results open completely new and
unexpected perspectives, related for instance to the control of the propaga-
tion of mechanical waves and to the understanding of certain failure modes
within solid materials.

• Effects related to the curvature and the shape of the constraint profile on
which an end of a structure has to slide have been shown to be impor-
tant on bifurcation and instability (Chapter 2). In particular, we have
found possibility of buckling both in tension and compression and multi-
ple buckling loads, as for instance in the case of a one-degree-of-freedom
structure evidencing two critical loads. Moreover, we have shown that the
introduction on a curved constraint profile of an elastic, torsional spring
strongly affects the post-critical behaviour of the system and may lead to
multiple equilibrium configurations, corresponding to an external force of
zero magnitude. Our experiments have confirmed that these effects can be
designed to occur in real structural prototypes, so that new possibilities
are opened in exploiting simple deformation mechanisms to obtain flexible
mechanical systems.

• Eshelbian forces are related to the change in configuration of a mechanical
system. We have shown that simple elastic structures can be designed to
give evidence to these forces, that can both be calculated and experimen-
tally detected (Chapter 3).

• A number of unexpected features can be observed in the bifurcation and in-
stability behaviour of elastic systems containing elements capable of devel-
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oping Eshelby-like forces, as for instance a sliding sleeve. The Eshelby-like
force explains surprising equilibrium configurations and concurs in deter-
mining restabilization of the straight configuration (Chapter 4).

• A simple physical model has been shown to effectively facilitate the un-
derstanding of the linear elastic behaviour of truss structures (Chapter
5). These are elementary structural forms crucial to the understanding of
several conceptual models employed in micro- and nano-technologies, for
example, crystal lattices and ultralight nanomaterials, and also in biology,
for instance, protein materials.

• Photoelastic experimental investigations have been presented showing that
the stress field near a stiff inclusion embedded in a soft matrix material can
be effectively calculated by employing the model of rigid inclusion embed-
ded in a linear elastic isotropic solid (Chapter 6). The results provide also
the experimental evidence of boundary layers, depending on the inhomo-
geneity shape, which affect the stress fields and therefore define detachment
mechanisms and failure modes. Furthermore, the presented methodology
paves the way to the experimental stress analysis of more complex sit-
uations, for instance involving interaction between cracks or pores and
inclusions.
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