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Abstract
The one-dimensional (1D) modeling of blood flow in complex networks of
vessels and cardiovascular models can result in computationally expensive sim-
ulations. The complexity of such networks has significantly increased in the last
years, in terms of both enhanced anatomical detail and modeling of physiologi-
cal mechanisms and mechanical characteristics. To address such issue, the main
goal of this work is to present a novel methodology to construct hybrid networks
of coupled 1D and 0D vessels and to perform computationally efficient and accu-
rate blood flow simulations in such networks. Departing from both the 1D and
lumped-parameter (0D) nonlinear models for blood flow, we propose high-order
numerical coupling strategies to solve the 1D, 0D, and hybrid coupling of ves-
sels at junctions. To effectively construct hybrid networks, we explore different
a-priori model selection criteria focusing in obtaining the best possible trade-off
between computational cost of the simulations and accuracy of the computed
solutions for the hybrid network with respect to the 1D network. The achieve-
ment of the expected order of accuracy is verified in several test cases. The novel
methodology is applied to two different arterial networks, the 37-artery network
and the reduced ADAN56 model, where, in order to identify the best perform-
ing a-priori model selection criteria, the quantitative assessment of CPU times
and errors and the qualitative comparison between results are carried out and
discussed.

K E Y W O R D S

a-priori model selection criteria, computational efficiency, high-order numerical
schemes/couplings, hybrid 1D-0D networks, reduced-order blood flow models

1 INTRODUCTION

In the last decades, modeling and simulation of blood flow have become of primary importance in different contexts,
such as biomedical engineering, and with a vast range of applications, from basic research to clinic, either to study
and understand the normal physiological function of the cardiovascular system or to investigate different pathological
conditions. Cardiovascular modeling has been pursued using different levels of model complexity and sophistication,
from lumped-parameter/zero-dimensional (0D) to distributed (1D and 3D) models. In this framework, one-dimensional
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2 GHITTI et al.

(1D) blood flow models represent a well-established and powerful approach to study hemodynamics, accurately describe
wave propagation phenomena and predict pressure and flow waveforms in large vessels, at a reasonable computational
cost. When compared to measurements from in vivo models1,2 and to patient-specific data,3,4 the computational results
obtained from 1D blood flow models prove the ability of the 1D formulation to capture the main features of pressure
pulse conformation and flow rate distribution in different vascular districts, offering a good balance between computa-
tional cost and accuracy. Hence, 1D blood flow models have been and are still extensively used to simulate and study
wave propagation phenomena in arterial networks and, just in the last years, also in the venous circulation. Key contri-
butions in this field include the works of Aviolo,5 Stergiopulos et al.,6 Olufsen et al.,7 Formaggia et al.,8 Sherwin et al.,9
Mynard and Nithiarasu,10 Reymond et al.,11,12 and, more recently, of Müller and Toro,4,13 Blanco et al.3,14 and Mynard
and Smolich.15 The complexity of vessel networks used in 1D blood flow models for the cardiovascular system has sig-
nificantly increased over time. In the last years, more complex networks and models have been constructed in terms of
enhanced anatomical detail, first of all by considering a larger number of arteries. For example, the anatomically detailed
arterial network (ADAN) model developed by Blanco et al.3,14 is made of 2142 arteries, including 1598 arterial segments
with a well-acknowledged name and 544 perforator arteries. In Reference 16, the authors assessed the impact of vascular
anatomy definition degree in the predictions of blood flow models of the arterial network, by systematically comparing
results obtained with the above mentioned ADAN model and those obtained with an anatomically simplified network
containing the main 86 vessels. Furthermore, in Reference 17, the 1D ADAN network was coupled to cerebral arteriolar
networks automatically generated using the constrained constructive optimization (CCO) technique. On the other hand,
the incorporation of a 1D network for the venous circulation can contribute to the definition of more complex and detailed
networks and models. A distinctive feature of the global, closed-loop, multiscale mathematical model for the human cir-
culation developed by Müller and Toro in References 4 and 13 is the detailed description of the venous system, particularly
for intracranial and extracranial veins, which accounts for fundamental mechanisms affecting cerebral venous hemody-
namics. In Reference 15, Mynard and Smolich presented a model that accounts for wave propagation in anatomically
realistic systemic (including coronary and cerebral) arterial/venous networks, pulmonary arterial/venous networks, and
portal veins. In addition to the anatomically detailed description of arterial or venous networks, many other factors can
contribute to the complexity of cardiovascular models and networks, such as the level at which biological mechanisms
and mechanical characteristics of the cardiovascular system are modeled. For instance, when coupling the blood circu-
lation to the cerebrospinal-fluid (CSF) and brain dynamics, these two systems have different temporal scales since CSF
absorption/generation is slow compared to blood flow and, therefore, the time needed to reach periodic equilibrium of
the solution is significant, thus strongly increasing the computational time and cost.18 Control mechanisms, such as the
baroreflex/chemoreflex controls and cerebral autoregulation, act over long time scales if compared with the cardiac cycle
duration,19-21 so then requiring long simulation times which impact on computational costs and efficiency. Including the
viscoelastic properties of vessel walls into the 1D blood flow models, to define more realistic and physically consistent
models, also demands a considerably higher computational cost for solving the corresponding PDE system, with respect
to the purely elastic case.22

As a consequence, the 1D modeling of blood flow in such anatomically detailed and complex cardiovascular networks
and models can result in computationally expensive simulations, even when exploiting parallel computing, which can
further increase when long time scales are to be simulated. Several strategies and methodologies have been proposed and
developed to address such challenges, either by working on faster and more efficient solvers for the 1D models, or by
introducing 0D models coupled with or in place of the 1D models, to improve the computational efficiency and optimize
the topological complexity of the vascular networks.

In the first framework, it is worth to mention the work of Müller et al.,22 where the authors posed the need for accu-
rate, robust and efficient numerical schemes to simulate 1D blood flow phenomena and able to produce results at a low
computational cost. To address such issue, the authors proposed a high-order and robust fully local time-stepping (LTS)
numerical scheme for 1D blood flow simulations in networks of elastic and viscoelastic vessels, and compared to a global
time stepping (GTS) approach. When applying this to ADAN model, the GTS to LTS computational time ratios are 10.80
and 136.07, for the elastic and viscoelastic cases, respectively, demonstrating the benefits in terms of speed-up obtained
by adopting an LTS over a GTS strategy.

In turn, several works concerning lumped-parameter/zero-dimensional models to simulate arterial blood flow are
also found in the literature, to address the issues of computational efficiency and optimization of topological complexity.
In Reference 23, a method to optimize the number of arterial segments included in 1D blood flow models and to find
the model with the fewest number of necessary arteries for a given clinical application, by lumping distributed 1D seg-
ments into 0D Windkessel models, was presented. Similarly in Reference 24, in the context of patient-specific 1D blood
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GHITTI et al. 3

flow modeling, Epstein et al. investigated the effect of a reduction in the number of arterial segments in a given dis-
tributed 1D model on the shape of the simulated pressure and flow waveforms, by systematically lumping peripheral 1D
model branches into Windkessel models. On the other hand, in Reference 25, the authors proposed a bond graph based
lumped-parameter mathematical model, by fully preserving the topology of the original 1D network, to address the issue
of execution time and the question of granularity in the context of modeling the cerebral circulation. Furthermore in Ref-
erence 26, a distributed lumped-parameter (DLP) modeling framework was proposed to efficiently compute blood flow
and pressure in vascular domains at a computational cost that is orders of magnitude lower than that of computational
fluid dynamics (CFD) simulations.

In this work, we propose an adaptive model selection approach to construct hybrid networks of 1D-0D vessels, which
is based on appropriate a-priori model selection criteria, which are employed to convert 1D segments into the corre-
sponding 0D counterparts. First of all, the family of nonlinear lumped-parameter models for blood flow presented in
Reference 27 is considered, where these 0D models were derived in a way to preserve certain important nonlinear prop-
erties of the original 1D model. Then, equipped with both a 1D and 0D description of blood flow in vascular segments,
we extend the coupling approach developed in References 28 and 29 for junctions of 1D vessels to appropriately couple
1D and 0D vessels through a hybrid coupling strategy. From a numerical point of view, in order to design accurate and
efficient numerical schemes to solve networks of vessels, the high-order coupling between 1D vessels is achieved by con-
sidering the strategy presented in Müller and Blanco30 and designing a simplified approach. Furthermore, as one of the
main novelties of this work, we present and validate a methodology for the high-order hybrid numerical coupling of 1D
and 0D vessels. The proposed numerical technique takes into account the interaction between 1D and 0D vessels and
ensures that the desired accuracy of the solution in the 1D vessels is preserved and not affected by the coupling with 0D
vessels. Finally, as a last necessary ingredient, we implement an adaptive model selection strategy to instantiate concrete
hybrid networks. This methodology is based on relevant a-priori model selection criteria, defined in terms of geometrical
and mechanical vessel properties or of flow distribution information. Given any generic vascular network, these model
selection criteria are used to determine, a-priori, the most suitable model, either 1D or 0D, to adopt for each vessel. In
particular, our aim is to identify those criteria providing the best trade-off between the computational cost of the simula-
tions in the resulting hybrid networks and a good level of accuracy in the predicted results with respect to the reference,
but computationally more expensive, 1D solution. The improvement in the computational efficiency must not come at
the expense of a significant loss in terms of accuracy of the solution, pressure, and flow waveforms, in both 1D and 0D
vessels, but a good balance between these two essential computational and modeling aspects is needed.

As briefly reviewed in the previous paragraph, several methods and approaches have been developed, which deal with
1D and 0D models to simulate blood flow in networks of vessels to address the issues of computational cost, execution
time and optimization of topological complexity. However, here the proposed novel methodology presents some main
essential aspects that were never found combined together in the above cited works. First, when constructing both 0D
and hybrid network configurations, the topology and geometry of the original 1D network are preserved, so that blood
flow and pressure distribution and waveforms can be reproduced and analyzed in each 1D/0D vessel of the original 1D
network. Second, even if they are simpler than the 1D models, the adopted nonlinear 0D blood flow models preserve
important nonlinear properties of the original 1D description, which strongly improve their ability to predict flow and
pressure results in very good agreement with the reference 1D results, as demonstrated in Reference 27. Finally, the
numerical coupling strategy designed to couple 1D and 0D vessels at junctions preserves the order of accuracy of the
solution in 1D vessels. Furthermore, we point out that, to the best of our knowledge, a methodology to construct hybrid
networks of 1D-0D vessels based on some model selection criteria and to simulate blood flow in such networks has never
been reported before, in the open literature.

In this study, the different model selection criteria considered and tested are defined in terms of geometrical and
mechanical vessel properties or of flow distribution information. As we will see throughout this work by applying the
proposed strategy to different arterial networks of moderate complexity, the vessel compliance and intravascular volume
will be identified as the most suitable model selection criteria to construct hybrid networks of vessels, providing the best
trade-off between computational cost and accuracy. We consider this work as the first step towards a high-performance
computational framework for the solution of highly complex networks. This methodology is expected to be significantly
more effective when applied to much more complex networks and models where the heterogeneity of spatial and/or
temporal scales is relevant, such as the ADAN model presented by Blanco et al.3,14 and the global, closed-loop, multiscale
model of the entire cardiovascular system developed by Müller and Toro.4,13,18

The rest of the article is structured as follows. In Section 2, we introduce the mathematical models used to describe
both 1D and 0D blood flow in compliant vessels and the coupling equations defined for each type of junctions to couple
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4 GHITTI et al.

together 1D and/or 0D vessels. Afterwards, in Section 3, we present the numerical methods used in this work. First, the
numerical schemes adopted to solve 1D and 0D blood flow models are reported; next, the high-order numerical coupling
procedures proposed to solve the 1D, 0D and hybrid coupling of vessels are illustrated. To conclude the section, an adaptive
model selection strategy to construct hybrid networks of vessels is devised. In Section 4, we perform a series of numerical
experiments and discuss the obtained results. In particular, a set of convergence rate studies is first carried out and then,
the proposed adaptive model selection strategy built upon several different a-priori model selection criteria is tested and
applied to two arterial networks. The numerical experiments section is closed by presenting a quantitative study of a
simple bifurcation model where 1D simulation results are compared against 3D results to validate the adopted 1D junction
model and assess its ability to describe and reproduce flow splitting and wave propagation at junctions. We conclude with
Section 5, where final considerations are made and future work is outlined.

2 MATHEMATICAL MODELS

Most complete mathematical models for blood flow in compliant vessels consider coupled PDE systems describing fluid
flow, wall mechanics, and their interaction. The overall methodology falls within the field of 3D-FSI models. However,
due to their complexity and computational cost, at the present time, it is still unrealistic to think of deploying 3D-FSI mod-
els for very large vascular networks and cardiovascular models, or even for the full human vasculature. One-dimensional
models derived from the cross-sectional averaging of full 3D models offer a reasonable alternative: they allow for simpli-
fied FSI simulations that describe the propagation of pressure and flow in large networks for a reduced computational
cost. Indeed, in the last years, several studies have shown the ability of the 1D blood flow models to capture the main
features of pressure, flow and area waveforms in large vessels, when compared to both 3D-FSI numerical data31-34 and
3D-CFD results,10,35-40 as well as to in vivo measurements4,7,11-13,18 and in vitro experiments,1,2,41 demonstrating that these
models can be adopted to accurately simulate physiologically and clinically relevant problems at a reasonable computa-
tional cost. Hence, in the field of computational hemodynamics and mathematical modeling of the cardiovascular system,
1D models have been popular and widely used since the mid of the last century. The simplicity of 1D and 0D models over
3D models has facilitated their acceptance among researchers working in the field of blood flow modeling. Moreover, a
strong argument in favor of this simplified modeling perspective is the more straightforward connection with measurable
physiological signals and clinical variables. The main goal of the present work is to develop an efficient modeling and
computational approach for large networks of vessels. We aim at combining the 1D model to a family of “cheaper” 0D
models in a way to improve the computational efficiency of 1D-0D simulations, while still preserving a certain level of
accuracy in the predicted results. Here we consider 1D models as the reference model and assess the predictive capability
and ability of the proposed hybrid 1D-0D models to generate accurate results at a lower computational cost.

The mathematical model presented in this article includes both a one-dimensional and a zero-dimensional description
of blood flow in compliant vessels, together with the coupling equations based on conservation principles that allow to
arbitrarily couple 1D and 0D vessels in a network. First, in Sections 2.1 and 2.2, the one-dimensional model and the
family of lumped-parameter models for blood flow are introduced. Afterwards, in Section 2.3, the proposed methodology
to couple 1D and/or 0D vessels and to solve the different types of junctions is described.

2.1 One-dimensional blood flow model

One-dimensional (1D) blood flow in elastic vessels is described by the following system of nonlinear, first-order hyperbolic
equations

⎧
⎪
⎨
⎪
⎩

𝜕tA + 𝜕xq = 0,

𝜕tq + 𝜕x

(

𝛼
q2

A

)

+ A
𝜌
𝜕xp = f ,

(1)

where x is the axial coordinate of the vessel and t > 0 is time; A(x, t) is the cross-sectional area of the vessel; q(x, t) is
the flow rate; p(x, t) is the average internal pressure over a cross-section; 𝛼 is a momentum correction factor, also called
Coriolis coefficient, and f (x, t) = −kR

q
A

is the friction force per unit length of tube, where kR > 0 is the viscous resistance
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GHITTI et al. 5

coefficient. Both parameters 𝛼 and kR depend on the assumed velocity profile. Here, an axisymmetric velocity profile is
prescribed, from which the following definitions of 𝛼 and kR are obtained

𝛼 = 𝜁 + 2
𝜁 + 1

, kR = 2(𝜁 + 2)𝜋𝜇
𝜌
, (2)

where 𝜁 represents the velocity profile order, 𝜌 and 𝜇 are the constant blood density and viscosity. The value 𝜁 = 9 defines
a blunt velocity profile, while, for a Poiseuille flow, the parabolic velocity profile is obtained by setting 𝜁 = 2. For the
Coriolis coefficient, the choice 𝛼 = 1, which indicates a perfectly flat velocity profile, is commonly used since it simplifies
the analysis of the resulting 1D model.

To close system (1), pressure p(x, t) is related to the cross-sectional area A(x, t) and other vessel parameters by the
following algebraic relation

p(x, t) − pext(x, t) = 𝜓(A(x, t);A0,K,m,n,P0), (3)

with

𝜓(A(x, t);A0,K,m,n,P0) = K
[(

A(x, t)
A0

)m

−
(

A(x, t)
A0

)n]

+ P0, (4)

where pext(x, t) is the external pressure acting on the vessel and P0 is the reference pressure at which A = A0. The above
relation describes the elastic deformation of the vessel wall with variations of the transmural pressure, assuming that
dissipative (viscous) effects are negligible. Pressure p(x, t) also depends on parameters A0, K, m, and n, which take into
account geometrical and mechanical properties of the vessel. Normally, m and n are parameters derived from higher-order
models or simply computed from experimental measurements. Typical values for arteries are m = 0.5 and n = 0, whereas
for collapsible tubes, such as veins, it is assumed m = 10 and n = −1.5.

In particular, if we assume all these parameters to be independent of x and we consider arterial vessels, then K > 0 in
(3) denotes the arterial stiffness and it is modeled as in References 42 and 43 by

K ≡ Ka =
√
𝜋h0E

(1 − 𝜈2)
√

A0
, (5)

where h0 is the vessel wall thickness, E is the Young’s modulus and 𝜈 is the Poisson ratio. To model incompressible vessel
walls, we adopt 𝜈 = 0.5.

We note that system (1) can be rewritten under the classical form of balance laws, that is

𝜕tQ + 𝜕xF(Q) = S(Q), (6)

with Q = (A, q)T the vector of conserved variables and

F(Q) =
⎛
⎜
⎜
⎜
⎝

q

𝛼
q2

A
+ KA

𝜌

[
m

m + 1

(
A
A0

)m

− n
n + 1

(
A
A0

)n]
⎞
⎟
⎟
⎟
⎠

, S(Q) =
⎛
⎜
⎜
⎝

0
−kR

q
A

⎞
⎟
⎟
⎠

, (7)

where F is the flux function and S is the source term. The same model can also be reformulated in quasi-linear
form as

𝜕tQ + A(Q)𝜕xQ = S(Q), (8)

with coefficient matrix

A(Q) ∶= 𝜕F
𝜕Q

. (9)
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6 GHITTI et al.

Finally, we introduce here also the wave speed, denoted by c, as follows

c =

√
A
𝜌

𝜕p
𝜕A
. (10)

2.2 Lumped-parameter blood flow models

Along with the 1D blood flow model described in Section 2.1, here we consider the family of nonlinear zero-dimensional
(0D) or lumped-parameter models for blood flow in a compliant vessel derived in Reference 27. In this recent work, the
traditional approach of deriving lumped-parameter models for blood flow in a single vessel43-45 is extended, in order to
preserve important nonlinear properties of the original 1D blood flow model (1). Such properties include the nonlinear
pressure-area relation (3) and the pressure-dependent parameters characterizing the 0D models, such as the resistance
R and the inductance L. Indeed, by including these nonlinearities, we obtain more realistic and physically consistent
0D models, representing a powerful tool to improve the computational efficiency of blood flow simulations, while still
preserving and well reproducing the main features of pressure and flow waveforms in networks of vessels.

Given a vessel with x ∈ [xL, xR] of length l = |xR − xL|, the system of ordinary differential equations (ODEs) governing
the family of nonlinear lumped-parameter models is obtained by integrating in space the 1D equations in (1) over the
interval [xL, xR] and reads

⎧
⎪
⎨
⎪
⎩

d
dt

V(t) = Qin(t) − Qout(t),

L(Â) d
dt

Q(t) = Pin(t) − R(Â)Q(t) − Pout(t).
(11)

The mean (volumetric) flow rate Q(t) and the intravascular volume V(t) ∶= Â(t)l represent the problem state variables,
with Â(t) being the time-dependent average cross-sectional area of the vessel, that is

Â(t) = 1
l

xR

∫

xL

A(x, t) dx. (12)

The ODE system (11) also involves input and output quantities,

Qin(t) = q(xL, t), Pin(t) = p(xL, t) and Qout(t) = q(xR, t), Pout(t) = p(xR, t),

respectively, which need to be defined together with initial conditions. The parameters characterizing the 0D model are
the nonlinear resistance R(Â) and inductance L(Â), defined by

L(Â) ∶= 𝜌l
Â
, R(Â) ∶= 𝜌kRl

Â2
. (13)

These parameters are said to be nonlinear in the sense that they do no longer depend on a constant reference
cross-sectional area A0, but on the time-dependent average cross-section Â(t), which in turn, as we will see in the
following, will depend on the mean pressure P(t) acting on the vessel in a nonlinear way.

In the traditional approach of deriving 0D models, the model parameters are constant, namely L0 = L(A0) and R0 =
R(A0), and pressure P is linearly related to volume V via the constant compliance C0, that is

C0 ∶= l
(
𝜕A
𝜕p

)
|
|
|A=A0

. (14)

In system (11), pressure P is directly computed from the average cross-sectional area Â via the nonlinear tube law (3),
given by

P̂(t) − Pext(t) = K

[(
Â(t)
A0

)m

−

(
Â(t)
A0

)n]

+ P0, (15)
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GHITTI et al. 7

(A) (B)

(C) (D)

F I G U R E 1 Representation of the four 0D vessel configurations, depending on the different assumptions about the data prescribed at
the inlet and outlet of the segment. In the linear case, C is the constant vessel wall compliance, while, in the nonlinear case, C represents the
mechanical properties of the vessel wall embedded in the nonlinear pressure-area relation (15). In both linear and nonlinear cases, R represents
the resistance induced to the flow by the blood viscosity, while L is the inductance to flow, corresponding to the inertial term in the momentum
balance equation. (A) (Pin, Qout)-type 0D vessel; (B) (Qin, Pout)-type 0D vessel; (C) (Pin, Pout)-type 0D vessel; (D) (Qin, Qout)-type 0D vessel

so that the nonlinearity of the original 1D pressure-area relation of the vessel is fully preserved also in this family of 0D
models.

We also point out that in the momentum balance equation of system (11) the nonlinear convective terms have been
neglected. For a discussion on the choice of neglecting the contribution of the convective terms in the 0D models, see
Reference 27.

ODE system (11) defines a family of nonlinear 0D models. Indeed, four different 0D models are obtained depending on
the different possible assumptions about the data prescribed at the inlet and outlet of the vessel. These models determine
all the possible configurations of the same 0D vessel, which are the (Pin,Qout), (Qin,Pout), (Pin,Pout) and (Qin,Qout)-type
0D vessels, displayed in Figure 1A, all of them describing flow and volume/pressure dynamics in a compliant vessel. The
ODE systems governing the different 0D vessel configurations are given in Section S.1 of the Supporting Information,
while for the full derivation and complete characterization of this family of nonlinear lumped-parameter models for blood
flow the reader is referred to Reference 27.

We observe that a single vessel can be also represented by connecting in series two 0D vessels of the same type,
either (Pin,Qout) or (Qin,Pout), to obtain a more accurate description of its dynamics. From now on, we will refer to these
additional 0D vessel configurations as two-split (Pin,Qout)-type and two-split (Qin,Pout)-type 0D vessels.

2.3 Coupling equations

Given a generic vascular network, each vessel can be modeled either as a 1D domain or as a 0D compartment. In the first
case, its physics will be described by the 1D blood flow model (1). In the latter case, the vessel will be represented accord-
ing to one of the four possible 0D vessel configurations presented in Section 2.2 and its dynamics will governed by the
corresponding ODE system reported in Section S.1 of the Supporting Information. Our aim is to, departing from a network
of vessels, allow for any possible combination of 1D and 0D vessels to be considered. In this way, hybrid network config-
urations can be constructed, including both 1D and 0D vessels, where three different types of junction/coupling can be
found: 1D coupling, 0D coupling, and hybrid coupling. In this section, we illustrate the adopted coupling approach and
derive the coupling equations that must be satisfied for each junction type. Indeed, a crucial aspect for constructing con-
sistent networks of vessels is how to provide boundary conditions at terminal vertexes and algebraic coupling conditions
between 1D and 0D domains at internal vertexes.

The coupling approach is based on conservation principles. Indeed, the coupling of two or more vessels at a junc-
tion must satisfy the following properties: (i) the conservation of mass, and (ii) the continuity of total pressure (or some
approximation). Furthermore, only in the 1D and hybrid couplings, additional relations are obtained by imposing the
continuity of the Riemann invariants in each 1D vessel.
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8 GHITTI et al.

2.3.1 1D coupling equations

If we have a junction J shared by N 1D vessels, a Riemann problem can be defined at the junction interface. Indeed,
a junction between two or more 1D vessels defines a Riemann problem with discontinuous geometrical and mechan-
ical vessel properties. In the case of subcritical flow, namely when |u| < c, this problem has been extensively studied
and its exact solution has been derived in Toro and Siviglia28 first and in Spilimbergo et al.29 next. Also here, we
will still restrict to this subcritical flow condition. The Riemann problem formulated for N 1D vessels sharing vertex
J reads

{
𝜕tQk + A(Qk)𝜕xQk = 0,
Qk(x, 0) = Q1D

k ,

for k = 1, … ,N, (16)

with x ∈
[
0, lk

]
, where we have dropped the vessel index k from the spatial coordinate x for the sake of simplicity in the

notation.
Then, the self-similar solution to the Riemann problem (16) consists of 2N constant states, the N initial condition states

Q1D
k =

(
A1D

k , q1D
k

)T , with k = 1, … ,N, provided by the 1D vessels, and the N unknown boundary states Q∗
k =

(
A∗

k, q
∗
k

)T ,
with k = 1, … ,N, to be determined, which will provide coupling conditions for each one of the vessels converging to the
junction J. By following the approach proposed in References 28 and 29, we can construct the Riemann problem solution
and compute these unknown boundary states.

First, under the assumption of adopting a two-rarefaction Riemann solver, which assumes, at each boundary, the head
and tail waves traveling into the 1D domain to be rarefaction waves, the unknown boundary states Q∗

k, with k = 1, … ,N,
are connected to the initial condition states Q1D

k , with k = 1, … ,N, via the continuity of the generalized Riemann
invariants, as follows

q∗k
A∗

k
−

q1D
k

A1D
k

+ gk
1D

A∗
k

∫

A1D
k

c(𝜏)
𝜏

d𝜏 = 0, for k = 1, … ,N. (17)

where gk
1D is the auxiliary function

gk
1D =

{
− 1, if xk

J = 0,
1, if xk

J = lk,
(18)

and xk
J is the local coordinate of the kth vessel, evaluated at vertex J. In this way, we obtain the first N nonlinear equations.

On the other hand, the state vectors Q∗
k, with k = 1, … ,N, are connected among themselves via the linearly degener-

ate stationary contact discontinuity generated by the discontinuous variation of mechanical and geometrical properties of
vessels converging at junction J. From the eigenstructure analysis of the coefficient matrix A of the continuous problem
(8), we find the following wave relations associated to this stationary contact discontinuity

fMC(q∗1, … , q∗N) =
N∑

k=1
gk

1Dq∗k = 0, (19)

and

p∗tot,1 − p∗tot,k = 0 ⇒ p(A∗
1) +

1
2
𝜌

( q∗1
A∗

1

)2

− p(A∗
k) −

1
2
𝜌

( q∗k
A∗

k

)2

= 0, for k = 2, … ,N. (20)

Equation (19) enforces mass conservation at the junction; the other N − 1 relations prescribe the continuity of total pres-
sure p∗tot between the vessels. In other words, the wave relations associated to the stationary contact discontinuity exactly
coincide with those physically consistent conservation principles that we would expect to be satisfied at a junction. Full
details on the derivation of wave relations in (19) and (20) are given in References 28 and 29.
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GHITTI et al. 9

In conclusion, we obtain a nonlinear system of 2N equations in 2N unknowns that can be numerically solved to
compute the sought boundary states Q∗

k, with k = 1, … ,N.

2.3.2 0D coupling equations

To couple 0D vessels at a junction, we extend the coupling procedure presented in Reference 27, where the 0D coupling
must satisfy the conservation of flow and also imposes a common pressure on all branches, to ensure the continuity of
pressure at the junction. By enforcing pressure continuity only, instead of total pressure continuity as in the 1D coupling,
the problem to be solved at the junction is linear. However, in order to arrange compatible 0D vessel types into a network,
with inlets and outlets coupled appropriately, restrictions on admissible 0D vessel configurations are necessary for vessels
converging at the junction.

Here, we extend this approach in order to find appropriate coupling conditions between 0D vessels that do not require
any restrictions on the admissible 0D vessel types converging at a junction, but still ensuring the linearity of the coupling
problem to be solved. Otherwise, solving a 0D coupling problem would become as computationally expensive as solving
a 1D nonlinear coupling problem.

Suppose to have a junction connecting an arbitrary number M of 0D vessels, sharing their inlets or outlets at the
junction point. Then, the input and output quantities to be prescribed at the inlets and outlets of these vessels, Pin∕Qin
and Pout∕Qout, respectively, depending on the configuration of each vessel, need to be determined in a way to ensure mass
conservation and continuity of total pressure. This is done by prescribing to all inlets and outlets converging at the junction
a common pressure P∗, which represents an approximation of the total pressure P∗tot and is computed by enforcing the
conservation of mass, that is

fMC(P∗) =
M∑

j=1
gj

0DQ∗
j = 0, (21)

where gj
0D is the auxiliary function similar to the one defined in the 1D coupling problem

gj
0D =

{
− 1, if vj shares its inlet,
1, if vj shares its outlet,

(22)

and

Q∗
j =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

Qj
, if vj shares its inlet/outlet of P-type,

Qj
in(P

∗) = P∗ − Pj

Rj
p

, if vj shares its inlet of Q-type,

Qj
out(P

∗) = Pj − P∗

Rj
d

, if vj shares its outlet of Q-type,

(23)

for j = 1, … ,M. Note that the flow rates Q∗
j leaving or entering each 0D vessel can be either known (and given by the

state variable Q of the corresponding ODE system), or unknown and defined in terms of the pressure P∗ (as pressure
difference over the vessel resistance), depending on the 0D vessel configuration.

The function fMC in (21) is linear in the pressure unknown P∗ and, once the value of P∗ has been computed, in the jth
0D vessel vj we prescribe either a condition on the pressure, that is Pj

in = P∗ or Pj
out = P∗, or a condition on the flow rate,

that is Qj
in(P

∗) or Qj
out(P

∗) given by the relations in (23), depending on the 0D vessel configuration.

Remark 1. We point out that, in the proposed 0D linear coupling procedure, only one configuration is not admitted, that
is the one where all the inlets and outlets of the 0D vessels converging at the junction are of pressure type (P-type). Indeed,
in this case, it is easy to see that in the mass conservation function fMC defined in (21) only known quantities occur, that
are the flow rates Qj, j = 1, … ,M, across the 0D vessels, and thus, there is no dependency on the common pressure P∗.
As a consequence, both mass conservation and continuity of total pressure would be lost in this configuration.
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10 GHITTI et al.

2.3.3 Hybrid coupling equations

The most general coupling of vessels at junctions is the one where both 1D and 0D vessels are coupled together. However,
a hybrid coupling approach that ensures mass conservation and continuity of total pressure can be easily obtained by
appropriately merging the 1D and 0D coupling procedures described in Sections 2.3.1 and 2.3.2, respectively.

Suppose to have a junction connecting N 1D vessels and M 0D vessels. For each 1D vessel, we have to compute
the unknown state vector Q∗

k =
(

A∗
k, q

∗
k

)
, with k = 1, … ,N, whereas for each 0D vessel the input/output quantity to be

prescribed at its inlet/outlet, that is Pj
in∕Qj

in or Pj
out∕Qj

out, with j = 1, … ,M, has to be determined.
The hybrid coupling problem is governed by the following nonlinear system

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

fMC(q∗1, … , q∗N , p
∗
tot) =

∑N
k=1gk

1Dq∗k +
∑M

j=1gj
0DQ∗

j = 0,

Q∗
j =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

Qj
, if vj shares its inlet/outlet of P-type,

Qj
in(p

∗
tot) =

p∗tot − Pj

Rj
p

, if vj shares its inlet of Q-type,

Qj
out(p

∗
tot) =

Pj − p∗tot

Rj
d

, if vj shares its outlet of Q-type,

for j = 2, … ,M,

p(A∗
1) +

1
2
𝜌

( q∗1
A∗

1

)2

− p(A∗
k) −

1
2
𝜌

( q∗k
A∗

k

)2

= 0, for k = 2, … ,N,

q∗k
A∗

k
−

q1D
k

A1D
k

+ gk
1D∫

A∗
k

A1D
k

c(𝜏)
𝜏

d𝜏 = 0, for k = 1, … ,N.

(24)

The first relation in system (24) enforces mass conservation at the junction, taking into account the contribution of all
vessels, both 1D and 0D. In particular, the 0D flow rates Q∗

j , with j = 1, … ,M, entering or leaving the 0D vessels con-
verging at the junction, are defined in the same way as in (23) for the 0D coupling, with the only difference here that the
approximate pressure P∗ has now been replaced by the exact value of the total pressure p∗tot, to be determined. Hence, the
remaining equations in system (24) prescribe the continuity of the total pressure p∗tot between the 1D vessels and the con-
stancy of the generalized Riemann invariants in each 1D vessel. The idea is that we can still define and solve a Riemann
problem at the junction interface between the 1D vessels, but when constructing its solution the presence of 0D vessels
and their contribution to the flow balance through the junction have to be taken into account, as expressed in system (24).

System (24) includes 2N nonlinear equations in 2N unknowns, that are A∗
1, … ,A∗

N and q∗1, … , q∗N . By solving numer-
ically this algebraic problem, we obtain the 1D boundary states Q∗

k, for k = 1, … ,N, and thus the common total pressure
p∗tot. The computed value of p∗tot is then used to enforce in each 0D vessel either a condition on the pressure, that is Pj

in = p∗tot
or Pj

out = p∗tot, or a condition on the flow rate, that is Qj
in

(
p∗tot

)
or Qj

out
(

p∗tot
)

as defined in (24), for j = 1, … ,M, depending
on each 0D vessel configuration.

3 NUMERICAL METHODS

In this section, we present the numerical methods adopted to solve the 1D and 0D blood flow models (Sections 3.1 and 3.2,
respectively) and we describe in detail the numerical treatment of the different types of coupling connecting 1D and 0D
vessels into a network (Section 3.3). In particular, when using high-order numerical schemes to approximate the solutions
of the 1D blood flow model (1) and of the lumped-parameter models (11), high-order coupling procedures are also needed
in order to preserve the space and time accuracy of the original schemes over the entire network. The numerical strategy
to address this crucial aspect will be addressed in Section 3.3 for the 1D, 0D and hybrid couplings.

Finally, in Section 3.4, we develop an adaptive model selection approach based on a-priori model selection criteria to
construct hybrid networks of 1D-0D vessels. Our aim is to find relevant criteria, based on vessel geometrical and mechan-
ical properties or on flow distribution information, that enable us to choose the most suitable model to be used for each
vessel of a network, ensuring the correct trade-off between the accuracy of the predicted results and the computational
cost of the simulations, with respect to the 1D network.
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GHITTI et al. 11

3.1 Numerical scheme for the 1D blood flow model

System (1) is discretized using a second-order MUSCL-Hancock (MH) numerical scheme,46 with ENO (essentially
non-oscillatory) reconstruction47,48 and numerical source computed following the ADER approach.49 Since the orig-
inal MUSCL-Hancock scheme was first formulated to deal only with conservation laws without source terms, the
MUSCL-Hancock procedure was then extended to take into account also source terms via the ADER approach based on
solution of the generalized Riemann problem (GRP), formulated as in Reference 50.

We adopt a finite volume method of the form

Qn+1
i = Qn

i −
Δtn

Δx

[
Fi+ 1

2
− Fi− 1

2

]
+ ΔtnSi, (25)

for i = 1, … ,M, where M is the number of computational cells discretizing the one-dimensional space domain
[0, l]; Δx = xi+ 1

2
− xi− 1

2
is the constant mesh spacing, where each cell Ii =

(
xi− 1

2
, xi+ 1

2

)
has center located in xi, with

xi± 1
2
= xi ± Δx

2
; Δtn = tn+1 − tn is the time step discretizing the time domain [0, tend] and constrained by the usual

Courant–Friedrichs–Lewy (CFL) stability condition. Finite volume schemes of the form (25) are obtained by integrating
the equations of system (6) on the control volume V =

[
xi− 1

2
, xi+ 1

2

]
× [tn, tn+1] and by introducing suitable approximations

of the integral averages.
In the framework of Godunov-type schemes, the MUSCL-Hancock approach achieves second-order accuracy in space

and time by computing the intercell flux Fi+ 1
2

according to the following three steps:

(I) Data reconstruction and cell boundary values: based on the set of cell averages
{

Qn
i
}

, we obtain a first-degree
reconstruction polynomial vector𝜱i(x) for each cell Ii by finding a linear polynomial 𝜑l,i(x) for each component of
the vector of conserved variables, that is

𝜑l,i(x) = wn
l,i + (x − xi)Δl,i, for l = 1, 2, (26)

where wn
l,i is the lth component of vector Qn

i and Δl,i is the associated slope of its reconstruction polynomial 𝜑l,i(x).
Here, the slopes Δl,i for all components wn

l,i are computed by using the ENO criterion to preserve conservation and
non-oscillatory properties. The boundary extrapolated values are then computed as follows

QL
i = 𝜱i(xi− 1

2
), QR

i = 𝜱i(xi+ 1
2
). (27)

(II) Evolution of boundary extrapolated values by a time Δtn

2
accounting for source term

⎧
⎪
⎨
⎪
⎩

Q
L
i = QL

i −
1
2
Δtn

Δx
[
F
(

QR
i
)
− F

(
QL

i
)]
+ Δtn

2
S
(

QL
i
)
,

Q
R
i = QR

i −
1
2
Δtn

Δx
[
F
(

QR
i
)
− F(QL

i )
]
+ Δtn

2
S
(

QR
i
)
.

(28)

(III) Solution of a classical Riemann problem with piecewise constant data
(

Q
R
i ,Q

L
i+1

)
to obtain the similarity solution

Qi+ 1
2

(
x
t

)
and compute the intercell flux as

Fi+ 1
2
= F

(
Qi+ 1

2
(0)

)
, (29)

where Qi+ 1
2
(0) denotes the value of Qi+ 1

2

(
x
t

)
at x

t
= 0. Any approximate Riemann solver can be used to solve the

Riemann problem. In this work, we adopt the HLL approximate Riemann solver.51,52

Finally, to compute the numerical source we proceed by following the ADER approach49 and we set

Si = S
(

Qn
i +

Δtn

2
[
−A(Qn

i )Δi + S(Qn
i )
])
, (30)
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12 GHITTI et al.

which is obtained by approximating the volume-integral average of the source term S(Q(x, t)) by using the midpoint rule in
space and time, where the midpoint value Q

(
xi,

Δtn

2

)
is computed by performing a Taylor expansion in time and applying

the Cauchy–Kowalevski method at point xi.
The number of computational cells for a 1D vessel is given by

M = max
{

⌈
l

Δxmax
⌉, 2

}

, (31)

where l is the vessel length.

3.2 Numerical scheme for zero-dimensional blood flow

Each 0D vessel configuration describing blood flow in a 0D vascular segment is governed by a system of first-order,
nonlinear ODEs obtained from (11), which can be rewritten in compact form as

d
dt

Yj(t) = Fj(t,Yj(t),YD
j (t)), Yj(0) = Y0

j , (32)

where Yj(t) is the state variable vector of vessel vj and Y0
j is the initial condition vector. The nonlinear vector function

Fj on the right-hand side of the system depends on Yj(t) directly and on the vector YD
j (t) of the prescribed data at the

inlet and outlet of the jth vessel. These prescribed data may include coupling conditions at internal junctions, coupling
conditions to either single-resistance or RCR Windkessel elements for terminal vessels, and also external sources fext(t) to
the vessel, such as a prescribed inflow at the inlet of the aorta. In particular, if a 0D vessel shares its inlet and/or outlet at
junctions, then the vector YD

j (t)will be defined also by the state of its adjacent vessels, according to the different coupling
approaches introduced in Section 2.3. For each 0D vessel, the corresponding ODE system of the form (32) is solved using
the well-established four-step explicit fourth-order Runge–Kutta (RK4) method with appropriate time step to guarantee
the stability of the scheme and the mesh independence of the solution.

3.3 High-order numerical couplings

In general, given a generic hybrid network of vessels, where 1D and 0D vessels are coupled via the 1D, 0D, and hybrid
coupling strategies, all vessels will be evolved by using the same global time step Δtn, given by

Δtn = min
k=1,… ,Ntot

Δtn,CFL
k , (33)

for n ≥ 0, where Ntot is the total number of 1D vessels of the network and Δtn,CFL
k is the time step corresponding to the

kth 1D vessel at the time level n, computed according to the CFL stability condition. This choice of the global time step
Δtn (33) clearly ensures the stability of the adopted numerical method in all 1D vessels. However, on the other hand, this
time step may not be sufficiently small to guarantee also the stability of the explicit numerical scheme used to solve the
ODE systems corresponding to the 0D vessels of the network. If that is the case, the global time stepping procedure can
be replaced by a local time stepping (LTS) technique, so that 1D and 0D vessels are evolved with two different time steps,
Δtn and Δtmn , respectively, each one ensuring the stability of the corresponding numerical method. Given the 1D time
stepΔtn computed as in formula (33), we define a 0D local time stepΔtmn by dividing the time stepΔtn in a finite number
nstep of subintervals, as

Δtmn = Δtn

nstep
, (34)

where the subscript n to the index m in Δtmn emphasizes that the 0D time step Δtm clearly depends on the 1D time
step Δtn at the time level n. In this way, 0D vessels will evolve with reduced local time step Δtmn from time tm to time
tm+1 = tm + Δtmn , m ≥ 0, while 1D vessels will evolved with time step Δtn from time tn to time tn + 1 = tn + Δtn, n ≥ 0,

 10970363, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fld.5149 by C

ochraneItalia, W
iley O

nline L
ibrary on [24/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GHITTI et al. 13

only when tn+1
≡ tm+1, that is when the 1D and 0D time levels are synchronized. For full details on the LTS methodology

see Reference 22. We also emphasize that the choice of the number of subintervals nstep may depend on the specific
problem and the network characteristics.

A very important aspect to be addressed is that we want the orders of accuracy of the numerical schemes adopted
to solve the 1D and 0D models for a single vessel to be achieved also by the different coupling procedures, at the level
of junctions, in order to globally preserve the desired accuracy of the solutions. In the following of this section, we will
describe the different methodologies adopted to achieve high-order numerical coupling for the different types of junctions.

3.3.1 1D coupling

Let us first consider the 1D coupling approach presented is Section 2.3.1 to join an arbitrary number of 1D vessels. In
the simplest case, the initial condition states Q1D

k , with k = 1, … ,N, provided by the 1D vessels to the Riemann problem
(16), are given by the first-order cell-averaged solutions

{
Qn

k,i

}
, with either i = 1 if xk

J = 0, namely if the kth vessel shares

its left vertex with the junction, or i = Mk if xk
J = lk, that is if the kth vessel shares its right vertex with the junction, where

Mk is the number of computational cells of the kth vessel, for k = 1, … ,N. However, the resulting numerical coupling
strategy to compute the unknown boundary states Q∗

k, with k = 1, … ,N, and evolve the solution from time tn to time
tn+1 = tn + Δtn is clearly first-order accurate in space and time.

In general, high-order numerical coupling between 1D vessels can be achieved by following, for instance, the method-
ology presented in Müller and Blanco30 or the approach introduced in Borsche and Kall.53 Here, to obtain a 1D numerical
coupling strategy that is second-order accurate in space and time, we adopt a simplified approach, as follows. In the RP
defined at the junction interface, it is sufficient to replace the cell-averaged values by the evolved boundary extrapolated
values defined in step (II) of MUSCL-Hancock scheme, that is

Q1D
k =

⎧
⎪
⎨
⎪
⎩

Q
L,n
k,1 , if xk

J = 0,

Q
R,n
k,Mk

, if xk
J = lk.

(35)

In particular, if the kth vessel shares its left vertex with the junction, that is xk
J = 0, then we will consider the left evolved

boundary extrapolated value in the first computational cell Q
L,n
k,1 ; whereas, if the vessel shares its right vertex with the junc-

tion, namely xk
J = lk, in this case the initial condition state Q1D

k will be given by the right evolved boundary extrapolated
value in the last computational cell Q

R,n
k,Mk

of the vessel 1D domain.
Equipped with these initial condition states, the Riemann problem can be solved as illustrated in Section 2.3.1 to obtain

the unknown boundary states Q∗
k, with k = 1, … ,N. By adopting the midpoint integration rule to approximate the time

integral of the interface flux, the computed boundary state vectors are finally used to evaluate the boundary numerical
fluxes in the finite volume formula (25) for the 1D vessels converging at the junction

if xk
J = 0, Fk

1
2

= 1
Δtn ∫

tn+1

tn F
(

Q(x 1
2
, t)

)
dt

if xk
J = lk, Fk

Mk+
1
2

= 1
Δtn ∫

tn+1

tn F
(

Q(xMk+
1
2
, t)

)
dt

⎫
⎪
⎬
⎪
⎭

≈ F∗k ≡ F(Q∗
k), (36)

for k = 1, … ,N.

3.3.2 0D coupling

In the case of 0D coupling, it is straightforward to preserve the fourth-order accuracy in time of the RK4 method also at
the level of junctions, in the 0D coupling procedure.

The RK4 scheme, adopted to solve the ODE systems associated to the different 0D vessel configurations and reported
in the Supporting Information, is a four-step method. The approximate solution at the next time level tm+1 = tm + Δtm is
obtained by summing to the approximate solution at the present time level tm the product between the weighted average
of four increments, K1, … ,K4, and the size of the time interval Δtm.
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14 GHITTI et al.

Given a junction connecting M 0D vessels, even if each 0D vessel is evolved separately according to the corresponding
ODE system governing its dynamics, these vessels are not isolated, but are interacting with each other via the coupling
conditions (pressures/flow rates) prescribed at their inlets and outlets converging at the junction. As a consequence, to
evolve from time tm to time tm+1 the solution in each 0D vessel according to RK4 method (S.8), the coupling conditions
between these vessels must be updated at each of the four intermediate steps of the scheme, namely the 0D coupling
problem must be solved at each RK4 intermediate step. This is clear also from the RK4 method’s formulae (S.8), where
each of the four increments, Ks, s = 1, … , 4, is computed by using the intermediate updated RK4 solution and prescribed
data, contained in vector YD, corresponding to each intermediate step. The outline of the algorithm is given in Section S.2
of the Supporting Information.

3.3.3 Hybrid coupling

We deal now with the last type of coupling, the hybrid coupling between 1D and 0D vessels. In particular, 1D vessels are
evolved using the second-order MUSCL-Hancock scheme and 0D vessels are solved adopting the explicit RK4 method,
either with a global time stepΔtn or with two different local time steps,Δtn for the 1D vessels andΔtmn for the 0D vessels,
as explained at the beginning of this section. Here, we propose a numerical strategy that allows to achieve high-order
hybrid coupling, to preserve second-order accuracy in space and time in the 1D vessels and the second-order accuracy in
time in the 0D vessels.

Let us start from the case of global time step. Suppose to have a junction joining together N 1D vessels and M 0D
vessels, and that all these vessels are evolved with the same global time stepΔtn computed as in (33). To evolve the solution
in all vessels from time tn to time tn+1 = tn + Δtn, the 1D-0D coupling conditions must be updated at each one of the four
intermediate steps of RK4 method (S.8). To be precise, at step s of RK4 scheme, s = 1, … , 4, the junction is solved via the
hybrid coupling approach proposed in Section 2.3.3 by considering:

• in the 0D vessels, the RK4 intermediate solution obtained at step s of the method to compute the increment Ks, in the
same way as illustrated in Section 3.3.2 for 0D coupling;

• in the 1D vessels, the MUSCL boundary extrapolated values QL,n
k,1∕QR,n

k,Mk
, with k = 1, … ,N, evolved by a fraction of the

time step Δtn equal to that used at the intermediate step s of RK4 method, that is

⎧
⎪
⎨
⎪
⎩

Q
L,n+Hs
k,1 = QL,n

k,1 −
HsΔtn

Δxk

[
F(QR,n

k,1 ) − F(QL,n
k,1 )

]
+HsΔtnS(QL,n

k,1 ), if xk
J = 0,

Q
R,n+Hs

k,Mk
= QR,n

k,Mk
− HsΔtn

Δxk

[
F(QR,n

k,Mk
) − F(QL,n

k,Mk
)
]
+HsΔtnS(QR,n

k,Mk
), if xk

J = lk,

(37)

for s = 1, … , 4 and k = 1, … ,N. H =
{

0, 1
2
,

1
2
, 1
}

is the vector containing the time step fractions to be used to
evolve the 1D boundary extrapolated values in the four RK4 intermediate steps. In particular, at step s = 1 of RK4
method, we have no evolution of the MUSCL reconstructed variables, at steps s = 2, 3 of the scheme the bound-
ary extrapolated values are evolved by a half Δtn, and at step s = 4 we will have the evolution of a complete time
step Δtn.

Then, by solving the hybrid coupling problem, at each step of RK4 method we get:

• the 0D coupling conditions Pj,s
in∕out∕Qj,s

in∕out, for j = 1, … ,M, namely pressures and flow rates to be prescribed at the
inlets and outlets of the 0D vessels;

• the 1D boundary state vectors Q∗,s
k , for k = 1, … ,N, for the 1D vessels.

Once the four intermediate steps of RK4 method are completed, 0D vessels are simply evolved according to RK4
formulae. On the other hand, in each 1D vessel, the time integral of the boundary flux, needed to evolve the 1D solution
from time tn to time tn+1 according to the finite volume formula (25), is approximated using a quadrature formula with
nodes over the interval [tn

, tn+1] given by the four times corresponding to the four steps of RK4 and the same weights of
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GHITTI et al. 15

the four RK4 increments, as follows

{
nodes: {ts = tn +HsΔtn}s=1,… ,4 ,

weights: {𝜔s}s=1,… ,4 ,
(38)

to get

if xk
J = 0, Fk

1
2

= 1
Δtn ∫

tn+1

tn F
(

Q(x 1
2
, t)

)
dt

if xk
J = lk, Fk

Mk+
1
2

= 1
Δtn ∫

tn+1

tn F
(

Q(xMk+
1
2
, t)

)
dt

⎫
⎪
⎬
⎪
⎭

≈
4∑

s=1
𝜔sF

(
Q∗,s

k

)
, (39)

for k = 1, … ,N.
With this methodology, we take into account the interaction between 1D and 0D vessels at each intermediate step of

RK4 method and we achieve the second-order accuracy of the coupling.

Remark 2. It is clear that adopting the four-step RK4 method to solve the ODE systems governing blood flow in the
0D vessels and the proposed numerical hybrid coupling strategy requires that, at each time step, the hybrid coupling
problem must be solved four times at each junction of 1D-0D vessels to preserve the desired second-order accuracy
in the solution. Since in the 1D domain we use a second-order accurate numerical scheme, it would be reasonable to
employ a second-order method also for the 0D domain, so that each time step would demand to solve the hybrid cou-
pling just two times, thus reducing the computational effort and time of the simulations. However, our choice of using
the fourth-order Runge–Kutta scheme is justified by the fact that this method has better stability properties than other
possible second-order, explicit numerical schemes for ODE systems. Indeed, as we will see in Section 4 devoted to numer-
ical experiments, when using a sufficiently fine 1D mesh size, the 1D time step obtained according to the CFL condition
can be used for both 1D and 0D vessels as global time step, also ensuring the stability of RK4 method and the accuracy of
the predicted 0D results. On the other hand, numerical experiments (not reported here) have shown that second-order,
explicit schemes, like Heun’s method and the midpoint method, are not as stable as the RK4 scheme, thus requiring a
significantly smaller time step than the 1D time step computed via the CFL condition. In this case, a “local time stepping
procedure”, as the one described at the beginning of Section 3.3, could be implemented, but, because of the very small 0D
time step, the number of times to solve the hybrid coupling would increase even more in order to synchronize 1D and 0D
vessels converging at the same junction.

The proposed strategy can be easily extended also to the case of local time steps Δtn for 1D vessels, defined as in
(33), and Δtmn for 0D vessels, computed as in (34). From the definitions of these local time steps, we clearly have Δtn =
nstepΔtmn . Hence, starting from time tn, the numerical procedure illustrated above is performed over each time interval
of the form [tn + (r − 1)Δtmn , tn + rΔtmn], for r = 1, … ,nstep, to update the solution in the 0D vessels and to compute the
1D boundary vector states

{
Q∗,rs

k

}
s=1,… ,4, for r = 1, … ,nstep and k = 1, … ,N. Then, the boundary numerical fluxes in

the 1D vessels are obtained by approximating the time integral of the interface flux over the entire interval [tn
, tn+1], with

tn+1 = tn + Δtn = tn + nstepΔtmn , as

Fk
1
2

or Fk
Mk+

1
2

≈ 1
nstep

nstep∑

r=1

4∑

s=1
𝜔sF

(
Q∗,rs

k

)
, (40)

for k = 1, … ,N. These boundary flux vectors are finally used to evolve the solution in the 1D vessels from time tn to time
tn+1 according to the finite volume formula (25).

3.4 Adaptivity and a-priori model selection criteria

At this point, equipped with both 1D and 0D blood flow models and with suitable numerical coupling strategies, we need
an effective methodology to construct hybrid networks of vessels. In particular, we want to identify relevant a-priori model
selection criteria that, given any network of vessels of which geometrical and mechanical properties are known, allow us
to determine the most suitable model, either 1D or 0D, to be used for each vessel of the network.
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16 GHITTI et al.

One of the main goals of the present work is to address the issues of computational cost and efficiency related to
the modeling and simulation of blood flow in highly complex networks. Therefore, we look for model selection criteria
able to provide the best trade-off between (i) computational cost of the simulations in the resulting hybrid networks, and
(ii) accuracy in the predicted results with respect to the reference, computationally expensive 1D results. The starting
point is a 1D network, namely a network where all vessels are represented as coupled 1D domains. Then, we explore
different model selection criteria to be used to determine the vessels that can be turned into 0D models. The analysis
carried out allows us to identify those parameters that generate hybrid network configurations where, on the one hand,
the computational cost of the simulations is strongly reduced and, on the other hand, pressure and flow waveforms are
reproduced with a good level of accuracy throughout the entire network.

We have proposed and tested the following a-priori model selection criteria: vessel length l; vessel radius r0; intravas-
cular volume V0 = (𝜋r2

0)l; vessel compliance C0 ∶= l
(
𝜕A
𝜕p

)
|
|
|A=A0

; mean flow rate Q through the vessel; r3
0, which is an

(inverse) indicator of wall shear stress; r4
0, which is an (inverse) indicator of resistance; Reynolds number Re = 𝜌DU

𝜇
, where

D is the vessel diameter and U is the mean blood velocity.
In the following, we are going to illustrate the methodology adopted to assess the performance of these criteria, to

identify the most suitable ones to construct hybrid networks of 1D-0D vessels. This adaptive model selection strategy will
be then applied in Section 4.2 to two different arterial networks, the 37-artery network presented in Reference 1 and the
reduced ADAN56 model reported in Reference 33.

Before starting, we point out that most of the criteria considered above are defined in terms of known geometrical
and mechanical vessel properties. However, the mean flow rate Q through the vessel, as well as the average flow velocity
U, characterizing the nondimensional Reynolds number Re, are not known a-priori in all vessels of any generic network.
In the present work, for both arterial networks to which this methodology is to be applied in Section 4.2, the 37-artery
network and ADAN56 model, these quantities are computed for all vessels from the available reference solution, that is
the 1D results. However, in general, this approach may not be feasible, especially for highly complex and large networks
where computational results are not available a-priori.

Suppose to have an open arterial network with Ntot vessels (but this strategy can be also extended and applied
to venous and arterio-venous closed-loop networks). First of all, for each parameter defining a criterion , with  ∈{

l, r0,V0,C0,Q, r3
0 , r

4
0 ,Re

}
, we consider different 1D-0D thresholds 𝛾1 , … , 𝛾



p . To determine these thresholds, we look
at the distribution of the parameters of the vessels defining the different criteria: for each parameter, we choose a set
of 1D-0D thresholds such that, when moving from a threshold 𝛾h to the consecutive one 𝛾h+1, for h = 1, … , p − 1, the
number of 1D vessels that become 0D is sufficiently uniform. We do not require always the same number of vessels to be
changed from 1D to 0D, but at least a certain regularity in the sampling procedure. Then, for each criterion  and each
criterion threshold 𝛾h , with h = 1, … , p, the corresponding hybrid network is constructed as follows

vj =

{
0D, if j < 𝛾



h ,

1D, otherwise,
for j = 1, … ,Ntot, (41)

where j denotes the value of the parameter defining the criterion  in the jth vessel.
In addition, by performing a dimensional analysis of the 1D blood flow Equations (1) (see Reference 27 for details),

we have identified the following nondimensional coefficient, which characterizes the pressure term in the corresponding
nondimensional momentum balance equation and may also be used as model selection criterion

𝛤P =
T0

lU
c2
, (42)

where T0 is the time scale, l is the longitudinal spatial scale (i.e., the vessel length), U is the average flow velocity and c is
the wave speed. In particular, if we replace the wave speed c by a constant reference value c0, the above nondimensional
parameter 𝛤P can be rewritten in terms of the intravascular volume V0 and the compliance C0, as follows

𝛤P =
T0

𝜌lU
V0

C0
. (43)

As for the Reynolds number Re, calculating the value of the nondimensional pressure coefficient 𝛤P in each vessel of a
network also depends on available a-priori estimates of the average flow velocity U, as discussed above.
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GHITTI et al. 17

In expression (43) defining 𝛤P, the volume V0 is at the numerator, which means that smaller values of V0 correspond
to smaller values of 𝛤P, while, since the compliance C0 is at the denominator of the definition of 𝛤P, we have that smaller
values of C0 give larger values of the nondimensional coefficient 𝛤P. Therefore, given a network of vessels and chosen a
set of thresholds for the parameter 𝛤P, this specific model selection criterion will be tested “in both directions”. Namely,
for each threshold, two corresponding hybrid networks are constructed, according to both the rule defined in (41) (this
criterion will be called 𝛤P “from below”) and the following one (this criterion will be referred to as 𝛤P “from above”)

vj =

{
1D, if j < 𝛾



h ,

0D, otherwise,
for j = 1, … ,Ntot, (44)

with  = 𝛤P.
For each hybrid network available, the CPU time required by the simulation is recorded and the root mean square

(RMS) relative errors in the predicted results are computed with respect to the reference 1D results, as follows

𝜀
RMS
P =

√
√
√
√
√ 1

n

n∑

i=1

(
Pi − Pref

i

Pref
i

)2

, 𝜀
RMS
Q =

√
√
√
√
√
√
√
√

1
n

n∑

i=1

⎛
⎜
⎜
⎜
⎝

Qi − Qref
i

maxj

(
Qref

j

)

⎞
⎟
⎟
⎟
⎠

2

, (45)

where i = 1, … ,n are time points over the cardiac cycle at which the solution is sampled, P and Q are pressure and flow
results from the hybrid network, while Pref and Qref are reference pressure and flow results from the 1D network. In both
configurations, in the 1D vessels the solution is sampled at the midpoint of the vessel. Other choices are possible (like, for
example, averaged quantities over the 1D domain) and would not affect the conclusions of this work (results not reported
here).

Hence, CPU time and errors distributions, as well as efficiency plots can be generated and analyzed for each criterion
and compared between different criteria, in order to identify the model selection criteria providing the best trade-off
between errors and computational cost.

We emphasize that out goal here is to identify suitable a-priori model selection criteria to construct hybrid networks of
vessels. However, the choice of the specific threshold to be used for each parameter is not addressed, since it may depend
on problem-specific characteristics, the aim of the application in mind and thus the level of accuracy required by the
scientific question under consideration.

4 NUMERICAL EXPERIMENTS

In this section we perform and discuss a series of numerical experiments to validate the proposed coupling approaches,
verify their accuracy and test the adaptive model selection strategy devised in Section 3.4.

First, in Section 4.1 a family of convergence rate studies is carried out to check that the expected theoretical order
of accuracy of the 1D and hybrid numerical couplings, presented in Sections 3.3.1 and 3.3.3, respectively, is achieved.
In particular, we want to verify that the coupling to 0D vessels, as well as any type of boundary conditions, such
as the coupling to terminal Windkessel elements, do not affect and harm the expected order of accuracy in the 1D
vessels.

Next, the adaptive model selection strategy described in Section 3.4 to construct hybrid networks of vessels is applied
to two different arterial models. In Section 4.2.1, we test the proposed methodology to the 37-artery network presented in
Reference 1, an arterial tree made up of 37 silicone vessels representing the largest central systemic arteries of the human
vascular system. Then, in Section 4.2.2, this adaptive strategy is applied to the ADAN56 model reported in Reference 33,
which is a reduced version of the anatomically detailed arterial network (ADAN) model developed by Blanco et al.3,14

and contains the largest 56 vessels of the human arterial system.
Finally, in Section 4.3 the validity of the 1D junction model presented in Section 2.3.1 is carefully assessed by compar-

ing 1D simulation results for a simple bifurcation model to data obtained from a more complex 3D model.54 Numerical
predictions of flow rate, pressure, and changes in luminal radius are compared at several sites between the 1D and 3D
models. In particular, total pressure variation and energy dissipation are evaluated across the bifurcation, to validate the
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18 GHITTI et al.

proposed 1D coupling approach and prove its ability to correctly describe flow splitting and reproduce wave propagation
for the considered problem, while ensuring mass conservation and continuity of total pressure.

4.1 Convergence rate studies

We carry out a set of convergence rate studies in order to verify that the expected order of accuracy of the adopted numer-
ical schemes and, especially, of the proposed numerical coupling strategies is actually attained. We will also show that the
problem-specific choice of the boundary conditions to be prescribed at initial and terminal branches of a network does
not affect such order of accuracy. In particular, we have to check that both the 1D and the hybrid couplings preserve the
expected, global second-order of accuracy, in both space and time, in the 1D vessels.

To this end, in Sections 4.1.1–4.1.3, by applying the method of manufactured solutions, we construct three different
test problems for a modified nonlinear system of equations that is a perturbation of the original system via a source term
vector. In this way, the modified non-homogeneous nonlinear system has a smooth, exact solution which can be used to
assess the convergence rates of the numerical solution. Then, in Section 4.1.4, a convergence rate study is performed on
different hybrid configurations of an aortic bifurcation model.

In the first three test problems performed by adopting the method of manufactured solutions, the exact solution is
known, whereas, in the convergence rate study on the aortic bifurcation model, the exact solution is not known and
replaced by a numerical reference solution. In the 1D vessels, the error at the output time between the numerical and
the exact/reference solutions of each variable {A, q} is measured in L1-, L2-, and L∞-norms. The numerical solution is
first reconstructed over each computational cell by applying the ENO reconstruction procedure. Then, by following the
approach described in Reference 55, the integrals defining the error in the continuous L1- and L2-norms are approximated
using a suitable quadrature formula over each computational cell: in the first three tests where the exact solution is known,
we simply use the midpoint rule; for the aortic bifurcation model where a reference solution is available, we adopt the
Gauss–Lobatto quadrature formula with 7 integration points. In both cases, the error in L∞-norm is obtained by taking
the maximum error arising in any of the integration points in any of the cells.

4.1.1 Single vessel

We consider a single 1D vessel and we prescribe the following smooth function Q̂(x, t)

Q̂(x, t) =

(
Â(x, t)
q̂(x, t)

)

=

⎛
⎜
⎜
⎜
⎜
⎝

Ac + 𝛿AAc sin
(2𝜋

l
x
)

cos
(

2𝜋
T0

t
)

qc − 𝛿AAc l
T0

cos
(2𝜋

l
x
)

sin
(

2𝜋
T0

t
)

⎞
⎟
⎟
⎟
⎟
⎠

, (46)

where the quantities Ac and qc are average values, while the term 𝛿A represents the fluctuation around the average. The
smooth function Q̂(x, t) does not necessarily satisfy the original 1D blood flow system (6) or, equivalently (8), but by
inserting (46) into (8) we obtain a new non-homogeneous nonlinear system

𝜕tQ + A(Q)𝜕xQ = S(Q) + Ŝ(x, t), (47)

which represents a perturbation of the original system (8) and of which the function Q̂(x, t) is a smooth, exact solu-
tion. The new source term vector Ŝ(x, t), which depends on space x and time t only, arises from the fact that (46) is
not a solution of the original system (6) and its explicit expression can be calculated using algebraic manipulators (not
reported here).

Geometrical and mechanical vessel properties are: r0 = 1.4 cm, h = 0.5 mm, 𝜌 = 1.060 g/cm3, 𝜇 = 0 dyne s/cm2,
E = 1.2 ⋅ 107 dyne/cm2, P0 = pext = 0 dyne/cm2. Furthermore, we set: l = 102 cm, T0 = 1.0 s, Ac = A0 = 𝜋r2

0, 𝛿A = 0.1 and
qc = 100 ml/s. To perform the convergence rate study, we start from the coarsest mesh with M = 4 computational cells
and at each mesh refinement step we double the number of cells of the previous step. The output time of the simula-
tions is tend = 0.5 s and the time step is computed according to the CFL stability condition with CFL = 0.9. The initial
condition is given by the smooth function (46) evaluated at t = 0, the 1D vessel is evolved by using the second-order
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GHITTI et al. 19

T A B L E 1 Errors and empirical convergence rates obtained with the method of manufactured solutions for the single vessel test
problem, with both periodic boundary conditions and prescribed variable boundary conditions with Riemann invariants.

L1 L2 L∞ O(L1) O(L2) O(L∞)

Test M A (cm2) q (ml/s) A q A q A q A q A q

Single vessel 4 4.93e+00 8.74e+03 5.52e-01 8.78e+02 8.32e-02 1.00e+02 - - - - - -

+ periodic BCs 8 1.48e+00 1.20e+03 1.80e-01 1.24e+02 3.20e-02 1.66e+01 1.74 2.86 1.62 2.82 1.38 2.59

16 4.32e-01 2.82e+02 4.94e-02 2.99e+01 7.73e-03 5.09e+00 1.77 2.09 1.86 2.05 2.05 1.70

32 1.11e-01 6.94e+01 1.24e-02 7.50e+00 1.95e-03 1.51e+00 1.96 2.02 2.0 2.00 1.99 1.75

64 2.70e-02 1.71e+01 3.00e-03 1.86e+00 4.65e-04 2.66e-01 2.04 2.02 2.04 2.01 2.07 2.51

128 6.72e-03 4.26e+00 7.52e-04 4.64e-01 1.16e-04 7.44e-02 2.01 2.01 2.00 2.00 2.00 1.84

Single vessel 4 8.39e+00 1.06e+04 9.63e-01 1.25e+03 1.42e-01 1.74e+02 - - - - - -

+ Riemann inv. BCs 8 4.48e+00 1.87e+03 4.75e-01 2.37e+02 7.48e-02 4.43e+01 0.90 2.50 1.02 2.40 0.93 1.97

16 1.27e+00 4.46e+02 1.39e-01 5.42e+01 2.28e-02 1.23e+01 1.82 2.07 1.77 2.13 1.71 1.84

32 3.18e-01 1.09e+02 3.56e-02 1.32e+01 6.51e-03 3.30e+00 1.99 2.03 1.97 2.04 1.81 1.90

64 7.99e-02 2.70e+01 9.07e-03 3.19e+00 1.64e-03 7.02e-01 1.99 2.01 1.97 2.05 1.99 2.23

128 2.00e-02 6.71e+00 2.27e-03 7.93e-01 4.05e-04 1.75e-01 2.00 2.01 2.00 2.01 2.02 2.01

MUSCL-Hancock scheme presented in Section 3.1 and the same test problem is solved by prescribing two different sets of
boundary conditions. In the first case, periodic boundary conditions are assigned at both left and right extremities of the
vessel; instead, in the second case, at each boundary interface the value of one of the two variables, either cross-sectional
area or flow rate, is prescribed to be equal to the corresponding variable of the exact solution, while the other variable
is computed by imposing the continuity of the Riemann invariants across the boundary interface. Here, we will show
results obtained by prescribing the value of the flow rate q at the left interface and the value of the cross-sectional area A
at the right boundary, but other choices are also possible.

Errors between the numerical solution and the exact solution and empirical convergence rates are computed in
norms L1, L2, and L∞ and are reported in Table 1. The expected convergence rates are reached in both variables,
A and q, for all norms and regardless the choice of the prescribed boundary conditions. Indeed, from Table 1 we
conclude that errors are decreasing and the numerical solution is converging to the exact one with the correct and
expected order of accuracy also in the case where boundary conditions are assigned via the continuity of the Riemann
invariants.

4.1.2 Single vessel coupled to a Windkessel model

In this section, we extend the method of manufactured solutions described and adopted in the previous convergence
study of a single 1D vessel to the case of a 1D vessel coupled to an RCR Windkessel (WK) terminal model. Indeed, we
want to verify that the coupling between the 1D vessel and the three-element lumped-parameter model does not affect
and penalize the expected convergence rate in the 1D vessel.

The time evolution of the pressure Pwk(t) in the Windkessel is governed by the following linear ODE

⎧
⎪
⎨
⎪
⎩

d
dt

Pwk(t) =
Qin(t) − Qwk(t)

C
,

Qwk(t) =
Pwk(t) − Pout

R2

⇒
d
dt

Pwk(t) =
1
C

[

Qin(t) −
Pwk(t) − Pout

R2

]

, (48)

where Qwk(t) is the flow rate through the Windkessel model, the parameters C and R2 denote the compliance and the distal
resistance of the RCR model, respectively, Qin(t) is the time-dependent inflow prescribed at the inlet of the Windkessel and
Pout is a constant outflow pressure assigned at its outlet. In particular, if in the 1D vessel we still prescribe the following
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20 GHITTI et al.

smooth, exact function for the flow rate q̂(x, t)

q̂(x, t) = qc − 𝛿AAc l
T0

cos
(2𝜋

l
x
)

sin
(

2𝜋
T0

t
)

, (49)

then, for the mass conservation principle, the inflow Qin(t) to the Windkessel model will be given by the flow rate leaving
the 1D vessel, that is

Qin(t) = q̂(x = l, t) = qc − 𝛿AAc l
T0

sin
(

2𝜋
T0

t
)

, t ≥ 0. (50)

Equipped with the explicit expression (50) of Qin(t), by inserting (50) into the ODE (48) and integrating in time such
equation, with the help of the integrating factor e∫

1
R2C

dt = e
t

R2C it is possible to derive the analytical solution of the
three-element lumped-parameter model with prescribed time-dependent inflow Qin(t) and constant output pressure Pout.
After straightforward calculations, we get

P̂wk(t) = Pout + 𝛾̃e−
t

R2C + R2

{

qc − 𝛿AAcl
T2

0 + (2𝜋R2C)2

[

T0 sin
(

2𝜋
T0

t
)

− 2𝜋R2C cos
(

2𝜋
T0

t
)]}

, (51)

where 𝛾̃ is the integration constant obtained by imposing the initial condition P̂wk(t = 0) = Pwk,0 and given by

𝛾̃ = Pwk,0 − Pout − R2

[

qc + (𝛿AAcl)(2𝜋R2C)
T2

0 + (2𝜋R2C)2

]

. (52)

Together with the conservation of flow, we also want the continuity of pressure to be ensured at the vessel-Windkessel
coupling interface. Therefore, the exact, smooth function for the vessel cross-sectional area Â(x, t) must be chosen such
that

p(Â(x = l, t)) = Pin,wk(t) = P̂wk(t) + R1Qin(t) = P̂wk(t) + R1q̂(x = l, t), t ≥ 0, (53)

where R1 is the proximal resistance of the Windkessel model. Then, the smooth function for Â(x, t) proposed in (46) can
be appropriately modified as follows, so that condition (53) is satisfied for any t ≥ 0

Â(x, t) = A0

[
1 + 1

K

(
P̂wk(t) + R1q̂(x = l, t) − P0

)]2
+ 𝛿AAc sin

(2𝜋
l

x
)

cos
(

2𝜋
T0

t
)

, (54)

where the first term in (54) is the inverse of the tube law (3)–(4) (with m = 0.5, n = 0 and pext = 0) evaluated at Pin,wk(t)
as given in (53) and replaces the constant average quantity Ac. It easy to check that, for any t ≥ 0, the proposed function
(54) for Â(x, t) satisfies the pressure continuity condition (53).

Hence, the smooth functions (54) and (49) constitute the analytical solution to the modified nonlinear blood flow
system of the form (47), while the function (51) is the exact solution to the RCR Windkessel model governed by
equation (48). These functions have been constructed in a way that the coupling conditions between the two models,
namely conservation of mass and continuity of pressure, are exactly verified.

This test problem is applied to the upper thoracic aorta model reported in Reference 33, where the thoracic aorta from
the aortic root to the descending aorta is simulated as a single vessel with uniform properties coupled to a three-element
lumped parameter model of the rest of the systemic circulation. Geometrical and mechanical properties of both the vessel
and the Windkessel are taken from Reference 33 and summarized in Table 2. The tube law (3) is adopted with P0 = Pd
and A0 = Ad, where Pd and Ad are the diastolic pressure and the corresponding vessel cross-section. Furthermore, we
set: T0 = 1.0 s, Ac = Ad, 𝛿A = 0.1, qc = 0 ml/s and Pwk,0 = 0 dyne/cm2. To perform the convergence rate study, we refine
the mesh size in the 1D vessel by a factor of 2. The output time of the simulations is tend = 0.5 s and the time step is
computed according to the CFL stability condition with CFL = 0.9. The 1D vessel is solved by using the second-order
MUSCL-Hancock scheme, while the Windkessel model is evolved using RK4 method with the same time step of the 1D
vessel. At the left vessel boundary, we prescribe the flow rate and compute the cross-sectional area from the continuity of
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GHITTI et al. 21

T A B L E 2 Geometrical and mechanical properties of the model of the upper thoracic aorta coupled to an RCR Windkessel element.

Property Value

Length, l 24.137 cm

Radius at diastolic pressure, rd 1.2 cm

Area at diastolic pressure, Ad 𝜋r2
d =4.5 cm2

Wall thickness, h 1.2 mm

Blood density, 𝜌 1.060 g/cm3

Blood viscosity, 𝜇 0.04 dyne s/cm2

Velocity profile order, 𝜁 9

Young’s modulus, E 4.0⋅106 dyne/cm2

Diastolic pressure, Pd 9.46̂ ⋅104 dyne/cm2

External pressure, pext 0

Outflow pressure, Pout 0

WK resistance, R1 1.1752⋅102 dyne s/cm5

WK compliance, C 1.0163⋅10−3 cm5/dyne

WK resistance, R2 1.1167⋅103 dyne s/cm5

T A B L E 3 Errors and empirical convergence rates obtained with the method of manufactured solutions for the test problem consisting
of a single 1D vessel coupled to an RCR Windkessel element.

L1 L2 L∞ O(L1) O(L2) O(L∞)

Test M A (cm2) q (ml/s) A q A q A q A q A q

Single vessel + WK element 4 1.70e+00 1.28e+03 3.84e-01 2.62e+02 1.22e-01 6.14e+01 - - - - - -

8 5.54e-01 1.69e+02 1.17e-01 3.49e+01 2.97e-02 8.80e+00 1.62 2.92 1.71 2.91 2.04 2.80

16 1.41e-01 2.88e+01 3.05e-02 7.33e+00 8.62e-03 2.68e+00 1.97 2.55 1.94 2.25 1.78 1.71

32 3.64e-02 5.40e+00 8.17e-03 1.16e+00 2.40e-03 3.71e-01 1.96 2.41 1.90 2.66 1.84 2.86

64 9.14e-03 1.17e+00 2.04e-03 2.67e-01 6.26e-04 1.16e-01 1.99 2.20 2.00 2.12 1.94 1.68

128 2.29e-03 2.72e-01 5.13e-04 6.42e-02 1.58e-04 3.59e-02 2.00 2.11 2.00 2.06 1.99 1.69

the Riemann invariant; at the right boundary interface, which is coupled to the three-element Windkessel, we compute
the vessel unknown boundary state Q∗ = (A∗

, q∗) by setting

q∗ =
p(A∗) − Pwk

R1
, (55)

and imposing the continuity of the Riemann invariant to connect the unknown state Q∗ to the given state in the last
computational cell of the vessel. Once Q∗ has been calculated, we prescribe the inflow to the Windkessel element as
Qin = q∗. Since equation (48) for the pressure Pwk in the Windkessel, equipped with the initial condition Pwk(t = 0) = Pwk,0,
is solved numerically by using RK4 method, the coupling conditions between the 1D vessel and the terminal Windkessel
model are updated at each one of the four intermediate steps of RK4 scheme and the time integral of the boundary flux
in the 1D vessel is approximated with a procedure analogous to the one proposed in Section 3.3.3 for the hybrid coupling
between 1D and 0D vessels.

Errors between the numerical solution and the exact solution and empirical convergence rates for this convergence
study are summarized in Table 3. We observe that the numerical solution converges with the expected order in all norms,
proving that the coupling between the 1D vessel and the Windkessel model is able to preserve the correct order of accuracy
in the 1D vessel.
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22 GHITTI et al.

T A B L E 4 Errors and empirical convergence rates obtained with the method of manufactured solutions for the test problem consisting
of a closed-loop network of two 1D vessels connected at both extremities.

L1 L2 L∞ O(L1) O(L2) O(L∞)

Test M A (cm2) q (ml/s) A q A q A q A q A q

Two-vessel network 4 5.16e+00 8.49e+03 6.04e-01 8.59e+02 9.54e-02 1.03e+02 - - - - - -

8 1.48e+00 1.20e+03 1.81e-01 1.24e+02 3.22e-02 1.66e+01 1.80 2.82 1.74 2.79 1.57 2.63

16 4.32e-01 2.82e+02 4.94e-02 2.99e+01 7.73e-03 5.09e+00 1.78 2.09 1.87 2.05 2.06 1.70

32 1.11e-01 6.94e+01 1.24e-02 7.50e+00 1.95e-03 1.51e+00 1.96 2.02 2.00 2.00 1.99 1.75

64 2.70e-02 1.71e+01 3.00e-03 1.86e+00 4.65e-04 2.66e-01 2.04 2.02 2.04 2.01 2.07 2.51

128 6.72e-03 4.26e+00 7.52e-04 4.64e-01 1.16e-04 7.44e-02 2.01 2.01 2.00 2.00 2.00 1.84

4.1.3 Closed-loop two-vessel network

Here we reproduce the convergence test proposed by Müller and Blanco in Reference 30, which is performed over a
network of two 1D vessels connected at both extremities, thus forming a closed loop where each connection represents a
1D coupling problem.

The method of manufactured solutions is adopted: the smooth, exact function Q̂(x, t), all geometrical and mechanical
properties for both vessels and the other parameters, the simulation setup for the convergence study are those used in the
convergence test for the single vessel performed in Section 4.1.1.

Table 4 displays the errors between the numerical solution and the exact solution measured in the norms L1, L2, and
L∞ and the corresponding empirical convergence rates, for one of the two vessels of the closed-loop network. Also in this
test problem, the expected convergence rates are reached for all norms, thus demonstrating that the adopted 1D numerical
coupling strategy is second-order accurate.

4.1.4 Aortic bifurcation model

We consider a single bifurcation model, the aortic bifurcation model reported in Reference 33, which consists of a parent
vessel, the abdominal aorta, branching into two daughter vessels, the iliac arteries. The 1D and different hybrid config-
urations of this bifurcation model are constructed, to verify that the expected convergence rates are always achieved by
the proposed numerical schemes:

Test 1 All vessels: 1D;
Test 2 Aorta: 1D; L iliac: 0D, two-split (Pin,Qout)-type; R iliac: 0D, (Pin,Pout)-type;
Test 3 Aorta: 0D, (Qin,Qout)-type; L iliac: 1D; R iliac: 0D, two-split (Pin,Qout)-type;
Test 4 Aorta: 1D; L iliac: 1D; R iliac: 0D, (Pin,Pout)-type.

In the first test, the three coupled 1D vessels define a 1D coupling problem; in Tests 2 and 3, we have two different
arrangements of a junction connecting one 1D vessel and two 0D vessels; in the last test, a hybrid coupling problem
between two 1D vessels and one 0D vessel is to be solved.

The inflow boundary condition qin(t) prescribed at the inlet of the abdominal aorta is an in vivo signal taken from Ref-
erence 32 and available in the Supporting Information of Reference 33; both iliac arteries are coupled to RCR Windkessel
terminal models, with a methodology similar to the one described and adopted in Section 4.1.2 for the single 1D vessel
coupled to a Windkessel model. Geometrical and mechanical properties of this network are taken from Reference 33 and
listed in Table 5. Initial pressure and velocity are set to zero for all vessels, while initial cross-sectional areas corresponding
to zero pressure are computed from the tube law (3), with P0 = Pd and A0 = Ad.

To perform the convergence rate study, in all tests we set the maximum mesh size for the coarsest mesh to Δxmax = 2
cm. In each vessel of the bifurcation model, the number of computational cells corresponding to the mesh size Δxmax is
computed according to formula (31), which gives M1 = 5 in both parent and daughter vessels. Then, the number of cells
used in each mesh refinement step in each one of the vessels is always obtained by doubling the number of cells used in
the previous step. For each configuration, the exact solution is replaced by a reference solution computed on a very fine
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GHITTI et al. 23

T A B L E 5 Geometrical and mechanical properties of the aortic bifurcation model from Reference 33.

Property Aorta Iliac arteries

Length, l 8.6 cm 8.5 cm

Radius at diastolic pressure, rd 0.86 cm 0.60 cm

Area at diastolic pressure, Ad 2.3235 cm2 1.1310 cm2

Wall thickness, h 1.032 mm 0.72 mm

Blood density, 𝜌 1.060 g/cm3

Blood viscosity, 𝜇 0.04 dyne s/cm2

Velocity profile order, 𝜁 9

Young’s modulus, E 5.0⋅106 dyne/cm2 7.0⋅106 dyne/cm2

Diastolic pressure, Pd 9.46̂ ⋅104 dyne/cm2 9.46̂ ⋅104 dyne/cm2

External pressure, pext 0

Outflow pressure, Pout - 0

WK resistance, R1 - 6.8123⋅102 dyne s/cm5

WK compliance, C - 3.6664⋅10−5 cm5/dyne

WK resistance, R2 - 3.1013⋅104 dyne s/cm5

mesh with Mref = M1 ⋅ 28 = 1280 computational cells. For all tests, the output time is taken as tend = 20T0, with T0 = 1.1
s, which ensures that the periodic regime has been reached in all vessels of the network; a global time step is used and
computed as in (33), with CFL number CFL = 0.9.

We point out that, since 1D mesh sizeΔx and time stepΔt are related via the CFL stability condition and since we use
the same global time step for all 1D and 0D vessels, in the hybrid configurations (Test 2–4) the space refinement in the
1D vessels also implies a refinement of the time resolution in the 0D vessels.

Tables 6–9 display the computed errors and empirical convergence rates corresponding to the four configurations
considered of the aortic bifurcation model, for both cross-sectional area and flow rate and in all the three norms, L1, L2,
and L∞. For the 1D configuration, Table 6 shows that the errors decrease and the numerical solution converges with the
expected order in all vessels and for all norms, even with reduced number of computational cells discretizing the domain.
Hence, these results prove once again that the 1D numerical coupling presented in Section 3.3.1 is second-order accurate
in space and time and preserves the expected order in all 1D vessels joining at the junction. In the same way, for all the three
different hybrid configurations assessed, we conclude that the expected convergence rates are achieved in all 1D vessels
of each test and for all norms, as demonstrated in Tables 7–9. The hybrid numerical coupling proposed in Section 3.3.3 is
then proved to be second-order accurate, in both space and time, in solving the 1D vessels of the junction. In particular,
these results show that, by adopting the methodology proposed in Section 3.3.3 to solve the hybrid coupling at junctions
of 1D and 0D vessels, the accuracy of the solution in the 1D vessels is not affected by the coupling with 0D vessels.

In conclusion, this convergence study demonstrates that the expected convergence rates are achieved by both the 1D
and hybrid numerical coupling procedures introduced in Section 3.3 to solve networks of vessels.

4.2 Application of the adaptive model selection strategy

Here we apply the adaptive model selection strategy proposed and described in Section 3.4 to two different arterial models,
the 37-artery network presented in Reference 1 and the reduced ADAN56 model reported in Reference 33. Among all the
a-priori model selection criteria considered, we want to identify the ones with the best performance, namely those criteria
that, when employed to determine the most suitable model (1D/0D) to be used for each vessel of a network, provide the
best trade-off between computational cost and accuracy in the resulting hybrid network configurations.

We proceed as follows. For each arterial model, we look at the distribution of the parameters of the vessels defining the
different criteria, in order to choose, for each criterion, a set of 1D-0D thresholds to be used to construct the corresponding
hybrid configurations to test. As discussed in Section 3.4, these sets of 1D-0D thresholds are selected in a way to ensure
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24 GHITTI et al.

T A B L E 6 Test 1: Errors and empirical convergence rates obtained for the 1D configuration of the aortic bifurcation model.

L1 L2 L∞ O(L1) O(L2) O(L∞)

Vessel M A (cm2) q (ml/s) A q A q A q A q A q

Aorta (1D) 5 1.31e-04 9.09e-02 5.44e-05 3.92e-02 5.63e-05 5.02e-02 - - - - - -

10 3.48e-05 2.14e-02 1.49e-05 8.97e-03 1.71e-05 1.13e-02 1.91 2.09 1.87 2.13 1.72 2.16

20 8.77e-06 5.44e-03 3.82e-06 2.29e-03 4.36e-06 2.68e-03 1.99 1.98 1.96 1.97 1.97 2.07

40 2.26e-06 1.42e-03 1.01e-06 6.21e-04 1.06e-06 7.04e-04 1.96 1.93 1.92 1.88 2.03 1.93

80 5.81e-07 3.65e-04 2.75e-07 1.68e-04 3.98e-07 2.39e-04 1.96 1.97 1.88 1.89 1.42 1.56

L/R iliac (1D) 5 1.36e-05 1.09e-02 5.75e-06 4.22e-03 5.54e-06 3.48e-03 - - - - - -

10 2.95e-06 2.71e-03 1.29e-06 1.06e-03 1.52e-06 9.47e-04 2.21 2.01 2.16 1.99 1.86 1.88

20 6.90e-07 6.60e-04 3.01e-07 2.53e-04 3.84e-07 2.23e-04 2.09 2.04 2.10 2.07 1.99 2.08

40 1.71e-07 1.61e-04 7.51e-08 6.31e-05 1.02e-07 6.17e-05 2.01 2.03 2.00 2.00 1.91 1.86

80 4.68e-08 4.00e-05 2.05e-08 1.59e-05 2.75e-08 1.99e-05 1.87 2.01 1.88 1.99 1.89 1.63

T A B L E 7 Test 2: Errors and empirical convergence rates obtained for a hybrid configuration of the aortic bifurcation model.

L1 L2 L∞ O(L1) O(L2) O(L∞)

Vessel M A (cm2) q (ml/s) A q A q A q A q A q

Aorta (1D) 5 1.52e-04 6.75e-02 6.12e-05 2.87e-02 5.82e-05 3.52e-02 - - - - - -

10 3.75e-05 1.75e-02 1.55e-05 7.36e-03 1.69e-05 9.22e-03 2.02 1.95 1.98 1.96 1.78 1.93

20 1.02e-05 6.00e-03 4.43e-06 2.67e-03 5.23e-06 2.73e-03 1.88 1.54 1.81 1.46 1.69 1.76

40 2.66e-06 1.36e-03 1.10e-06 6.04e-04 1.21e-06 6.16e-04 1.94 2.15 2.01 2.14 2.12 2.15

80 6.43e-07 3.55e-04 2.67e-07 1.57e-04 2.90e-07 2.03e-04 2.05 1.93 2.04 1.95 2.06 1.60

T A B L E 8 Test 3: Errors and empirical convergence rates obtained for a hybrid configuration of the aortic bifurcation model.

L1 L2 L∞ O(L1) O(L2) O(L∞)

Vessel M A (cm2) q (ml/s) A q A q A q A q A q

L iliac (1D) 5 1.42e-05 8.32e-03 6.57e-06 3.33e-03 5.39e-06 3.28e-03 - - - - - -

10 3.51e-06 1.74e-03 1.56e-06 7.93e-04 1.61e-06 1.14e-03 2.02 2.25 2.07 2.07 1.74 1.52

20 8.51e-07 4.43e-04 3.76e-07 2.01e-04 4.09e-07 2.72e-04 2.04 1.98 2.05 1.98 1.98 2.07

40 2.12e-07 1.10e-04 9.40e-08 5.08e-05 1.15e-07 7.48e-05 2.01 2.01 2.00 1.98 1.84 1.86

80 5.18e-08 2.77e-05 2.32e-08 1.29e-05 2.91e-08 2.06e-05 2.03 1.99 2.02 1.98 1.98 1.86

that, for each criterion, the number of 1D vessels that become 0D when moving from a threshold to the consecutive one is
kept quite uniform and regular. For the numerical experiments performed in this section, the specific thresholds adopted
to test the different a-priori model selection criteria are reported in Tables 11 and 12 for the 37-artery network, in Tables 14
and 15 for ADAN56 model.

For both the 37-artery network and ADAN56 model, the characteristic mesh spacing for 1D vessels is Δxmax = 1 mm,
with all vessels discretized by at least two computational cells. The CFL number is set to 0.9 for all simulations and,
at each time level n, a global time step Δtn is used and computed as in (33). For the 0D simulations, the time step is
constant and set to Δtm = 10−4 s, which ensures the stability of the adopted numerical method to solve 0D vessels and
the mesh independence of the solution, for both the 37-artery network and ADAN56 model. The output time tend is not
fixed, but each simulation is run until periodic regime is reached in all vessels of the network, where periodicity is defined
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GHITTI et al. 25

T A B L E 9 Test 4: Errors and empirical convergence rates obtained for a hybrid configuration of the aortic bifurcation model.

L1 L2 L∞ O(L1) O(L2) O(L∞)

Vessel M A (cm2) q (ml/s) A q A q A q A q A q

Aorta (1D) 5 1.45e-04 9.74e-02 6.04e-05 4.16e-02 6.18e-05 5.20e-02 - - - - - -

10 3.77e-05 2.28e-02 1.62e-05 9.67e-03 2.05e-05 1.15e-02 1.94 2.10 1.90 2.11 1.59 2.17

20 9.63e-06 5.76e-03 4.20e-06 2.46e-03 5.23e-06 2.69e-03 1.97 1.98 1.95 1.97 1.97 2.10

40 2.47e-06 1.49e-03 1.12e-06 6.64e-04 1.37e-06 7.36e-04 1.96 1.95 1.91 1.89 1.94 1.87

80 6.22e-07 3.81e-04 2.92e-07 1.76e-04 4.06e-07 2.42e-04 1.99 1.97 1.94 1.92 1.75 1.61

L iliac (1D) 5 1.26e-05 8.87e-03 5.45e-06 3.56e-03 5.70e-06 3.73e-03 - - - - - -

10 2.88e-06 2.68e-03 1.27e-06 1.02e-03 1.32e-06 8.02e-04 2.13 1.73 2.10 1.80 2.11 2.22

20 7.01e-07 6.61e-04 3.05e-07 2.61e-04 3.33e-07 1.91e-04 2.04 2.02 2.06 1.96 1.98 2.07

40 1.82e-07 1.69e-04 7.68e-08 6.80e-05 8.47e-08 6.10e-05 1.94 1.96 1.99 1.94 1.98 1.65

80 4.50e-08 4.28e-05 1.90e-08 1.75e-05 2.22e-08 1.97e-05 2.02 1.98 2.01 1.96 1.93 1.63

T A B L E 10 Main model parameters of the 37-artery network.

Property Value

Blood density, 𝜌 1.050 g/cm3

Blood viscosity, 𝜇 0.025 dyne s/cm2

Velocity profile order, 𝜁 9

Young’s modulus, E 1.2⋅107 dyne/cm2

Diastolic pressure, Pd 0

External pressure, pext 0

Outflow pressure, Pout 4.2663⋅103 dyne/cm2 (3.2 mmHg)

as the L∞-distance between the normalized solutions over two consecutive cardiac cycles to be smaller than a tolerance
of 10−3. In the 0D and hybrid configurations of both arterial models, the 0D vessel type to assign to each 0D vessel is
chosen as follows: (Qin,Qout)-type if the 0D vessel is the first vessel at the inlet of the network; (Pin,Pout)-type if the 0D
vessel is a terminal vessel, coupled either to a single-resistance or to an RCR Windkessel model; two-split (Pin,Qout)-type
0D vessel otherwise. For each criterion  and each criterion threshold 𝛾h , h = 1, … , p, the RMS relative errors between
the computational results obtained from the hybrid network configuration and the reference 1D results are computed as
explained in Section 3.4 according to formulae (45).

All simulations were executed in Python, running on a Linux Ubuntu 18.04 machine with AMD® RyzenTM

ThreadripperTM 3990X Processor (Base Clock: 2.9 GHz, Max. Boost Clock: up to 4.3 GHz, 64 CPU Cores/128 threads, total
L3 cache: 256 MB). In particular, to retrieve the CPU times, each simulation was run over a single cardiac cycle for five
consecutive times, the CPU time of each execution was recorded and then the mean CPU time was computed by taking
the average between the different values obtained. Furthermore, the coefficient of variation, defined as the ratio of the
standard deviation to the mean CPU time, was computed for each set of five CPU times to verify that the variability of the
sample in relation to the mean CPU time value was negligible (results not reported).

4.2.1 37-arteries network

We consider the arterial network presented in Reference 1, for which in vitro pressure and flow measurements were
acquired at multiple locations. The tree is made up of 37 silicone vessels representing the largest central systemic arteries
of the human vascular system. At the inlet of the ascending aorta, a periodic flow measured in the experiment is prescribed
as a periodic inflow boundary condition. Outflow boundary conditions are prescribed by coupling terminal vessels to
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26 GHITTI et al.

(A)

(B)

F I G U R E 2 Efficiency plots generated for the 37-artery network with CPU time per cardiac cycle versus (A) mean and (B) maximum
RMS relative errors for both pressure and flow rate, to assess and compare the performance of the different a-priori model selection criteria
tested.

single-resistance models, characterizing the peripheral resistance to the flow. In all vessels, whether 1D or 0D, zero pres-
sure and flow rate are imposed as initial conditions, and the cross-sectional area corresponding to the zero initial pressure
is computed from the tube law (3), for each 1D vessel, or (15), for each 0D vessel, with reference pressure P0 = Pd = 0 and
cross-sectional area A0 = Ad. General model parameters of this arterial network are summarized in Table 10, while for
a complete set of parameters, we refer the reader to References 1 and 2 and to the Supplementary Information of Refer-
ence 33. We remark that, differently from the just mentioned papers, in this work 1D vascular segments do not include
vessel tapering, but the reference constant radius r0 is computed as the mean value between the cross-sectional radii at
the inlet and outlet of the vessel, rin and rout, respectively.
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GHITTI et al. 29

Figure 2 displays the efficiency plots obtained for the 37-artery network showing CPU times, on the x-axis, versus mean
and maximum RMS relative errors, on the y-axis, in both pressure and flow rate. In each plot, each curve of a different color
corresponds to a different criterion tested, while, on each curve, each marker corresponds to a different 1D-0D threshold
considered for that parameter. The CPU time axis is inverted: all efficiency curves arise from the common left lower spot,
which corresponds to the 1D simulation, for which we have zero errors and maximum CPU time, and merge into the
common right upper spot, which corresponds to the 0D simulation, for which we obtain the largest errors and the smallest
computational cost. As we move from the 1D to the 0D network, passing through different sets of hybrid configurations,
the number of 1D vessels in the network decreases, and so does the total number of 1D computational cells, resulting in
an increasing reduction in the computational cost of the simulations and, on the other hand, a progressive increase in
pressure and flow errors. By looking at the efficiency plots corresponding to the mean RMS errors (top row of Figure 2),
we conclude that, at least for this arterial network, the intravascular volume V0 (in green) and the vessel compliance C0
(in violet) can be identified as the most suitable a-priori model selection criteria to construct hybrid networks of 1D-0D
vessels, since they provide the best trade-off between computational cost of the simulations and accuracy of the results.
Indeed, for several thresholds, at least the first 3/4 thresholds for both volume V0 and compliance C0, as the CPU times
decrease, errors in both pressure and flow rate are not increasing too much, but remain within a reasonable range, still
ensuring a good level of accuracy in the predicted results. Volume and compliance efficiency curves are considerably
below the curves obtained for all the other model selection criteria, for which the reduction in terms of computational
cost is always associated to a more significant increase in the errors magnitude. Mean RMS errors are relevant since
they give a general overview of the entire network performance. Moreover, these observations are also confirmed by the
efficiency plots corresponding to the maximum RMS errors (bottom row of Figure 2), where intravascular volume and
vessel compliance stand again as the most convenient model selection criteria. Since we are looking at the maximum RMS
errors over the entire arterial model, the error magnitude is quite higher, especially in the flow rate results, than the mean
RMS errors, but the obtained curve trend is very similar to that just described for the mean RMS errors efficiency plots.

The sets of 1D-0D thresholds used for the different a-priori model selection criteria and the features of each hybrid
network configuration constructed (total 1D length and total number of 1D computational cells) are reported in Table 11.
For each model selection criterion and each criterion threshold, these tables also summarize precise values of: average
CPU time per cardiac cycle and speed-up with respect to the 1D simulation, measured as the ratio between the CPU
times of the 1D and hybrid simulations; mean and maximum RMS relative errors (in percent) in the predicted pressure
and flow results, with respect to the reference 1D solution, with indication also of the standard deviation for mean RMS
errors. CPU time and error values presented in Table 11 support the analysis and observations from the efficiency plots
in Figure 2 discussed above.

Results for the nondimensional coefficient𝛤P, tested as model selection criterion both “from below” and “from above”,
are reported in Table 12 and efficiency plots corresponding to this parameter are shown in Figure 3 compared to that of the
vessel compliance and the intravascular volume. These efficiency plots demonstrate that the nondimensional coefficient
𝛤P does not represent a valid and good model selection criterion to construct hybrid networks of vessels, as confirmed
also by precise values of CPU times and RMS relative errors detailed in Table 12. Indeed, when adopting this criterion
both “from below” and “from above” to create a hybrid configuration of the 37-artery network, its performance is clearly
not as good as that of the vessel compliance C0 and the intravascular volume V0. In particular, if we look at the mean
RMS errors, we observe a steep increase in both pressure and flow errors even with the first thresholds, meaning that
also a small gain in terms of CPU time would come at the cost of a significant loss in terms of accuracy. In addition, since
according to its definition (43) 𝛤P is directly related to volume V0, but inversely related to the compliance C0, neither the
criterion 𝛤P “from below” nor the criterion 𝛤P “from above” can provide a unified model selection criterion in which both
volume and compliance are embedded.

For this arterial network, the vessel compliance C0 and the intravascular volume V0 have been identified as the best
a-priori model selection criteria to be adopted to construct hybrid network configurations, where a good balance between
computational efficiency and accuracy is accomplished. Thus, we look now at some qualitative comparisons between
results obtained from the 1D and 0D models and some hybrid configurations of the 37-artery network, generated by using
some 1D-0D thresholds either for C0 or for V0.

Figure 4 illustrates the computational results obtained for a hybrid configuration of the 37-artery network constructed
using the intravascular volume V0 as model selection criterion with a 1D-0D threshold of V0 = 6 cm3. The total 1D length
of this hybrid configuration, given by the sum of the lengths of the 1D vessels, is reduced from 524.9 cm (the total 1D length
of the 1D network) to 177.7 cm; the CPU time required to perform the 1D simulation with mesh-independent results
is about 5246.76 s, while the CPU time demanded for the hybrid simulation is considerably reduced to 983.01 s, with a
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30 GHITTI et al.

(A)

(B)

F I G U R E 3 Efficiency plots generated for the 37-artery network with CPU time per cardiac cycle versus (A) mean and (B) maximum
RMS relative errors for both pressure and flow rate, to assess the performance of the two a-priori model selection criteria based on the
nondimensional coefficient 𝛤P and compare them to the results obtained from the volume and compliance criteria.

speed-up of about 5.3. Clearly, the highest speed-up is obtained with the 0D configuration, which is simulated with a CPU
time per cardiac cycle of about 73.92 s, corresponding to a speed-up of 71 times with respect to the 1D simulation, but
with a much more significant loss in terms of accuracy of the solution. Indeed, in the results for the hybrid configuration,
mean RMS errors are around 1.3% for pressure and 5.7% for flow rate, while, in the 0D network, they are almost doubled
with values around 2.3% for pressure and 10.5% for flow rate; similarly, maximum RMS errors remain smaller than 3.5%
for pressure and smaller than 10% for flow rate in the hybrid network configuration, while, for the 0D results, maximum
errors rise up to almost 5.5% for pressure and 32% for flow rate. In Figure 4, computational results obtained from the 1D,

 10970363, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fld.5149 by C

ochraneItalia, W
iley O

nline L
ibrary on [24/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GHITTI et al. 31

T A B L E 12 Results obtained by applying the proposed adaptive model selection strategy to the 37-artery network.

Tot.1D
Mean
CPU Speed-up

Mean
𝜺

RMS
P (%)

Mean
𝜺

RMS
Q (%)

Criterion 
Thresh.
𝜸


Tot.1D
length
(cm) cells time (s) wrt 1D (std.dev) (std.dev)

Max
𝜺

RMS
P (%)

Max
𝜺

RMS
Q (%)

𝛤P “from below” 1.2e+03 393.2 3933 3995.64 1.3 6.96e-01 (7.19e-01) 3.25 (1.69) 3.33 7.13

1.5e+03 259.9 2600 2709.32 1.9 1.16 (8.71e-01) 5.18 (1.58) 3.29 8.07

2.5e+03 129.0 1291 1420.85 3.7 1.68 (1.29) 6.86 (2.19) 4.54 1.10e+01

5.5e+03 46.6 467 660.61 7.9 1.92 (1.23) 9.08 (5.5) 4.50 3.25e+01

1.0e+04 13.4 135 305.64 17.2 2.23 (1.41) 1.05e+01 (5.36) 5.46 3.32e+01

𝛤P “from above” 1.0e+04 511.5 5115 3089.11 1.7 1.50e-01 (6.52e-02) 9.27e-01 (4.86e-01) 3.07e-01 3.07

5.5e+03 478.3 4783 2903.13 1.8 7.80e-01 (5.18e-01) 4.34 (1.99) 1.97 1.18e+01

2.5e+03 395.9 3959 2363.64 2.2 1.21 (6.82e-01) 6.90 (5.11) 2.71 2.61e+01

1.5e+03 265.0 2650 1617.22 3.2 1.67 (7.47e-01) 9.19 (5.51) 3.22 3.17e+01

1.2e+03 131.7 1317 723.17 7.3 1.99 (1.13) 9.86 (5.36) 5.16 3.22e+01

Note: Continuation of Table 11.

0D and hybrid configurations of the 37-artery network are compared for two vessels: the left iliac-femoral I (vess. 31),
which is a 1D vessel in the hybrid network, and the left ulnar (vess. 14), which is a 0D vessel in the hybrid network.

The computational results displayed in Figure 5 are obtained from a hybrid network configuration constructed using
the vessel compliance C0 a model selection criterion with a 1D-0D threshold of C0 = 1.5 ⋅ 10−5 cm5/dyne. Here, the total
1D length of the hybrid configuration is 158.2 cm and the CPU time demanded to perform the simulation is about 877.42 s,
with a speed-up of 6 times with respect to the 1D simulation. As expected, the improvement in terms of computational cost
is not as relevant as for the 0D network, but this is balanced by the good level of accuracy preserved in the predicted results:
in the results for the hybrid network, mean RMS errors are around 1.3% for pressure and 5.9% for flow rate, maximum
RMS errors are smaller than 3.5% for pressure and smaller than 13.5% for flow rate. In Figure 5, the computational results
obtained from this hybrid configuration of the 37-artery network are compared to 1D and 0D results for two vessels: the
abdominal aorta I (vess. 23), which is a 1D vessel in the hybrid network, and the right anterior tibial (vess. 34), which is
a 0D vessel in the hybrid network.

As confirmed by the computed CPU times and errors, Figures 4 and 5 show that both hybrid configurations are still
able to produce good approximations of pressure and flow waveforms and that the essential features, shape, and ampli-
tude, of these waves are well-captured, including the systolic pressure peak. Even if some accuracy is lost with respect to
the 1D results, a great improvement is obtained with respect to the 0D results. In fact, when compared to the reference
1D results, in the 0D results we frequently observe oscillations that are amplified and/or delayed, curve peaks that are
under-/over-estimated in both pressure and flow waveforms. These phenomena are significantly reduced and corrected
in the results produced by the hybrid network configuration. This analysis is valid for both 1D and 0D vessels of the two
hybrid networks; in particular, the nonlinearity included in the 0D models, through the nonlinear pressure-area relation
and the nonlinear parameters L and R, as demonstrated in Reference 27, strongly improves the ability of these 0D mod-
els to approximate pressure and flow waveforms in 0D vessels. Overall, even if the differences are not negligible, there
is good agreement between the results predicted by the hybrid network and the reference 1D results, and the reasonable
loss in terms of accuracy is balanced by the considerable improvement in terms of computational efficiency.

We observe that, in both the hybrid networks considered, the one obtained with the volume threshold of V0 = 6 cm3

and the other constructed with the compliance threshold of C0 = 1.5 ⋅ 10−5 cm5/dyne, the entire aorta is 1D, except for
just one very short aortic segment, the abdominal aorta III, which is 0D. Hence, the very good agreement of these results
with the reference, 1D results is likely ensured also by the fact that, with these model selection criteria and these specific
1D-0D thresholds, the main aortic vessels are kept 1D and thus, pressure and flow distributions in these vessels are still
reproduced with a very good level of accuracy. When applying this methodology to more complex networks of vessels,
specific vessels or portions of the network, like the aortic trunk, could be enforced to be 1D and the chosen a-priori
model selection criteria would be then applied to all the other vessels. This was not done here, in order to blindly test the
performance of the different model selection criteria.
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32 GHITTI et al.

(A)

(B)

F I G U R E 4 Qualitative comparison between computational results for flow rate and pressure obtained from the 1D (dashed black line),
the 0D (blue dashed-dotted line), and a hybrid (red continuous line) configuration of the 37-artery network, where the last is constructed
using the volume V0 as model selection criterion, with a 1D-0D threshold of V0 = 6 cm3. (A) Left iliac-femoral I (1D); (B) left ulnar (0D)

4.2.2 Reduced ADAN56 model

The second arterial network to which we apply the proposed adaptive model selection strategy is a reduced version of the
anatomically detailed arterial network (ADAN) model developed by Blanco et al..3,14 This model, hereafter referred to as
ADAN56 model, was presented in Reference 33 and contains the largest 56 vessels of the human arterial system.

At the inlet of the aorta, a periodic inflow boundary condition is prescribed, whose inflow signal is given in the Sup-
plementary Information of Reference 33; terminal vessels are coupled to RCR Windkessel models. In the tube law (3),
or equivalently (15) for 0D vessels, we set P0 = Pd = 105 dyne/cm2 and A0 = Ad; in each vessel, zero flow rate, diastolic
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GHITTI et al. 33

(A)

(B)

F I G U R E 5 Qualitative comparison between computational results for flow rate and pressure obtained from the 1D (dashed black line),
the 0D (blue dashed-dotted line), and a hybrid (red continuous line) configuration of the 37-artery network, where the last is constructed
using the compliance C0 as model selection criterion, with a 1D-0D threshold of C0 = 1.5 ⋅ 10−5 cm5/dyne. (A) Abdominal aorta I (1D); (B)
right anterior tibial (0D)

pressure Pd and corresponding cross-sectional area Ad are imposed as initial conditions. Main model parameters for this
arterial network are given in Table 13, while the full model parametrization is included in Reference 33. Also here, as for
the 37-artery network, we do not consider vessel tapering, but each vessel is characterized by a constant reference radius
r0.

Figure 6 shows the efficiency plots obtained for the ADAN56 model displaying CPU times, on the inverted x-axis,
versus mean and maximum RMS relative errors, on the y-axis, in both pressure and flow rate results. By examining
the efficiency plots corresponding to the mean RMS errors (top row of Figure 6), we conclude that, as for the 37-artery
network, also for this arterial model the intravascular volume V0 (in green) and the vessel compliance C0 (in violet) provide
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34 GHITTI et al.

T A B L E 13 Main parameters of the reduced ADAN56 model.

Property Value

Blood density, 𝜌 1.040 g/cm3

Blood viscosity, 𝜇 0.04 dyne s/cm2

Velocity profile order, 𝜁 2

Young’s modulus, E 2.25⋅106 dyne/cm2

Diastolic pressure, Pd 105 dyne/cm2

External pressure, pext 0

Outflow pressure, Pout 0

a very good trade-off between computational cost of the simulations and errors in the predicted results, thus supporting
the choice of these two criteria as the most suitable a-priori model selection criteria to construct hybrid networks of vessels.
Volume and compliance efficiency curves show that several increasing 1D-0D thresholds of both parameters produce
hybrid configurations of ADAN56 model which can be simulated at a lower computational cost, but still preserving a good
level of accuracy in the solution and with small RMS errors. These observations are also confirmed by the efficiency plots
corresponding to the maximum RMS errors (bottom row of Figure 6), where, even if not as clearly as for the 37-artery
network, volume V0 and compliance C0 can still be distinguished among the other criteria for their quite satisfactory job.
It is interesting to note that, for this arterial network, also the vessel radius r0 and its third and fourth power, r3

0 and r4
0,

respectively, turn out to be good model selection criteria, in the sense that their performance in terms of trade-off between
computational efficiency and accuracy is comparable to that of V0 and C0. This was not observed for the 37-artery network,
and this is not surprising given that they are two very different networks, especially with ADAN56 model based on solid
geometric and anatomic considerations. On the other hand, length, mean flow rate, and Reynolds number appear to be
the criteria with the worst performance, since the gain obtained in terms of computational efficiency comes always with a
significant loss in terms of accuracy of the solution, with errors that considerably increase in both flow rate and pressure.
However, since we are looking for general criteria that can be applied to any network of vessels, we conclude that the
intravascular volume V0 and vessel compliance C0 can be chosen as a-priori model selection criteria defining the adaptive
model selection strategy proposed in Section 3.4 to construct hybrid networks of 1D-0D vessels.

The sets of 1D-0D thresholds used for the different a-priori model selection criteria and the features of each hybrid
network configuration constructed (total 1D length and total number of 1D computational cells) are summarized in
Table 14, together with precise values of average CPU times per cardiac cycle, mean (with standard deviation) and max-
imum RMS relative errors (in percent). Once again, also for this arterial model, CPU time and error values reported in
Table 14 validate the observations and outcomes from the efficiency plots presented in Figure 6 discussed above.

Results and efficiency plots for the nondimensional coefficient 𝛤P, tested as model selection criterion both “from
below” and “from above”, are presented in Table 15) and in Figure 7, respectively. Analysis and considerations on the
performance of the parameter 𝛤P and its use as a-priori model selection criterion “from below” and/or “from above” are
the same as for the 37-artery network.

Figures 8 and 9 depict the computational results obtained for a hybrid configuration of ADAN56 model constructed
using the intravascular volume V0 as model selection criterion with a 1D-0D threshold of V0 = 3.5 cm3. The total 1D length
of the 1D network is 888.874 cm and in the hybrid configuration is reduced to 161.583 cm. The CPU times demanded to
perform the 1D and 0D simulations are about 5382.75 and 201.17 s, respectively, with a 1D to 0D computational time ratio
of about 26.8; on the other hand, the CPU time required by the hybrid network configuration is around 935.63 s, with
a speed-up of almost 6 times, which is a quite remarkable improvement. A good level of accuracy of the solution is also
preserved: in the results for the hybrid configuration, mean RMS errors are around 1.6% for pressure and 4.7% for flow
rate, while, in the 0D network, they are doubled with values around 3.2% for pressure and 9.5% for flow rate. Similarly,
maximum RMS errors remain smaller than 6% for pressure and smaller than 16% for flow rate in the hybrid network
configuration, while, for the 0D results, maximum errors jump up to almost 12% for pressure and 38% for flow rate.
Computational results obtained from the 1D, 0D and hybrid configurations of ADAN56 model are compared in Figure 8
for the aortic arch IV (vess. 19a) and the abdominal aorta V (vess. 47), which are both 1D vessels in the hybrid network,
and in Figure 9 for the right internal iliac (vess. 51) and the right posterior tibial (vess. 55c), which are both 0D vessels in
the hybrid network.
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GHITTI et al. 35

(A)

(B)

F I G U R E 6 Efficiency plots generated for ADAN56 model with CPU time per cardiac cycle versus (A) mean and (B) maximum RMS
relative errors for both pressure and flow rate, to assess and compare the performance of the different a-priori model selection criteria tested.

The computational results displayed in Figures 10 and 11 are obtained from a hybrid network configuration con-
structed using the vessel compliance C0 a model selection criterion with a 1D-0D threshold of C0 = 7 ⋅ 10−6 cm5/dyne. The
total 1D length of the hybrid configuration is 337.697 cm and the CPU time required by the simulation is about 1957.06
s, with a speed-up of around 2.8 times with respect to the 1D simulation. Here, the speed-up is moderate with respect
to the previous hybrid configuration, but still the accuracy preserved in the predicted results is quite satisfactory: in the
results for the hybrid network, mean RMS errors are around 1.3% for pressure and 3.8% for flow rate, while maximum
RMS errors are smaller than 4.5% for pressure and smaller than 16.5% for flow rate. Results produced by the different
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38 GHITTI et al.

T A B L E 15 Results obtained by applying the proposed adaptive model selection strategy to the ADAN56 model.

Tot.1D
Mean
CPU Speed-up

Mean
𝜺

RMS
P (%)

Mean
𝜺

RMS
Q (%)

Criterion 
Thresh.
𝜸


Tot.1D
length
(cm) cells time (s) wrt 1D (std.dev) (std.dev)

Max
𝜺

RMS
P (%)

Max
𝜺

RMS
Q (%)

𝛤P “from below” 5.0e+02 637.180 6410 3890.71 1.4 1.02 (8.79e-01) 3.29 (2.17) 4.46 9.52

1.2e+03 368.513 3714 2383.80 2.3 1.53 (1.11) 4.75 (2.49) 5.37 1.67e+01

1.8e+03 216.016 2181 1552.66 3.5 2.74 (2.32) 8.10 (4.35) 1.03e+01 2.44e+01

4.0e+03 137.147 1385 1082.76 5.0 2.96 (2.67) 8.73 (5.04) 1.15e+01 2.99e+01

1.0e+04 103.401 1043 855.10 6.3 3.08 (2.71) 9.01 (5.08) 1.17e+01 2.89e+01

1.6e+04 24.199 246 348.43 15.5 3.19 (2.70) 9.32 (5.31) 1.18e+01 2.89e+01

𝛤P “from above” 1.6e+04 864.675 8685 5330.20 1.0 1.13e-01 (1.77e-01) 4.75e-01 (1.44) 1.34 1.27e+01

1.0e+04 785.473 7888 4891.78 1.1 3.28e-01 (4.88e-01) 1.33 (3.17) 2.42 1.58e+01

4.0e+03 751.727 7546 4553.05 1.2 6.11e-01 (4.37e-01) 2.16 (3.06) 2.41 1.57e+01

1.8e+03 672.858 6750 4133.75 1.3 1.14 (8.40e-01) 3.57 (3.42) 3.11 1.80e+01

1.2e+03 520.362 5217 3224.80 1.7 2.70 (2.33) 7.98 (4.76) 8.74 2.55e+01

5.0e+02 251.694 2521 1546.75 3.5 3.06 (2.73) 8.86 (5.44) 1.22e+01 3.43e+01

Note: Continuation of Table 14.

network configurations are compared in Figure 10 for the abdominal aorta III (vess. 43) and the left popliteal I (vess. 59
b), which are both 1D vessels in the hybrid network, and in Figure 11 for the right radial (vess. 8) and the right anterior
tibial (vess. 4), which are both 0D vessels in the hybrid network.

In accordance with computed CPU times and errors, from Figures 8–11 we conclude that, in the two hybrid con-
figurations of ADAN56 model considered, pressure and flow profiles are reproduced with a very good level of accuracy
and agreement with the reference 1D results, in both 1D and 0D vessels. Overall, shape and amplitude of pressure and
flow waveforms are well-approximated, preserving all their characteristic features. The evident delay of both pressure
and flow waveforms, observed in certain 0D vessels of the 0D configuration, with respect to the 1D reference waves,
is almost absent in the results obtained using the hybrid configuration (right anterior tibial in Figure 9, left popliteal
I in Figure 10, right anterior tibial in Figure 11, for instance). In these results, flow and pressure systolic peaks are
very well-captured also in the 0D vessels, with a considerable improvement with respect to the 0D results, which,
in general, present larger over-/under-estimated systolic peaks (abdominal aorta V in Figure 8, right radial and right
anterior tibial in Figure 11, for instance). Furthermore, amplified or shifted wave oscillations are observed in the 0D
results when compared to those obtained from the hybrid network, with respect to the reference 1D solution (aor-
tic arch IV and abdominal aorta V in Figure 8, right internal iliac in Figure 9, abdominal aorta III in Figure 10, for
instance).

Remark 3. A feature of ADAN model is that, in the purely elastic case where viscoelastic properties of vessel walls are
neglected, when refining the mesh to obtain mesh-independent results, very small new waves arise in the solutions, in
the pressure and flow waveforms, which are not spurious oscillations. In the hybrid network configurations of ADAN56
model considered so far, the new small waves that are observed may be also generated by the wave reflection due to the
strong interaction between 1D and 0D models.

Remark 4. For both arterial models considered, the characteristic mesh spacing for 1D vessels was set to Δxmax = 1 mm,
to ensure the mesh independence of the 1D results. The very fine mesh size also restricts the global time step used to solve
the entire network, thus contributing to increase the computational cost of the simulations.

4.3 On the validity of 1D junction/bifurcation models

The flow at a junction/bifurcation of two or more vessels is intrinsically three-dimensional and local flow details can
be reproduced only using a local 3D description of flow. However, in the present work, as well as, more generally, in
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GHITTI et al. 39

(A)

(B)

F I G U R E 7 Efficiency plots generated for ADAN56 model with CPU time per cardiac cycle versus (A) mean and (B) maximum RMS
relative errors for both pressure and flow rate, to assess the performance of the two a-priori model selection criteria based on the
nondimensional coefficient 𝛤P and compare them to the results obtained from the volume and compliance criteria.

the one-dimensional blood flow modeling framework, the focus is on (i) correctly describing flow splitting and wave
propagation and (ii) preserving relevant quantities, such as mass and total pressure, at each junction of a network, rather
than resolving the local 3D flow dynamics. In fact, by adopting a 1D junction model as the one illustrated in Section 2.3.1,
the 1D coupling of vessels is modeled and solved in a way that mass and total pressure are preserved at each junction
and wave propagation phenomena are reproduced throughout the entire network, even if the local flow dynamics is
simplified. This approach is suitable when the local 3D flow details at junctions are less relevant than accounting for
wave propagation phenomena across the vascular network, Furthermore, it is worth noting that adopting 3D models for
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40 GHITTI et al.

(A)

(B)

F I G U R E 8 Qualitative comparison between computational results for flow rate and pressure obtained from the 1D (dashed black line),
the 0D (blue dashed-dotted line), and a hybrid (red continuous line) configuration of ADAN56 model, where the last is constructed using
the volume V0 as model selection criterion, with a 1D-0D threshold of V0 = 3.5 cm3. (A) Aortic arch IV (1D); (B) abdominal aorta V (1D)

representing the entire networks, and even using a local 3D approach at junctions only, would result in an intractable
mathematical problem due to its complexity and computational cost when applied to realistic vascular networks.

In 1D junction models, the real geometric structure of a junction of vessels is simplified by imposing that the junction
is lumped at one point and by neglecting the effect of the angles between the vessels. Under these assumptions, a domain
splitting technique is adopted to cast the global coupling problem into a set of 1D problems, where each vessel is associated
with its own intrinsic coordinate system and suitable interface/coupling conditions are required, to appropriately couple
the 1D domains converging at the junction point. In this work, this framework has been extended also to junctions of 0D
vessels and junctions where 1D and 0D vessels are coupled together.
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GHITTI et al. 41

(A)

(B)

F I G U R E 9 Qualitative comparison between computational results for flow rate and pressure obtained from the 1D (dashed black line),
the 0D (blue dashed-dotted line), and a hybrid (red continuous line) configuration of ADAN56 model, where the last is constructed using the
volume V0 as model selection criterion, with a 1D-0D threshold of V0 = 3.5 cm3. (A) Right internal iliac (0D); (B) right posterior tibial (0D)

The pure 1D-model-like vessel coupling is a well-established methodology and its validity has been widely docu-
mented by works where 1D models have been validated against both in vitro experimental models1,2 and more complex
3D-FSI models,32,53 showing that it is reasonable to describe flow at junctions by means of a 1D model, especially when
the focus is on reproducing flow rate variation along time, pressure wave propagation and average velocities in vascular
networks with a good balance between accuracy and computational cost.

In blood flow in networks, flow splitting at junctions is primarily governed by peripheral resistance (resistances at
terminal points of the 1D network representing the downstream vasculature), while its dependence upon the flow char-
acteristics at junctions is negligible. This fact explains why flow is reasonably well-captured by 1D and 0D models. The
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42 GHITTI et al.

(A)

(B)

F I G U R E 10 Qualitative comparison between computational results for flow rate and pressure obtained from the 1D (dashed black
line), the 0D (blue dashed-dotted line), and a hybrid (red continuous line) configuration of ADAN56 model, where the last is constructed
using the compliance C0 as model selection criterion, with a 1D-0D threshold of C0 = 7 ⋅ 10−6 cm5/dyne. (A) Abdominal aorta III (1D); (B)
left popliteal I (1D)

peripheral resistance is indeed orders of magnitude larger than any disturbance in the resistance that a junction can intro-
duce, thus making the contribution of junction losses almost negligible, as largely demonstrated in the previously cited
validation studies. For instance, in Reference 1 the authors model energy losses at bifurcations by adding a loss coefficient
into the continuity of the total pressure

(
p + 1

2
𝜌u2

)
, which takes into account the branching angles and the flow and area

ratios of the vessels joining at the bifurcation. They observe that the addition of these loss coefficients in the simulations
does not have a significant effect on pressure and flow waveforms, but energy losses at bifurcations have a secondary, thus
negligible, effect on blood flow in large arteries. At least for arteries, in

(
p + 1

2
𝜌u2 + losses

)
, the pressure term p is indeed
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GHITTI et al. 43

(A)

(B)

F I G U R E 11 Qualitative comparison between computational results for flow rate and pressure obtained from the 1D (dashed black
line), the 0D (blue dashed-dotted line), and a hybrid (red continuous line) configuration of ADAN56 model, where the last is constructed
using the compliance C0 as model selection criterion, with a 1D-0D threshold of C0 = 7 ⋅ 10−6 cm5/dyne. (A) Right radial (0D); (B) right
anterior tibial (0D)

the dominant one, making the total pressure
(

p + 1
2
𝜌u2

)
, or even the pressure p alone (because of the relatively low flow

velocities), a suitable coupling condition. Once again, this depends on the fact that peripheral resistance is larger than
junction resistance and plays a dominant role in flow splitting at junctions.

The quantitative study performed on the aortic bifurcation model and proposed in the following aims at validating
the 1D modeling approach for blood flow in vascular networks with 3D-FSI data and at demonstrating the validity and
ability of the 1D formulation to correctly describe flow splitting and wave propagation across junctions of vessels. We
consider the aortic bifurcation model of the convergence rate study presented in Section 4.1.4, but with several geometrical
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44 GHITTI et al.

T A B L E 16 Geometrical and mechanical properties of the aortic bifurcation model from Reference 53.

Property Aorta Iliac arteries

Length, l 12.0 cm 12.0 cm

Radius at diastolic pressure, rd 0.86 cm 0.60 cm

Wall thickness, h 0.876 mm 0.876 mm

Blood density, 𝜌 1.060 g/cm3

Blood viscosity, 𝜇 0.04 dyne s/cm2

Velocity profile order, 𝜁 9

Young’s modulus, E 6.0⋅106 dyne/cm2 6.0⋅106 dyne/cm2

External pressure, pext 0

Outflow pressure, Pout - 0

WK resistance, R1 - 6.8128⋅102 dyne s/cm5

WK compliance, C - 3.6678⋅10−5 cm5/dyne

WK resistance, R2 - 3.1013⋅104 dyne s/cm5

and mechanical vessel properties modified according to Reference 53 and reported in Table 16. 3D-FSI data used for
comparison and validation of our 1D model were kindly made available to us by the authors of Reference 53 and we
refer the reader to this work for further details about the 3D model formulation and resolution. 3D and 1D data are
sampled in time at different spatial locations, namely at the mid and end points of the aorta and at the inlet and mid point
of the iliac arteries, for pressure, flow rate and radius. In the 1D problem set-up, the diastolic pressure Pd is no longer
set to the same values for all vessels, but the diastolic pressure to be prescribed in each 1D vessel is obtained from the
corresponding 3D solution at the vessel midpoint as the pressure P3D at which ΔR3D = R3D − rd = 0, being rd the vessel
radius at diastolic pressure. For both 1D and 3D simulations the output time is taken as tend = 30T0, with T0 = 1.1. The
1D aortic bifurcation model is solved adopting the numerical methods illustrated in Section 3, with Δxmax = 1 mm and
CFL = 0.9.

First of all, the 1D numerical solution is compared to the 3D data using the following relative error metrics
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√
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(56)

for flow rate Q and for X = P (pressure), R (radius), Ptot (total pressure), with

Ptot = P + 1
2
𝜌U2

, U ∶= Q
A
= Q
𝜋R2 . (57)

In (56), i = 1, … ,n are time points over the cardiac cycle at which the 1D/3D solution is sampled, the superscript
“1D” denotes the results at each time point i from the 1D simulation at a single spatial location, while the superscript
“3D” denotes the cross-sectional averaged results at each time point i from the 3D model at a single cross-section.
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GHITTI et al. 45

T A B L E 17 Relative errors (in %) in the 1D solution with respect to the 3D solution as defined in (56) evaluated at several spatial
location: The midpoint and outlet point of the aorta (parent vessel) and the inlet point and midpoint of the iliac artery (daughter vessel).

Relative errors (%) Midpoint Ao Outlet Ao Inlet Il Midpoint Il

𝜀
RMS
Q 0.799 1.479 1.169 1.235

𝜀
RMS
P 0.784 0.754 0.728 0.761

𝜀
RMS
R 0.104 0.132 0.496 4.871e-02

𝜀
RMS
Ptot

0.786 0.757 0.725 0.760

𝜀
MAX
Q 2.616 4.179 3.433 3.256

𝜀
MAX
P 1.992 1.860 1.674 1.730

𝜀
MAX
R 0.186 0.229 1.003 0.113

𝜀
MAX
Ptot

2.000 1.875 1.665 1.730

𝜀
SYS
Q −1.109 −1.394 3.143 2.256

𝜀
SYS
P −5.673e-03 −0.413 −0.574 −0.715

𝜀
SYS
R −4.712e-02 −8.167e-02 −1.003 −0.109

𝜀
SYS
Ptot

−1.358e-02 −0.418 −0.579 −0.714

𝜀
DIAS
Q 0.967 1.690 −0.222 8.514e-02

𝜀
DIAS
P 0.406 0.259 0.409 0.306

𝜀
DIAS
R −1.370e-02 −0.128 9.585e-02 3.960e-02

𝜀
DIAS
Ptot

0.407 0.259 0.409 0.306

Relative errors between 1D and 3D data are summarized in Table 17. From this table, we can observe that there is a
very good agreement between the results predicted by the two models, with errors consistently small in all metrics,
variables and vessel locations considered, illustrating that the 1D formulation is able to correctly capture the multi-
ple wave reflections generated at the junction, which contribute to shape pressure, flow and area waveforms in these
vessels.

One of the coupling conditions prescribed in the 1D junction model proposed in Section 2.3.1 is the continuity of total
pressure. The total pressure variation across the junction from the aorta outlet point to the iliac inlet point is evaluated
for both 1D and 3D models according to the following relative error metrics
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(58)

for X = Ptot, where the superscript “out,Ao” denotes the 1D/3D solution at the outlet point of the aorta, while the super-
script “in, Il” denotes the 1D/3D solution at the inlet point of the iliac artery. Relative errors for both 1D and 3D aortic
bifurcation models are shown and compared in Table 18. From this table, we can see that there is no variation in total
pressure across the 1D junction model, as expected. Furthermore, we observe that the total pressure variation across the
3D junction is also extremely small, with a maximum relative error below 0.5%. These observations are confirmed by
the total pressure ratios reported in the same Table 18, which are very close to 1.0 for both 1D and 3D models. Hence,
the very little, almost negligible, change in total pressure across the 3D junction suggests that the continuity of total
pressure represents a consistent and suitable coupling condition to be prescribed in this kind of reduced-order junction
models. Figure 12 displays the total pressure curves at the outlet point of the aorta and at inlet point of the iliac in the
3D model, and at the outlet point of the aorta in the 1D model. The two total pressure profiles from the 3D model are
almost perfectly overlapped and the total pressure curve from the 1D model also shows an excellent agreement with the
3D results.
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46 GHITTI et al.

T A B L E 18 Comparison between 1D and 3D total pressure variation across the junction.

Relative errors (%) 1D 3D

𝜀
RMS,∗
Ptot

0.000 0.125

𝜀
MAX ,∗
Ptot

0.000 0.410

𝜀
SYS,∗
Ptot

0.000 −0.162

𝜀
DIAS,∗
Ptot

0.000 0.149

mean

(
Pin,Il

tot

Pout,Ao
tot

)

1.000000 0.999843

max

(
Pin,Il

tot

Pout,Ao
tot

)

1.000000 1.001766

Note: Relative errors (in %) in the total pressure at the inlet point of the iliac artery with respect to the total pressure at the outlet point of the aorta are
computed as in (58). Mean and maximum values of the total pressure ratio Pin,Il

tot ∕Pout,Ao
tot are also reported for both 1D and 3D aortic bifurcation models.

F I G U R E 12 Qualitative comparison between total pressure profiles at the outlet point of the aorta (blue continuous line) and at the
inlet point of the iliac (green dashed line) of the 3D model, and at the outlet point of the aorta (red dashed-dotted line) of the 1D model.

Next, we analyze the relative contributions of single terms in the total pressure by defining the following coefficients

𝛾P =
P

Ptot
, 𝛾K =

1
2
𝜌U2

Ptot
, (59)

for the pressure term P and the kinetic term 1
2
𝜌U2, respectively. Mean and maximum values of the coefficients 𝛾P and 𝛾K

at several sites are reported in Table 19 for both 1D and 3D models. These results clearly show that the pressure term is
the dominant term in the total pressure, while the contribution of the kinetic term is almost negligible (at least in arteries,
thanks to the relatively low flow velocities). Once again, this suggests the total pressure, or even the pressure alone, to be
a suitable coupling condition for vessels at junctions and this depends on the fact that peripheral resistance is larger than
junction resistance, playing a dominant role in flow splitting at junctions.

Next, we define the time integral of the energy flux (Q ⋅ Ptot) as follows

E ∶=
∫

T0

0
(Q(t) ⋅ Ptot(t)) dt, (60)
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GHITTI et al. 47

T A B L E 19 Analysis of relative contributions of single terms, pressure, and kinetic terms, in the total pressure, estimated according to
the coefficients 𝛾P and 𝛾K defined in (59) and evaluated at four different locations: Mid and outlet point of the aorta, inlet, and mid point of
the iliac artery, for both 1D and 3D models.

1D 3D

Midpoint Ao Outlet Ao Inlet Il Midpoint Il Midpoint Ao Outlet Ao Inlet Il Midpoint Il

mean(𝛾P) 0.9996 0.9997 0.9997 0.9998 0.9996 0.9997 0.9997 0.9998

max(𝛾P) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

mean(𝛾K ) 4.049e-04 2.608e-04 2.874e-04 2.004e-04 4.164e-04 2.745e-04 2.689e-04 1.947e-04

max(𝛾K ) 3.728e-03 2.520e-03 2.761e-03 1.923e-03 3.737e-03 2.554e-03 2.500e-03 1.791e-03

T A B L E 20 Analysis of energy dissipation for both 1D and 3D aortic bifurcation models.

Time integral of energy flux (g cm2/s2) 1D 3D

Emid,Ao 1194378.136 1216388.680

Eout,Ao 1192772.882 1203724.804

Ein,Il 596387.071 600369.322

Emid,Il 595231.962 597595.398

Eout,il 594422.133 595446.895

Eout,WK 0.000 0.000

Energy dissipation (%) 1D 3D

(Eout,Ao − 2Ein,Il)∕Eout,Ao 0.000 0.248

(Eout,Ao − 2Emid,Il)∕Eout,Ao 0.194 0.709

(Eout,Ao − 2Eout,Il)∕Eout,Ao 0.329 1.066

(Eout,Ao − 2Eout,WK )∕Eout,Ao 100.000 100.000

2(Eout,Il − Eout,WK )∕Eout,Ao 99.671 98.934

Note: Values of the time integral of the energy flux defined in (60) at different locations arranged from the midpoint of the aorta to the outlet point of the
Windkessel model are reported, together with estimates of the energy dissipation (in %) by the junction (due to the junction resistance) and the Windkessel
elements (due to the peripheral resistance).

to quantify the amount of energy associated to a specific vessel location over a complete cycle [0,T0]. This integral is
approximated adopting the composite trapezoidal rule and evaluated using the available 1D and 3D numerical solutions
at several sites. By taking the outlet point of the aorta as the reference point, the energy dissipation by the junction and by
the Windkessel models is estimated by computing the difference of the energy flux time integrals at the aorta reference
point and at a selected point along the iliac arteries, normalized with respect to the time integral of the energy flux at the
aorta end point. For instance, the energy dissipation by the junction only is computed as

EJ
diss =

Eout,Ao − 2Ein,Il

Eout,Ao
. (61)

We point out that formula (60) is exact for 1D quantities, while, when applied to the 3D results, it represents only an
estimate as it is computed using 1D-like, cross-sectional averaged, quantities. The correct and equivalent formula for 3D
signals should make use of the full 3D velocity and pressure fields, which were not available for the present study. As a
consequence, here we apply formula (60) also to the cross-sectional averaged 3D results to show that energy in the 1D
model behaves like (at least a first-order estimate of) the energy in the 3D model. Table 20 summarizes and compares
the results obtained for both 1D and 3D models corresponding to: (i) values of the energy flux time integral computed at
several sites of the aorta and iliac arteries; (ii) estimates of energy dissipation (in %) by the junction and the Windkessel
elements. From this table, we observe that there is no energy dissipation by the 1D junction, up to convergence errors
introduced by the numerical resolution of the nonlinear junction problem, thus concluding that the 1D junction model
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48 GHITTI et al.

is energy-preserving. On the other hand, the energy dissipation by the 3D junction is also very small, of about 0.25% of
the total energy estimated at the outlet point of the aorta. Indeed, we can clearly see that the energy is almost entirely
dissipated by the Windkessel models: about 99.7% and 98.9% of the total energy at the reference end point of the aorta
is dissipated by the Windkessel terminal elements in the 1D and 3D models, respectively. In conclusion, the energy in
the 1D model behaves like (at least a first-order estimate of) the energy in the 3D model and the energy dissipated in the
1D model is negligible compared to that of the Windkessel model. This is again determined by the fact that peripheral
resistance is significantly larger than junction resistance. To conclude, it is worth noting that the analysis and results
presented in this section are valid for physiological situations, while this might not be true in pathological cases, as, for
example, in the presence of a stenosis across a junction.

5 CONCLUDING REMARKS AND FUTURE WORK

One of the main challenges of modeling one-dimensional blood flow in highly complex networks of vessels and car-
diovascular models, possibly interacting with other systems and physiological and metabolic models, is the very high
computational cost and execution time, which can further increase when long time scales are to be simulated.

In this work, we have proposed an adaptive model selection strategy based on a-priori model selection criteria. This
methodology allows us to construct hybrid networks of 1D-0D vessels where the computational cost of the simulations
is strongly reduced and a good level of accuracy in the predicted results is ensured, to capture and reproduce the main
essential features of pressure and flow waveforms in both 1D and 0D vessels. This has been achieved by first developing a
methodology for the high-order hybrid numerical coupling between 1D and 0D vessels through junctions. This technique
allows to solve coupled 1D and 0D vessels converging at a junction with their own numerical schemes, but taking into
account the interaction between these vessels to ensure that the desired order of accuracy of the solution in 1D vessels is
preserved. This is done by appropriately approximating the time integral of the boundary flux at the junction interface for
each 1D vessel. By applying the adaptive model selection strategy to the 37-artery network and ADAN56 model, we have
identified the vessel compliance C0 and the intravascular volume V0 to be the most suitable a-priori model selection cri-
teria to construct hybrid networks, since for both arterial models they provide the best trade-off between computational
efficiency of the simulations and accuracy of the results. For both these criteria, several increasing 1D-0D thresholds gen-
erate hybrid configurations of the two arterial networks with more and more 0D vessels which are able to provide a good
balance between computational cost, which is considerably reduced, and errors, which remain within a reasonable range
and are not growing too much. We emphasize again that an automatic choice of the specific threshold to be used for each
parameter, either the volume V0 or the compliance C0, was not addressed here, since it may depend on problem-specific
characteristics, the aim of the application in mind and thus the required level of accuracy by which the physical process
has to be described.

We consider this work as the first step towards a high-performance modeling and computational framework to effi-
ciently solve highly complex networks of 1D-0D vessels. As a first relevant usage of the proposed methodology, this
framework will be applied to more complex cardiovascular models, such as the ADAN model developed by Blanco et al.3,14

and the global, closed-loop, multiscale model of the entire human circulation developed by Müller and Toro4,13 and
recently extended by Toro et al..18 In addition to integrate the a-priori model selection strategy into such models, this
methodology will be also improved from both the modeling and numerical point of view. The viscoelastic properties of
vessel walls will be included in both 1D and 0D blood flow models, and varying geometrical and mechanical vessel prop-
erties will be incorporated in the 1D models. Concerning the numerical and computational aspects, we plan to extend
the hybrid numerical coupling to higher-order schemes by adopting, for instance, the ADER approach, and to adapt and
integrate the LTS solver proposed by Müller et al. in Reference 22 to solve the hybrid networks, for further computational
improvements. Indeed, the utilization of an LTS procedure will become absolutely necessary when this novel methodol-
ogy is applied to much more complex networks and models, where the heterogeneity of spatial and/or temporal scales is
relevant. We expect this adaptive model selection strategy coupled with the LTS solver to be significantly more effective
when applied to such models and to determine a further, crucial improvement in terms of computational efficiency.
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