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Abstract
Background and purpose  Recent methodological reviews of evaluations of behaviour change interventions in public health 
have highlighted that the decay in effectiveness over time has been mostly overlooked, potentially leading to suboptimal 
decision-making. While, in principle, discrete-time Markov chains—the most commonly used modelling approach—can 
be adapted to account for decay in effectiveness, this framework inherently lends itself to strong model simplifications. The 
application of formal and more appropriate modelling approaches has been supported, but limited progress has been made 
to date. The purpose of this paper is to encourage this shift by offering a practical guide on how to model decay in effective-
ness using a continuous-time Markov chain (CTMC)-based approach.
Methods A CTMC approach is demonstrated, with a contextualized tutorial being presented to facilitate learning and uptake. 
A worked example based on the stylized case study in physical activity promotion is illustrated with accompanying R code.
Discussion The proposed framework presents a relatively small incremental change from the current modelling practice. 
CTMC represents a technical solution which, in absence of relevant data, allows for formally testing the sensitivity of results 
to assumptions regarding the long-term sustainability of intervention effects and improving model transparency.
Conclusions  The use of CTMC should be considered in evaluations where decay in effectiveness is likely to be a key factor 
to consider. This would enable more robust model-based evaluations of population-level programmes to promote behaviour 
change and reduce the uncertainty surrounding the decision to invest in these public health interventions.
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Introduction

Behaviour change interventions play an important role in 
improving population health [1, 2]. Public health decision 
makers are increasingly interested in the evaluation of these 
programmes to inform resource allocation decisions [3]. In 

these evaluations, however, is estimating long term interven-
tion effects (e.g., changes in physical activity (PA) habits) 
is often a challenge [4]. Effectiveness evidence tends to be 
short-term [5], whilst most health benefits accrue over the 
long term [6]. Acknowledging this issue, the National Insti-
tute for Health and Care Excellence (NICE) recommends the 
application of extrapolation methods and careful considera-
tion in defining model assumptions that ought to be plausible 
and related uncertainties that need to be fully explored and 
systematically addressed [7].

In practice, however, modelling studies in public health 
have commonly used discrete-time frameworks, such as 
Markov chains [8]. In its basic form, Markov chains simulate 
how a cohort of individuals move between predefined states 
at fixed transition probabilities [9].

Although, in principle, discrete-time Markov chain-based 
models can be populated with different transition probabilities 
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for each of the different model cycles, lack of long-term fol-
low-up data has meant the use of poorly justified and often 
implicit assumptions regarding the decay in intervention 
effects over time. A recent review found that intervention 
effects were assumed to remain constant over time in most 
instances, often without them being subject to any decay (15 
of the 25 reviewed studies), even when lifetime time horizons 
were considered [10].

As an example, that review found that in a 2012 economic 
appraisal commissioned by the Department of Health to NICE 
to develop guidance on environmental interventions that pro-
mote PA, intervention effects were assumed to remain at 100% 
over time for the entire exposed population [11]. This was 
acknowledged by the authors as a main limitation. Where this 
assumption was relaxed, for instance by assuming that inter-
vention effects were fully sustained for the first year and then 
subsequently to remain constant over time at a 33% or 50% of 
the initial effect [12, 13] (i.e., linear distributions), the review 
found that, in most studies, robustness checks were not ade-
quately performed. This is problematic because intervention 
effects are likely to follow non-linear, rebound trajectories [14] 
and the validity of study findings is likely to depend heavily on 
how intervention-induced changes in behaviours are sustained 
over time [15].

Although the ideal solution would be to collect long-term 
data on the maintenance of intervention-induced changes over 
time by different individuals, in the absence of such data, we 
argue that continuous-time Markov chains (CTMC) represent 
a theoretically superior modelling option in these modelling 
settings and an optimal technical solution to the issue at hand. 
Instead of using tunnel states to account for time-dependence, 
which can make a model overly complex and impractical, 
CTMC can formally capture time-dependent intervention 
effects using statistical distributions. This enables greater 
flexibility in the choice of still hypothetical yet more plausible 
rebound trajectories and assessing their implications for study 
findings.

Although CTMC methods have been used to study dis-
ease progression, the current lack of a practical guide may 
explain their limited application currently in public health 
policy research [16]. Therefore, with the aim of demonstrat-
ing the utility of CTMC, this paper presents a tutorial on this 
modelling solution placed in the context of population-level 
interventions to promote healthy behaviours. After introduc-
ing the reader to key concepts relating to the CTMC model-
ling framework, a step-by-step guide is presented on how to 
implement this method in practice. To contextualize learning, 
a worked example based on a stylized case study in PA pro-
motion is illustrated to demonstrate the framework principles 
and its functionality, with the accompanying R code provided.

Modelling framework

Let us consider a population of healthy individuals (i.e., 
healthy state) grouped into four ordinal sub-categories of 
health behaviours. Considering physical activity, (PA): 
inactive (1), insufficiently active (2), moderately active 
(3) and active (4) [17]. The healthy state can be seen as a 
macro state, whose composition is dependent on the fre-
quency distribution of the inner micro-states (the four PA 
levels). The probability (P) that the population, on aver-
age, move from the healthy to a disease state is therefore 
equal to the weighted average of the four PA-level risks 
(pi, i = PA level):

 wi proportion of individuals in a PA state i, relative to the 
total population, at any point in time.

Transition between physical activity states

The healthy state can be represented as an embed-
ded Markov chain (EMC), also known as nested MC or 
embedded jump chain [9]. EMC methods, an extension 
of discrete-time MCs, have been applied in many fields to 
capture complex system-level behaviours [16]. Given an 
EMC structure, any transition between the four PA levels 
(i.e., 16 possible transitions) and two time points, t =  − 1 
(baseline) and t = 0 (6 months post-intervention), can be 
described, using a matrix algebra framework, by a square 
matrix of transition probabilities.

The values on the diagonal of the matrix represent the 
four possible transitions from and to the same state (Pr), 
while the off-diagonal cells include the transitions between 
a given state and any other PA states (Pm). No change in 
PA level between t − 1 and t = 0 is therefore a four-by-four 
identity matrix, where all the diagonal values are equal to 
one, and the remaining values are all zeros.

For each of the four PA states, there is only one pos-
sible transition from and to the same state (Pr =  TP11) and 
three possible transitions to the three other levels (Pm =  TP12 
+  TP13 +  TP14, Fig. 1). Pr and Pm are two complementary 
events, with a combined probability that must always be 
equal to 1.

P =

∑4

i=1
(piwi)∑4

i=1
wi

�4

(i=1)
wi always adding up to 1.
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Population‑level impact

An intervention-induced change in behaviour represents 
a shift in the transition probabilities from their “natural” 
course (Pnat

−1,0). In matrix terms, given a matrix At−1,t, 
namely, the intervention effect matrix for the period t =  − 1 
to t = 0, four PA levels [1–4], and Pi,j = probability that the 
chain will move to state j given that is in now in state i, then:

 where ai differential transition probability (from Pnat
−1, 0), 

which is expressed as a rate of transition out of state Pi. 
The term ai Pi,j can be interpreted as the differential rate of 
transition between different PA states, under the condition 
that ai Pm =  − aiPr.

If ai is constant over time, a discrete-time chain is rep-
resented. In regression terms, ai represents the intervention 
effect estimated from an ordered logit model. Given a base-
line distribution of PA states represented by the vector θ−1, 
to obtain the post-intervention distribution of PA states θ0, 
a simple matrix multiplication is needed:

A−1,0 =

⎡⎢⎢⎢⎣

−a1 a1P1,2 a1P1,3 a1P1,4

a2P2,1 −a2 a2P2,3 a2P2,4

a3P3,1 a3P3,2 −a3 a3P3,4

a4P4,1 a4P4,2 a4P4,3 −a4

⎤⎥⎥⎥⎦

(1)�
0 = �

−1 × Pnat
−1,0

× A−1,0

Behaviour change maintenance

Following an initial change in behaviour, most individuals 
in the population will likely converge to their natural course 
of PA at different rates [14]. In other words, any effect on 
the behaviour will not likely remain constant over time (i.e., 
A−1,0 is not an identity matrix), instead it will rebound, het-
erogeneously depending on individual characteristics. These 
rebound trajectories can be partitioned into sub-segments 
corresponding to discrete time periods (i.e., Markov cycles). 
The principle is to view maintenance of behaviour change 
as a survival function, whereby survivorship is the residual 
intervention effect up to a certain point in time. Using the 
notation above, if:

A−1,0 = intervention effect matrix (100% of the effect at 
time t), then:

Fig. 1  Possible transitions from the inactive state

Fig. 2  Example of maintenance of behaviour change over time 
(rebound trajectory)
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Pt,
res = residual intervention matrix at cycle u.

A hypothetical representation of exponential rebound 
effect is given in Fig. 2.

The residual intervention effect is on the y axis, and the 
number of Markov cycles elapsed on the x axis. From time 
t = 0 (post-intervention, 100% of the effect), the interven-
tion effect starts converging gradually towards zero. In this 
example, at the beginning of the first cycle, 25% of the 
intervention effect is decayed. In other words, the resid-
ual intervention effect is at 75% of its original magnitude 
(P0,1

res = 0.75). In cycle 2, 40% of the initial effect has faded 
out (P0,2

res = 0.60), corresponding to a 20% loss of interven-
tion effect from the previous cycle (15/75), and so on.

To compute the residual intervention effect (P0,u
res) at any 

given point in time (cycle), three steps need to be followed. 
First, a parametric survival model needs to be estimated. 
The estimated rates of decay (λ) are computed for each of 
the four PA levels (i) and for the cycles elapsed up to cycle 
u. Taking an example of decay of effect between two time 
points, these rates can be converted into probabilities using 
the following formula [15]:

H(u) = cumulative hazard at cycle u. For example, 
if a Weibull distribution is assumed for the hazard, 
H(u) = �i(u)

� ∶ p�i(u − 1, u) = 1 − exp
[
�i(u − 1)� − �i(u)

�
]
. 

Probability formulae for other standard distributions are 
shown in Appendix I.

To calculate the probability of residual effect from the 
previous cycle for a given PA state i:

Hence, the general formulation for calculating the prob-
ability of residual intervention effect left up to cycle u 
from time t = 0:

In other words, a matrix multiplication of the cycle 
probabilities of residual intervention effect from time t up 
to cycle u is needed. Using the example in Fig. 1, once Pres

0,u
 

is computed, for example, for u = 3 (i.e., Pres
0,u

= 0.42 ), the 
residual intervention effect matrix for cycle 3 is obtained 
by multiplying the intervention effect matrix (A−1,0) by 
each of the respective cycle probabilities of residual effect 
(pi

res) up to cycle 3. Thus, a series of subsequent PA tran-
sition probability matrices (from cycle t = 0 to cycle u) 
incorporating the progressive loss of intervention effect 
over time can be calculated. In notation terms:

(2)p�i(u − 1, u) = 1 − exp [H(u − 1) − H(u)]

(3)pres
i
(u − 1, u) = 1 − p�i(u − 1, u)

(4)Pres
0,u

=

u∏
0

(
pres
i
(t, u)

)

(5)�
u = �

u−1 ∗ P
(
0,u−1

res
)−1

∗ P
(
0,u

res
)

where 
�
u−1 ∗ P

(
0,u−1

res
)−1

= �
0,

 that is the post-intervention 
distribution of PA states (i.e., 100% of intervention effect). 
Using the example in Fig. 2, the PA distribution for the first 
three cycles is calculated as follows:

For cycle 1:

For cycle 2:

For cycle 3:

The steps illustrated above show that to calculate the PA 
distribution at any given cycle, the residual intervention 
effect from the previous cycle is first subtracted (through 
matrix inversion), and then replaced by the current cycle’s 
residual intervention effect (through matrix multiplication). 
These calculations can be repeated for any given population 
sub-group the evaluation ought to consider (e.g., by socio-
economic status) and then combined based on, for instance, 
group size (i.e., weighted average).The number of chosen 
subgroups, however, will inevitably increase the computa-
tional task.

Illustration of the modelling framework

A stylised case study of a population-level physical activ-
ity intervention designed based on the previous implemen-
tations is used as an exemplar [15, 18]. Let’s All Get Fit 
(LAGT) is a city-wide programme which offers free access 
to gym sessions and community sport events to encourage 
residents, especially those sedentary and from low socio-
economic backgrounds, to become more active. The aim is 
to estimate the health benefits deriving from changes in the 
distribution over time of the four PA levels generated, in two 
population sub-groups (i.e., high and low income).

For the ease of illustration, aligning with Fig. 2, the 
extrapolated time horizon is 30  months. Only baseline 
(t =  − 1) and 6-month post-intervention (t = 0) data on PA 
levels are available. Hence, extrapolation of the intervention 
effect is needed over four cycles of six months each, post 
the observed follow-up at 6 months. A Weibull distribution, 
which was previously fitted to gym attendance data from the 
same study [15], was conveniently used as a proxy measure 
of the decay in intervention effectiveness over the remain-
ing 24 months (i.e., rebound trajectory). The population 

�
1 = �

0 ∗ A−1
−1,0

∗ P
(
0,1

res
)

�
2 = �

1 ∗ P
(
0,1

res
)−1

∗ P
(
0,2

res
)

�
3 = �

2 ∗ P
(
0,2

res
)−1

∗ P
(
0,3

res
)
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(N = 6000 adults) consists of eight sub-groups, that is, two 
levels of socio-economic status (high income = 4000 and low 
income = 2000) each divided into four PA levels. At baseline 
(t =  − 1), the frequency distribution of PA (θ−1, see Eq. 1) by 
socio-economic status is shown in Table 1.

Initial change in behaviour

The intervention effect matrices are thus estimated (for the 
first 6 months) fitting an ordered logistic regression model, 
(At−1,t, see Eq. 1) for each of the two socio-economic sub-
groups (Tables 2 and 3).

The frequency distribution of PA levels at the first follow-
up (θ0) is thus simply obtained via matrix multiplication of 
θ−1 by the respective A−1,0, with the following results:

In this hypothetical example (Table 4), the intervention 
induced heterogeneous changes in PA levels between sub-
groups. The proportion of inactive adults increased similarly 
across the two groups, with 9.55% and 9.95% fewer inac-
tive adults post intervention for the high-income and the 
low-income subgroups, respectively. Conversely, the propor-
tion of active adults remained stable within the low-income 
subgroup (from 20% to 17.90%), whereas it saw a 9.65% 
decrease in the high-income subgroup.

Behaviour change maintenance

The post-intervention distribution of PA levels in Table 4 
incorporates the change in behaviour induced by the LAGT 
(Tables 2 and 3) in absence of which Table 4 would have 
matched the values showed in Table 1 (i.e., “natural” levels 
of PA assumed to be constant over time, Pnat

−1 0 is an iden-
tity matrix).

If the change in behaviour induced by the intervention 
remained constant over time, then the values shown in Table 4 
would not vary in the subsequent time periods. Conversely, 
if the residual effect of LAGT were equal to zero following 
the initial change, then the distribution of PA levels would be 
equal to baseline. However, as hypothesised above, the initial 
change in behaviour is likely to gradually converge to the natu-
ral course for most individuals in the population over time.

As a first step, following Eq. (2) and based on the Weibull 
distribution fitted to the gym attendance data mentioned 
above (proxy measure of behaviour change maintenance 
over time), a series of probabilities of effect decay between 
t and u, for each subgroup and cycle elapsed are calculated 
(by converting the respective rates λ estimated from analysis 
of the attendance data). To obtain the residual effect prob-
abilities, each of these values are subtracted from 1 (see 
Eq. 3). Taking the group of high income inactive as an exam-
ple, this probability was equal to 0.017. In other words, of 
the initial change in behaviour observed between t =  − 1 and 
t = 0, 98.3% of the effect is still left at the t = 1 (Appendix II).

Now that we have calculated the residual effect probabili-
ties, to obtain the t = 1 distribution of PA levels, we need to 
follow Eq. (5). That is, for the high-income inactive group, 
subtracting 1.7% of the effect from the PA distribution at 
time t = 0. This is obtained by multiplying the PA distribu-
tion shown in Table 4 by the inverted intervention effect 
matrix [(A−1,0)−1] and the residual probabilities matrix. 
Figure A (Appendix III). illustrates the passages described 
above for the high-income inactive group.

For the subsequent cycle t = 2, the transition probabilities 
belonging to Pm need each to be multiplied by the prob-
ability of effect decay between t = 1 and t = 2. In the LAGT 
study, this was equal to 0.057 for the high-income inactive 
group (Appendix II). Figure B (Appendix III) shows the 
steps for how to calculate the PA distribution for the high-
income inactive group at time = 2, that is two cycles after 

Table 1  Baseline distribution of 
physical activity levels

N = 6000 Inactive Insufficiently active Moderately active Active

High-income group n = 4000 15% (600) 20% (800) 30% (1200) 35% (1400)
Low-income group n = 2000 25% (500) 30% (600) 25% (500) 20% (400)

Table 2  High-income subgroup intervention effect matrix

High-income group Inactive Insuf-
ficiently 
active

Mod-
erately 
active

Active

Inactive 15% 48% 31% 6%
Insufficiently active 8% 39% 42% 11%
Moderately active 3% 22% 51% 24%
Active 2% 11% 44% 43%

Table 3  Low-income subgroup intervention effect matrix

Low-income group Inactive Insuf-
ficiently 
active

Mod-
erately 
active

Active

Inactive 45% 38% 16% 1%
Insufficiently active 9% 40% 41% 10%
Moderately active 2% 14% 47% 37%
Active 3% 20% 50% 27%
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the intervention ended. This process is repeated until the 
residual effect probability matrix is either assumed or esti-
mated to be an identity matrix (i.e., no residual effect of the 
intervention, Markov cycle n in Fig. 2).

Discussion

This paper is concerned with the issue of modelling the 
decay in effectiveness over time of population-level behav-
iour change interventions. To operationalise this, we present 
a CTMC-based practical tutorial which, through a step-by-
step approach, illustrates the mathematical structure of the 
framework and how it can be implemented.

We believe that the proposed framework presents a sim-
ple and flexible modelling solution to address some of the 
limitations of discrete-time Markov chains. It provides the 
analyst with greater flexibility of choice of statistical distri-
butions reflecting more plausible—yet unknown—long-term 
effectiveness trajectories for different interventions and indi-
viduals. Indeed, it can be readily adapted for capturing het-
erogeneous intervention effect trajectories by different sub-
groups (e.g., socio-economic status) and be consequently 
used to inform assessments regarding the health equity 
impact of population-level interventions [19]. Furthermore, 
by formally requiring a choice of distribution, and therefore 
assumption regarding the decay in effectiveness over time, 
the use of CTMC will improve reporting of these evaluation 
studies and facilitate peer-review processes.

Unlike more advanced modelling techniques (e.g., discrete 
event simulation), the proposed approach presents a relatively 
small incremental change from current practice and does not 
require high-level modelling or programming skills. In addi-
tion, it lends itself to ready implementation and adaptation to 
different decision problems, with potential for a widespread 
used in public health settings. To this purpose, we have pro-
vided a worked example in R programming (Appendix IV).

However, the proposed framework is not without limita-
tions. Being based on the Markov paradigm, probabilities 
of transition to future states are dependent only on the pre-
sent state (i.e., memory-less property) [9]. In the context 
of behaviours, especially when evaluating short time tra-
jectories and sensitive life phases (e.g., retirement), this is 
a limitation as future events are unlikely to be independent 
from previous experience [20]. A possible solution to this is 
the application of tunnel states, which can enable the inte-
gration of experience from previous cycles [21]. However, 

the choice to incorporate tunnel states will depend on the 
decision problem, as well as the ability to balance complex-
ity and practicality, as the model can become difficult to 
manage, especially if implemented in a spreadsheet [22].

The proposed approach assumes that the health states rep-
resent homogeneous groups of individuals. To this respect, an 
individual level framework, such as microsimulation [23], can 
be more suitable, provided relevant data are available. Lack of 
long-term follow-up data is a common hurdle of public health 
evaluations, not least the information regarding the sustainability 
of intervention effects [5]. Nevertheless, this does not justify the 
use of implausible assumptions and lack of robustness checks.

The proposed extrapolation approach is merely determinis-
tic and based on a proxy measure of behaviour change mainte-
nance which may not be always available. Alternative sources 
of information on plausible rebound trajectories, either hypo-
thetical distributions, obtained from simulated data, or based 
on information elicited by experts (e.g., personal trainers) can 
be used and tested with the CTMC framework. In addition, the 
illustration provided here is based on a single Weibull-shaped 
rebound trajectory and evaluation studies should use scenario 
analysis comparing different plausible rebound trajectories to 
fully explore and address the related uncertainty.

Furthermore, the issue of heterogeneity has been addressed 
only in terms of differences in intervention effect between 
individual characteristics over time. However, heterogeneity 
encompasses a much broader spectrum of issues to include, 
for example, differences in the way individuals benefit from 
behaviour change, which has not been covered here. How-
ever, we believe that this paper can help raise awareness of 
this issue and promote methodological guidance development 
toward enhancing public health evaluation practices.

Conclusions

Formally modelling the decay of effectiveness over time is 
important to enable more robust model-based evaluations of 
population-level programmes to promote behaviour change. 
The proposed modelling framework presents a simple solu-
tion to overcome some of the limitations of commonly used 
modelling paradigms and should be considered in evalu-
ations where decay of effectiveness of the intervention is 
likely to be a key factor to consider.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10198- 021- 01417-7.

Table 4  Distribution of physical 
activity at follow-up (6 months)

N = 6000 Inactive Insufficiently active Moderately active Active

High-income group n = 4000 5.45% (218) 25.45% (1.018) 43.75% (1.750) 25.35% (1.014)
Low-income group n = 2000 15.05% (301) 29.00% (580) 38.05% (761) 17.90% (358)

https://doi.org/10.1007/s10198-021-01417-7
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