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Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysi-
cal settings like supernovae and neutron star binary merger remnants, which are characterized by
large neutrino densities. In these settings, simulations in the mean-field approximation show that
neutrino-neutrino interactions can overtake vacuum oscillations and give rise to fast collective flavor
evolution on time-scales t ∝ µ−1, with µ proportional to the local neutrino density. In this work,
we study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast
oscillations in the mean field linear stability analysis. Focusing on simple initial conditions, we ana-
lyze the production of pair correlations and entanglement in the complete many-body-dynamics as a
function of the number N of neutrinos in the system, for up to thousands of neutrinos. Similarly to
simpler geometries with only two neutrino beams, we identify three regimes: stable configurations
with vanishing flavor oscillations, marginally unstable configurations with evolution occurring on
long time scales τ ≈ µ−1

√
N , and unstable configurations showing flavor evolution on short time

scales τ ≈ µ−1 log(N). We present evidence that these fast collective modes are generated by the
same dynamical phase transition which leads to the slow bipolar oscillations, establishing a connec-
tion between these two phenomena and explaining the difference in their time scales. We conclude
by discussing a semi-classical approximation which reproduces the entanglement entropy at short to
medium time scales and can be potentially useful in situations with more complicated geometries
where classical simulation methods starts to become inefficient.

I. INTRODUCTION

Neutrinos are some of the most abundant particles
found in nature, produced during the early universe [1–
4], from stars like the sun during their lifetime [5], and in
copious amounts during core collapse supernovae [6–11].
Neutrino flavor conversions, or oscillations, are genuine
quantum mechanical phenomena for which a flavor eigen-
state is converted to another during propagation due to
it being an admixture of different mass eigenstates.

In core-collapse supernovae (CCSNe) and neutron star
merger remnants, neutrinos are responsible for both rein-
vigorating a stalled shock-wave and controlling the condi-
tions for nucleosynthesis in the ejected material [12–15].
In these environments neutrino flavor evolution is sub-
stantially modified by the presence of neutrino-neutrino
scattering processes which can lead to self-sustained col-
lective flavor oscillations [16–24]. Since neutrinos in su-
pernovae are emitted with fluxes and spectra that are
strongly flavor dependent [13], the presence of collec-
tive flavor oscillations could then lead to important ef-
fects [25–38]. Neutrino-neutrino scattering, being be-
tween particles of the same type, is of a different na-
ture than neutrino-matter scattering, and gives rise to
forward scattering terms in the many-body Hamiltonian
which contribute to oscillations [17, 39]. These terms
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are dependent only on the angle between neutrinos and
couple neutrinos of different energies making flavor evo-
lution a rather intricate many-body problem. Thanks
to the adoption of a mean-field approximation, a rich
phenomenology of collective neutrino modes have been
identified (see [40, 41] for reviews). In particular two
main classes of collective modes have been categorized as
the slow and fast modes of flavor instability based on the
triggering mechanism and the typical length scale of the
flavor transition. Slow modes are due to the interference
of the vacuum flavor mixing and neutrino-neutrino self-
induced forward scattering. The respective conversion
rate is ∼ √ωµ, where ω = ∆m2/2Eν is the vacuum os-
cillation frequency for neutrinos of energy Eν with mass
square difference ∆m2, and µ =

√
2GF ρν indicates the

magnitude of self-induced effective potential with Fermi
constant GF and neutrino number density ρν . Slow fla-
vor evolution typically shows a bipolar behavior in terms
of the flavor survival probability and usually results in
drastic splitting of neutrino spectra [28, 40–42]. Fast
flavor conversions can occur even in the absence of vac-
uum mixing since they are triggered by non-trivial an-
gular distributions and the consequent flavor evolution
has a strong angular dependence. The associated flavor
conversion rate is ∼ µ, much faster than the slow mode
when the neutrino number density ρν is high and µ� ω
as, for example, near the proto-neutron star of CCSNe
or the hyper-massive star of merger remnants [43–50].

In this work we study collective oscillations of two
active neutrino flavors, under only the influence of the
Hamiltonian induced by neutrino-neutrino interactions.
We assume a simplified scenario of electron neutrinos νe,
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and an additional flavor which can be considered as a
superposition of tau and muon neutrinos denoted by νx,
with no vacuum mixing (or high neutrino density) and
only focus on the effects of neutrino forward scattering.
To simplify the treatment, we consider a three beam
setup as explained in section II. With Nf flavors and
neglecting momentum-changing interactions, the many-
body Hamiltonian can be formulated in terms of SU(Nf )
operators acting on the flavor state of neutrinos. This
approach is particularly useful for studying many-body
effects. In section III we perform a linear stability anal-
ysis in the mean field approximation to determine which
configurations are unstable under perturbations, and pro-
ceed to explain the many-body methods used in the work
in section IV. The results for the flavor evolution for the
various setup and increasing particle number are summa-
rized in section V. In section VI we focus on the dynam-
ical creation of entanglement entropy and correlations
from the initial mean field wavefunction. The findings are
summarized and conclusions are drawn in section VII.

II. THREE BEAM GEOMETRY AND
HAMILTONIAN

As our focus here is on the many-body effects, we con-
sider only the flavor evolution of neutrinos under ν − ν
forward scattering and ignore the vacuum term or scat-
tering with matter. In studies of collective and fast neu-
trino flavor oscillations, this is a common choice as the
flavor instability is assumed to originate from this part
of the total Hamiltonian, with an initial “seed” from the
other terms [44–47, 51–54]. This work is the first at-
tempt at uncovering the neutrino-neutrino correlations
and quantum entanglement using the complete many-
body treatment of this dynamics under the influence of
multi-angle effects. To study the large particle number
limit, we assume a constant neutrino density ρν , and
the system to be comprised of several neutrino beams
(directions). Each beam contains many neutrinos with
momenta aligned to each other [55]. Accounting only
for forward scattering, the Hamiltonian governing flavor
evolution can thus by expressed in the following from [56]

H =
µ

N

N∑
i6=j

(1− cij)Ji · Jj (1)

with N the total particle number and cij = cos(θij) the
cosine of the angle between the momenta of neutrinos i
and j. The interactions between neutrinos propagating in
parallel directions therefore vanishes. The coupling con-
stant µ =

√
2GF ρν depends on both Fermi’s constant

GF and the local neutrino density ρν . Here we work in
the approximation where neutrinos have only two possi-
ble flavors and their state can be specified using a two
component isospin degree of freedom. The single parti-
cle operators acting on these flavor states form an SU(2)

A B

C

c

FIG. 1. Beams A and B are antiparallel, and beam C forms
an angle θAC with beam A.

algebra and can be expressed as

Ji =
1

2
(σxi , σ

y
i , σ

z
i ) , (2)

with σki the k-th Pauli matrix acting on the i-th particle.
We can also define beam operators as

JAi
=
∑
k∈Ai

Ji , (3)

where the sum runs over the NAi particles belonging to
the i-th beam. Since [H,J2

Ai
] = 0, the total flavor isospin

of each beam is conserved and, for initial states that are
eigenstates of J2

Ai
, we can express the Hamiltonian in

terms of beam operators as follows

H =
2µ

N

n∑
i<j

(1− cAiAj )JAi · JAj , (4)

where n is the number of beams and have neglected ir-
relevant additive constant terms. This system has many
symmetries worth pointing out. In addition to the indi-
vidual J2

Ai
being conserved, the total angular momentum

commutes with the Hamiltonian ([J2, HABC ] = 0), and
〈J2〉Ψ1,2

= N2/36 + N/2 is a constant of the motion.
In addition, [J , H] = 0 and 〈J〉Ψ1,2

= (0, 0, N/6) is a
conserved quantity, as well.

For simplicity, we will take n = 3 beams and assume an
equal number of neutrinos in each beam withNAi

= N/3.
We further consider the direction of propagation in these
three beams to lie on a plane and that two of them are
antiparallel. This simple angular configuration is shown
in Fig. 1 and is parametrized by a single angle θAC .

The Hamiltonian then becomes (see. Appendix A)

HABC =
4µ

N
JA · JB +

2µ

N
(1− c)JA · JC

+
2µ

N
(1 + c)JB · JC ,

(5)

where we introduced c = cos(θAC). This Hamiltonian is
invariant for a global SU(2) rotation and take as conven-
tion the z axis to be flavor axis. We consider two distinct
initial configurations diagonal in flavor

1. |Ψ1(0)〉 = |↑〉⊗NA ⊗ |↑〉⊗NB ⊗ |↓〉⊗NC ,

2. |Ψ2(0)〉 = |↑〉⊗NA ⊗ |↓〉⊗NB ⊗ |↑〉⊗NC ,

and NA = NB = NC = N/3. In the text we will refer
to these initial conditions as setup I and setup II. The
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convention we use throughout is that electron flavor is
associated with an up-spin and the heavy lepton flavor
νx with a down-spin. This rather special choice of initial
states was motivated by the fact that a mean-field treat-
ment of their time propagation will result in no flavor
evolution and therefore any flavor dynamics is inherently
a many-body effect. Adding a small off-diagonal com-
ponent leads to an evolving mean-field solution which
we will use to characterize the stability of the resulting
equation of motion.

III. MEAN-FIELD LINEAR STABILITY
ANALYSIS

In the mean-field approximation it is commonly as-
sumed that the correlation between any two neutrinos are
negligible: 〈OiOj〉 = 〈Oi〉〈Oj〉 where i and j are indices
for different neutrinos. Therefore, the time evolution for
each neutrino is rewritten as

∂t〈Ji〉 = HMF × 〈Ji〉 =
2µ

N

N∑
j 6=i

(1− cij)〈Jj〉 × 〈Ji〉. (6)

This mean field approximation can be expected to hold
in the limit of large quantum numbers and therefore it
is convenient to formulate the evolution equations treat-
ing all the neutrinos in a beam at the same time. One
can then define a normalized polarization vector for each
beam as PAi =

∑
i∈Ai
〈Ji〉/(NAi/2) and rewrite the

equation of motions in terms of PAi . For our three beam
setup we have then

∂tPA =
µ

N
[2NBPB + (1− c)NCPC ]×PA

∂tPB =
µ

N
[2NAPA + (1 + c)NCPC ]×PB

∂tPC =
µ

N
[(1− c)NAPA + (1 + c)NBPB ]×PC . (7)

The instability of the neutrino gas can be diagnosed
by analyzing the stability of these differential equations
to small perturbations. In the neutrino case, we will
then assume that the third component PzAi

is dominant
and linearize the mean-field equations of motion (EOM)
in terms of the perturbation away from the flavor axis.
Given NA = NB = NC = N/3, the linearized EOM for
the off-diagonal component SAi

≡ PxAi
− iPyAi

reads

∂t

SASB
SC

 = MLMF

SASB
SC

 =
µ

3

2PzB + (1− c)PzC −2PzA −(1− c)PzA
−2PzB 2PzA + (1 + c)PzC −(1 + c)PzB

−(1− c)PzC −(1 + c)PzC (1− c)PzA + (1 + c)PzB

SASB
SC

 . (8)

The unstable mode of the neutrino gas can be found by
parametrizing the time-dependence of the off-diagonal
component as SAi = QAie

−iΩt and solving the collective
oscillation frequency Ω as the eigenvalues of the matrix
MLMF. Any eigenvalues with positive imaginary com-
ponents imply the existence of modes with exponentially
growing amplitudes, which have been associated with the
appearance of fast flavor conversion [46, 57].

The value of PzAi
can be either +1 or −1 and depends

on the choice of initial conditions. For the state |Ψ1〉
from setup I, the eigenvalue equation gives

Ω

[
9

(
Ω

µ

)2

− 12
Ω

µ
+ 3 + c2

]
= 0. (9)

Since the quadratic discriminant ∆ = 36(1 − c2) is non-
negative, there is no flavor instability at the mean-field
level. For setup II, we have

Ω

[
9

(
Ω

µ

)2

− 6(1− c)Ω

µ
+ 1− 4c− c2

]
= 0. (10)

Since ∆ = 72c(c + 1), when −1 < c < 0, there is flavor
instability. The unstable solution is

Ω =
(1− c)±

√
2c(c+ 1)

3
µ. (11)

When c = −1/2, the growth rate reaches the maximum

value
√

2µ/6. The value of Ω for the unstable mode in
setup II can be plugged back into the linearized EOM to
obtain the following relations of the corresponding eigen-
vector compared to that of the νx beam:

|QA|2

|QB |2
=

1 + c

1− c
,

|QC |2

|QB |2
= 1−|QA|

2

|QB |2
=

2c

c− 1
.

(12)

The transverse components are associated with flavor
transitions in each beam in the linear regime. A larger
value for the amplitude |QAi |2 leads to a higher change
of flavor content in the corresponding beam∣∣PzAi

(t)− PzAi
(0)
∣∣ ≈ |SAi

(t)|2

2

≈ |QAi
|2

2
· e2Im(Ω)t .

(13)

When the angular parameter c approaches 0, |QC |2
is smaller than |QA|2 and the flavor conversion is pri-
marily associated with beam A rather than C. On the
other hand, beam C has more flavor transition when c ap-
proaches -1. While the above relations may not be valid
for long time scales, they can describe which νe beam
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is mostly associated with the flavor conversion when the
system transits from the linear to the non-linear regime.

IV. METHODS

In this section we briefly describe the strategy we em-
ploy to perform simulations of the three-beam model
from Eq. (5) with systems up to N = 2700. These sys-
tem sizes are much larger than what would be possible
using the tensor network methods employed in previous
works [58–60]. Efficient simulations are made possible
through an effective use of the angular momentum rep-
resentation (see [61] for the general method and [62] for
an application to a two-beam model).

To give a concrete example, the initial wave function
for setup I in this basis is written as

|Ψ(0)〉 = |jA,mA〉 ⊗ |jB ,mB〉 ⊗ |jC ,mC〉 , (14)

where jA = mA = NA/2, jB = mB = NB/2, and jC =
−mC = NC/2. The total flavor isospin of each beam, jA,
jB , or jC , is conserved and can be determined from the
initial condition. A simplified many-body notation can
be introduced as |Ψ〉 = |mA,mB〉 with only two degrees
of freedom, wheremC is determined bymA andmB given
that the total projection of flavor isospin, mA + mB +
mC , is conserved. The evolving state is then a linear
combination of states with all possible mA and mB ,

|Ψ(t)〉 =
∑

mA,mB

amA,mB
(t) |mA,mB〉 . (15)

We solve the time evolution for the amplitudes of
many-body states described above (for more details see
appendix B). Once the amplitudes are known, the observ-
ables such as polarization and entanglement entropy can
be calculated. The projection of flavor isospin for each
beam is 〈JzAi

〉 =
∑
mA,mB

mAi
|amA,mB

|2. Pair correla-

tions are 〈JzAi
JzAj
〉 =

∑
mA,mB

mAi
mAj
|amA,mB

|2. The

correlations along the other two directions in flavor space
are 〈JxAi

JxAj
〉 = 〈JyAi

JyAj
〉 = 〈J+

Ai
J−Aj

+ J−Ai
J+
Aj
〉/4, where

J±Ai
= JxAi

± iJyAi
. Note that the terms 〈J+

Ai
J+
Aj
〉 and

〈J−Ai
J−Aj
〉 are both zero because the net flavor isospin,

mA +mB +mC , is a conserved quantity for the system,
and J±Ai

J±Aj
|mA + mB + mC〉 ∝ |mA + mB + mC ± 2〉,

leads to violations of this quantity. Detailed expressions
in terms of amplitudes can be found in appendix B.

Rényi entropy is an important measure for the entan-
glement in a subsystem. For a general multi-qubit system
that is divided into two subsystems, I and II, the Rényi
entropy of subsystem I is defined as

Rα,I =
1

1− α
log2[Tr(ραI )], (16)

where ρI = TrII(ρ) is the reduced density matrix of sub-
system I. As an example, the Rényi entropy of beam A

in setup I is given as,

Rα,A =
1

1− α
log2

 NA/2∑
mA=−NA/2

(∑
mB

|amA,mB
|2
)α .

(17)
The Von Neumann entropy can be expressed as Rényi
entropy in the limit of α→ 1

SI = lim
α→1
Rα,I = −Tr[ρI log2(ρI)], (18)

or more explicitly in terms of amplitudes

SA =

NA/2∑
mA=−NA/2

[(∑
mB

|amA,mB
|2
)

log2

(∑
mB

|amA,mB
|2
)]

.

(19)
Because setup II can be obtained from setup I by

exchanging configurations between beam B and C, all
quantities defined can be modified accordingly and not
explicitly listed here.

V. RESULTS FOR FLAVOR EVOLUTION

In the following we will first focus on studying the fla-
vor evolution for three beam models in the two setups and
show their qualitative differences. In particular, we will
compute the survival probability, or persistence, Pi(t) of
a representative neutrino in each beam. This can be de-
fined explicitly in terms of the Ji operators as

Pik(t) =
1

2
+
sik
N
〈Ψk(t)|Jzi |Ψk(t)〉 , (20)

with k = 1, 2 denoting to employed initial state and the
constant sik defined as

sik = sign [〈Ψk(0)|Jzi |Ψk(0)〉] , (21)

to ensure Pi(t = 0) = 1 for all neutrinos. For ease of no-
tation, in the following we will denote expectation values
at time t as 〈·〉(t) dropping the index k indicating the
initial condition when no risk of confusion arises.

A. Setup I

The initial wavefunction for setup I is the product state

|Ψ1(0)〉 = |↑〉⊗N/3 ⊗ |↑〉⊗N/3 ⊗ |↓〉⊗N/3 , (22)

with equal populations in the three beams. This initial
state is symmetric under the exchange A ⇔ B and the
Hamiltonian in Eq. (5) remains invariant under this per-
mutation if we also exchange c⇔ −c. In our study of this
system we will therefore limit the discussion to positive
values of the angular parameter c.
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The case with c = 0 is special as for this geometry the
total spin J2

AB = (JA + JB)2 is also conserved and the
Hamiltonian takes the simpler form

HABC(c = 0) =
4µ

N
JA · JB +

2µ

N
(JA + JB) · JC

=N
µ

9
+

2µ

N
(JAB · JC) .

(23)

We see then, that up to an overall constant, this case
reduces to a two-beam model with unequal population
numbers. An exact analytical solution for this scenario
was already discussed in Ref. [63] where it was shown
that flavor oscillations are present with an amplitude
decaying as a polynomial in the population difference
|NAB − NC | = N/3. This case recovers the mean field
solution qualitatively, which does not show flavor oscil-
lations, in the large system size limit. Our many-body
simulations show that this behavior is actually generic
for any value of the angular factor c 6= 1. The case c = 1
is in fact also special as the total spin J2

AC = (JA+JC)2

remains conserved and the Hamiltonian becomes

HABC(c = 1) =
4µ

N
JAC · JB . (24)

The crucial difference is however that now the two beams
A and C have opposite flavor polarization and their total
spin is instead 〈J2

AC〉 = N/3. A similar situation was also
considered in Ref. [63] but the beam had maximal 〈J2

AC〉
and 〈JzAC〉 = 0 initially (ie. fully polarized in the xy-
plane). As the behavior in our case for c = 1 is markedly
different from the other ones, we first discuss the case
c 6= 1 and move to c = 1 near the end of this section.

We start by looking at the qualitative behavior of the
flavor survival probability for c = 0.5. In Fig. 2 we show
results for the evolution of the survival probability PA(t)
in the first beam as a function of the evolution time and
for a variety of system sizes ranging from N = 12 to
N = 348 (indicated with increasingly darker colors for
larger systems). The qualitative evolution remains the
same for other values of c 6= 1 and for different beams.

In order to more easily track the evolution of the am-
plitude of flavor oscillations in the large N limit, we also
show in Fig. 2 the location of the first minimum of the
survival probability using blue dots. In the following we
will indicate the value reached at the first minimum of
the survival probability in beam Ai as P

(min)
Ai

. The results
for beam A and different values of the angular distribu-
tion parameterized by c are shown in Fig. 3. We find that
in all cases the survival probability converges to 1 in the
large system size limit. For large but finite N ' 50 the
scaling with N is well reproduced by the simple ansatz

P
(min)
Ai

(N) ≈ 1− a

N

(
1− b√

N

)
, (25)

with b = O(1) and a increasing with the angular param-
eter c from a ≈ 13 at c = 0 to a ≈ 45 at c = 0.75. Due to
the relatively limited maximum system size considered

0 5 10 15 20 25 30 35 40
Evolution time T [ 1]

0.0

0.2

0.4

0.6

0.8

1.0

P A

12
18
24
36
48
54

60
66
72
84
96
120

144
168
180
192
204
216

228
240
252
264
276
288

300
312
324
336
348

FIG. 2. Time evolution of the survival probability starting
in the first beam from the initial state of Setup I and taking
c = 0.5 for a large selection of system sizes (green solid curves,
darker colors indicate progressively larges values of N). With
blue dots we also show the location of the first minimum

here, we found the correction term parameterized by b
to be important for all angular distributions even though
its contribution will vanish in the thermodynamic limit.
In Fig. 3 we show the fit performed using Eq. (25) for the
case c = 0.75 as a green dashed line.

In terms of the expectation value of the spin operators,
the scaling from Eq. (25) indicates that in the many-body
evolution the expectation value of 〈Jzi 〉 deviates from its
initial value ±Ni/2 only by a constant factor

|〈Jzi 〉| '
Ni
2
− a Ni

2N

(
1− b√

N

)
, (26)

and the fractional change measured by the z component
of the polarization vectors PAi

, defined in Sec. III and
used in the mean-field approximation, vanishes for large
systems. A similar pattern can also be observed in the

0 50 100 150 200 250 300 350
N

0.0

0.2

0.4

0.6

0.8

1.0

P(m
in

)
A

c = 0.75
c = 0.5

c = 0.25
c = 0.0

FIG. 3. Evolution with system size N of the value at the
first minimum of the survival probability for beam A using
the initial wavefunction |Ψ1〉 and various cosine values. The
dashed green line corresponds to the best fit for c = 0.75 using
the parameterization from Eq. (25).
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0 20 40 60 80 100
Evolution time T [ 1]

0.0

0.5

1.0
P A

(a)

0 1 2 3 4 5 6 7 8
Rescaled evolution time T/ N/3 [ 1]

0.0

0.5

1.0

P A

(b)

(b)

FIG. 4. Time evolution of the survival probability in beam A
for the initial state in Setup I, c = 1 and the same set of system
sizes used for Fig. 2 (darker colors indicate larger values of
N). Panel (a) shows directly the time evolution while panel

(b) uses a rescaled time variable T/
√
N/3 to highlight the

system size dependence. The vertical dashed line in panel (b)
indicates the time scale τAC expected for a two-beam model.

other two beams. However, in the second beam we no-
ticed a transient behavior where the first minimum tran-
sitions to a stationary point as the system size increases,
and the initial second minimum becomes the first one
after N ≈ 100. Regardless, Eq. (25) remains valid also
for this beam for large enough system values (after the
transition from first minimum to stationary point).

The time scale to reach the first minimum of the sur-
vival probability seems to converge to a constant in the
large system size limit agreeing with the expectations
from the study in Ref. [63] which were obtained for c = 0.

As mentioned above, the case c = 1 is peculiar in that
the total spin of beams A and C is conserved and kept
for all times at a small value 〈J2

AC〉 = N/3 compara-
ble with the size of quantum fluctuations in the total
spin 〈(Jx)2〉 = 〈(Jy)2〉 = N/4. Contrary to the previous
cases, this allows for quantum fluctuations to drive fla-
vor evolution in a similar way as in the simpler two beam
model studied in a previous works (see [58, 59, 63, 64]).
Interestingly however, in this case beams A and C are
only coupled trough their interaction with beam B.

We show the result of our simulation for the survival
probability in beam A for this case in Fig. 4. The be-
havior of beam C is the same while beam B shows little
flavor conversion similarly to the results shown in Fig. 2.
The top panel shows the evolution of PA as a function of
total time T . This is in marked contrast with the results
seen above for c 6= 1: the survival probability converges
to 0.5 (full mixing) for large times displaying oscillations

whose amplitude decays away in the limit of large sys-
tems (darker curves in the plot). In order to display more
clearly the system size dependence of the time scale to
reach the plateau, we also show in the bottom panel of
Fig. 4 the same data but as a function of the rescaled
time variable T/

√
N/3. These results clearly indicate a

decaying time scale τ ≈ 2µ−1
√
N/3 to reach equilibra-

tion at PA = 0.5. Apart from the superimposed oscilla-
tions, this is remarkably similar to the behavior shown by
a two-beam system, initialized in opposite flavor states.
In order to isolate the effective Hamiltonian for the two
beams we rewrite

HABC(c = 1) =
2µ

N

(
J2 − J2

AC

)
− µN + 6

18
, (27)

with J2 = J2
ABC the total angular momentum. The

two angular momentum operators commute and can
then be applied sequentially. The contribution propor-
tional to the total angular momentum is proportional to
HABC(c = 0) in Eq. (23) (apart from a constant factor)
and, as shown above, does not lead to stable oscillations
in the N → ∞ limit. The large N evolution of the con-
figuration with c = 1 is then captured by the effective
two-beam Hamiltonian

H2Beams
AC = −2µ

N
J2
AC = −4

3

µ

2N/3
J2
AC . (28)

Using the results from Ref. [58], the time scale obtained
to reach the minimum of the survival probability would
be τAC ≈ 3/

√
2µ−1

√
N/3. This value is reported in

panel (b) of Fig. 4 and is seen to match remarkably well
the position of the minimum.

Similarly to the standard two-beam case, for this con-
figuration we see that the mean-field prediction of no
evolution is recovered as N → ∞ due to the divergence
of the equilibration time scale τ .

In summary the system in Setup I displays the same
“freeze-out” behavior described in Ref. [63] for all angular
distributions with c 6= 1: the polarization vectors in each
beam are only able to deviate from their initial values by
a vanishing small amount in the large system size limit.
The case with c = 1 is peculiar in that we observe flavor
conversion with a system size independent amplitude but
a diverging time scale τ ∝ µ−1

√
N . As we will see in the

next section, the presence of instabilities in the system
from Setup II, for appropriate values of c, will change
this picture qualitatively.

B. Setup II

For setup II the initial product state reads as

|Ψ2(0)〉 = |↑〉⊗N/3 ⊗ |↓〉⊗N/3 ⊗ |↑〉⊗N/3 . (29)

The angular configurations with c = −1 is equivalent to
the same angle in the previous setup (upon exchanging
B ⇔ C) and large flavor conversion in beams B and
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C is seen with a typical time scale τ ∝ µ−1
√
N . The

configuration with c = 1 is instead equivalent to c = 0
of the previous setup which, as discussed in the previous
section, behaves similarly to the other stable cases in
Setup I with a decaying amplitude of flavor oscillations
as a function of system size for all beams. In this case
the time evolution is however twice as fast due to the
presence of an additional factor of 2 in the Hamiltonian
(see Eq. (23) and Eq. (24)).

For angular distributions with c 6= ±1 we can predict
the qualitative behavior of the flavor evolution using the
same line of reasoning used to obtain the effective Hamil-
tonian in Eq. (28) above. We first rewrite the Hamilto-
nian as a sum of two commuting parts to which we have
added an unimportant constant, h = 5µ (6 +N) /6,

HABC + h =
µ

N
J2 +

µ

N

(
J2
AB − 2cJC · (JA − JB)

)
=

µ

N
J2 +

µ

N

(
J2
AB − 2cJ · (JA − JB)

)
:=

µ

N
J2 +Hdynamic

ABC ,

(30)

where in the second line we used the fact that J2
A and

J2
B are conserved and take the same value on our initial

state. As already commented, the contribution propor-
tional to the total angular momentum does not lead to
oscillations in the large N limit and all the flavor dynam-
ics for c 6= ±1 is driven by the second term denoted as

Hdynamic
ABC . This dominant part of the Hamiltonian is rem-

iniscent of the two-beam Hamiltonian describing bipolar
oscillations [58, 59, 62]

Hbip =
2µ

N
J2
AB − δωB · (JA − JB) , (31)

with the constant vector B replaced by the total spin of
the system J . In this expression, δω is proportional to the
vacuum energy difference in the two beams. We can now
show that for low energies and large system sizes, the

Hamiltonian Hdynamic
ABC in Eq. (30) has the same prop-

erties as Hbip and in particular shows the same phase
transitions discussed in [59]. Thanks to the all-to-all cou-
plings in the Hamiltonian, the ground state can be ap-
proximated accurately with a mean-field state (see [65]
and [59]) so that its energy, can be written as

E0(c) =
2µ

N
〈JA〉 · 〈JB〉 −

2cµ

N
〈J〉 · (〈JA〉 − 〈JB〉)

=
2µ

N
〈JA〉 · 〈JB〉 −

cµ

3
(〈JzA〉 − JzB〉) ,

(32)

where we used 〈J〉 = (0, 0, N/6). This is exactly the same
energy function one obtains with Hbip and displays the
same quantum phase transitions (see [59]). In particular,
for the initial state |Ψ2(0)〉, we expect to see a dynamical
phase transition for −1 < c ≤ 0 with substantial flavor
oscillations and no dynamical flavor evolution for 0 <
c < 1. This is compatible with the expectations from the

mean-field linear stability analysis discussed in Sec III
with the exception of c = 0 which was considered stable
instead.

The point c = 0 is the critical point and dynamics
there is expected to happen on time-scales t ≈

√
N , as

in the marginally stable configurations with c = ±1 in
the previous setup, while for −1 < c < 0 flavor evo-
lution should happen on time scales t ≈ log(N). No-
tably, the frequency of bipolar oscillations generated by
the dynamical phase transition in Hbip are proportional
to
√
µδω which is typically much smaller than µ close to

the neutrino-sphere. In the multi-angle case studied here
instead, the coupling constant in front of the one body

term in Hdynamic
ABC is also proportional to µ and this gives

rise to oscillations with frequency proportional to µ in-
stead. This suggests that the mechanism behind both
bipolar and fast oscillations is the same dynamical phase
transition and the difference in time-scales is simply given
by the difference in coupling constants.

In order to better illustrate the similarity between the
dynamical phase transition in the two-beam case leading
to bipolar oscillations and the unstable configurations in
the present three-beam setup, we now present results for
the Loschmidt echo. This is defined as the (squared)
overlap between the evolved state |Ψ(t)〉 and the initial
state as follows

L(t) = |〈Ψ(0)|Ψ(t)〉|2 . (33)

As discussed more in detail in Refs. [66, 67] (see also
Ref. [59] for applications in neutrino physics) a Dynam-
ical Phase Transition is signalled by non-analyticities of
the Loschmidt echo as a function of time. For systems
with degenerate initial state, as both the two-beam bipo-
lar case for δω = 0 or the three-beam unstable case for
c = 0, a suitable generalization of this quantity is ob-
tained as follows (see Refs. [59, 68, 69])

Lk(t) = |〈Φk|Ψ(t)〉|2 . (34)

where |Φk〉 are the two degenerate states: one is the ini-
tial state |Φ0〉 = |Ψ(0)〉, and the other one is obtained by
exchanging the polarization of the A and B beams. In

our setup we have then |Φ1〉 = |↓〉⊗NA⊗|↑〉⊗NB ⊗|↑〉⊗NC

to |Ψ2(0)〉. From these definitions of the Loschmidt echo
we can also introduce a related quantity, the Loschmidt
rate, defined as

λ(t) = − 1

N
log[L(t)] . (35)

Here N is the total number of particles in the system
and λ(t) an intensive ”free energy” [66, 70]. The rate
λ(t) plays here the role of a non-equilibrium equivalent
of the thermodynamic free-energy. In cases where the
generalization of the Loschmidt echo from Eq. (34) ap-
plies, the“free energy” is given by the minimum of the two
rates λ(t) = min[λ0(t), λ1(t)] (see [68]). In these cases, a
dynamical phase transition can therefore occur whenever
these rates cross for some time t∗, giving rise to a kink



8

0 10 20 30 40
Time t [ 1]

0.00

0.01

0.02

0.03

0.04

0.05
Lo

sc
hm

id
t r

at
e 

c=-1/2
c=-1/4
c=0
c=1/4
c=1/2

FIG. 5. Loschmidt rate in a system with N = 348 neutrino
amplitudes initialized in |Ψ2(0)〉 of setup II with different val-
ues of c: the red and black lines correspond to unstable cases
with negative values c = −1/2 and −1/4 respectively, the
blue and orange lines correspond to stable cases with positive
values c = 1/4 and 1/2 respectively, and the green line is with
c = 0 transiting from unstable to stable configuration. Solid
lines are for the Loschmidt rate λ(t) while dashed line shows
the second rate λ1(t) as defined in the text.

in λ(t). We present results for these Loschmidt rates at
various values of the angular parameter c in Fig. 5. The
second Loschmidt rate λ1(t) is shown only for the degen-
erate case c = 0. These results can be directly compared
with Fig.9 of Ref. [59] where the two-beam setup was con-
sidered instead. Similarly to that situation, we find that
indeed the Loschmidt rates cross for a time t∗ ≈ 34µ−1

for c = 0 while for non-zero values of c the behavior is
markedly different between the stable and unstable cases:
for stable configurations with c > 0 the Loschmidt rate
displays periodic oscillations that return to zero while for
unstable configurations the Loschmidt rate shows sharp
peaks. This is exactly the behaviour found in Ref. [59]
for the case of slow bipolar modes and suggests that the
argument provided above, which links this phenomenon
to the fast oscillation case as being produced by the same
dynamical phase transition, might be valid. Further work
to establish a more robust connection and explore the full
dynamical phase diagram of the model is warranted.

As a further confirmation of the stability of configura-
tions with positive values of c, the numerical results we
obtain for these configurations show indeed flavor evo-
lution similar to the stable cases observed before, with
oscillation amplitudes vanishing as ≈ 1/N in the large
system size limit.

We can now turn to present the result of our simula-
tion for the survival probability in beam B and c = −0.5
in Fig. 6. The time axis has been scaled by the factor
1 + log N to show the system size dependence (darker
curves corresponds to larger systems). In Fig. 7 we plot
the system size dependence of the time to reach the first
minimum in the survival probability in beam B. As ex-
pected from the discussion on the presence of a dynami-
cal phase transition in this regime, the time dependence
for the unstable configurations with −1 < c < 0 is log-
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FIG. 6. Time evolution of survival probability in beam B for
the initial state in Setup II and c = −0.5. The plot uses a
rescaled time variable T/(1 + log N) (darker colors indicate
larger values of N) to highlight the system size dependence.

arithmic Tmin
B ∝ log(N). We have observed the same

qualitative behavior for all beams and values of c in the
unstable region.

The ratios of flavor transitions in each beams during
that intermediate stage and their dependence on the an-
gular parameter c are also compared to the mean-field
relations in Eq. 12. We pick a time point where the tran-
sition probability of beam B, ∆PB ≡ |1 − PB |, firstly
reaches a value of 1/2 (∼ O(1)) to represents an inter-
mediate stage. We calculate the ratio of transition prob-
abilities, ∆PA/∆PB , at that time, and do the same for
all five unstable angular parameters of c ≤ 0 and two
system sizes N = 384 and 2700 in Fig. 8. At a larger
system size of N = 2700, the ratios tend to converge on
the prediction from the linear analysis.

However, the long-term evolution of survival proba-
bility can deviate from the mean-field result. Within

101 102 103

System size N

10

20

30

T(m
in

)
B

[
1 ]

c = -0.25
c = -0.5
c = -0.75

FIG. 7. Time to reach the first minimum in the survival
probability in beam B for the initial state in Setup II and
different angular distributions as function of system size (on
a log scale). The straight lines for −1 < c < 0 emphasize the
log N dependence for unstable configurations.
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FIG. 8. Setup II: Comparison between the relation of
|QA|2/|QB |2 in mean-field approximation and the ratio of
transition probabilities, ∆PA/∆PB , in many-body calcula-
tions for five unstable parameters of c and two system sizes
N = 384 and 2700, respectively.

mean-field assumption, this three-beam setup where two
beams are anti-aligned is equivalently an axisymmetric
setup and should lead to a bipolar motion with the same
minimum survival probabilities in each flavor conversion
cycle [48, 71], but Fig. 6 shows that the minimal value of
survival probabilities in the second cycle (at the rescaled
time ≈ 6) is much higher than that in the first one (at
the rescaled time ≈ 2) as the system size N goes to 2700.
This deviation is consistent with the behavior of deco-
herence found in Ref. [61] and will also be reflected by
the entanglement and correlations as to be discussed in
next section.

VI. ENTANGLEMENT AND CORRELATIONS

In the previous section we studied the dependence of
single particle observables like the survival probability on
system size. For marginally unstable and unstable con-
figurations we discovered that the many-body result does
not converge to the mean field prediction in the large par-
ticle number limit. When such a difference appears, one
is left to wonder whether the initial mean field wavefunc-
tion evolves with time to a more complicated one. In such
a scenario, many-body effects like correlations and entan-
glement, which would otherwise not be present, tend to
develop dynamically [58, 59, 72, 73]. The focus of this
section is the study of the pair correlations and entangle-
ment generated during the time evolution.

A. Beam Correlations

As we mentioned in the derivation of the mean-field
equations in Sec. III, one of the underlying assumptions
behind the mean field approximation is the factorization
of expectation values 〈OiOj〉 ≈ 〈Oi〉〈Oj〉 for different
neutrinos. Here we explore the violations of this assump-
tions due to many-body effects by measuring the con-

nected pair correlations along the flavor axis

CAiAj =
4

NAi
NAj

(
〈JzAi

JzAj
〉 − 〈JzAi

〉〈JzAj
〉
)
. (36)

We first note that, due to the conservation of the total
polarization along the z-axis, the sum for all Ai, Aj ∈
{A,B,C} becomes∑

Ai,Aj

CAiAj (t) =
4

N2

(
〈(Jz)2〉 − 〈Jz〉2

)
= 0 , (37)

where the last equality comes from the initial condition
being a product state. This constraint implies that the
intra-beam correlations CAiAi(t) are not independent on
the correlations CAiAj (t) between different beams Ai 6=
Aj . In particular we have

Cdiag(t) = −Codiag(t); , (38)

where Cdiag(t) and Codiag(t) are the sum of diagonal and
off-diagonal pair correlations respectively.

As we have seen in the previous section, for appro-
priate values of the angular parameter c the three-beam
models considered in this work can show flavor evolution
in contrast to the mean-field prediction. In these situa-
tions we, then, expect correlations to be present as they
are responsible for the non-trivial evolution. Since the
system in Setup II can reproduce all three types of time
evolution (stable, marginally unstable and unstable) we
restrict the present discussion to this setup only.

In Fig. 9 we show the time evolution of all three off-
diagonal pair correlations for three indicative scenarios
and N = 348: the left panel shows the case of a stable
system with vanishing flavor evolution (c = 1), the cen-
tral panel shows results for a marginally unstable system
with flavor evolution at the long time scale τ ≈ µ−1

√
N

(c = −1) and the right panel shows results for an un-
stable system (c = −0.5) with flavor evolution at the
short scale τ ≈ µ−1 log(N). These results shows that for
stable systems CAiAj ≈ 0 at all times, with like flavor
beams (A and C) positively correlated and opposite fla-
vor beams anti-correlated. For the marginally unstable
system at c = −1 the two anti-parallel beams B and C
whose total spin is conserved are strongly anticorrelated
and along times CBC ≈ −0.5 while the stable beam A
has vanishing correlation with the other two. Finally, for
the unstable case c = −0.5, all beams show substantial
correlations among each other.

The results shown in Fig. 9 suggest that one can detect
instabilities in the neutrino flavor evolution by looking at
pair correlations among the beams while the conservation
of the total spin also indicates (see Eq. (38)) that cor-
relations must be present inside the beams themselves.
These correlations are however influenced by finite size
effects and for small system sizes this separation is less
pronounced. To show this we present in Fig. 10 the long
time average of the total diagonal correlations

CtFdiag =
1

tF

∑
Ai

∫ tF

0

dtCAiAi
(t) , (39)
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FIG. 9. The time evolution of the three off diagonal pair correlations CAB , CAC and CBC (shown with full, dashed and dotted
lines respectively) for the system size N = 348. The left panel is a stable system with c = 1; the center panel depicts a
marginally unstable case with c = −1.0, and the right panel shows an unstable case with c = −0.5.
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FIG. 10. Evolution with system size N of the long time av-
eraged diagonal pair correlation CtFdiag from Eq. (39) for the

initial state |Ψ2(0)〉 and three angular distributions: c = 1
(blue circles), c = −1 (green diamonds) and c = −0.5 (orange
squares). The inset shows the dependence on the integration
time tF for the three angular distributions and two system
sizes: N = 96 (dashed lines) and N = 348 (solid lines). The

time axis in the inset has been scaled with 1/
√
N to better

show the systems size dependence.

as a function of system size N . Due to Eq. (38) we have
that CtFdiag = −CtFodiag and the quantities provide a similar

measure of correlations. The main panel shows CtFdiag in

the three cases considered above for tF = 400µ−1. This
value was chosen to guarantee convergence to the long
time average for the largest system considered here, N =
348. In general we observe that convergent results can be
obtained for all angular distributions choosing tF ∝

√
N ,

this is shown in the inset of Fig. 10 where we present the
dependence of the time averaged correlations with the
size tF of the time window upon rescaling with

√
N : the

dashed lines correspond to N = 96 and the continuous
lines to N = 348.

B. Entanglement entropy

Another important way to characterize correlations in
a many-body system is to estimate the amount of entan-
glement generated during time evolution. From a prac-
tical point of view, entanglement controls the computa-
tional cost of classical tensor network methods to simu-
late the flavor dynamics of a neutrino system. An im-
portant example, already used in the study of collective
neutrino oscillations in Refs. [58, 59], and more recently
in [60], are Matrix Product State (MPS) which can ap-
proximate efficiently (i.e. in polynomial cost) quantum
states for which the Rényi entropies Rα for any bipar-
tition of the system grow at most logarithmically in the
size of the bipartition [74]. We will comment more on
the efficiency of a MPS simulation of collective neutrino
systems in the conclusions.

Quantum correlations like entanglement are more gen-
erally useful tools to analyze the structure of many-body
neutrino systems and have been shown to be helpful in
detecting the presence of bipolar collective modes in the
past [58, 59, 62]. These calculations were performed using
only two beams and therefore only display slow modes.
Here we are interested in extending this connection to
fast modes instead, and therefore, might be important
near the surface of a proto-neutron star where µ � ω
[43, 46]. In [73], the authors found that the largest val-
ues of entanglement entropies occur for neutrinos with
energies closest to the spectral split energy.

In Fig. 11 we depict, as function of time for N = 2700
and the three angular setups from the previous plots, the
entanglement entropy SAi

(see eq. 18) obtained from the
reduced density matrix of the A beam (full lines) and,
for the stable system with c = 1, also of the B beam
(dashed line). For this latter setup, in Figs. 9 and 10 we
saw that correlations vanish as the system size increases
while entanglement entropy does not. Instead, it rises
quickly and then proceeds to oscillate with a relatively
small amplitude. For marginally unstable (c = −1) and
unstable (c = −0.5) configurations, the entropy reaches
Smax ≈ log2(N/3). The associated timescales are t ∼√
N and t ∼ log(N) respectively, in agreement with our
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previous observations on the persistence in section V B.
To further confirm the behavior of Smax with N , in

Fig. 13 we depict how it scales with system size, with
x-axis in log scale, for beam B. The stable configuration
(c = 1) reaches a plateau while the marginally unsta-
ble and unstable configurations increase logarithmically.
This is even more evident by comparing the data from
simulations to the line log2(N/3) (dashed black line).
This logarithmic behavior has also been observed in past
MPS based calculations of bipolar oscillations [58, 59] as
well as more general two-beam models [62].

As the particle number increases, so do the initial ex-
pectation values of Jz and J2. Then, for large N we
expect to represent the flavor operators Jx,y,zAi

through
canonical bosonic operators, following the Holstein-
Primakoff transformation [75] truncated to leading order.
If we approximate the state of each beam by a Gaussian,
then, the entanglement entropy (Von Neumann entropy)
for a beam can be approximated,

SAi
(t) =

1 + 2ΓAi
(t)

log(2)
arccoth (1 + 2ΓAi

(t))

+
1

2
[log2(ΓAi(t)) + log2(1 + ΓAi(t))] .

(40)

The term ΓAi
, related to the covariance matrix of the

Gaussian state, can be approximated in two different
ways,

Γ
(a)
Ai

(t) =NAi (1− PAi(t)) ,

Γ
(b)
Ai

(t) =
NAi

4
−
〈(JzAi

)2〉
NAi

,
(41)

based on the survival probabilities and correlations, re-
spectively. The detailed analysis can be found in Ap-
pendix C. In Fig. 12 we plot the entanglement entropy
for beam B and N = 2700 as function of time, together
with the predictions obtained from these two approxima-
tions. The panel on the left is a stable system with c = 1;
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FIG. 11. Entanglement entropy as function of time for system
size N = 2700. The three angular distributions are c = 1
(blue), c = −1 (yellow) and c = −0.5 (purple). Beam A
(dashed) is shown only for the stable configuration (c = 1)
while beam B is shown of all three angles.

the center panel depicts a marginally unstable case with
c = −1.0, and the right panel shows an unstable case
with c = −0.5. The survival probability and correla-
tions employed in making this plot were computed with
the method described in section IV. For stable configura-
tions, Eq. (40) seems to match the exact result for long
term dynamics, while for marginally unstable and un-
stable cases it is a rather good approximation for short
time dynamics. The approximation based on the survival
probability seems to perform better than the one based
on correlations in the marginally unstable case (panel
(b)) as it follows the exact evolution for longer times. In
the unstable case however, this approximation misses the
double peak structure around t = 20µ−1 associated with
flavor inversion in the beam (ie. PA < 0.5), a situation
that cannot be described at leading order in the semi-
classical expansion (see Appendix C for more details).

These results show that non-trivial evolution of the
survival probability is intimately connected to the pres-
ence of entanglement and correlations. It would be in-
teresting to extend this approach to more complicated
models including a non-diagonal one body Hamiltonian
(vacuum frequency) as well as performing the full evolu-
tion within the semi-classical approach. In addition, it re-
mains to be seen whether the Holstein-Primakoff approx-
imation is the best choice to represent the system, and,
perhaps the truncated Wigner approximation (see [76]
and references therein) could also be employed. While
their numerical implementation is beyond the scope of
this work, if semi-classical treatments are good approxi-
mations in the large particle number limit, they may be
of practical importance for simulations relevant for su-
pernovae and neutron star binary mergers.

VII. SUMMARY AND CONCLUSION

In compact objects, core-collapse supernovae and neu-
tron star mergers, neutrinos play a vital role in shaping
the dynamics of the system and the conditions for nu-
cleosynthesis in the ejected material. The presence of
collective flavor oscillations, primarily due to neutrino-
neutrino scattering, could lead to important effects in
these aforementioned developments. As these scatter-
ings are dependent only on the angle between particles
and couple neutrinos of different energies, flavor evolu-
tion is a very complicated many-body problem.

In this work we performed a complete many-body
treatment based on the method described in Ref. [61].
We considered a simplified setup of three coplanar beams,
parameterized by c – the cosine of the angle between two
of the beams, and two neutrino flavors. We focused only
the effects due to neutrino scattering and studied the
dependence on system size. We selected two initial con-
figurations for the wavefunction,

1. |Ψ1(0)〉 = |↑〉⊗NA ⊗ |↑〉⊗NB ⊗ |↓〉⊗NC ,

2. |Ψ2(0)〉 = |↑〉⊗NA ⊗ |↓〉⊗NB ⊗ |↑〉⊗NC .
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FIG. 12. The time evolution of the entanglement entropy for beam B and the system size N = 2700. The left panel is a stable
system with c = 1; the center panel depicts a marginally unstable case with c = −1.0, and the right panel shows an unstable case

with c = −0.5. The approximation Γ
(a)
i (t) = Ni (1− Pi(t)) gives a closer result to the exact value than Γ

(b)
i (t) = Ni

4
− 〈J

z
i Jz

i 〉
Ni

.

For these setups, the mean field approximation predicts
no flavor evolution, and any dynamics is purely a many-
body effect. By analyzing the time evolution of the sur-
vival probability or persistence for each of the beams, we
discovered that for |c| < 1 in setup I and c ≥ 0 in setup
II, the many-body results converge to the mean field ones
in the large particle number limit. The extremal values
of the cosine in setup I and c = −1 in setup II denote
marginally unstable situations where the survival prob-
ability does not converge to 1 as would have been pre-
dicted by the mean-field analysis. However, the time
to reach its minimum ∼ µ−1

√
N , “freezing” the flavor

evolution for large N . The effective Hamiltonian govern-
ing these situations is analogous to the two beam system
studied in Refs. [58, 59] and the results agree with the
behaviour found there. The system in setup II can in-
stead develop fast collective oscillations when −1 < c < 0
leading to a crossing of the angular distributions. For
these cases the persistence does not converge to 1 as N
increases and the time scale to reach the first minimum
∼ µ−1 log(N). These unstable configurations can also
be derived by rewriting the Hamiltonian to separate the
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FIG. 13. Maximal value of the entanglement entropy as func-
tion of N for beam B, and angles c = −1 (dashed blue),
c = −0.5 (solid orange), and c = 1 (dotted green). For com-
parison, we have also included the log2(N/3) (dashed black)
functional form to show the system size dependence.

dominant term, which is analogous to bipolar oscillations
in the presence of the vacuum term. This establishes a
connection between the dynamical phase transition lead-
ing to bipolar oscillations and the presence of fast modes.
The main difference between the two situations is that
now the one body term playing the role of the vacuum
frequency there has a coupling proportional to µ. This
fact explains in a natural way the distinction between the
frequency of oscillations in slow and fast modes. These
results are also in agreement with the linear mean field in-
stability analysis we performed in section III. In a follow
up work we plan to perform a detailed study of the dy-
namical phase diagram in this simple multi-beam model.

To further confirm the presence of many-body effects,
and beyond mean field behavior, we analyzed the entan-
glement entropy of each beam as well as the time aver-
aged flavor correlations among them. The pair correla-
tions agree qualitatively with the results of the persis-
tence analysis: with increasing system size they vanish
for stable configurations but not for marginally unstable
or unstable ones. However, the time to reach the plateau
scales as ∼ µ−1

√
N in contrast to the survival probabil-

ities. The entanglement entropies closely resemble the
survival probabilities in times scales, and, for unstable
configurations reach the maximal values ≈ log2(N/3).

We have also analyzed the evolution of the entropy
using a correspondence between the survival probability
and the entanglement entropy in a beam obtained us-
ing a semi-classical approximation employing Holstein-
Primakoff approximation. This correspondence shows
directly that flavor evolution in our system is necessar-
ily accompanied by an increase of the entanglement en-
tropy. The good agreement obtained between this ap-
proach and the exact numerical simulations suggests that
semi-classical approaches might provide a powerful tool
to explore neutrino dynamics in large systems for short
time-scales. This will be especially interesting in more
complicated situations with a large number of neutrino
beams where the angular momentum basis scheme em-
ployed here will become computationally too expensive
and the entanglement entropy might become too large
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for tensor network simulations. Finally, simulations us-
ing quantum devices [77–79] will likely become important
in order to study the long time evolution of these systems.
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Appendix A: Three beam geometry

We assume the neutrino system is comprised of three
beams and the neutrinos in each beam are parallel. This
makes for a total of 3 different directions: A,B,C.
These vectors form a tetrahedron with volume,

V =
ABC

6

√
1 + 2cABcACcBC − c2AB − c2AC − c2BC .

where, cAB is the cosine of the angle between vectors A
and B. The non-negativity of the volume requires

1 + 2cABcACcBC − c2AB − c2AC − c2BC ≥ 0.

For a given volume, two of the three cosines are free pa-
rameters. To further simplify our analysis, we assume
the three vectors are coplanar and two are antiparallel,

c = cAC = −cBC , cAB = −1

The corresponding Hamiltonian becomes

HABC = µ
4

N
JA · JB + 2µ

1− c
N

JA · JC

+ 2µ
1 + c

N
JB · JC ,

(A1)

where N = NA +NB +NC is the total number of spins.
Note that we used the fact that J2

Ai
is conserved for each

one of the beams.

Appendix B: The method in angular momentum
representation

The equations of motion for the amplitudes of the
many-body state defined in Eq. 15 is

i∂tamA,mB
= TmA,mB

mA,mB
amA,mB

+TmA+1,mB
mA,mB

amA+1,mB
+ TmA,mB+1

mA,mB
amA,mB+1

+TmA+1,mB−1
mA,mB

amA+1,mB−1 + TmA−1,mB+1
mA,mB

amA−1,mB+1

+TmA−1,mB
mA,mB

amA−1,mB
+ TmA,mB−1

mA,mB
amA,mB−1, (B1)

where

TmA,mB
mA,mB

=
µJAC
N

[kC(NA − kA) + kA(NC − kC)]

+
µJBC
N

[kC(NB − kB) + kB(NC − kC)]

+
µJAB
N

[kAkB + (NA − kA)(NB − kB)],

TmA+1,mB
mA,mB

=TmA,mB

mA+1,mB

=
µJAC
N

√
kAkC(NA − kA + 1)(NC − kC + 1),

TmA,mB+1
mA,mB

=TmA,mB

mA,mB+1

=
µJBC
N

√
kBkC(NB − kB + 1)(NC − kC + 1),

TmA+1,mB

mA,mB+1 =TmA,mB+1
mA+1,mB

=
µJAB
N

√
kAkB(NA − kA + 1)(NB − kB + 1),

(B2)

and kA, kB , and kC are the flipping numbers with mA =
NA/2 − kA, mB = NB/2 − kB , and mC = kC − NC/2
respectively. The polarization is related to the projection
of flavor isospin

PAi
= 2〈JzAi

〉/NAi
=

∑
mA,mB

2mA

NA
|amA,mB

|2, (B3)

and the pair correlations are

〈JxAJxA〉 =
1

4

∑
mA,mB

(NA + 2kANA − 2k2
A)|amA,mB

|2,

〈JxAJxB〉 =
1

2

∑
mA,mB

√
kAkB(NA − kA + 1)(NB − kB + 1)

×Re(a∗mA,mB+1amA+1,mB
),

〈JxAJxC〉 =
1

2

∑
mA,mB

√
kAkC(NA − kA + 1)(NC − kC + 1)

×Re(a∗mA,mB
amA+1,mB

). (B4)

Appendix C: Semi-classical expansion

In this section we introduce the truncated Holstein-
Primakoff transformation, already used in [80, 81] for
spin systems with long-range interactions, and show how
pair correlation in the neutrino beams are directly con-
nected with the entanglement in the system.

As a first step we introduce canonical bosonic operators
pi and qi for each beams as follows

JxAi
=

√
NAi

2 qi +O
(

1√
NAi

)
JyAi

=

√
NAi

2 pi +O
(

1√
NAi

)
±iJzAi

=
NAi

2 −
q2i +p2i−1

2

, (C1)

https://link.aps.org/doi/10.1103/PhysRevLett.120.130603
https://link.aps.org/doi/10.1103/PhysRevLett.120.130603
https://link.aps.org/doi/10.1103/PhysRevResearch.2.012041
https://link.aps.org/doi/10.1103/PhysRevResearch.2.012041
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where the symbol ±i denotes a + sign for beams that
started in the e flavor (positive z polarization) and a −
sign for beams that started in the x flavor (negative z
polarization). Note that the commutation relations of
the spin operators are preserved only in the asymptotic
regime NAi � 1 for which JzAi

≈ NAi/2. This approxi-
mation is useful around the limit for which the number
of excitations measured by the operator

n̂i =
q2
i + p2

i − 1

2
(C2)

remains small compared to NAi
, a condition that for our

system is fulfilled with good accuracy only for stable so-
lutions. We will also approximate the state of each beam
as a Gaussian state with covariance matrix

GAi
=

(
〈q2
i 〉

〈qipi+piqi〉
2

〈qipi+piqi〉
2 〈p2

i 〉

)
. (C3)

Since we start from a product state we expect this ap-
proximation to hold for sufficiently short evolution times.
Following the construction in [81], we will use this ap-
proximation for the beam wave-functions to compute
an approximation to the entanglement entropy of each
beam. The result reads

SAi(t) =
2

log(2)

√
detGAi(t)arccoth

(
2
√

detGAi(t)
)

+
1

2
log2

(
detGAi

(t)− 1

4

)
,

(C4)

where we made explicit the time dependence of the co-
variance matrix, and thus the entropy. The covariance
matrix completely characterizes the entanglement prop-
erties of a Gaussian state and we can therefore also com-
pute other entanglement measures such as the Rényi 2
entropy (defined in Eq. (16) of the main text)

R2,i(t) = log2

(
2
√

detGAi(t)
)

= 1 +
1

2
log2 (GAi(t)) .

(C5)

In order to calculate the determinant, we first rewrite
the diagonal element in terms of spin operators

〈q2
i 〉 =

2

NAi

〈JxAi
JxAi
〉 〈p2

i 〉 =
2

NAi

〈JyAi
JyAi
〉 , (C6)

due to the U(1) symmetry shared by both the initial
state and the Hamiltonian these expectation values re-
main equal at all times. For the off-diagonal terms in-
stead, we first introduce ladder operators

J±Ai
= JxAi

± iJyAi
=

√
NAi

2
(qi ± ipi) , (C7)

from which we find

〈qipi + piqi〉
2

= − i

NAi

〈J+
Ai
J+
Ai
− J−Ai

J−Ai
〉 , (C8)

this are also zero for our system due to the conservation
of the total spin. We can now proceed in two ways: the
first one is to use the definition of JzAi

in Eq. (C1) to
write

〈q2
i 〉 = 〈p2

i 〉 =
1

2
+ 〈n̂i〉

=
1

2
+
NAi

2
∓i 〈JzAi

〉

=
1

2
+NAi

(1− PAi
(t)) ,

(C9)

where in the last line we avoided the beam-dependent ∓i
sign by using the definition of flavor survival probability
for beam i from Eq. (20) of the main text (note that
here we haven’t indicated the initial condition). We can
express the covariance matrix as

G
(a)
i =

(
1

2
+NAi

(1− PAi
(t))

)(
1 0
0 1

)
. (C10)

The second one is to use the conservation of the angular
momentum J2

Ai
to write the covariance matrix as

G
(b)
i =

2

NAi

(
〈JxAi

JxAi
〉 0

0 〈JyAi
JyAi
〉

)
=
J2
Ai
− 〈JzAi

JzAi
〉

NAi

(
1 0
0 1

)
=

(
1

2
+
NAi

4
−
〈JzAi

JzAi
〉

NAi

)(
1 0
0 1

)
,

(C11)

where in the last step we have used the initial value J2
Ai

=
NAi

(NAi
+ 2)/4 valid for every beam.

We finally find the following compact expression for
the Von Neumann entropy in both approximations as

S
(a/b)
Ai

(t) =
1 + 2Γ

(a/b)
Ai

(t)

log(2)
arccoth

(
1 + 2Γ

(a/b)
Ai

(t)
)

+
1

2

[
log2(Γ

(a/b)
Ai

(t)) + log2(1 + Γ
(a/b)
Ai

(t))
]
,

(C12)

and, correspondingly, the Rényi 2 entropy becomes

R2,Ai
(t) = log2

(
1 + 2Γ

(a/b)
Ai

(t)
)
. (C13)

In these expression we have introduced the quantity

Γ
(a)
Ai

(t) = NAi
(1− PAi

(t)) (C14)

for approximation (a) and

Γ
(b)
Ai

(t) =
NAi

4
−
〈JzAi

JzAi
〉

NAi

, (C15)

for approximation (b). At the beginning of time evolu-

tion Γ
(a/b)
i (t) = 0 and so is the entropy. The largest value

this can reach in approximation (a) is when the survival
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probability goes to zero while in approximation (b) when
all the angular momentum is in the (X,Y ) plane and
〈JzAi

JzAi
〉 = 0. In these limits the entropy is approxi-

mately

S(a)
max ≈ 1 + log2 (NAi

)

S(b)
max ≈ 1 + log2

(
NAi

4

)
.

(C16)

Since the (b) approximation depends directly on the ap-

proximate definition of the spin operators in the X and
Y direction from Eq. (C1), we expect it to break down
when 〈JzAi

〉 deviates significantly from its initial value.
On the other hand approximation (a) only relies on this
mapping to establish 〈q2

i 〉 = 〈p2
i 〉 and that the off diago-

nal elements of Gi are zero but is otherwise exact (within
the Gaussian approximation). We then expect approxi-
mation (a) to perform better in practice in the limit of
large system size.
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