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Abstract
In this paperwe studygeometric realizations of someclassic birationalmaps, such as inversion
maps, special Cremona transformations, special birational transformations of type (2, 1), by
considering C

∗-actions on rational homogeneous spaces and their subvarieties.

Keywords Rational homogeneous spaces · Birational geometry · Cremona
transformations · Torus actions
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1 Introduction

A remarkable idea present in modern birational geometry is the one that two birationally
equivalent varieties should be obtained as GIT quotients of the same algebraic variety. This
connection betweenGeometric Invariant Theory and theMinimalModel Program arose from
the seminal work of Thaddeus and Reid in the 1990s (see [32, 36]). Since then, it has led to
the concept of Mori Dream Spaces, whose small Q-factorial modifications can be obtained
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as quotients by the action of a torus on the spectrum of a finitely generated algebra, the so
called Cox ring of the Mori Dream Space.

On the other hand, an action of a complex 1-dimensional torus C∗ on a projective vari-
ety induces a birational transformation between the associated geometric quotients (cf. [27,
Lemma 3.4], [28, Remark 2.13]). Then it makes sense to ask whether any birational trans-
formation may be obtained in this way. On the one hand, this question may be dealt with
C

∗-equivariant projective compactifications of the cobordisms studied by Morelli and Wło-
darczyk (cf. [22, 38]). On the other hand, one would like to construct explicitly a projective
variety with an action of C∗ inducing a given birational map ψ , i.e., a geometric realization
of ψ , which is the main motivation of this paper. More precisely, a geometric realization of
a birational map ψ among two complex projective varieties is a variety X equipped with
a C∗-action inducing ψ as the natural birational map among two extremal geometric quo-
tients. This concept has been introduced in [26], where geometric realizations for a certain
simple class of birational transformations, called bispecial, have been constructed; a similar
construction had been proved to work in the case of Atiyah flips (cf. [29]). Morever, recent
results in [2] provide a way to construct geometric realizations starting from Mori dream
pairs.

Another possible idea to construct geometric realizations is to start with some reasonable
class of C∗-actions on projective varieties, and then to study their C∗-invariant subvarieties
and the associated birational maps. In this paper we considerC∗-actions on rational homoge-
neous spaces, and describe the birational maps induced by them. Furthermore, by considering
certainC∗-invariant subsets of rational homogeneous spaces we are able to produce geomet-
ric realizations of other birational transformations, such as the special transformations of type
(2, 1) classified by Fu and Hwang, [13]. We stick to the case in which the action is equalized
(see 2.1.9 below), a condition that guarantees the smoothness of the birationally equivalent
varieties associated with the action. Remarkably, the list of transformations that we obtain in
this way contains many classically interesting examples, such as the inversion of matrices,
and the special quadro-quadric Cremona transformations (see [9]). As a consequence of our
discussion, we finally pose two problems.

Problem 1 Classify G-equivariant Cremona transformations among two irreducible projec-
tive representations of a semisimple group G, constructing geometric realizations for them.

One may observe that the standard Cremona transformation from P
n−1 to P

n−1 is a
restriction of the projectivization of the inversion map of n × n matrices (cf. [11, Example
1.1] and [21, Lemma 3.6]). Moreover, its geometric realization given by the diagonal natural
C

∗-action on (P1)n can be C
∗-equivariantly embedded into A2n−1(n). We would like to

present here the problemof classifying theCremona transformations that satisfy this property.
Philosophically speaking, one would like to understand how far is the inverse map from
being a “universal” Cremona transformation. See [11] for some recent progress concerning
the following problem.

Problem 2 Classify Cremona transformations that are restrictions of the inversion map
(Example 4.2), studyingwhen their geometric realizationsmaybe embeddedC∗-equivariantly
into A2n−1(n).

Outline. After recalling some basic facts on torus actions on rational homogeneous varieties
(Sect. 2), we focus on the classification of equalized actions with isolated extremal fixed
point components, and study their associated birational transformations (Sect. 3). Section4
contains descriptions of the Cremona transformations obtained in this way. In particular, our
discussion provides the following statement:
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Theorem Letψ : P(Mn×n(C)) ��� P(Mn×n(C)) be the projectivization of the inversionmap
of n × n matrices, and let ψs , ψa be its restrictions to the projetivizations of the spaces of
symmetric and skew-symmetricmatrices, respectively. Then there exist geometric realizations
of ψ , ψs , ψa (with n even in this case), given by an equalized C∗-action on, respectively, the
following rational homogeneous varieties (see Sect.3.1 for notation):

A2n−1(n), Cn(n), Dn(n).

Note that the inversion maps ψ , ψs , ψa induced by the equalized C
∗-action on

A5(3),C3(3),D6(6) are quadro-quadric special Cremona transformations as described in
[9]; the list is completed with the map induced by the equalized C

∗-action on E7(7), see
Remark 3.19.

In the final Sect. 5 we study induced C
∗-actions on certain fiber bundles contained in

rational homogeneous varieties, and show that some of them are geometric realizations of
special birational transformations. More concretely, our arguments in that section allow us
to prove the following statement:

Theorem Let F be a Fano manifold of Picard number one, and assume that there exists
a special birational transformation ψ : F ��� P

dim(F) of type (1, 2). Then there exists a
geometric realization of ψ , given by an equalized C

∗-action on a locally trivial F-bundle
X → P

1. Furthermore, F can be C
∗-equivariantly embedded in a rational homogeneous

variety with an equalized C∗-action.

2 Preliminaries onC∗C
∗

C
∗-actions

Throughout the paper all varieties will be defined over the field of complex numbers. This
section contains some preliminary results, notation and conventions regarding C

∗-actions.
We refer the interested reader to [1, 4, 8, 27, 28, 33] for details, original references, and
further results. In particular we will recall the concept of geometric realization of a birational
map, introduced in [26]. In the remaining sections, X will be a smooth projective variety
with a C∗-action.

2.1 Generalities onC∗C
∗

C
∗-actions

Let X be a complex, smooth, projective variety admitting a non-trivial (morphical) action of
the multiplicative group C∗, which will be denoted as follows:

C
∗ × X −→ X (t, x) �→ t x .

2.1.1. XC
∗ ⊂ X will denote the set of fixed points of the C

∗-action, which is a closed,
smooth subset of X , and Y the set of irreducible components of XC

∗
.

2.1.2. For every x ∈ X we set

x± := lim
t±1→0

t x ∈ XC
∗

and call them the sink and the source of the orbit C∗x , respectively.
2.1.3. Y−, Y+ ∈ Y will denote the sink and the source of the action, defined as the fixed point

components satisfying x± ∈ Y± for the general point x ∈ X . We will call them the
extremal fixed point components of the action. The rest of the fixed point components
are called inner, and their set is denoted by Y◦.
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2.1.4. For every subset S ⊂ XC
∗
, we denote by X±(S) ⊂ X the C∗-invariant subsets:

X±(S) := {x ∈ X | x± ∈ S}.
In the case of a fixed point component Y ∈ Y , the sets X±(Y ) ⊂ X are called the

positive/negative BB-cells (short form of Białynicki-Birula cell) associated with Y . They are
open subsets in their Zariski closures, and the maps from X±(Y ) to Y sending each point x
to x± are known to be morphisms (cf. [4, Theorem 4.3]).

2.1.5. For every Y ∈ Y , we denote by NY |X the normal bundle of Y in X . The action
of C∗ on X induces a fiberwise linear C∗-action on the fibers of NY |X over Y , and we may
decompose it as a direct sum of vector bundles

NY |X = N−(Y , X) ⊕ N+(Y , X),

according to the sign of the weights of the C∗-action. When the ambient variety X is clear in
the context, we will simply write N±(Y ) := N±(Y , X). By the Białynicki-Birula theorem
[4, Theorem 4.2], we know that for every point x ∈ Y there exists an open neighborhood
U ⊂ Y of x such that X±(U ) are C∗-equivariantly isomorphic over U to N±(Y )|U . This is
not equivalent to saying that there exist equivariant isomorphisms from N±(Y ) to X±(Y ),
since the morphisms X±(Y ) → Y are only known to be affine bundles, in general (cf. [4,
Remark, p.491]).

The rank ofN±(Y ), which is equal to dim(X±(Y ))−dim(Y ), will be denoted by ν±(Y ).
Note that

ν∓(Y±) = 0,

ν+(Y ) + ν−(Y ) = dim(X) − dim(Y ), for every Y ∈ Y,

ν±(Y ) = 0 if and only if Y = Y∓.

(1)

for every Y ∈ Y .
2.1.6. A linearization of the action of C∗ on a line bundle L on X is a fiberwise linear

C
∗-action on L such that the natural projection is C∗-equivariant. Given Y ∈ Y , there exists

an integer μL(Y ) ∈ Z, called the weight of the linearization on Y , such that the action of C∗
on every fiber of L |Y → Y is given by (t, v) �→ tμL (Y )v.

2.1.7. If L is ample, the C
∗-action together with a linearization on L will be referred

to as a C
∗-action on the polarized pair (X , L). In this case the minimum and maximum

value of the weights are achieved at the sink and the source of the action, respectively (see
[27, Remark 2.12]). By multiplying the linearization with a character we may assume that
μL(Y−) = 0, and then δ := μL (Y+) is called the bandwidth of the C

∗-action on (X , L).
Furthermore, the set

μL(Y) = {a0 = 0, a1, . . . , ar = δ}, (a0 < a1 < · · · < ar )

is called the set of critical values of the C
∗-action on (X , L). The integer r is called the

criticality of the action.
2.1.8. A linearization of the C∗-action on an ample line bundle L over X gives a weight

decomposition on H0(X , L), namely:

H0(X , L) =
⊕

u∈Z
H0(X , L)u,

where H0(X , L)u ⊂ H0(X , L) stands for the vector subspace ofC∗-weight u. If L is globally
generated, the extremal values for which H0(X , L)u 
= {0} are μL(Y−) = 0, μL(Y+) = δ.
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2.1.9. The action of C∗ on X is said to be equalized if and only if the induced action on
N±(Y ) has all its weights equal to ±1; that is to say that the action on N±(Y ) is faithful
and fiberwise homothetical, for every Y ∈ Y . Equivalently, the C

∗-action has no proper
non-trivial isotropy groups.

2.1.10. If the C
∗-action is equalized, then the closure of any 1-dimensional orbit is a

smooth rational curve, whose L-degree (with respect to L ∈ Pic(X) ample) can be computed
in terms of the weights at its extremal points:

L · C∗x = μL(x+) − μL(x−). (AM vs FM)

2.1.11. The action of C∗ on X is said to be of B-type if and only if ν±(Y±) = 1, i.e., if
Y± are divisors in X .

2.1.12. If the C∗-action on X is equalized, then it extends to a B-type C∗-action on the
blowup

β : X � → X ,

of X along Y±, whose sink and source are the exceptional divisors PY±(N∨
Y±|X ).

2.1.13. An important consequence of equalization (that follows from [4, Remark, p.491])
is that under this hypothesis the BB-cells X±(Y ) are vector bundlesC∗-equivariantly isomor-
phic toN±(Y ), for everyY ∈ Y . Applied to the extremal fixed point componentsY±, this tells
us thatPY±(N∨

Y±|X ) is isomorphic to the geometric quotient of the open set X±(Y±)\Y± ⊂ X
by the action of C∗.

Furthermore, the nonempty intersection of the open sets X±(Y±)\Y± induces a birational
map among the corresponding quotients:

ψ : (X−(Y−) \ Y−)/C∗ ��� (X+(Y+) \ Y+)/C∗,

that in the equalized case is identified with a birational map:

ψ : PY−(NY−|X ) ��� PY+(NY+|X ). (2)

Note that in the case in which the C∗-action is of B-type, the map ψ goes from Y− to Y+.
Note also that the birational maps induced by an equalized action on X and on its blowup
along its sink and source are the same.

2.1.14. Conversely, let ψ : E− ��� E+ be a birational map. A geometric realization
of ψ is a variety X endowed with a C∗-action such that E± � (X±(Y±)\Y±)/C∗, and the
induced birational map from E− to E+ coincides with ψ .

2.2 Exceptional locus of the induced birational transformation

In this section we will describe the exceptional locus of the birational map associated with a
faithful C∗-action on a smooth projective variety X . For simplicity we will assume that the
action is of B-type (see 2.1.12 above), so that the C∗-action induces a birational map:

ψ : Y− ��� Y+,

which assigns to a general point y ∈ Y− the limit as t → 0 of the unique orbit having limit
as t−1 → 0 equal to y.

Given an inner fixed point componentY ∈ Y◦ we consider the invariant closed subvarieties
of X defined recursively as follows:

C±
1 (Y ) := X±(Y ), C±

k (Y ) := X±(C±
k−1(Y )), k ≥ 2
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Note that C±
k−1(Y ) ⊆ C±

k (Y ), and that the inclusion is strict if and only if there exists a
1-dimensional orbit C∗x not contained in C±

k−1(Y ) such that limt→0 t±1x ∈ C±
k−1(Y ). Then

for every inner fixed point component Y there exists m ≥ 1 such that C±
m−1(Y ) = C±

m (Y ),
and so we may define:

C±(Y ) := lim
k→+∞C±

k (Y ), Y ∈ Y◦.

In other words, C±(Y ) can be defined as the union of all the connected 1-cycles consisting
of closures of 1-dimensional orbits linking Y with Y∓, whose existence is guaranteed by [27,
Corollary 2.15]. We finally set:

Z∓(Y ) := C±(Y ) ∩ Y∓ ⊂ Y∓, Y ∈ Y◦, Z∓ :=
⋃

Y∈Y◦
Z∓(Y ) ⊂ Y∓.

Lemma 2.1 In the above notation, the map ψ restricts to an isomorphism:

ψ : Y− \ Z− −→ Y+ \ Z+,

Proof Denote by π± : X±(Y±) � NY±|X → Y± the projection map given by the Białynicki-
Birula theorem. The open subsets:

U± = X±(Y±) \ (
Y± ∪ π−1± (Z±)

)

are equal since, by definition, they can be identified with the set of orbits of the action having
limiting points at Y− and Y+. It then follows that their quotients by the action ofC∗, Y− \ Z−
and Y+ \ Z+, are isomorphic. ��

This statement tells us that the exceptional locus of ψ is contained in
⋃

Y∈Y◦
Z−(Y ).

However, in general Exc(ψ) does not coincide with this set; in fact one may show the
following:

Lemma 2.2 Let X be a smooth, projective variety together with an equalized B-type C
∗-

action, and let C be the set of inner fixed point components Y of the action with ν−(Y ) > 1.
Then:

Exc(ψ) ⊆
⋃

Y∈C
Z−(Y ).

Proof Let x− ∈ Y− \⋃
Y∈C Z−(Y ). We start by claiming that there exists a unique sequence

�1, �2, . . . , �r of closures of 1-dimensional orbits such that x0 := x− ∈ �1, every �i

intersects�i+1 at a fixedpoint xi ,�r intersectsY+ at a point xr = x+, andμL(xi ) < μL (xi+1)

for every i .
In order to prove the claim, we note first that, by the Białynicki-Birula decomposition,

there exists a unique 1-dimensionalC∗-orbit having x− as sink; let us denote by�1 its closure,
by x1 its source, and by Y1 the unique fixed point component containing x1. If there were at
least two 1-dimensional orbits having x1 as sink, the Białynicki-Birula decomposition would
tell us that ν−(Y1) > 1, that is Y1 ∈ C; but then x− ∈ Z−(Y1)would belong to

⋃
Y∈C Z−(Y ),

a contradiction.We proceed now recursively, proving that there exists a unique 1-dimensional
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orbit having x1 as sink, whose closure is denoted by �2, etc. The fact that the weight μL (xi )
grows at every step follows by 2.1.10.

We now prove that the map ψ extends to x−. To this end, let us consider the unique
sequence of C∗-invariant curves �1, . . . , �r linking x− with x+ ∈ Y+ as above. Let γ (s) be
a holomorphic curve converging to x− when s goes to 0, with γ (s) ∈ Y− \ Z− for s 
= 0.
For every s 
= 0, the image ψ(γ (s)) is defined as the source of the unique orbit O(s) having
γ (s) as sink when t goes to ∞. When s goes to 0, the closure O(s) must converge to an
effective and connected C

∗-invariant 1-cycle �′ passing by x− and meeting Y+; moreover,
by the AM vs FM formula (2.1.10) we know that L · �′ = L · O(s) equals the bandwidth δ.
In particular it contains a 1-cycle

∑m
i=1 ri�

′
i with x− ∈ �′

1, �
′
i ∩�′

i+1 = {x ′
i }, �′

m ∩Y+ 
= ∅.
By 2.1.10, the equalization of the action, and the equality L · �′ = δ, we may conclude that
ri = 1 for every i , that �′ = ∑m

i=1 �′
i and that μL(x ′

i ) < μL (x ′
i+1) for every i . In other

words, �′ equals �1 + · · · + �r , and from this it follows that

lim
s→0

ψ(γ (s)) = (�1 + · · · + �r ) ∩ Y+ = x+.

In particular, since this limit does not depend on the choice of the curve γ , it follows that the
map ψ extends to x−. This finishes the proof. ��

2.3 Local description ofC∗C
∗

C
∗-invariant divisors

We end this section by describing locally the invariant divisors determined by sections σ ∈
H0(X , L)u , paying attention to their smoothness. The following result is a restatement of [7,
Lemma 2.17]; the notation we will use is consistent with that paper.

Lemma 2.3 Let X be a smooth proper variety together with aC∗-action, linearized on a line
bundle L on X. Let Y ⊂ X be an irreducible fixed point component, and y ∈ Y be a point. Let
Dσ ⊂ X be aC∗-invariant divisor associated with aC∗-equivariant section σ ∈ H0(X , L)u,
with u ∈ Z. Then there exist local coordinates x1, . . . , xd+ , y1, . . . , yd0 , z1, . . . , zd− around
y = {xi = y j = zk = 0} such that Y = {xi = zk = 0}, and the divisor Dσ is described as
the zero set of a power series f ∈ C[[xi , y j , zk]], homogeneous of degree μL(Y ) − u with
respect to the grading of C[[xi , y j , zk]] induced by the C∗-action.

Proof Without loss of generality, wemay assume thatμL(Y ) > 0.We consider theC∗-action
on the line bundle L , identifying X and Y with their corresponding images into L via the
zero section. Note that in this way X ⊂ L is aC∗-invariant subvariety and, by the hypothesis
on μL , Y ⊂ L is a C∗-fixed point component.

Given a point y ∈ Y , wemay apply [4, Theorem2.5] to find aC∗-invariant neighborhoodU
of y ∈ L equivariantly isomorphic to (Y∩U )×V , where V is aC∗-module. By differentiating
at y, V may be identified with NY |L,y = NY |X ,y ⊕ Ly . The action of C∗ on V diagonalizes
with weights p1, . . . , pd+ , n1, . . . , nd− , μL (Y ) (pi > 0, nk < 0), on a set of coordinates
(x1, . . . , xd+ , z1, . . . , zd− , λ).Wemay complete this set of coordinateswith local coordinates
y1, . . . , yd0 of Y around y, and consider the rings of local coordinates C[[xi , y j , zk]] of X
around y, and C[[xi , y j , zk, λ]] of L around y.

In these local coordinates a section σ ∈ H0(X , L) reads as σ(xi , y j , zk) = (xi , y j , zk,
f (xi , y j , zk)) where f ∈ C[[xi , y j , zk]]. The proof is then concluded by noting that saying
that σ is invariant of weight u means that

f (t(xi , y j , zk)) = tμL (Y )−u f (xi , y j , zk).

��
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A straightforward consequence of the above Lemma is the following:

Corollary 2.4 In the situation of the above lemma suppose that the action is equalized. Then
the function f vanishes along Y with multiplicity ≥ |u −μL(Y )|. If moreover Y is either the
sink or the source, then the inequality becomes an equality.

Proof By Lemma 2.3, the function f can be written as a series:

f =
∑

I ,J ,K

aI J K x
I y J zK

where

x I = xi11 . . . x
id+
d+ , y J = y j1

1 . . . y
jd0
d+ , zK = zk11 . . . z

kd−
d− ,

homogeneous of degree u − μL (Y ) with respect to the action of C∗. Set I , K to be the
sum of the exponents in I , K , respectively. Since the action is equalized, we have that
deg xi = 1, deg zk = −1 for all i and k, and so

u − μL(Y ) = deg( f ) = deg(x I y J zK ) = I − K , for aI J K 
= 0.

Then the vanishing multiplicity of f along Y , which is min{I + K , aI J K 
= 0} is bigger
than or equal to |I − K | = |u − μL(Y )|. For the second part we simply note that if Y is an
extremal component, then either I or K are empty. ��

The following statement is an application of the above result to a particular situation, in
the form of a smoothness criterion for invariant sections of L .

Proposition 2.5 Let (X , L) be a smooth polarized pair with an equalizedC∗-action of band-
width two. Let σ ∈ H0(X , L)1 be a section, with zero locus Dσ , such that Dσ is smooth at the
points of Dσ ∩ Y1. Then the differential dσ defines sections of N∨

Y±/X ⊗ L; if these sections
are nowhere vanishing then Dσ ⊂ X is smooth and the induced action on (Dσ , L |Dσ ) has
bandwidth two.

Remark 2.6 The condition on the non-vanishing of the section of N∨
Y±/X ⊗ L defined by σ

is satisfied for a general σ if L is very ample and, either dim Y± < 1
2 dim X , or dim Y± =

1
2 dim X and the top Chern class of N∨

Y± ⊗ L is zero.

Proof of Proposition 2.5 Since the section σ isC∗-invariant, it is enough to check its smooth-
ness at the fixed point locus. In fact, the singular locus of the section is closed andC∗-invariant;
then if it is non-empty, it contains a singular fixed point. We will check smoothness locally
so that we can write the expansion of σ in coordinates.

By assumption we just need to check the smoothness of Dσ at its intersection with the
source (smoothness at the sink is analogous). We then take y to be a point of the source
Y+, and use Lemma 2.3 to obtain local coordinates y′

i s of weight zero and z′j s of weight
one. Therefore, if f is a local description of σ , it vanishes with multiplicity one at Y+, by
Corollary 2.4. In particular, d f|Y+ is not identically zero, and the zero locus of f is singular
at the points of Y+ on which this differential is zero.

Moreover, since f vanishes at Y+, we may write:

d f|Y+ =
∑

k

fk(y1, . . . , yd0)dzk .

In other words d f|Y+ , as a section of (�X ⊗ L)|Y+ , lies in the kernel of the differential map
(�X ⊗ L)|Y+ → �Y+ ⊗ L |Y+ , which is N∨

Y+/X ⊗ L |Y+ . This finishes the proof. ��
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3 Torus actions on rational homogeneous spaces

Representation theory provides a framework in which one may construct many examples
of projective varieties supporting C

∗-actions (see [5, II, Chapter 3]), that can be thought of
as geometric realizations of some birational transformations. This section is devoted to the
description of C∗-actions on rational homogeneous varieties. We will pay special attention
to those having isolated extremal fixed points that give rise to Cremona transformations
whenever they are equalized (that we will study in Sect. 4 below). In particular, we will
show how to re-construct in this setting the geometric realizations of the special Cremona
transformations within the list of Ein and Shepherd-Barron.

3.1 Notation and basic facts on rational homogeneous varieties

In this sectionwewill recall somebasic facts on rational homogeneous varieties, and introduce
the notation we will use to describe them. We will use some standard representation theory
of semisimple algebraic groups, for which we refer the interested reader to [15, 16].

3.1.1 Rational homogeneous varieties

Let G be a semisimple algebraic group and H ⊂ G a Cartan subgroup, with associated
Lie algebras h ⊂ g; assume that G is the adjoint group of g, so that the group M(H) :=
Hom(H , Z) of characters of H coincides with the root lattice of G with respect to H ,
generated by the root system  ⊂ M(H) of g (with respect to H ). We will denote by
� = {α1, . . . , αn} ⊂  a base of positive simple roots of , and by + ⊂  the set of roots
that are non-negative integral combinations of elements of �, so that b = h ⊕ ⊕

α∈+ gα

is a Borel subalgebra of g, corresponding to a Borel subgroup B ⊂ G containing H . It is
then known that any projective variety admitting a transitive action of G (a so-called rational
homogeneous G-variety) can be written as G/P , where P is a parabolic subgroup of G
containing B.

The Weyl group of G is defined as the finite groupW := NG(H)/H ; its natural action on
M(H)⊗ZR preserves the inner product induced by the Killing form κ(·, ·) of g (which gives
M(H) ⊗Z R the structure of Euclidean space). In this way W can be described as the group
generated by the reflections ri with respect to the positive simple roots αi . Given w ∈ W ,
the minimum number k of reflections ri such that we can write w = ri1 ◦ · · · ◦ rik is called
the length of w; it is known that there exists a unique element of W of maximal length, that
is called the longest element of W , which will be denoted by w0. We will denote by D the
Dynkin diagram of G, and by D its set of nodes, which is in one to one correspondence with
the base of positive simple roots �.

Remark 3.1 The bijection of the root system given byw0, in the cases in which g is simple,
is described in [6, Planche I–IX]. Essentially, w0 equals −id whenever D has no non-trivial
automorphisms (Bn,Cn,E7,E8,F4,G2) and in the case Dn , n even; in the cases An,E6 and
Dn , n odd, it is the composition of −id with the homomorphism of M(H) determined by the
permutation of � induced by the non-trivial automorphism of D.

Every rational homogeneous G-variety G/P is determined by the marking of D on a set
of nodes {i1, . . . , ik} ⊂ D (corresponding to positive simple roots αi1 , . . . , αik ), where k
equals the Picard number of X ; we refer to [25, Section 2] for details. We will then set:

D(I ) := G/P, for I = {i1, . . . , ik}.
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Fig. 1 The Dynkin diagram E6
E6

1 3 4 5 6

2

The parabolic subgroup P associated with I can be described as P = BW (D \ I )B ⊃ B,
where W (D \ I ) ⊂ W is the subgroup of W generated by the reflections r j , j ∈ D\I .

With this notation, any inclusion I ⊂ I ′ ⊂ D gives rise to a natural projection

D(I ′) → D(I ),

whose fibers are rational homogeneous varieties of the form DI (I ′ \ I ), where DI denotes
the Dynkin subdiagram of D obtained by deleting the nodes corresponding to the indices in
I .

The marking of the Dynkin diagram D, of a semisimple group G as above on the whole
set of nodes D corresponds to the quotient of G by the Borel subgroup B containing H ,
which is usually called the complete flag variety associated with G. Complete flags can
be characterized (cf. [30]) by the property of being smooth projective varieties having as
many independent P1-bundle structures as their Picard number; in the notation we have just
introduced, these structures are precisely the natural projections:

D(D) → D(D \ {i}), i = 1, . . . n.

Later on, we will denote the numerical class of the fibers of these maps by �i .

3.1.2 Examples of rational homogeneous varieties

For the connected Dynkin diagrams we will use the numbering proposed by Bourbaki ([6,
Planche I–IX]); for instance, the diagram E6 is numbered as in Fig. 1.

Algebraic geometers usually denote rational homogeneous varieties in a way that reflects
one of their geometric descriptions. The advantage of the above “group-minded” notation
comes from the fact that it may be applied to all rational homogeneous varieties. For the
reader’s convenience,we include here a list of rational homogeneous varieties, their geometric
descriptions, and the notation we will use for them.

• The projective space P
n is written as An(1), and its dual as An(n); more generally,

the Grassmannian of (k − 1)-linear subspaces of Pn is An(k), and so An(k1, . . . , kr ),
k1 < · · · < kr is the variety of flags of linear spaces Pk1−1 ⊂ · · · ⊂ P

kr−1 ⊂ P
n .

• Smooth quadrics of dimension 2n− 1 (resp. 2n− 2) are denoted by Bn(1) (resp. Dn(1)).
Varieties of the form Bn(k1, . . . , kr ) parametrize flags of linear subspaces of Bn(1). The
case of flags in Dn(1) is essentially analogous, but there exist two disjoint irreducible
families of (n − 1)-dimensional linear subspaces, denoted by Dn(n − 1), Dn(n) (the
so-called spinor varieties); the family of (n − 2)-dimensional linear subspaces in Dn(1)
is Dn(n − 1, n).

• Varieties of the form Cn(k1, . . . , kr ) parametrize flags of linear subspaces in P(V ) =
P
2n−1 that are isotropic with respect to a maximal rank skew-symmetric form in V . The

variety Cn(1) is nothing but P(V ), and the varieties Cn(k) are usually called isotropic
Grassmannians.

• The rational homogeneous varieties of types Ek , F4, G2 can be described projectively
in terms of the algebra of complexified octonions; we refer the interested reader to
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[19] and the references therein. Here it will be enough to remark that the variety E6(1)
is the octonionic projective plane, sometimes called the Cartan variety. It can also be
described as the Severi variety of dimension 16 in Zak’s classification, [39, IV. Theorem
4.7]. The rest of varieties of type E6 can be seen as families of subvarieties (or flags of
subvarieties) in E6(1). For instance E6(6) (which is isomorphic to E6(1)) parametrizes
smooth 8-dimensional quadrics in E6(1); furthermore E6(3) parametrizes the lines in
(the minimal projective embedding of) E6(1), so that we may assert, by our previous
arguments, that the family of lines in E6(1) passing through a point is isomorphic to the
spinor variety D5(5). In a similar way, the family of lines passing through a point in the
variety E7(7) is isomorphic to E6(1).

3.1.3 Line bundles on rational homogeneous varieties

Let us finish this section by describing the Picard group of the complete flag D(D), that
contains Pic(D(I )) via the corresponding pullback map, for every I ⊂ D.

Let us denote by G ′ the (unique) simply connected semisimple group with Lie algebra
g. One has a surjective finite homomorphism of algebraic groups φ : G ′ → G such that
B ′ := φ−1(B) is a Borel subgroup of G ′ (so that G ′/B ′ � G/B = D(D)), and H ′ :=
φ−1(H) ⊂ G ′ is a maximal torus; moreover the restriction of φ to H ′ induces an inclusion
of M(H) into M(H ′) as a sublattice of finite index. Furthermore after embedding these two
lattices in the Euclidean space M(H)⊗ZR = M(H ′)⊗ZR, one may identified M(H ′) with
the lattice of abstract weights of g, defined as the set of vectors v ∈ M(H) ⊗Z R satisfying:

2
κ(v, α)

κ(α, α)
∈ Z, for all α ∈ .

For every element λ ∈ M(H ′) one may consider its composition with the projection ξ :
B ′ → H ′ (defined by quotienting B ′ by its unipotent radical) to obtain a homomorphism
from B ′ to C

∗ defining an action of B ′ on C and, subsequently, a line bundle on D(D):

L := G ′ ×B′
C = (G ′ × C)/ ∼, (g′, v) ∼ (g′b′, ξ(b′)λv) for every b′ ∈ B ′.

Furthermore, one may prove (see for instance [34, Theorem 6.4]) that:

Proposition 3.2 With the notation as above, the correspondence λ �→ L induces an isomor-
phism of lattices:

M(H ′) � Pic(D(D)).

Finally we will denote by {λ1, . . . , λn} ∈ M(H ′) the set of fundamental weights of g,
defined by:

2
κ(αi , λ j )

κ(αi , αi )
= δi j , for every i, j,

and by L1, . . . , Ln ∈ Pic(D(D)) the line bundles associated with λ1, . . . , λn (which consti-
tute a Z-basis of Pic(D(D))). Note that we have:

Li · � j = δi j , for every i, j .

The numerical classes of the L ′
i s (also denoted by Li ) generate the nef cone ofD(D) (cf. [24,

Proposition 1]), Nef(D(D)) ⊂ N1(D(D)), and more generally, denoting by πI : D(D) →
D(I ) the natural projection, we may write:

π∗
I (Nef(D(I ))) = R≥0{Li , i ∈ I }.
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By abuse of notation, for every i ∈ D we will denote also by Li the line bundle on
D(i) whose pullback to D(D) is Li ∈ Pic(D(D)). They are known to be very ample and to
generate Pic(D(i)). The action of C∗ on D(i) extends to an action on the projective space
P(H0(D(i), Li )

∨), in which D(i) is embedded. Although it is not true in general that the
family of lines in D(i) is G-homogeneous (this happens whenever i is not an exposed short
node of D, see [19, Theorem 4.3]), there is a covering family of lines parametrized by a
G-homogeneous projective variety; more concretely, one considers the set ngb(i) of nodes
linked to i in the Dynkin diagram D, so that the natural maps:

D(ngb(i) ∪ {i})

D(ngb(i)) D(i)

can be regarded as a family of rational curves inD(i) and the corresponding evaluation. This
is called the family of G-isotropic lines inD(i), and it can be described as the image inD(i)
of the fibers of the contraction D(D) → D(D \ {i}); abusing notation, we will denote their
numerical classes by �i as mentioned before.

3.2 C
∗C
∗

C
∗-actions on rational homogeneous varieties

3.2.1 C
∗C
∗

C
∗-actions vs. co-characters

Up to composition with a character, an action ofC∗ on a rational homogeneous variety X can
always be extended to the action of amaximal torus H of an adjoint groupG acting transitively
on X , so that we may write X = G/P for some P , and assume (after conjugation) that H ⊂
B ⊂ P . In other words, C∗-actions on G/P are parametrized by group homomorphisms:

σ : M(H) → Z,

called co-characters of H . Note that by restricting this map to the root system  of G one
gets a Z-grading of the Lie algebra g:

g = h ⊕
⊕

α∈

gα = h ⊕
⊕

σ(α)=0

gα

︸ ︷︷ ︸
g0

⊕
⊕

m∈Z
=0

⊕

σ(α)=m

gα

︸ ︷︷ ︸
gm

The subspace g0 ⊂ g is a Lie subalgebra of g, that is reductive.
In this paper, we will focus mostly on the case of C∗-actions given by a particular type of

co-characters, defined as follows. Given an index i ∈ D we consider the grading in g given
by the unique map σi sending the positive simple root αi to 1 and α j , j 
= 0, to 0. In this
case, the subalgebra g0 is the Lie subalgebra of a (reductive) subgroup G0 that is a Levi part
of a parabolic subgroup Pi ⊂ G, whose Lie algebra is

pi = g0 ⊕
⊕

m>0

gm .

Note also that the subgroup C
∗ ⊂ H determined by σi can be described as the center of the

subgroup G0 ⊂ G.
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3.2.2 The transversal group of aC∗C
∗

C
∗-action

Let σi be a co-character of H as above, and let G0 ⊂ G be the corresponding subgroup
determined by the associated Z-grading of g.

Definition 3.3 With the above notation, the semisimple group

G⊥ := [G0,G0] ⊂ G

is called the transversal subgroup of the co-character σi .

Remark 3.4 Note that by construction, for every co-character σi as above, [C∗,G⊥] = {1}. In
particular, the action ofC∗ associated with σi on any homogeneousmanifoldG/P commutes
with the action of G⊥. In particular, the action of G⊥ on G/P sends C∗-orbits to C∗-orbits,
and leaves the set of C∗-fixed points (G/P)C

∗
invariant; since moreover G⊥ is connected,

then every component of C∗-fixed points is invariant by G⊥. More precisely:

Proposition 3.5 Let X = G/P be a rational homogeneous variety, endowed with the C
∗-

action associated with a co-character σi of G as above. Then the fixed point components of
X by the action of C∗ are rational homogeneous G⊥-varieties.

Proof The proof follows the line of argumentation of [35, Theorem 2.6]. We start by consid-
ering a very ample G-homogeneous line bundle L on G/P , so that we have an embedding
G/P ⊂ P(V ) where V = H 0(X , L)∨, and the action of G on X is the restriction of the
action of G on P(V ). In particular we get an action of C∗ ⊂ H ⊂ G on V , that provides a
Z-grading:

V =
⊕

m≥0

Vm, Vm := {v ∈ V | t(v) = tmv}.

In particular XC
∗ = ⋃

m≥0 P(Vm) ∩ X . Note that we may consider V as a g-module, and
then V is a Z-graded module over the Z-graded Lie algebra g, so that we have

gkVm ⊂ Vk+m, for every m, k ∈ Z. (3)

By Remark 3.4, every component of P(Vm) ∩ X is G⊥-invariant, for every m. The proof
may then be completed by showing that:

TX∩P(Vm ),x = TG⊥x,x , for every x ∈ P(Vm) ∩ X .

Since G0 = C
∗G⊥ = G⊥

C
∗, and x is fixed by C

∗, it is enough to show that TX∩P(Vm ),x is
equal to TG0x,x . The point x is the class modulo homotheties of a vector v ∈ Vm , so we have:

TG0x,x = g0v

〈v〉 , TX∩P(Vm ),x = gv ∩ Vm
〈v〉 .

We conclude by noting that g0v = gv ∩ Vm by Eq. (3). ��

3.3 The action of amaximal torus on a complete flagmanifold

An important ingredient that we will use later on is the action of the Cartan subgroup H ⊂
B ⊂ G on the complete flag G/B, whose properties are well known (cf. [8, Section 3.4]),
since they are essentially related to the Bruhat decomposition of G. Then via the natural G-
equivariant projections G/B → G/P , one may study the action of H (and of any subtorus
in it) on any G/P .
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3.3.1 Fixed points of the Cartan action on G/B

The following statement describes the fixed points of the H -action on G/B, and its infinites-
imal behavior around those points; we include a proof for the reader’s convenience.

Proposition 3.6 Let G be a semisimple algebraic group. The set of fixed points of the action
of a maximal torus H ⊂ B ⊂ G on the complete flag G/B is:

(G/B)H = {wB| w ∈ W } .

For every w ∈ W, the set of weights of the H-action on the tangent space TG/B,wB is
{w(α)| − α ∈ +}.
Proof Note first that given an element w = nH ∈ W , the class nB does not depend on the
choice of n, so it makes sense to denote nB by wB, as we have done in the statement.

A point gB ∈ G/B is H -fixed if and only if g−1Hg ⊂ B. Since any two maximal tori
in a connected solvable group are conjugated (cf. [15, 19.3]), there exists b ∈ B such that
g−1Hg = bHb−1, and we conclude that gb ∈ NG(H). By setting w = gbH ∈ W , we may
finally write gB = gbB = wB.

For the second part it is enough to note that TG/B,wB is (C∗-equivariantly) isomorphic to
g/Adw(b), which decomposes in C

∗-eigenspaces as:

g/Adw(b) =
∑

−α∈+
gw(α).

��

3.3.2 Weights of the Cartan action

Now we will compute the weights of the H -action on G/B on its set of fixed points, with
respect to a given line bundle L ∈ Pic(G/B), which we identify with a character λ ∈ M(H ′)
of the maximal torus of the universal covering G ′ of G, see Proposition 3.2. While the
existence of a linearization of the action of H on L is guaranteed in a more general setting by
[18, Proposition 2.4], the special behavior of line bundles on rational homogeneous varieties
(see Sect. 3.1) allows us to describe easily the associated weights.

In fact, given a line bundle L on G/B associated with a weight λ ∈ M(H ′), its description
as a homogeneous bundle allows us to define a linearization of the action of H ′ on L for any
character m ∈ M(H ′), as follows:

h′[(g′, v)] = [(h′g′, h′mv)], for any h′ ∈ H ′, [(g′, v)] ∈ L.

The important point to note here is that for the particular choicem = λ the action of H ′ on L
descends to an action of H . In fact, taking into account that the kernel of the map H ′ → H
is the center of G ′, we may write, for every z ∈ ker(H ′ → H):

z[(g′, v)] = [(zg′, zλv)] = [(g′z, zλv)] = [(g′, v)],
for every [(g′, v)] ∈ L . We may now compute the weights of the H -action with respect to L .

Proposition 3.7 Let L ∈ Pic(G/B) be a line bundle associated with a weight λ. There exists
a linearization of the H-action on G/B whose weights are:

μH
L (wB) = λ − w(λ) ∈ M(H), for any w ∈ W .
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Proof For every h ∈ H , w ∈ W , v ∈ C, we have

h[(w, v)] = [(hw, hλv)] = [(ww−1hw, hλv)]
= [(w, (w−1hw)−λhλv)] = [(w, h−w(λ)+λv)].

��
If C∗ ⊂ H is a subtorus associated with a co-character σi : M(H) → Z, then one knows

(cf. [29, Lemma 2.1 (ii)]) that every C∗-fixed component contains at least an H -fixed point.
In particular, the following Corollary describes the weights of the C∗-action with respect to
any line bundle L .

Corollary 3.8 Let L ∈ Pic(G/B) be a line bundle associated with a weight λ, and C
∗ ⊂ H

be a subtorus associated with a co-character σi : M(H) → Z. There exists a linearization
of the action whose weights on H-fixed points are:

μL(wB) = σi (λ − w(λ)) ∈ M(H), for any w ∈ W .

3.3.3 Fixed point components ofC∗C
∗

C
∗-actions on rational homogeneous varieties

We already know that the fixed point components of the C
∗-action determined by a co-

character σi on a variety G/P are G⊥-homogeneous (see Proposition 3.5). We will now
describe more precisely these components. We start with the case of the complete flag man-
ifold G/B.

Proposition 3.9 Let G be a semisimple algebraic group, B a Borel subgroup and X = G/B
the corresponding complete flag manifold. Consider the C

∗-action on X induced by a co-
character of the form σi as above. Then the irreducible fixed point components of the action
are flag manifolds with respect to the semisimple group G⊥ transversal to the C∗-action.

Proof By [29, Lemma 2.1(ii)], every irreducible component of XC
∗
contains a point of XH ,

hence, by Proposition 3.5, every irreducible fixed point component of X byC∗ is of the form
G⊥wB for somew ∈ W . Since the isotropy subgroup ofwB by the action of G is conjw(B),
it follows that

G⊥wB = G⊥

G⊥ ∩ conjw(B)
.

Since G⊥ ∩ conjw(B) is a Borel subgroup of G⊥, the statement follows. ��
As a direct consequence (by projecting the C

∗-fixed point components in G/B via the
natural projection to G/P), we obtain a description of the fixed point components of the
C

∗-actions introduced above on rational homogeneous spaces of the form G/P .

Corollary 3.10 Let G be a semisimple algebraic group, B a Borel subgroup, P ⊃ B a
parabolic subgroup. Let X = G/P be the corresponding rational homogeneous space, and
consider the C

∗-action on X induced by a co-character of the form σi as above. Then for
every w ∈ W the irreducible fixed point component passing through the point wP is the
rational homogeneous variety:

G⊥

G⊥ ∩ conjw(P)
.
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Table 1 List of short gradings on simple Lie algebras

g An Bn Cn Dn E6 E7

σi σi (1 ≤ i ≤ n) σ1 σn σ1, σn−1, σn σ1, σ6 σ7

g⊥ Ai−1 × An−i Bn−1 An−1 Dn−1,An−1,An−1 D5,D5 E6

Remark 3.11 It is worth observing that the extremal values of μL are achieved at the points
eB and w0B, where w0 ∈ W denotes the longest element of the Weyl group of G. In
particular, the sink and the source of the C∗-action induced by σi are the G⊥-orbits of eB,
w0B, respectively. More generally, if we consider any non-trivial C∗-action induced by a
co-character σ : M(H) → Z, satisfying σ(α j ) ≥ 0 for every α j ∈ �, the description of the
weights of the H -action on the tangent spaces ofG/B at eB andw0B given in Proposition 3.6
tells us that the weights with respect to C

∗ at TG/B,eB , TG/B,w0B are all non-positive and
non-negative, respectively. This implies that eB, w0B belong to the sink and the source of
this action, respectively.

3.4 Equalized actions with isolated extremal fixed points on rational homogeneous
spaces

Later on, we will study the birational maps associated with C
∗-actions on rational homoge-

neous varieties, and we will be interested in the case in which the domain of the birational
map is the projective space. For that purpose, we will concentrate on theC∗-actions on ratio-
nal homogeneous varieties that are equalized and have isolated sink and source. As we will
see, these actions are completely classified (see Corollary 3.18). Notice that, using different
techniques mainly based on VMRT theory, these varieties have been recently characterized
among irreducible Hermitian spaces of “tube type"; we refer to [20] for details.

3.4.1 Equalized actions on rational homogeneous spaces

Via the correspondence of C∗-actions on rational homogeneous varieties with co-characters
andZ-gradings (Sect. 3.2), it is known that equalizedC∗-actions correspond to short gradings
(see [10]), that is, to those gradings for which gm = 0 if and only if m 
= 0,±1. Throughout
this section, we will always assume that g is simple; in this case the possible short gradings
of g are known (cf. [35, p. 42]): up to conjugation, they correspond to some co-characters of
the form σi . The complete list of these co-characters can be read from the Table 1.

Remark 3.12 (Products) In the case in which g is semisimple but not simple, a short grading
on g = ⊕

k g
k is given by the choice of a short grading on each of its simple direct summands

gk . If these short gradings are given by co-characters σik in the list of Table 1, then the short
grading on g = ⊕

k g
k is given by the co-character denoted by

∑
k σik . Translated into

the language of C∗-actions, an equalized C
∗-action on a rational homogeneous variety of

the form
∏r

k=1 G
k/Pk , with G1, . . . ,Gr simple, is given by the product of an equalized

C
∗-action on every Gk/Pk .

3.4.2 Actions ofC∗C
∗

C
∗ with isolated sink or source

The following statement tells us when a C
∗-action associated with a co-character σi on a

rational homogeneous G-variety has isolated sink.
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Proposition 3.13 TheC∗-action associated with the choice of a co-character σi on a rational
homogeneous G-variety D(I ) has isolated sink if and only if I = {i}.
Proof Write D(I ) as G/P for some P ⊃ B. By Remark 3.11, the sink of the action will
be the fixed point component passing through eP . Then, by Corollary 3.10, the action has
isolated sink if and only if G⊥ ⊂ P , and this is possible if and only if I = {i}. ��
Remark 3.14 (Reversion) A similar argument allows us to state that our C

∗-action has
isolated source if and only if G⊥ ⊂ conjw0

P . Now we use the description of w0 (see
Remark 3.1). If the action of w0 on M(H) equals − id, then conjw0

P is nothing but the
opposite parabolic subgroup of P , which contains G⊥ if and only if P does. Therefore, in
the cases:

Bn, Cn, Dn (n even), E7

the action of C∗ associated with σi on D(I ) has isolated sink and source, if and only if
I = {i}.

In the remaining cases, we use Remark 3.1 to identify the parabolic subgroup conjw0
(P),

and to check when it does contain G⊥ obtaining:

• for every i , An(I ) has isolated sink if and only if I = {i} and isolated source if and only
if I = {n + 1 − i}; in particular, if n is odd and i = (n + 1)/2, An(i) has isolated sink
and source;

• for i = 1, Dn(I ) has isolated sink and source if and only if I = {1}; for i = n − 1, n, the
action on Dn(I ) has isolated sink if and only if I = {i}, and isolated source if and only
if I = {n − 1, n} \ {i};

• for i = 1, 6, the action on E6(I ) has isolated sink if and only if I = {i}, and isolated
source if and only if I = {1, 6} \ {i}.

Remark 3.15 (Fixed points on products) Note that, in the setup of Proposition 3.13, even
if g not simple, a rational homogeneous variety of the form D(i) is always a quotient of a
semisimple algebraic groupwith simpleLie algebra;more concretely, ifwe denote byD′ ⊂ D
the connected component of D containing the node i , we have D(i) = D′(i). Then, if g is a
direct sum

∑r
k=1 g

k of simple Lie algebras, and we choose a node ik on the Dynkin diagram
Dk of gk , for every k, the C∗-action on the variety D(i1, . . . , ir ) = D1(i1) × · · · × Dr (ir )
is the product of the actions of C∗ on the Dr (ir )’s given by the co-characters σik . Then the
fixed point components of this action will be the products of the fixed point components
of the C

∗-actions on each factor and, in particular, the sink of the action will be isolated.
For instance, the action induced by the character σ1 + σ1 on An(1) × Am(1) has four fixed
components, isomorphic to a point (the sink), An−1(1), Am−1(1), and An−1(1) × Am−1(1).

Proposition 3.13 provides a list of rational homogeneous varieties of Picard number one
admitting equalized C

∗-actions with isolated sink. Following Remarks 3.12, 3.15, actions
of this kind on rational homogeneous varieties of arbitrary Picard number are obtained by
considering products of these.

In order to study the remaining fixed point components of each of these actions, one
may proceed as follows. First of all one considers the natural embedding of D(i) on the
irreducible representation Vλi of g associated with the fundamental weight λi ∈ M(H).
Then one considers the short grading of g determined by the root αi , and splits Vλi as a
direct sum of irreducible g0-modules; next one studies the intersection of D(i) with the
corresponding projectivizations. The outcome of the process is the following:
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Table 2 Equalized C
∗-actions with isolated extremal fixed points on rational homogeneous spaces of Picard

number one

g D(i) Weights j Fixedpoint comp.ofweight j

An An(i) 0, . . . ,min{i, n − i + 1} Ai−1(i − j) × An−i ( j)

An(n + 1 − i) max{0, n − 2i + 1}, . . . . . . , n − i + 1 An−i ( j) × Ai−1(n + 1 − i − j)

Cn Cn(n) 0, . . . , n An−1( j)

Bn Bn(1) 0, 1, 2 Bn−1(0),Bn−1(1),Bn−1(0)

Dn Dn(1) 0, 1, 2 Dn−1(0),Dn−1(1),Dn−1(0)

Dn Dn(n) 0, . . . , �n/2� An−1(n − 2 j)

Dn(n − 1) 0, . . . , �n/2� An−1(n − 2(�n/2� − j))

E6 E6(1) 0, 1, 2 D5(6),D5(5),D5(1)

E6(6) 0, 1, 2 D5(1),D5(5),D5(6)

E7 E7(7) 0, 1, 2, 3 E6(0),E6(1),E6(6),E6(7)

Table 3 Equalized C
∗-actions with isolated sink and source

Variety A2n−1(n) Cn(n) Bn(1) Dn(1) Dn(n) E7(7)

restrictions n ≥ 1 n ≥ 2 n ≥ 2 n ≥ 4 n ≥ 6, n even

dimension n2
(n+1

2
)

2n − 1 2n − 2
(n
2
)

27

δ n n 2 2 n/2 3

Proposition 3.16 Let G be a semisimple group with a simple Lie algebra. The complete list of
rational homogeneous G-varieties admitting equalizedC∗-actions with an extremal isolated
fixed point, and of their irreducible fixed point components, is given in Table 2.

Remark 3.17 Table 2 must be read with the following conventions: first of all, for any k, we
set D(k + 1) = D(0) to be a point for any diagram with k nodes D. Second, the weights of
the fixed point components are taken with respect to a linearization of the ample generator
of the Picard group of the corresponding variety with weight 0 at the sink of the action. As
a consequence we can see that the criticality and the bandwidth of the action coincide with
the maximal weight δ of the action.

3.4.3 C
∗C
∗

C
∗-actions with isolated sink and source

Finally, as a consequence of Proposition 3.16, we get a description of all the actions with
isolated extremal fixed points, which will have Cremona transformations as their induced
birational maps.

Corollary 3.18 The complete list of rational homogeneous spaces of Picard number one
admitting equalized C

∗-actions with isolated sink and source is given in Table 3.

Remark 3.19 In the list above only four cases are geometric realizations of bispecial Cre-
mona transformations (see [26, Definition 4.1]); they are exactly the varieties classified in
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[27, Theorem 8.10], which correspond to the whole list of quadro-quadric special Cremona
transformations of Ein and Shepherd-Barron, associated with the four Severi varieties:

A5(3), C3(3), D6(6), E7(7).

Note also that the list of quadro-quadric Cremona transformations with smooth fundamental
locus (classified in [31, Proposition 5.6]) is completed by adding the birational map induced
by the equalizedC∗-action onP1×Qn , where Qn denotes the n-dimensional smooth quadric.
From the description of the fixed point components of the action, it follows that the funda-
mental locus of the associated birational map in this case is the union of a quadric Q′ of
dimension n − 2 and a point outside of the linear span of Q′.

4 Equivariant Cremona transformations

This section is devoted to the Cremona transformations induced by the equalized C∗-actions
with isolated sink and source on rational homogeneous varieties (Corollary 3.18). An impor-
tant property satisfied by these transformations is that they commute with the action of a
semisimple group: the transversal group G⊥. As we will see, under this representation-
theoretical point of view one may interpret these Cremona transformations as maps of
inversion.

A first important observation is the following:

Corollary 4.1 Let X = G/P be a rational homogeneous variety equipped with theC∗-action
associated to a co-character σi : M(H) → Z, and let G⊥ be the corresponding transversal
group. Denote by Y± the sink and source of the C

∗-action, and by ψ : P(NY−|X ) ���
P(NY+|X ) the induced birational transformation. Then the action of G⊥ on X induces actions
on P(NY±|X ) so that ψ is G⊥-equivariant.

Proof Aswe noted in Remark 3.4 the action ofG⊥ on X leaves invariant Y±, hence it extends
to an action on P(NY±|X ). Moreover, since P(NY±|X ) can be thought of as the geometric
quotient parametrizing 1-dimensionalC∗-orbits converging to Y±, and G⊥ sends closures of
C

∗-orbits to closures of C∗-orbits (Remark 3.4), then ψ is G⊥-equivariant. ��

Applying 2.1.13 to each of the actions described in Table 2—in which the source is a
point—we get a birational transformation ψ onto the projectivization of the tangent space of
X at the point Y+. When the sink Y− is positive dimensional, P(NY−|X ) is the projectivization
of a homogeneous bundle over Y−. In particular, with the exception X = P

n and the sink of
the action is a hyperplane, the variety P(NY−|X ) has Picard number bigger than one. On the
other hand, in the cases of Table 3, we obtain Cremona transformations.

Definition 4.2 Let G be a semisimple group, and consider two projective representations
P(V1), P(V2) of G of the same dimension. A Cremona transformation ψ : P(V1) → P(V2)
is said to be G-equivariant if it commutes with the action of G.

The most obvious examples of equivariant Cremona transformations are those listed in
Table 3, that we will now describe geometrically. At this point, Problem 1 that we have
already stated in the Introduction naturally arises.
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4.1 Example: quadrics

The least interesting of the birational transformations induced by the actions of Table 3 is
the case of the non-singular quadrics Q of the form Bn(1) or Dn(1); following [28, Section
5.2], since the criticality of the action is two, and the extremal fixed points are isolated, ψ is
forced to be an isomorphism.

This can be also seen as follows: the C
∗-action on Q has two extremal fixed points

P−, P+, which are not connected by a line in Q. Every tangent direction v− ∈ P(TQ,P−)

determines a plane πv− containing P−, P+ and the direction v−. This plane meets Q along
a conic C passing through P−, P+; this conic is reduced, not necessarily irreducible, and
it is non-singular at P−, P+. Moreover, since the action is equalized, the plane πv− is C∗-
invariant, hence C is C∗-invariant and we may conclude that ψ(v−) = [TC,P+] ∈ P(TQ,P+).
In particular ψ is well-defined for every v− ∈ P(TQ,P−), so it is regular. The same clearly
holds for its inverse.

4.2 Example: balanced Grassmannians

Let us consider two complex vector spaces V−, V+ of dimension n ≥ 1, and the action
of C∗ on V− ⊕ V+ that leaves V−, V+ invariant, whose weights on these spaces are 0
and 1, respectively. Then we consider the induced action on the Grassmannian A2n−1(n)

of n-dimensional linear subspaces of V− ⊕ V+. Its extremal fixed points correspond to
the subspaces V− and V+. By 2.1.13, the action of C∗ induces a Cremona transformation
among the projectivizations of the tangent spaces of A2n−1(n) at the extremal fixed point
components:

ψ : P(V∨− ⊗ V+) ��� P(V∨+ ⊗ V−).

In order to describe this map, we note that a general element of A2n−1(n) is determined by
a skew-symmetric tensor:

s := (v−
1 + v+

1 ) ∧ · · · ∧ (v−
n + v+

n ),

where v−
1 , . . . , v−

n ∈ V− and v+
1 , . . . , v+

n ∈ V+ are linearly independent vectors. Since the
orbit of [s] in A2n−1(n) is the set of points of the form:

t[s] =
[
(v−

1 ∧ · · · ∧ v−
n ) + t

n∑

i=1

(v−
1 ∧ · · · ∧ v+

i ∧ · · · ∧ v−
n ) + O(t2)

]
,

then the limiting point of the orbit of [s] is the blowup of A2n−1(n) along the source and, as
t approaches to 0, the sink is given by:

lim
t→0

t[s] =
[

n∑

i=1

v−
1 ∧ · · · ∧ v+

i ∧ · · · ∧ v−
n

]
,

and analogously:

lim
t→∞ t[s] =

[
n∑

i=1

v+
1 ∧ · · · ∧ v−

i ∧ · · · ∧ v+
n

]
.

These points can be identified, respectively, with the class of the linear map from V− to V+
sending every v−

i to v+
i , and its inverse. In other words, as noted by Thaddeus in [37, Section

4], the map ψ is the projectivization of the inversion map.
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Remark 4.3 Note that, in the particular case n = 3, the exceptional locus of ψ is a Segre
variety P

2 × P
2 ⊂ P

8, which is the Severi variety associated to the division algebra C. The
map ψ is one of the special Cremona transformations characterized in [9].

4.3 Example: isotropic Grassmannians

We refer to [21] formore details on this example and its applications. The equalizedC∗-action
on Cn(n) described in Table 3 can be seen as a restriction of the one we have just studied in
the previous Example. In order to see this we start from a direct sum V− ⊕ V+ as above, and
consider an isomorphism φ : V− → V∨+ , which defines a non-degenerate skew-symmetric
2-form ω on V− ⊕ V+:

ω(u− + u+, v− + v+) := φ(u−)(v+) − φT (u+)(v−).

The C∗-action on V− ⊕ V+ of the previous example, which acts trivially on V− and homo-
thetically on V+, preserves orthogonality with respect to ω, hence leaves invariant the subset
Cn(n) ⊂ A2n−1(n)ofω-isotropic subspaces. Since [V−], [V+] ∈ Cn(n), they are the extremal
isolated fixed points of the action.

Note that the tangent space of Cn(n) at [V±] is isomorphic to S2V±, and that its embedding
into TA2n−1(n),[V±] � V∨± ⊗V∓ is induced naturally by the isomorphism φ. Then the birational
map

ψ : P(S2V−) ��� P(S2V+) � P(S2V∨− )

is just the (projectivization of the) inversion map, restricted to symmetric tensors.

Remark 4.4 In the particular case n = 3, we obtain another special Cremona transformation:
the one whose exceptional locus is the Veronese surface in P

5, which is the Severi variety
associated to the division algebra R.

4.4 Example: spinor varieties

The case of Dn(n) (n even) is similar to the one of Cn(n) described above, in the sense that it
can also be obtained as a restriction of the case of A2n−1(n) by considering a non-degenerate
symmetric 2-form on V− ⊕ V+:

q(u− + u+, v− + v+) = φ(u−)(v+) + φT (u+)(v−),

induced by a given isomorphism φ : V− → V∨+ . This defines a quadric Q ⊂ P(V− ⊕ V+)

containing P(V−),P(V+), which are invariant by the action ofC∗, and so we get aC∗-action
on Q with extremal fixed point components P(V−),P(V+). As in the case of Cn(n), this
induces a C

∗-action on the set of linear subspaces contained in Q of maximal dimension,
which consists of two (isomorphic) irreducible components, Dn(n − 1), Dn(n). Since the
dimension of the intersection of two maximal linear subspaces in Q is congruent to (n − 1)
modulo 2 if and only if they belong to the same irreducible family ([14, Theorem 21.14]), it
follows that P(V−),P(V+) belong to the same family if and only if n is even. Note that in
Table 3 we disregard the case n = 4 since in this case D4(4) � D4(1), and so the action is
described in 4.1.
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The interpretation of the birational map ψ in this case is analogous to the case of the
isotropic Grassmannian. This time we have isomorphisms:

TDn(n),[V±] �
2∧
V±,

and we may think of

ψ : P
(

2∧
V−

)
��� P

(
2∧
V+

)
� P

(
2∧

V∨−

)

as the projectivization of the inversion of skew-symmetric tensors.

Remark 4.5 As in the previous examples, in one particular case (n = 6) we obtain a special
Cremona transformation; in this case ψ is the quadro-quadric transformation whose excep-
tional locus is the Grassmannian A5(2), which is the Severi variety associated to the division
algebra H of quaternions.

4.5 Example: the E7 case

The last special Cremona transformation, associated to the algebra O of octonions, makes
its appearance in the case of the 27-dimensional variety E7(7), which is the unique rational
homogeneous variety of exceptional type admitting an equalized C

∗-action with isolated
extremal fixed points. First of all, a straightforward computation shows that the bandwidth
of the action with respect to the ample generator of the Picard group is three. The inner fixed
point components of the action are isomorphic to the variety of (E7-isotropic) lines passing
by the sink and the source, which is isomorphic to the Cartan variety E6(1), which is the
Severi variety associated to the algebra O of octonions. Then E6(1) is the exceptional locus
of the Cremona transformation ψ : P26 ��� P

26. Since moreover one can show that ψ is
quadro-quadric (see [27, Section 8]), we conclude that this is precisely the special Cremona
transformation associated to that Severi variety.

5 Geometric realizations and rational homogeneous bundles

By restrictingC∗-actions on rational homogeneous varieties to invariant subvarieties we may
construct more examples ofC∗-actions, that will be geometric realizations of other birational
transformations.Wewill focus on birational transformations between the projective space and
other homogeneous varieties, so we will restrict theC∗-actions to invariant subsets on which
oneof the twoextremalfixedpoint components is a point.Wewill illustrate this procedure here
by considering restrictions of C∗-actions to some invariant rational homogeneous bundles
overP1, showing inparticular that the homogeneous cases of the list of special transformations
of type (2, 1), classified by Fu and Hwang (cf. [12]), can be obtained in this way. Let us start
by describing the varieties and C∗-actions that we will use.

Setup 5.1 We start with the adjoint group G of a simple Lie algebra g with Dynkin diagram
D, a Cartan and a Borel subgroup H ⊂ B ⊂ G, and a co-character σi : M(H) → Z,
i ∈ D, inducing a C

∗-action on every rational homogeneous variety of the form D(I ); as
we have noted in Proposition 3.13, this action has isolated sink on the variety D(i). We will
denote by Pi the parabolic subgroup containing B such that D(i) = G/Pi . The transversal
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Fig. 2 The variety X defined in
Setup 5.1 and its fixed point
components

subgroup of the action (which is the semisimple part of Pi ) will be denoted by G⊥ ⊂ G;
its Dynkin diagram Di is obtained deleting the node i on D. As usual, we denote by Li the
ample generator of Pic(D(i)); the weights of the action with respect to Li at the sink and the
source will be denoted by 0, δ, respectively. We will consider a C∗-invariant irreducible non
fixed curve � ⊂ D(i), and a nonempty subset J ⊂ D \ {i}. The action of C∗ on D(J ∪ {i})
restricts to the fiber product

X = D(J ∪ {i}) ×D(i) � ⊂ D(J ∪ {i}),
so that the natural smooth Di (J )-fibration:

π : X −→ �

is C∗-equivariant (Fig. 2). Since the action on � has two fixed points, denoted by x−, x+
(respectively the source and the sink of the action on �), we have two invariant subsets
F± := π−1(x±), which are isomorphic to Di (J ). We will assume that D, i , J and � are
chosen so that action of C∗ is:

• faithful on �,
• trivial on F−,
• equalized on F+, with isolated source.

Proposition 5.2 In the situation of Setup 5.1, the induced action of C∗ on X is equalized,
and it induces a birational map:

ψ : F− ��� P
dim(F−).

Proof We have to show that the C∗-action on every 1-dimensional orbit is faithful. Since the
action on F− is trivial, a 1-dimensional orbit C∗x is either contained in the fiber F+—where
the action is equalized by hypothesis—, or it maps via π onto �\{x,x+}—and so we conclude
by noting that π is C∗-equivariant and the action on � is assumend to be faithful.

We finally note that the sink of the C∗-action on X is the divisor F− ⊂ X , and that the
source coincides with the source of its restriction to F+, which is an isolated point, say x ′+.
Then the birational map induced by the action goes from F− to P(TX ,x ′+) � P

dim(F−). ��
In the next subsection, we will see that the (homogeneous) special birational transforma-

tions of type (2, 1) can be obtained from some C∗-actions satisfying the above assumptions.
Nevertheless, the construction is more general and can be used to construct other birational
transformations, such as the one given by in the following example.
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Example 5.3 Let us consider the case in which D(i) is the adjoint variety E6(2) of the Lie
algebra E6; similar examples can be obtained by starting with other simple Lie algebras.

The action of C∗ on E6(2) determined by the co-character σ2 has five fixed point compo-
nents, which, ordered by their weight with respect to the ample generator of Pic(E6(2)), are
the A5-homogeneous varieties:

Y− � {y−}, Y1 � A5(3), Y2 � A5(1, 5), Y3 � A5(3), Y+ � {y+}.
Note that this action is not equalized.

Let � be a C∗-invariant line passing through x− := y− and a point x+ ∈ Y1; note that, by
the AM vs FM formula (2.1.10), the action on � is faithful. Furthermore, we will consider
J = {4}, so that E6(2, 4) → E6(4) is the universal family of lines in E6(2). Then the variety

X = E6(2, 4) ×E6(2) � ⊂ E6(2, 4)

(which is the family of lines in E6(2) passing by points of �), together with the natural
projection π : X → �, is an A5(3)-bundle over �. The fiber F− = π−1(x−) parametrizes
the lines in E6(2) passing through x−, hence it is C

∗-fixed. On the other hand, the fiber
F+ = π−1(x+), which parametrizes the lines passing by x+ is C

∗-invariant and that it
contains four fixed point components. In fact the C

∗-action on F+ � A5(3) is the one
described in Sect. 4.2 (case dim(V±) = 3),which is equalized and has isolated sink and source
(we denote them by Y ′± = {x ′±}). It has two inner fixed point components, isomorphic to
P
2×P

2. In particular its associated birational transformation is the quadro–quadric Cremona
transformation:

ψ ′ : P(V∨− ⊗ V+) ��� P(V∨+ ⊗ V−).

Identifying V∨− ⊗ V+ with the vector space of complex matrices 3 × 3, the map ψ ′ can be
written as:

ψ ′([(xi j )]) = [(mi j )]
where the mi j ’s are the quadratic equations given by the 2 × 2 minors of the matrix (xi j ).
The indeterminacy loci of ψ ′ and its inverse are isomorphic to the set of classes of matrices
of rank one, which are isomorphic to P2 ×P

2, and to the inner fixed point components of the
action on F+. Let us also denote by d the determinant of (xi j ), which is a cubic homogeneous
polynomial.

We may now describe the birational map induced by the C∗-action on X :

ψ : F− → P(TX ,x ′+) � P
9.

We consider the Plücker embedding of F− � A5(3) into P
19 and we take a set of homoge-

neous coordinates in P9 of the form:

[x11 : x12 : · · · : x33 : y]
where y = 0 is the equation of P(TF−,x ′+) into P(TX ,x ′+), and the restrictions of the xi j ’s to

P(TF−,x ′+) correspond to the standard homogeneous coordinates in P(M3×3(C)). Then ψ−1

is given by:

ψ−1([x11 : x12 : · · · : x33 : y]) = [y2x11 : · · · : y2x33 : ym11 : · · · : ym33 : d] ∈ P
19,

and ψ : F− ⊂ P
19 → P

9 is given by the linear projection of F− from the projective tangent
space of F− at the point [�] corresponding to the line � passing by x−. In other words, the
map ψ−1 is a birational transformation of type (3, 1).
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We note also that this transformation is not special, but it can be factored as

GX(0, 1)
Atiyah flip

blowup small

GX(1, 2)

small blowup

F− pr(F−) P
9

The varieties GX(0, 1),GX(1, 2) are geometric quotients of open sets of X (see [28, Remark
2.14]), and pr(F−) is a semi-geometric quotient, isomorphic to the projection of F− ⊂ P

19

from the inner point [�] into P18. The induced birational map P9 ��� pr(F−) ⊂ P
18 is given

by:

[x11 : x12 : · · · : x33 : y] �→ [yx11 : · · · : yx33 : m11 : · · · : m33].
This is a birational transformation of type (2, 1) that can be resolved with a blowup, but its
image is not smooth.

5.1 Special birational transformations of type (2, 1)

Wewill show nowhow the homogeneous cases in the list of special birational transformations
of type (2, 1) appear as particular examples of the transformations induced by theC∗-actions
described in Setup 5.1. We will work in the following setting:

Setup 5.4 Let G be the adjoint group of a simple Lie algebra g with Dynkin diagram D;
consider a Cartan subgroup H ⊂ G, and a co-character σi : M(H) → Z, i ∈ D, inducing
a C∗-action with isolated sink {ePi } on D(i) = G/Pi . We will assume that the co-character
σi : M(H) → Z induces a short grading of g (see the complete list of these characters in
Table 1). We will consider a line � in D(i) passing through the sink of the action, x− :=
ePi ∈ cD(i) = G/Pi , and the fixed point x+ := ri Pi ∈ D(i), which belongs to a fixed point
component of Li -weight equal to 1 (as usual, Li denotes the ample generator of Pic(D(i))).

Note that the first hypotheses allows us to claim that the action induced byσi is equalized on
every rational homogeneous space of typeD. In particular it is equalized onD(i),D(J ∪{i})
(for any choice of indices J ) and, since � ⊂ D(i) is invariant by the action, also on a subvariety
of D(J ∪ {i}) of the form

X := D(J ∪ {i}) ×D(i) �,

On the other hand, assuming that � passes by the sink ePi allows us to assert that the fiber F−
is a fixed point component of the action on X . In order to obtain a C∗-action as in Setup 5.1
we need to choose the set J so that the action on the fiber F+ ⊂ X over x+ has isolated
source. The following statement guarantees that such a choice is always possible.

Lemma 5.5 In the situation of Setup 5.4, the induced action of C∗ on F+ is given by a co-
character σ+ inducing a short grading of the Lie algebra g⊥. In particular, we may choose
J ⊂ D \ {i} so that the induced C

∗-action on F+ has isolated source. With the standard
numbering of the nodes in (each of the connected components of) the Dynkin diagram Di of
G⊥, the values of σ+ ∈ M(H⊥)∨ and J are described in Table 4.
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Table 4 Induced C∗-action of the
fiber F+

D D(i) Di σ+ J

An An(i) Ai−1 � An−i σi−1 + σ1 {1, n}
Cn Cn(n) An−1 σn−1 {1}
Bn Bn(1) Bn−1 σ1 {2}
Dn Dn(1) Dn−1 σ1 {2}
Dn Dn(n) An−1 σn−2 {2}
E6 E6(1) D5 σ5 {2}
E7 E7(7) E6 σ6 {1}

Fig. 3 A rational homogeneous variety with isolated sink, and the induced action on X

Proof The fiber F+ over x+ = ri Pi is a quotient of the subgroup conjri (G
⊥) ⊂ G by the

Borel subgroup conjri (B
⊥). In order to study the action of C∗ on F+ we consider the Cartan

subgroup H⊥ := G⊥ ∩ H , whose character lattice is M(H⊥) = ker(σi ) ⊂ M(H). Then the
induced action of C∗ on F+ is given by the co-character σ+ obtained via the composition:

M(conjri (H
⊥)) = ri (M(H⊥)) ↪→ M(H)

σi−→ Z.

The image into M(H) of the base of positive simple roots associated with the choice of
the Borel subgroup conjri (B

⊥) ⊂ conjri (G
⊥) (which is conjri (� \ {αi )) consists of all the

roots of the form ri (α j ), j 
= i . In all the cases described in Table 1 we have that

ri (α j ) =
{

α j + αi if j ∈ ngb(i),

α j otherwise,

for j 
= i , so that the co-character σ+ sends every positive simple root α j to 1 if j neighbors
i , and to zero otherwise. Finally a case by case argument provides the list of co-characters
in Table 4. The value of the set J follows then by Proposition 3.16. ��

With the choice of J as above, the situation of Setup 5.4 has been represented in Fig. 3.
By applying now Proposition 5.2, we immediately get:

Corollary 5.6 In the setting of Setup 5.4, let J ⊂ D\{i} be as in Table 4. Then the C∗-action
on X defines a birational transformation:

Di (J )
ψ

P
dim(Di (J )) .

Let us describe some properties of the C
∗-action on X , and of its associated birational

transformation. We start by listing in Table 5 the fixed point components of the action, that
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Table 5 Fixed point components of the C∗-action on X

D D(i) Y0 = Di (J ) Y1 Y2 Y3

An An(i) Ai−1(1) Ai−2(1) Ai−2(1) �

× × �
An−i (n − i) An−i−1(n − i − 1) An−i−1(n − i − 1)

Cn Cn(n) An−1(1) An−2(1) ∅ �

Bn Bn(1) Bn−1(1) � Bn−2(1) �

Dn Dn(1) Dn−1(1) � Dn−2(1) �

Dn Dn(n) An−1(2) An−3(2) A1(1) × An−3(1) �

E6 E6(1) D5(4) A4(1) A4(3) �

E7 E7(7) E6(1) D5(1) D5(5) �

can be obtained out of Lemma 5.5 and Table 2. In the table we use the symbol � to denote
the set consisting of an isolated closed point. We will consider the weights of the action with
respect to a linearization on the very ample line bundle

L := Li +
∑

j∈J

L j , (4)

and denote by Yi the union of the fixed components of weight i . As usual, by choosing
conveniently the linearization of the action on L , we may assume that Y0 = F−, and then a
case by case inspection shows then that the source of the action, which is a point, is attained
at weight 3.

One may easily compute the ranks of the positive and negative parts of the normal bundles
of the inner fixed point components of the action, which allow to compute the exceptional
locus of ψ and its inverse. As usual, let us denote by X � → X the blowup of X along its
source Y3, with exceptional divisor Pdim(Di (J )); note that the sink Y0 = F− of X is already
a divisor.

Lemma 5.7 With the above notation, ν+(Y1) = 1, and ν−(Y2) = 1. In particular, Exc(ψ) =
X+(Y1) ∩ Y0 � Y1 and Exc(ψ−1) = X �−(Y2) ∩ P

dim(Di (J )) � Y2.

Proof First of all, we note that X−(Y1) = F+ is a divisor in X , hence, by Formula (1),
ν+(Y1) = 1. On the other hand, the fact that the source of X is a point easily implies that
ν−(Y2) = 1 (in the cases in which Y2 
= ∅). In fact, if this were not the case, we would have
a positive dimensional family of curves joining a given point of Y2 and the point Y3. This
contradicts the fact that, by 2.1.10, these curves are lines in the embedding given by the very
ample line bundle L . By Lemma 2.2, this implies that

Exc(ψ) ⊆ X �+(Y1) ∩ Y0 � Y1, Exc(ψ−1) ⊆ X �−(Y2) ∩ P
dim(Di (J )) � Y2.

Note that, since Y− ⊂ X is a divisor, X �+(Y1) � X+(Y1),
Note also that in the case in which D = Cn this already says that ψ−1 is a morphism.

On the other hand the variety F+ is a projective space together with the equalized action
having as fixed components a hyperplane Y1 and a point Y3; in particular we see that also
ν−(Y1) = 1 and so also ψ is an isomorphism.
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Table 6 (Homogeneous) Special birational transformations of type (2, 1)

Di (J )
ψ

��� P
dim(Di (J )) Exc(ψ) Exc(ψ−1)

Di (J ) dim(Di (J ))

Ai−1(1) n − 1 Ai−2(1) Ai−2(1)

× × �
An−i (n − i) An−i−1(n − i − 1) An−i−1(n − i − 1)

Bn−1(1) 2n − 3 � Bn−2(1)

Dn−1(1) 2n − 4 � Dn−2(1)

An−1(2) 2(n − 2) An−3(2) A1(1) × An−3(1)

D5(4) 10 A4(1) A4(3)

E6(1) 16 D5(1) D5(5)

In the rest of the casesψ−1 contracts the divisor X �−(Y1)∩P
dim(Di (J )) to X−(Y1)∩F− ⊂

F−, so that this set, which is isomorphic to Y1, is necessarily contained in Exc(ψ). A similar
arguments determines Exc(ψ−1). ��
Remark 5.8 As we have just seen, in the case of Cn(n), ψ−1 and ψ are isomorphisms; in the
rest of the cases we obtain examples of non-regular birational transformations. The cases in
which Pic(Y0) = 1 are precisely the homogeneous examples in the list of special birational
transformations of type (2, 1) classified by Fu and Hwang, [12]. In a nutshell, the maps ψ

are birational linear projections of the minimal embeddings of the rational homogeneous
spaces Di (J ) listed above. The exceptional loci of ψ and its inverse can be computed by
using Lemma 5.7 in each case (see Table 6).

5.2 Linear sections

There are still two examples in the list of [12] that do not appear in Table 6.Wewill show now
how to obtain some geometric realizations of them. These realizations will be C∗-invariant
subvarieties of the varieties X = D(J ∪ {i}) ×D(i) � described above.

We start by considering the projection π : X → �, and noting that this is aDi (J )-bundle,
which, by Grothendieck’s theorem, is determined by a cocycle θ ∈ H1(�,G⊥), which is
completely determined by a co-character σ ′ : M(H⊥) → Z. One may then easily check (see
[23, Example 2.3]) that this cocycle is equal to the co-character σ+ defining the restriction of
the C∗-action on X to the fiber F+ (see Lemma 5.5). The cocycle θ defines then a principal
C

∗-bundle E → �, so that X may be written as the variety E ×C
∗ Di (J ), which is defined as

the quotient of E ×C
∗ Di (J ) by the equivalence relation:

(e, x) ∼ (et, t x), for every t ∈ C
∗.

At this point, for any B ⊂ Di (J ) smooth C
∗-invariant subvariety, we may define a

subvariety

B := E ×C
∗
Y ⊂ E ×C

∗ Di (J ) = X ,

which is a B-bundle over P1, and inherits the action of C∗. The fixed point locus of the
C

∗-action on B will be XC
∗ ∩ B. In particular, if B ⊂ Di (J ) contains the source of the
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Table 7 The normal bundleN := NY1|Di (J )

D(i) An(i) Cn(n) Dn(n) E6(1) E7(7)

Di (J ) Ai−1(1) × An−i (n − i) An−1(1) An−1(2) D5(4) E6(1)

Y1 Ai−2(1) × An−i−1(n − i − 1) An−2(1) An−3(2) A4(1) D5(1)

N O(1, 0) ⊕ O(0, 1) O(1) Q⊕2 ∧2 T (−2) S

C
∗-action defined by σ+, B will then be a geometric realization of a birational map

B ��� P
dim(B).

Furthermore, in order to avoid this map to be an isomorphism, we will require B to meet
both Y1, Y2 ⊂ XC

∗
.

The two non-homogeneous examples in the list of [12, Theorem 1.1] can be achieved
by considering complete intersections defined by general elements in the linear system
H0(Di (J ), L)1. By definition they contain Y1 and Y3, and are smooth at its intersection
with Y2 by Bertini’s theorem. Furthermore, such a section is smooth at Y3, since P(T∨

Di (J ),Y3
)

can be naturally identifiedwith 〈Y2〉, which 〈B〉meets in dimension dim(B)−1, by definition.
Consequentely, since B supports a C

∗-action, in order to guarantee its smoothness it
is enough to prove that it is smooth at Y1. For this purpose we use [3, Proposition 1.7.5]
together with Proposition 2.5 and Remark 2.6, to claim that a general B of this kind is
smooth if dim(Y1) < dim(Di (J ))/2, or dim(Y1) = dim(Di (J ))/2 and the top Chern class
ofNY1|Di (J ) ⊗ L is zero. The following table contains the description of the normal bundles
of Y1 in Di (J ) in each case:

This shows that this construction works, and provides examples different from the ones
we have already described in the following two cases, which are the ones included in [12,
Theorem 1.1]:

(i) Di (J ) = A4(2), and B ⊂ Di (J ) is a general linear complete intersection of codimension
at most two.

(ii) Di (J ) = D5(4), and B ⊂ Di (J ) is a general linear complete intersection of codimension
at most three.

Remark 5.9 The existence of a general linear complete intersection of codimension at most
three of (ii) is guaranteed by the existence of an exact sequence of vector bundles in P4:

0 → OP4 −→
2∧

�P4(3) −→ T → 0

where T denotes the so-called Tango bundle in P4 (cf. [17]).
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21. Michałek, M., Monin, L., Wiśniewski, J.A.: Maximum likelihood degree and space of orbits of a C
∗-

action. SIAM J. Appl. Algebra Geom. 1(5), 60–85 (2021)
22. Morelli, R.: The birational geometry of toric varieties. J. Algebr. Geom. 5(4), 751–782 (1996)
23. Muñoz, R., Occhetta, G., Solá Conde, L.E.: Splitting conjectures for uniform flag bundles. Eur. J. Math.

6(2), 430–452 (2020)
24. Muñoz, R., Occhetta, G., Solá Conde, L.E., Watanabe, K.: Rational curves, Dynkin diagrams and Fano

manifolds with nef tangent bundle. Math. Ann. 361(3), 583–609 (2015)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2104.14442
http://arxiv.org/abs/2207.09864v1
https://doi.org/10.1007/s12215-022-00745-8
http://arxiv.org/abs/2208.14216v3
http://arxiv.org/abs/2302.04472


Rational homogeneous spaces as geometric realizations… 3253

25. Muñoz, R., Occhetta, G., Solá Conde, L.E., Watanabe, K., Wiśniewski, J.A.: A survey on the Campana-
Peternell conjecture. Rend. Istit. Mat. Univ. Trieste 47, 127–185 (2015)

26. Occhetta, G., Romano, E.A., Solá Conde, L.E., Wiśniewski, J.A.: Geometric realizations of birational
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